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Abstract 

This paper presents theoretical convergence 
characteristics of Keep-Best Reproduction 
(KBR), a selection strategy for genetic al- 
gorithms (GAS). KBR was previously intro- 
duced and encouraging results were reported 
in the traveling salesman domain [16, 181 
where KBR was compared with the stan- 
dard replacement strategy of replacing the 
two parents by their two children. Here we 
demonstrate that in a non-operator environ- 
ment as well as in the ONEMAX domain 
KBR has the same convergence character- 
istics as P-tournament selection and elitist 
recombination (ELR) [13]. We also show 
how a modification of ELR suggested in [15] 
can be utilized to tune the selection pressure 
of KBR. These analytical models are fairly 
simplistic and cannot accurately model the 
convergence characteristics in more complex 
domains where building blocks are corre- 
lated, such as the TSP domain. We will 
give some empirical results of a comparison 
of KBR and ELR in this domain. 

1 Introduction 

Selection plays a vital role in every evolutionary alg* 
rithm. Without selection the search process becomes 
random and promising regions of the search space 
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would not be favoured over non-promising regions. In 
order to have an efficient and effective search there 
must be a search criteria (the fitness function) and 
a selection process that gives individuals with higher 
fitness a higher chance of being selected for reproduc- 
tion, mutation and survival. 

Depending on the selection strategy that is used, 
there will always be a tradeoff between explomtion 
and exploitation of the search space. Informally, ex- 
ploration is the part of the search that “discovers” 
new and hopefully promising regions in the search 
space, while exploitation is the part of the search 
that stays in one region of the search space and tries 
to improve individuals in that locality. Both explo- 
ration and exploitation are important for a successful 
search and do usually compete with each other in the 
sense that too much exploration meana too little ex- 
ploitation and vice versa. 

The selection strategy that is employed determines 
how much exploration and how much exploitation is 
performed. One measure to quantify selection strate- 
gies is the selection pressure. Informally, a high selec- 
tion pressure means that highly fit individuals are 8e- 
lected in disproportionate numbers of samples, while 
individuals of lower fitness are often not selected at 
all and are lost during the search process. 

A higher selection pressure leads to less exploration 
of the search space, and more exploitation of so-called 
“super-individuals”, which often leads to a loss of di- 
versity in the population and ultimately to premature 
convergence. On the other hand, a selection strategy 
with low selection pressure does not differentiate as 
much (or at all) between good and bad individuals. 
This ultimately leads to less exploitation of highly fit 
individuals and can slow down the convergence speed 
of the search. Too low a selection pressure could pre- 
vent the search from converging at all if the selection 
strategy forces the search to “jump” from one part of 
the search space to another all the time. 

Section 2 reviews related work on selection schemes. 
Section 3 reviews KBR, a selection scheme baaed on 
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family competition. In Sect. 4 we derive the selection 
intensity of KBR and a convergence model of KBR. 
Section 5 compares KBR with elitist recombination in 
the TSP domain. Section 6 contains the conclusions 
while some ideas for further research are discussed in 
Sect. 7. 

2 Selection Schemes in Evolutionary 
Computation 

There is a variety of different selection schemes for 
GAS, genetic programming and evolution strategies. 
Many of them were designed for one category of evo- 
lutionary algorithm, but in most cases they can be 
applied in other categories. Below we give a brief 
summary of selection schemes and classify them into 
one of three categories: 1) parent selection schemes, 
2) global competition and replacement schemes, and 
3) local competition (or family competition) schemes. 

2.1 Parent Selection 

The parent selection scheme decides who is allowed 
to pass on their genes into the next generation either 
through cloning, recombination with another parent, 
or mutation of the parent. In general we distinguish 
between fitness proportional selection and ranking 
methods. Two popular fitness proportional schemes 
are roulette wheel selection and stochastic universal 
sampling. Linear and exponential ranking as well as 
tournament selection are examples of ranking meth- 
ods. For an overview of parent selection schemes we 
refer to [2]. 

2.2 Global Competition and Replacement 
Schemes 

In a standard GA the parents are chosen by one of 
the parent selection schemes discussed in the previ- 
ous subsection, then the genetic operators are applied 
and the two offspring are inserted into the next gener- 
ation, while the parents usually die. While operators 
can be disruptive, it might be worthwhile checking 
the fitness of the parents and offspring first and then 
deciding who will go to the next generation and who 
will die. One of the earliest competitive schemes were 
the (cl, X) and the (/J + X) evolution strategy schemes 
developed by [lo]. These strategies work as follows: 
~1 parents produce X offspring. In the (/J + X) strat- 
egy the p best individuals out of the union of the p 
parents and the A offspring form the next parent gen- 
eration, while in the (p,X) strategy only the p best 
out of the X offspring (/J < X) form the next par- 
ent population. Note that in these cases there is no 

explicit parent selection from a pool of individuals; 
the /J best individuals simply become the next parent 
population. Eshelman’s CHC algorithm [5] employs 
a similar idea. The children population and the par- 
ent population are merged and ranked according to 
fitness. The top s individuals of this merged set are 
selected to be the next generation. In addition, highly 
disruptive operators are used to have a more explo- 
rative search. All of the selection schemes discussed 
so far are generational. Contrary to those, Syswerda’s 
steady state GA (SSSGA) [12] and Whitley’s GEN- 
ITOR [19] use a steady state replacement scheme, 
where only one recombination takes place during each 
generation. The single offspring usually replaces the 
worst individual in the population. 

2.3 Local Competition and Replacement 
Schemes 

In contrast to global competition, local competition 
takes place within a family of usually two parents and 
two offspring. Mahfoud has developed an algorithm 
called Deterministic Crowding where a parent com- 
petes with its genotypical (or phenotypical) most sim- 
ilar child [8]. His study has shown encouraging results 
for multimodal function optimization. Culberson has 
developed the Genetic Invariance Genetic Algorithm 
(GIGA), where the pair of children competes against 
the pair of parents for replacement [4]. Altenberg 
has developed Upward Mobility Selection in the ge- 
netic programming domain. The basic idea is that 
offspring is only inserted into the new population if 
it is fitter than its parents [l]. Elitist Recombination 
(ELR) was proposed by Goldberg and Thierens [13]. 
Parents are randomly chosen and mated. The two 
best out of the union of the two parents and the two 
offspring are inserted into the next generation. Essen- 
tially, Upward Mobility Selection and ELR are basi- 
cally equivalent implementations of the same family 
competition scheme. 

3 Keep-Best Reproduction: A Family 
Competition Scheme 

What properties do we want a selection strategy to 
have? First, we want to preserve previous good ge- 
netic material, so it can be exploited further. Second, 
we want the search to make progress in the form of 
highly fit individuals, so that new promising regions 
of the search space can be explored. Third, we want 
to have fast convergence (by increasing the selection 
pressure) but avoid premature convergence (by main- 
taining diversity). 

3l.3 



In order to preserve good genetic information as well 
as to introduce new, good genetic information into 
the population, we had previously proposed the fol- 
lowing intermediate selection strategy: Keep only the 
best of the 2 offspring chromosomes and replace the 
other by the best parent. Since this ensures that 
both the best offspring and parent chromosome are 
kept, we call this technique Keep-Best Reproduction 
or short KBR. It is intuitively clear that KBR has a 
higher selection pressure than the standard replace- 
ment technique of replacing both parents by their two 
offspring. We refer to the latter selection strategy as 
Standard Selection or short STDS. Both use the same 
parent selection strategy but KBR employs an addi- 
tional selection step on the parents and children in 
order to decide who will survive into the next genera- 
tion. By keeping the best child we seek to achieve fast 
convergence. Through controlling the selection pres- 
sure by keeping the best parent we seek to prevent 
premature convergence. 

KBR should not be confused with tournament se- 
lection. Tournament selection is a parent selection 
method that randomly chooses s individuals from the 
population and the best of those s individuals be- 
comes a parent. Here s is the size of the tournament. 
Increasing s increases the selection pressure. KBR 
works locally only on the set of the parents and the 
set of the children. It does not have the same ran- 
dom component as tournament selection has. Also 
tournament selection only decides who is chosen for 
reproduction, KBR decides who will live into the next 
generation. 

Also, it is obvious how KBR differs from ELR. How- 
ever, in Sect. 4 we will argue that 2-tournament se- 
lection, ELR and KBR have the same convergence 
characteristics in non-operator models, as well as in 
the ONEMAX domain with crossover. 

4 Selection Intensity and 
Convergence Models 

The selection pressure of a selection scheme is usually 
quantified by its selection intensity I: 

I@) = S(t) = m - f(t) u(t) dt) (1) 
Here the selection differential S(t) is the difference be- 
tween the averagefitness of the parent population at 
generation t, f” (&and the population mean fitness 
at generation t, f(t). fl is the standard deviation 
from the mean fitness f(t) at generation t. 

Assuming a standardized normal distribution of the 
initial population’s fitnesses, i.e. N(T, u) = N(0, l), 
the selection intensity I simply becomes the expected 
average fitness of the population after applying the 
selection scheme to the original population. Thus we 
can write the selection intensity I independent of the 
generation t as: 

I+ 

For the remainder of this paper we will use this no- 
tion of I being independent of the generation number 
t. This is exactly the model that Blickle and Thiele 
used to compute selection intensities [3]. They have 
derived the selection intensity for tournament selec- 
tion of size s to be 

(J 
--co Ae-Gdy ’ - 

s-1 

dx 

(3) 

Note that I is dependent on s, the size of the tourna- 
ment, but not dependent on the generation number 
t. According to [3] these integral equations can be 
solved analytically for the cases s = 1, . . . ,5. For 
example for a tournament of size 1 the selection in- 
tensity is 1(l) = 0 and for a tournament of size 2 it 
is I(2) = &. For tournaments of size s > 5, the 
integral equation has to be solved numerically. Al- 
ternatively for tournament sizes of 8 > 5 Blickle and 
Thiele derived an approximation formula with a rel- 
ative error of less than 1%: 

I(s) m \/z(ln(s) - ln(JZZi$Yj)) (4) 

This approximation formula can also be used for s E 
[2,5] with a relative error of less than 2.4%. Table 1 
shows the selection intensities of tournament selection 
for various tournament sizes. 

Table 1: Selection intensities I(s) for tournaments of 
size s 

S ~1~2~3~4~5 
Is ) 1 0.00 1 0.56 1 0.85 1 1.03 I 1.16 

For a tournament of size 2, Thierenz and Goldberg 
[14] derive the same selection intensity (in the form of 
the population average fitneaz increase from one gen- 
eration to the next in the ONEMAX domain) but in 
a completely different manner as Blickle and Thiele. 
Thierens and Goldberg’s formulation can not be ex- 
tended to other tournament sizes. However, they also 
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derive a convergence model for 2-tournament in the 
ONEMAX domain: 

p(t) = f(1 + sin( 
A)) (5) 

p(t) is the proportion of l-bits in the total popula- 
tion at generation t, while 1 is the bitlength of the 
chromosomes. For a randomly initialized population 
p(O) = 0.5 can be assumed. To compute geanvr the 
total number of generations the population needs to 
fully converge, we set p(g,,,,) = 1, and solve for 
gconv. We find 

9 conv = ;dFl (6) 

In the same paper, Thierens and Goldberg showed 
that their ELR algorithm has the exact same selec- 
tion intensity and convergence characteristics as 2- 
tournament selection. In [13] they showed that when 
optimizing the ONEMAX function, the best parent 
will go to the next generation and the worst parent 
will be replaced by the best child. This is easy to un- 
derstand if we consider that in the ONEMAX domain 
the total number of l-bits before and after crossover 
remains the same. 

This is exactly what KBR explicitly does. Origi- 
nally we proposed to use roulette wheel selection as 
a parent selection for KBR. If instead we use random 
parent selection, the selection intensity for KBR is 
the same as for 2-tournament selection and for elitist 
recombination, namely I = h. The convergence 
model of KBR with random parent selection is the 
same as for P-tournament selection and ELR in the 
ONEMAX domain: 

p(t) = 2 I(1 +sin(&)) (7) 

and 

While the selection intensity of tournament selection 
can be tuned by changing the size of the tournament, 
both ELR and KBR have fixed selection intensities. 
Thierens [15] proposed a modified elitist recombina- 
tion that allows to tune the selection pressure of ELR, 
much in the same way as this can be done for tour- 
nament selection by modifying the size of the tour- 
nament. He has proposed to select one parent via a 
tournament of size s and to select the other parent 
randomly from the population. Then the local ELR 
family competition is applied. Thierens’ model as- 
sumes a heritability of 1, which he achieves by not 
applying genetic operators. Since Thierens’ model 

does not take into account genetic operators, chil- 
dren are simply copies of their parents. We have al- 
ready argued that the two fittest individuals from the 
two parents and children are the fittest parent and 
its child clone, which are then inserted into the next 
generation by ELR. Again, this is exactly what KBR 
does explicitly. We can use Thierens’ modified parent 
selection to tune selection intensities for KBR in the 
same way it is done for ELR. 

The selection intensity of this modified KBR can be 
computed as the (s+ l)th order statistics of a random 
sample of size s+ 1, which is also the population mean 
fitness increase since the standard deviation of the 
starting population is 1. Using the notation of Blickle 
and Thiele [3] we can write the selection intensity of 
the modified KBR as: 

I(s) = 
J 

O” (s+l) z&e-+ (1; &?-“+i. 
-Ca 

(9) 
This integral equation is analytically solvable for s. i 
4. For s > 4 it can be solved numerically or by using 
a modification of Blickle and Thiele’s formula: 

Z(s) R3 (ln(s + 1) - ln(d4.14ln(s + 1))) (10) 

The relative error of this approximation is less then 
2.4% for s E [2,4] and less than 1% for s > 4. Table 2 
shows the selection intensities of this modified KBR. 
We can conclude that the modified KBR with tourna- 

Table 2: Selection intensities I(s) for the modified 
KBR. One parent is selected by a tournament of size 
s, while the other parent is selected at random 

s 1112131415 
Is ) 1 0.56 1 0.85 1 1.03 [ 1.16 I 1.27 

ment size s has the same selection intensity as regular 
tournament selection with tournament size s + 1. 

Thierens and Goldberg [13] have performed experi- 
ments in the ONEMAX domain as well as on bounded 
fully deceptive functions and empirically compared 
tournament selection of size 2 and standard replace- 
ment with ELR. Their conclusiona were that in the 
ONEMAX domain the two selection schemes show 
very little difference. In the deceptive function do- 
main ELR performed slightly better than tournament 
selection. This became even more evident when the 
populations were undersized. 

We have not performed empirical studies in the ONE 
MAX domain that compare KBR with ELR and tour- 
nament selection, since in this domain KBR and ELR 
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are literally the same algorithms and one cannot ex- 
pect that our results for KBR would differ from the 
ones found in [ 131. The above convergence analysis 
of KBR is limited to either the ONEMAX domain 
or a model with heritability one, meaning that the 
offspring are no different from the parents. We be- 
lieve that the difference of KBR and ELR can only 
be shown in a domain where longer building blocks 
need to be processed and operators can have a dis 
ruptive effect on these building blocks. We choose to 
compare KBR and ELR in the TSP domain which is 
also a problem domain of practical interest. 

5 Comparison of KBR and ELR in 
the TSP domain 

We have compared KBR and ELR on a 100 city 
asymmetric travelling salesman problem. The cost 
between two cities was a random integer number be- 
tween 0 and maxcost, where rnaxcost was set to 100 
times the number of cities. The parent selection was 
done via roulette wheel selection. The mutation op 
erator was a simple swap operation that picks two 
random locations in the tour, and exchanges the two 
cities in those locations. The crossover operator we 
used was the partially mapped crossover (PMX). A 
detailed description of PMX can be found in [6]. The 
fitness function we used was fi = c,,, - ci, where 
ci is the actual tour cost of individual i and c,,, is 
the maximum cost in the population. All results were 
averaged over 10 independent runs with different ran- 
dom seeds. For each selection strategy 100 different 
combinations of crossover probability PC and muta- 
tion probability Pm were used with PC ranging from 
0.1 to 1.0 with increments of 0.1 for STDS, KBR, 
and ELR and P,,, ranging from 0.01 to 0.1 with in- 
crements of 0.01 for STDS and P,,, ranging from 0.1 
to 1.0 with increments of 0.1 for KBR and ELR. All 
results shown are with finetuned operator probabili- 
ties for optimal results. 

5.1 Recombination Alone 

Figure 1 shows that both KBR and ELR converge 
prematurely. ELR more so than KBR. For compari- 
son we have also depicted the convergence of STDS in 
Fig. 1. Note that STDS, although applying selection 
pressure through roulette wheel selection, does not 
suffer from the same premature convergence. The 
premature convergence of KBR and ELR is due to 

.a loss of diversity. In order to reintroduce diversity 
we use higher mutation rates in combination with 
crossover. 

4sm3, 
l@JcityTSP,pcpgizen6W 

STIX P-c = a4 - 
Km P-c = 1.0 - - 
EL& P-c = 1.0 ...-.’ 
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Figure 1: The x-axis shows the generation number 
i, while the y-axis shows the cost of the best tour 
after i generations for a 100 city random TSP. No 
mutation was used. The crossover probability was 
set to PC = 0.6 for STDS and to PC = 1.0 for KBR 
and ELR. The population size was 600 

5.2 Recombination and Mutation 

With KBR we were able to speed up the conver- 
gence of the GA by using higher mutation rates. This 
should not come as a surprise. While with STDS, mu- 
tation is performed and the mutated chromosomes are 
inserted into the next generation, KBR only keeps the 
best child. In case mutation lowers the fitness of the 
offspring, there is always the good genetic material of 
the best parent that is kept. So higher mutation rates 
are not as disruptive as with STDS. On the other 
hand, without mutation, KBR very rapidly converges 
to local optima of low quality (see Subsect. 5.1). The 
higher mutation rates reintroduce diversity and help 
steer the GA away from these inferior local optima. 
A similar argument can be made for ELR. Accord- 
ing to Fig. 2, ELR converges even more rapidly, but 
fails to find better solutions than KBR. The cost of 
the cheapest tour found for a population size of 600 
was 86,719 with ELR and 85,541 with KBR after 600 
generations. In fact the population for ELR was fully 
converged after 220 generations, while for KBR after 
600 generations there was still diversity in the pop 
ulation and room for exploration. Similar findings 
were made with other population sizes and problem 
sizes. 

5.3 Varying Operator Probabilities 

Both KBR and ELR also make the underlying GA 
more robust in the sense that small changes in genetic 
operator probabilities do not lead to a large change 
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Figure 2: The x-axis shows the generation number 
i, while the y-axis shows the cost of the best tour 
after i generations for a 100 city random TSP. The 
population size was 600 

Table 3: Performance difference after small change of 
operator probabilities. While the mutation probabil- 
ity P,,, was not changed, the crossover probability PC 
was changed from 0.6 to 0.7 

in algorithm performance. KBR is not affected as 
much by small changes to operator probabilities as 
is STDS. Table 3 shows the effect of a small change 
in the crossover probability from 0.6 to 0.7. While 
after the change in crossover probability, the tour- 
cost increases by 0.16% for KBR and by 1.45% for 
ELR, it increases by 75.1% if STDS is used. 

6 Conclusion 

We have derived the selection intensity of KBR in 
a simplistic non-operator environment as well as for 
the ONEMAX domain to be I = 

$7 
Also we have 

derived a convergence model for KBR in those two 
domains. Both selection intensity and convergence 
model of KBR are identical to the selection intensity 
and convergence models for P-tournament selection 
and ELR. We have demonstrated how an idea intro- 
duced by Thierens [15] can be used to tune the selec- 
tion intensity of KBR in the same way the selection 

intensity can be tuned for tournament selection by 
modifying the tournament size. We believe the dif- 
ference between KBR and ELR can only be shown in 
a domain where building blocks are correlated, such 
as the TSP domain. In this domain both KBR and 
ELR show similar advantages when compared with 
the standard selection strategy of replacing both par- 
ents by their offspring, such as a more efficient and 
more effective search. Also both KBR and ELR work 
well with smaller population sizes when compared 
to STDS. One of the differences between KBR and 
ELR in the TSP domain is that ELR converges more 
rapidly, but usually towards solutions of lesser quality 
than the ones found by KBR. For the tests that we 
have performed the tours found by ELR were on av- 
erage about 3% more expensive than the tours found 
by KBR. 

7 Further Research and Discussion 

The analysis of KBR in Sect. 4 assumed that the par- 
ent population is chosen randomly without replace- 
ment. For the empirical evaluation, however, we have 
used roulette wheel selection. This could give an ad- 
vantage to KBR, since KBR always keeps the better 
parent. It remains to be seen how well KBR and ELR 
compare to each other when the parents are selected 
randomly. We believe that KBR will benefit from 
a fitness biased parent selection while ELR probably 
works best with random parent selection. Currently 
we are working on developing a convergence model 
for both KBR and ELR if they are combined with 
fitness biased parent selection. 

Since KBR as a selection strategy works on fitness 
values only, it should work well in other problem do- 
mains. This however remains to be shown empirically 
in every individual case. KBR can easily be added to 
any existing generational GA, which makes it easy for 
others to try KBR with their particular application. 

It would be interesting to see how other GA tech- 
niques such as other parent selection strategies (tour- 
nament, random, ,.-) and - for the TSP domain - 
other genetic operators (OX, PBX, CX, . ..) affect 
the performance of KBR and ELR. 
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