
A Dynamic Scheduling Logic for Exploiting
Multiple Functional Units in Single Chip

Multithreaded Architectures
Prasad N. Golla and Eric C. Lin

Computer Science & Engineering Department,
Southern Methodist University, Dallas TX 75275

{golla,ecl}@seas.smu.edu

Keywords-Tomasulo’s Algorithm, Computer Architecture,
Microprocessor, Multithreading, Threaded Architectures

Abstmct4revious techniques used for out of order exe-
cution and speculative execution use modified versions of
Tomosulo’s algorithm and re-order buffer. An extension to
these algorithms for multi-threading is necessary in order
to issue instructions from multiple streams of instructions
dynamically and yet keep the consistency of state for the
machine. We present an architecture which has a wide in-
struction issue rate and can issue from multiple threads at
a time. This asynchronous architecture has a mechanism
to dynamically resolve data dependencies and executes in-
structions out of order and speculatively without any spe-
cial help from an optimizing compiler. Instructions from
various threads are interleaved simultaneously to dynami-
cally exploit ILP to the maximum that the architecture can
provide. Consistency of state is maintained by precise in-
terrupts and in-order commitment of instructions for all the
threads in execution.

cute concurrently and parallely on multiple logical pipelines,
it allows User and Kernel threads to execute at the same
time. Hence we named this architecture the Kernel-User
Multithreaded Architecture (KUMA).

During the coming years, feature sizes will continue to
decrease and clock speeds will continue to increase, making
the wire delays a larger percentage of overall signal delay.
Only a small percentage of the die will be reachable during
a single clock cycle [21]. According to an estimate, only 16
% of the die length is reachable within one clock cycle for
a 0.1 pm process at 1.2 GHz. This segregates an integrated
chip into little isolated islands of logic. To deal with it, we
need an architecture which is modularized and which has
self-timed units. A proposed processor, Kin [22] is such an
asynchronous architecture designed for future technologies.
For the same reasons, KUMA is designed to be an asyn-
chronous, modularized architecture.

I. Introduction

Advancing semiconductor technology will make it possi-
ble to put a billion transistors on a single-chip in the coming
years [19], [20]. This has prompted computer chip manu-
facturers to develop architectures which can utilize the ex-
tra transistors. Most of the extra chip space is being allo-
cated to increased on-chip cache and more peripheral sup-
port rather than to provide more functionality to the CPU
core of the architecture. Increased functionality does not
scale up due to a single path of control. VLIW, Superscalar
and Multiscalar are few such designs which have been pro-
posed and implemented to date. There is another paradigm
called the multithreaded paradigm which has been around
since the 1950s but has recently come of age (151. From
the point of view of processor designers and manufacturers,
it would be advantageous to have a corresponding perfor-
mance gain in the processor with the increasing die size (or
more specifically the decreasing feature sizes).

As the number of transistors on a die is becoming larger
and larger, multithreading on a uniprocessor system is be-
coming more and more feasible. Such a single chip processor
should have the ability to exploit ILP from multiple threads
and switch between the threads in case of any latency oper-
ation. In this paper we present such a processor, which ex-
ploits parallelism from multiple threads. Not only does the
processor architecture allow multiple User threads to exe-

Pmission to make digital or hard copies of sll of Pprt Of lhk Wd
for persona] or classroom use is granted without fee pmvidd m
copies are no(made or distributed for profit a COn’umKd
&antage and that copies bear this notice and the full &&ion on
the first page. To copy otherwise, to republish to ~0s on sewers
m to redistribute to lisls, requira prim specific permission 8nd’of s
fee.
SAC 99. San Antonio, Texas

A number of dynamic scheduling techniques have been
proposed, some of which are: CDC 6600’s Scoreboard [12],
Tomasulo’s algorithm [l], Decoupled execution [3], Regis-
ter update unit(RUU) [2], Dispatch Stack [13], Deferred-
scheduling Register-renaming instruction shelf(DRIS) [lo].
These techniques are well suited for either scalar architec-
tures or superscalar architectures with limited issue rate.
Some of these techniques create stalls or locks in the archi-
tecture due to control and data dependencies. Also, some of
them have the ability to support precise interrupts. Among
the above schemes the Metaflow architecture [lo] has the
ability to issue instructions out of order and speculatively
via DRIS but lacks the ability to provide support for mul-
tiple thread execution. The RUU method of allocating tags
is a simplistic tag attaching method, however it reduces the
amount of ILP that could be exploited because of the check-
ing of dependencies at the issue stage. The architecture
proposed by Hirata et al (171 concentrates mainly on mul-
tiprocessor multithreading systems and holds a thread on
a single processor before a conditional branch could be re-
solved.

01998 ACM 1-58113-086499/0001 S5.00

KUMA is a wide issue architecture issuing eight instruc-
tions in a single cycle from up to eight active threads. The
hardware mechanism of KUMA automatically resolves de-
pendencies and removes stalls at the execution stage. It
supports out-of-order execution and completion and flushes
speculatively executed instructions in caze of a branch mis-
prediction. Out of order and speculative execution is achieved
through shelving similar to the Tomosulo’s Algorithm. De-
pending on the number of threads active in the process
queue, the utilization of the processor could be optimized for
a given branch prediction accuracy by reducing the flushing
of speculatively issued instructions. Since scheduling takes
place at two stages in KUMA, the throughput for high pri-
ority threads could be managed. Scheduling of instructions
at two levels, namely the thread level and the instruction
level and elimination of context-switches among the sub-set
of the active threads, may provide KUMA the ability to -_-_- _ _

466 support Real-Time Operating Systema. Hence, KUMA is a

http://crossmark.crossref.org/dialog/?doi=10.1145%2F298151.298422&domain=pdf&date_stamp=1999-02-28

good candidate for the new breed of multimedia uniproces-
sor computers. Our goal is to achieve a cost-effective MIMD
uni-processor with the ability to have high utilization and
throughput.

In this paper, we will concentrate on presenting the de-
tails of the logical mechanism of the architecture. The rest of
the paper is organized as follows: in section 2, KUMA pro-
cessor architecture and the issues related to its relevancy
are addressed. Hardware organization and explanation of
various units of KUMA are presented in section 3. Section
4 presents our empirical results and evaluation of the archi-
tecture, concluding remarks and future work are presented
in the last section.

II. Processor Architecture

A. Machine Model

The most simplistic choice to the manufacturer of a unipro-
cessor system is to adopt the “Cookie-cutter” approach;
when the semiconductor technology improves so much that
the number of transistors on a single die is several times
than that were used for a scalar or super-scalar architec-
ture, replicating a scalar or superscalar architecture to At
a given die would be a plausible choice. Such a processor
architecture is the 4 x two-issue multiprocessor proposed by
Olukotun et al [S]. Depending on the amount of parallelism
and granularity of the threads of the applications, they show
that their multiprocessor is 10% to 100% better than a wide
superscalar microarchitecture.

Another choice would be to increase the peripheral sup-
port or the on-chip cache size. Though this increases the
performance of the processor by reducing the miss laten-
ties etc, this does not directly correspond to the increase
in processing power. Yet another approach would be to in-
crease the number of functional units, which corresponds
to the increase in processing power of the processor, pro-
vided the utilization of these units is high. The utilization of
these added resources could be increased if they are shared
among the virtual pipelines. Since the functional units are
the heart of any architecture, to increase resource utilization
and throughput, we have to keep these as busy as possible.
As Hirata et al [17] explain, the utilization of a functional
unit could be expressed as U = v . lOO%, where N is the
number of invocations of the unit, L is the issue latency of
the unit, and T represents the total execution cycles of the
program. If the utilization of a functional unit or a set of
functional units is 30%, by unifying three virtual pipelines to
share the same functional unit or the set of functional units,
the utilization can be brought up to 90% provided the con-
flicts between the threads sharing the functional units are
properly resolved. Hence, the utilization of the functional
units can be increased by unifying the virtual pipelines and
running multiple threads simultaneously. The organization
of such an architecture, and one which KUMA follows is
as shown in Fig. 1. We try to unify two to eight virtual
pipelines in KUMA.

KUMA sets to exploit both the instruction level paral-
lelism of the programs and the fine-grain and coarse-grain
parallelism of threads on a single-chip multithreaded pro-
cessor. Multithreading was shown to have significantly im- . . .

some of our results on these three main issues. KUMA de-
couples the instruction fetch hardware from the execution
by using instruction queues, which reduces the impact of
the fetch hardware on execution of the functional units.

Data bandwidth demands for KUMA would be also high
because of its wide issue rata. Multi-port, non-blocking
caches would be capable of supporting such high data band-
width demands [4]. The cheapest way to build multi-port
cache is to build a banked cache. Owing to the intercon-
nects however, multi-port non-blocking caches add complex-
ity and delay compared to single-port blocking caches. We
assume that with sufficient number of banks and Miss infor-
mation/Status Holding Registers(MSHRs) the bandwidth
requirement placed on the data cache is met. For more de-
tails on the cache issues, we refer the reader to [4], [5],
PI.

).

hpai Rh- Ftpid-

Fig. 1. Organization of the architecture.

B. Bmnch Prediction accuracy

The branch predictor performance becomes very crucial
when we have a deep pipeline or have very wide issue rates
because of the wastage of speculative work in case of a
branch misprediction. In the face of limited accuracy of
branch predictors, our simulations show that the utilization
of the architectures could be increased by issuing Rom mul-
tiple threads simultaneously. To illustrate this point, we can
use the “probability of commitment of a speculatively exe-
cuted instruction” as an indicator for the performance and
utilization of a processor. The probability of commitment of
an instruction which is executing or was executed ahead of
time, is directly proportional to the performance of the pro-
cessor. Since performance per resources used gives us the
utilization of the processor, a high probability of commit-
ment of an instruction increases both the performance and
utilization of the processor. However, when the turn around
time of a critical application is of importance, one could for-
sake utilization by speculatively executing as many instruc-
tions as possible from that high priority thread. For general

proved the performance of commercial environments by switch-purpose computing and applications, our former argument
ing between 3-5 active threads on cache misses [lS]. holds, since most of the threads run at. slightly varying pri-

Thread switching between the active threads takes place ority and overall throughput of the applications executing
in KUMA. When multiple threads are issued at the same is of importance. Our later argument holds particularly for
time, the instructions from these threads compete for the time-critical and real-time applications where fast response
same functional units. These contentions are resolved on time and turn around time are crucial.
two criteria; in favor of threads which have high priority and Taking the average run length of a program to be 5 and
and against a thread which has many instructions already the branch prediction accuracies of 97.2%, 93%, 90% and
executing speculatively. 85%, with different speculative execution window sizes, a

KUMA issues eight instructions per cycle and hence needs table derived from a simple analytical model shows the prob-
high instruction bandwidth to sustain its aggressive hard- abilities of commitment of instructions in various execution
ware scheduling. Three major factors constrain the fetching window sizes. Table I shows these probabilities. For exam-
of instructions [S]: instruction cache performance, branch ple, at 93% prediction accuracy, for a window size of 32, the
prediction and instruction alignment. These issues have re- average probability of commitment of the speculatively exe-
ceived much attention. In the following sections we present cuting instructions is about 77% for a scalar architecture. At

467

the same prediction accuracy and window size, if the archi-
tecture were running four threads, the average probability
of commitment would be around 90% and for eight, threads
the corresponding probability of commitment would be 93%.
These analytical results were confirmed by empirical results
by running SPEC92 benchmark programs.(reference to our
previous published paper)

C. Cache Memory Bandwidth

Cache memory bandwidth is as critical for a multithreaded
architecture as is for any high issue rate processor. Since
multiple threads are in execution at any given time, the
architecture requires a significant bandwidth. To optimize
the performance and to provide the required bandwidth, we
need to And the proper correlation between the cache mem-
ory and the fetch unit. Our simulations were conducted us-
ing a set of benchmark program traces generated from the
SPEC92 benchmark programs in the Dinero format. Con-
sistently our results favored private instruction and data
caches at the Ll level. At eight threads derived from dif-
ferent processes, the miss rates for private caches are about
one third that of the miss rates for shared caches. Increased
associativity decreases the miss rate up to a point and LRU
is better than random replacement policy. The size of the
block(line) has a limitation in its implementability; a longer
block size will increase the number of interconnections. We
show that as we increase the block size for about 64 bytes
for data and 128 or even 256 bytes for instructions, the
miss rates decrease. The Empirical results show the Cache
Memory configuration best suited for a multithreaded ar-
chitecture would be as follows: Private Data Cache, Private
Instruction Cache, 64 bytes per line(block) for Data Cache,
64 bytes per line(block) for Instruction Cache, 4 way set as-
sociativity for each cache, Least recently used replacement
policy, 64 k Data Cache and 64 k Instruction Cache. We
noticed that the average of data and instruction miss rates
even at eight threads do not go beyond 1.5% for the above
configuration.

D. Instruction Fetching and alignment

Rather than fetch only one instruction per access, an ad-
vanced processor is generally implemented to fetch four or
eight contiguous instructions. Conte et al [6] do a cost and
performance trade-off study of various schemes for instruc-
tion realignment. KUMA takes the fine-grain multithread-
ing approach and issues eight contiguous instructions from
one thread in each clock cycle. Therefore, the entire issue
bandwidth is fllled with instructions from the same thread
on a single clock cycle. This would avoid the need for stride
accessing and memory interleaving. KUMA does not take
any help from the compiler to issue the instructions and does
not keep track of the availability of the functional units. In-
stead it issues these eight contiguous instructions every cy-
cle without any empty slots at the issue stage. Issuing of
instructions from multiple threads based on functional units
availability is not easy to implement. It requires compiler
support and even leads to wasted issue slots per cycle.

Also by eliminating the need for instruction dependency
checking or functional unit availability checking at the fetch
stage, we could fetch a whole block of instructions from
the same thread in one clock cycle without any restrictions.
Some of the fetched instructions in this case might be lost
after re-alignment. We believe that this reduces the com-
plexity of the memory configuration and the fetch unit. We
present the design of the instruction fetch unit to support
fine grain multithreading in KUMA. The instruction fetch
unit is connected to the branch prediction unit (BPU). The
BPU updates the program counters(PCs). If we have eight
threads active at any time, we need eight PCs as shown in
the Figure 2. Further, the BPU can be divided into two
units: the scheduler and the predictor, according to the func-
tionality.

Fig. 2. Organization of Instruction Fetch Unit in KUMA

D.l BPU-Scheduler

The Scheduler sends the control bits (three bits for eight
threads) to show which thread the next block of instruc-
tions should be fetched from. Hence, it makes the decision
on which thread the next block of instructions will come
from and can avoid fetching from threads whose PC re-
quires to be updated by the scheduler. In this category
fall the threads which have just encountered a branch mis-
prediction, threads which are waiting on a cache-miss, or
threads which have just encountered an execution “block”
(waiting) due to remote memory access, I/O operation, or
made a blocked system call, or waiting for synchronization.
A thread whose instructions are fetched in a particular cy-
cle is automatically excluded from being scheduled the next
clock cycle. This is because it takes one more clock cycle
at least for the decoder to decode and update the branch
history table to predict the next block of instructions. This
exclusion is not strictly enforced, but if multiple threads
are ready for execution then this technique is definitely pre-
ferred. If all the threads are of equal priority and there are
eight threads in the ready queue, the scheduler will schedule
these threads in a round-rubin fashion, so that there will be
eight. clock cycles before another block from the same thread
is brought in. This will lighten the burden on the Branch
Predictor. If there were eight cycles between fetching of
each thread, we can even eliminate branch misprediction
altogether, since the operation on which the branch is wait-
ing might be already resolved for small branch frequencies.
Also, out of the ready threads the Scheduler can get the
thread which has the highest priority indicated and set by
the operating system. It is important to support priorities
for threads especially for KUMA, since issues both Kernel
and User threads simultaneously. As is the practice, Kernel
threads are given higher priority than the User threads and
are scheduled ahead of User threads.

D.2 BPU-Predictor

The predictor makes all the branch predictions based on
the history buffer it keeps for all the threads. It sends out
the predicted address to the PCs and indicates to the BPU-
Scheduler that the particular PC slot is valid. Only one
access is made for a block of instructions, the fetch logic
fetches and re-aligns these instructions. The PC increments
at the stride of eight or the addread of the last instruction
fetched for that thread as indicated by the fetch logic. There
are two copies of each PC for each thread. One at the fetch
stage, which indicates the instructions fetched and the other
in the context of that particular thread, which indicates the
instructions already committed. Whenever a bunch of in-

TABLE I

AvERAGE PROBABILITY OF EACH INsTRucTIoN COMMITTING IN THE WINDOW FOR DIFFERENT BRANCH PREDICTION ACCURACIES BASED ON THE

ANALYTICAL MODEL. CALCULATIONS BASED ON ASSUMPTION OF AN AVERAGE RUN LENGTH OF 5.

structions are flushed from a thread, the BPU loads the
committed PC of that thread into the fetch unit PC. Hence
the amount of speculative execution for a thread could be
found from the difference of these two PCs. Explanation as
to how the state of the machine is kept consistent is given
later in this paper.

The design shown in Fig. 2 is the over all logic of the
fetch unit for KUMA and does not include the instruction
alignment logic or the cache memory configuration. A huge
block will increase the hardware complexity of the fetch unit,
alignment logic and cache memory. We show the cost, per-
formance trade-offs of the issue width for KUMA.

III. Hardware Organization of KUMA

The hardware organization of KUMA is shown in Fig. 3.
As was pointed out in the last section, the issue and the exe-
cution stages are decoupled by the use of instruction queues.
For eight virtual pipelines we have nine instruction queues;
one for each of the pipelines and one for temporary shelv-
ing of instructions which the dispatch unit cannot issue in a
particular cycle. The length of the queues depends on the
instruction fetch unit implementation and the cache memory
hierarchy. Each of these queues is tagged with the thread
number, so that the dispatch unit knows which thread it is
fetching from. The dispatch unit has the same issue width
as the fetch unit.

A. instruction Pipelines and Opcode

The instruction pipelines in KUMA are as shown in Fig. 4.
The second fetch cycle is for the dispatch-decode unit. The
instructions are decoded twice. First decode is done by the
dispatch-decode unit to And the function of the instruction.
The second decode is to find out the actual operation. The
instruction set format is as shown in Fig. 5. KUMA uses
load-store, RISC instruction format. The instructions that
do not have the second decode are executed by the Branch
Prediction Unit(BPU) as explained later. The instruction
opcode in Fig. 6 shows broadly the division between the
functional unit and branch/transfer operations. All instruc-
tions are 32 bit wide. We did not implement the “load
register” instruction since the values are read automatically
by the dispatch unit.

KUMA is designed as an asynchronous architecture and
hence is modularized in such a way that each module has
it own control logic. This entails the use of self-timed units
which are coupled to one another without the strict synchro-
nization of a global clock. Hence each stage of the pipeline
as shown in Fig. 4 may not have the same width. Elimina-
tion of the global clock has more benefits than are obvious.
A global clock is generally implemented as a huge gate (in
fact it is the biggest gate on a processor) which switches
on and off every cycle irrespective of whether the clock is
needed (even when the processor is idle). Usually this is al-
lowed since it is cumbersome to start and stop such a huge
clock. None the less, this switching contributes to the maxi-
mum dissipation of power (heat) than any other component
on the processor (in some cases the heat generated by the
clock is more than 50% of the total heat generated and is

Fig. 3. Hardware Organization of KUMA.

becoming a higher percentage as the clock speeds are in-
crease and the feature sizes are decrease). Another problem
is the clock skew; distributing a centralized clock signal to
all the units on a die will not be possible when the signal
at high clock speeds (above 1 GHz) can propagate less than
$th of the die. An asynchronous architecture will solve the
above problems; it was suggested that a centralized control
combinatorial logic on a processor will be an architecture of
the past in the coming years.

B. Dynamic Scheduling in KUMA

Dynamic scheduling in KUMA closely follows the Toma-
sulo’s algorithm. This part of KUMA is the heart of the
design. It follows the “Data Flow” principles of execution
and resolves the conflicts in the hardware. It does out-of-
order and speculative execution at the instruction level and
is the most scalable part of the design. The negative factors
are the increased complexity of interconnects and increase
in associative searching.

Interconnects could be drastically reduced by replacing
crossbars with buzsez. The disadvantage of using busses is

M - Memory Cycle

u - UpdaLe Cycle

C Commit Cycle

Fig. 4. Instruction Pipeline.

DI D2 Rd RSl Rs2

Branch 1Nuucti”“s

Cand,o,mal Branch

DI Rd Add‘csS

UnCondmonal Branch I Trap / System CalI I Pmccdure Call

DI AddlWI

DI Rd lmmedmte Vdue~l6 hm

DI Rd Adhcs3

DI Rd &

Fig. 5. Instruction Set and Format.

the classic case of resolution of bus contention. Contention
could be reduced by having multiple busses. Since having
dedicated busses to connect units is not feasible, the func-
tional units could be appropriately divided into groups to
reduce number of busses and contention on them.

Associative searching could also be reduced by dividing
the functional units and the contexts into logical sets/groups.
We are presently investigating how this sub-grouping of the
search space would impact the performance in KUMA.

C. Register Renaming

To facilitate simultaneous execution of threads and to
avoid costly context switches, KUMA makes use of multiple
register contexts. At the least it uses one context for each
virtual pipeline. Hence for an architectural setup of eight
virtual pipelines, there are eight contexts. Each register is
tagged (except the special purpose registers like the stack
pointer, program counter etc) with two counters. One is

Add/Sub .MUUDlV ‘\ Shlit Lngul \\

. .
I-----__________.___-------~--------~~----------~------~~--~

Executed by Funcuonal Unrts : Executed by BPU

Fig. 6. Example Instruction Opcode for KUMA.

the “Commit Counter Tag(CCT)” and the other is the “Dis-
patch Counter Tag(DCT)“. The DCTs are with the dispatch
unit and the CCTs are with the instruction commit unit of
the Branch Prediction Unit(BPU). Logically both the CCTs
and the DCTs belong to the context of a particular virtual
pipeline.

The dispatch unit increments the corresponding DCT of
the destination register of any instruction that it is issu-
ing. This is regardless of the prior instructions issued or the
source registers of the instruction being issued. Since the
dispatch unit issues multiple instructions per cycle, it incre-
ments the DCTs of the destination registers of the instruc-
tions that it is issuing in that cycle in a sequential manner.
Hence a DCT of a particular register could, in the worst case
be incremented by the issue width if all the instructions had
the same destination register and all the instructions issued
have destination registers (for example, arithmetic instruc-
tions).

The source operands are requested by the dispatch unit
by the register number and the corresponding DCT at the
moment of issuing of that instruction. If the DCT matches
the corresponding CCT, the contents of the register have
the “valid” contents and hence are read into the reservation
station entry where the instruction is issued. If the DCT
does not match the CCT of the particular register either in
the Re-order Buffer (ROB) or the particular register con-
text, the instruction is still issued to the reservation station
and the ROB, except that the operand is not made available
(and is so indicated by the state of the entries).

With the above scheme, the dispatch unit does not check
for the dependencies between the instructions. For a ma-
chine type (2,l) 1 which we use for KUMA, Table II shows
the number of source operands needed and the number of
registers written to per cycle for various issue rates. The ta-
ble also shows the number of comparisons between the reg-
isters that need be done to resolve the dependencies among
the issuing instructions. For simplicity we assume all are
register-register instructions. If the machine waz checking
for dependencies to rename the registers and resolve the
conflicts, for a window size of 36 instructions, it has to do
I296 comparisons. At the dispatch stage in KUMA, the
number of comparisons for a eight issue configuration is 16.
The comparisons are done between the counter tags for the
corresponding registers. The comparisons are done to check
for the availability of the “correct” operands and to fetch
them (read) if the counter tags match. The comparisons to
resolve dependency conflicts are completely avoided. The
dispatch unit does not block the issue of instructions in
KUMA due to dependency conflicts. However, when either

‘If a general machine type is (n, m) , where n,m are always 2 1,
such a machine has instructions reading at most “n” operands and
writing results to at most “m” storage components. Machine type
(2,l) corresponds to reading at most two operands and writing results
to one storage component per instruction.

TABLE II

NUMBER OF OPERANDS AND DEPENDENCIES VERSUS THE ISSUE RATE

FOR A MACHINE TYPE OF (2,l).

Issue Rat Registers accessed Dependencies
(2) Destination m i)$ource (n i) (72. (i’ + i)/2)
1 1 I 2 2
2 II 2 I 4 I 6
4 4 8 20
8 8 16 74

16 16 32 272

the Reservation Stations are full or the ROB is full, the
dispatch unit shelves the instruction(s) and tries to issue
it in the next clock cycle or when the thread the shelved
instructions are from is scheduled. Our simulations have
shown that for a particular issue rate and the number of
functional units with their latencies, the sizes of the reser-
vation stations and the ROB could be increased to eliminate
this shelving at the dispatch unit altogether. The efficiency
of the machine reduces nominally even if the instructions
were allowed to be shelved by the dispatch unit.

The request for source operands should be done not only
to the register context but also to the ROB of the corre-
sponding thread. The ROB needs to be searched for result
values corresponding to the register number and DCT. The
search is minimal since only the instructions issued but not
committed need to be screened.

D. Branch Prediction Unit

The BPU keeps track of the issued instructions and the
committed instructions. In case of a misprediction or ter-
mination of execution of a thread, it flushes the issues in-
structions from the ROB and the Reservation Stations. It
commits the instructions in-order from the executed instruc-
tions in the ROB and updates the program counter of the
thread’s context. It checks the flags of the executed instruc-
tions for any exceptions and calls the appropriate handler in
case of exceptions or interrupts. Hence, precise interrupts
are supported by the in-order commitment by the BPU. Un-
der some circumstances the BPU flushes the speculatively
issued instructions of that thread from the ROB and the
Reservation Stations. The BPU also handles the loads and
stores. It issues the requests for loads and stores in-order
to the load-store unit. The load-store unit does speculative
loads and load/store bypassing using queues. The loads and
stores are issued as the BPU is committing them to keep
the consistency of data. To avoid the data cache to be a
bottle-neck, we need multi-port, non-blocking caches [4].

The state of the thread is kept consistent as we mentioned
before by the in-order commitment of the instructions in the
ROB by the BPU, even though the instructions are executed
out-of-order. The entry of a ROB is shown in Fig. 8. Each
entry in ROB is in one of four states at any time; Empty,
Issued, Executed or Committed. Empty and Committed
states suggest that the ROB entry is free and could be fllled
by another instruction. The ROB is maintained as a “circu-
lar buffer” for each thread. After the result of an operation
is made available, the entry holds the contents and the flags
of that execution till the BPU commits it. The conditions
raised by an instruction executed are checked at the time of
commitment according to the “Direct Check Concept”. The
BPU increments the CCT of the particular register that it
writes to. Once committed by the BPU, the instruction is
completely executed and the state of that thread is perma-
nently changed.

E. Reservation Stations, Functional Units and Common Data Bus

An entry of a reservation station is shown in Fig. 7. The
status entry indicates four states: both operands are not

Fig. 7. An entry in the Reservation Station.

Fig. 8. An entry in the Re-Order Buffer.

able, and both operands are available (ready for issue). The
functional units read from the shelved instructions from the
reservation stations either using a round-robin scheme or a
simple priority scheme. In the case of the latter, instructions
from the threads whose priority is higher are issued to the
functional units before the lower priority threads. There
is also a mechanism to by-pass at the reservation stations
as there is at the dispatch stage when the instructions are
by-passed from the instruction queues.

The functional units could themselves be pipelined. They
take out an entry from the reservation station whenever they
are ready (depending on that particular functional unit la-
tency) to process another instruction. In case of long latency
functional units, there could be a mechanism to abort the
processing of an instruction in the middle of its execution.
Though not a necessity, this would allow the BPU to ter-
minate the execution of instructions of a particular thread
from the functional units in case the thread was terminated.

The results are put out to the Common Data Bus(CDB)
by the functional units. Fig. 9 shows the format of the CDB.
The update unit reads from the CDB and updates the en-
tries in the ROB and the reservation stations. To keep the
machine from running into a dead-lock, the update unit also
needs to attach the results to the shelved instruction queue
(not the instruction queues that the dispatch unit has not
attempted to issue before) if the source registers and the
corresponding DCTs match for a particular thread. If this
is not done, the temporarily shelved instructions in the in-
struction queue might miss the temporary state of a partic-
ular register and depending on the instruction dependencies
of the thread the machine would eventually run into a dead-
lock.

At the update stage, the CDB could be implemented as
a crossbar. However the complexity of the interconnections
would be high for a large number of functional units. The
best case would be to implement the transfer of results from
the functional units to the ROB and reservation stations as
multiple busses. This would reduce the bus contention with
an ideal case of a bus per functional unit, to avoid contention
logic on a bus altogether.

F. Pmgmm Run on KCJMA

Without a mechanism for register renaming or shelving
the free-flow of execution is largely hampered in any pro-
cessor. When a particular register is reserved by a func-
tional unit while it is executing, so that it can write the
results of the operation to that register, issuing of any fur-
ther instructions which make a read or write access to this
register would be stalled without the above mechanisms.
Correctness of scheduling depends on timing of three ac-
tions: issuing, reading of operands, and writing of results.

Fig. 9. The Format of the Common Data Bus. available, first operand is available, second operand is avail-471

R3=Rl +R2 add r3, rl. r2

R4=R4/R3 div r4, r4, r3

R3=Rl *CO mu1 r3, rl #lo0

R.5 = RS + R3 add r5, r5, r3

R3 = R3 + R3 add r3. r3, r3

Fig. 10. A sample program.

Fig. 11. Dynamic Dependency Resolution in KUMA.

In KUMA we use both register renaming and shelving dy-
namically to keep the correctness of scheduling. The state
is kept consistent by the in-order commitment by the ROB.
The dynamic scheduling in KUMA works as a data-flow ex-
ecution machine entirely dependent on the availability of
data. Our aim was to make the execution mechanism in
KUMA work for a general case of eight-pipelined architec-
tural model, hence requiring a robust implementation for
multithreading.

We take a sample program code as shown in Fig. 10 to
show how KUMA resolves the dependencies automatically
in hardware. This particular sequence of instructions is
shown to run into a deadlock with the original Tomosulo’s
algorithm by Muller et al [23]. Fig. 11 shows the actual
program run. The example shows reservation stations of
two functional units: the adder/subtracter and a multipli-
cation/divider. For clarity we show that same ROB entry
numbers as the sequence of instructions. Instructions 1, 4
and 5 are issued to the adder/subtracter while instructions
2 and 3 are issued to the multiply/divider. The counter
tags with the reservation stations and the ROB are DCTs
while the register context counters are the CCTs. There
are three references to the register number 3 in the se-
quence and its corresponding DCT is incremented in se-
quential order as seen in the ROB. Though register number
3 is read four times in this sequence of instructions, the fifth
instruction need not have the two source registers as regis-
ter number 3 for the original Tomosulo’s algorithm to run
into a dead-lock. It could be observed that the instructions
issued to the reservation stations have the corresponding
DCTs of the destination registers when they were issued.
This mechanism feeds the right operands to the functional
units. The executed instructions are committed in-order
at the ROB and the register context holds the appropri-
ate CCTs (the counter associated with the ROB entry is
also written to the register context along with the register
contents). This scheme works quite efficiently and exploits
the ILP of a thread to the maximum, the negative factor
being only the associative searching of the thread number,
counter tags, and the register numbers. However, total ex-
haustive searching could be reduced by reducing the size of
the thread and counter tags and grouping of reservation sta-

TABLE III

INSTRUCTIONS EXECUTED PER CYCLE (IPC)FOR VARIOUS NUMBER

OF THREADS AXD ISSUE RATES FOR KIJMA.

tions and sub-dividing register contexts. We are presently
investigating this.

IV. Estimation

A. Simulotion Model

We built the simulator for KUMA as both behavioral
and structural models using the Verilog Hardware Descrip-
tion Language. The simulator was again rewritten using
C++Sim [24]; KUMA related results presented in this pa-
per were all derived from this simulator. Though this simu-
lator couId keep the timing constraints strictly, one negative
aspect of this simulator is its relative slowness. We feel that
the speed could have been vastly improved if the model was
more abstract than conforming to the actual structure of the
machine. However, our design followed the structure of the
machine so as to give us more scope to validate the archi-
tecture. The slowness of the machine is compounded by the
simultaneous execution of multiple threads making it time
consuming to execute huge benchmark programs. Though
our simulator is portable, we have it only running on DEC
Alpha with OSFl because the C++Sim library available to
us is only for this platform.

B. Empin’col Results

We divided the task of testing the architectural design
into validation and performance analysis. To test the de-
sign, we ran different programs we wrote. These programs
had different granularity of instruction dependencies. If an
instruction’s result is used in the very next instruction as a
source, then we called it a granularity of one. If the result
is used by the second instruction after it, the granularity is
two, and so forth. For each run of a program of a particular
granularity, we check if the state of the context is what we
expect. The state of the machine at the end of the execution
of a program with any granularity and of any configuration
of the machine should be consistent and correct. The ma-
chine should not either run into a dead-lock or the state at
the end of the execution be incorrect. The architecture of
KUMA was thus validated for different programs we hand-
crafted. KUMA resolves the dependencies dynamically as
we explained in the previous sections.

To analyze the performance of the architecture we wrote
a program with a granularity of 18. Further, we assumed
perfect branch prediction. We avoided the load-store and
branch instructions and ran programs with arithmetic in-
structions. We took a base architecture of 266 entries for
Re-Order Buffer, 16 Functional Units with latency of 1 and
64 entries for each Reservation Station. We chose 1 bus each
for each of the functional units to update the ROB and the
Reservation Stations. Round-robin policy was used to issue
instructions at the issue and the dispatch stages. The func-
tional units take out the instructions from the resenration
stations in a round-robin fashion too. Though by-passing
was used, we did not test the other issuing policies. The
choice of the above configuration was to avoid “stalling of
issue of instructions” at the dispatch stage, because either
the reservation stations or the reorder buffer are full. Ta-
ble III summarizes our results. The issue rate is varied from
1 to 3 for different number of execution of threads, which

472

are varied from 1 to 16. [51
The results show that the Instruction Executed per Cy-

cle (IPC) increases as the issue rate and the number of
threads increases. In general by increasing the issue rate
of the instructions and the number of threads executing si-
multaneously on the processor, we could greatly enhance
the through-put of the processor. The fall of IPC at the
edges (for example issue rate of 8 and 4 threads) is because
of the configuration parameters of the KUMA chosen and
the round-robin policy of scheduling at the execution stage,
these cases could be avoided by a proper configuration and
issue rate.

PI

V. Conclusions and Future Work

Simultaneous execution of threads on a single chip archi-
tecture raises a lot of interesting questions but provides a
number of possibilities to the designers. The interactions
of the operating system and architecture become more in-
tricate and intertwined. The execution of both User and
Kernel threads concurrently, eliminates the need for con-
text switches, at least amongst the active threads. Since
modern and some commercial operating systems (Windows
NT, Solaris etc) are threaded and modularized, and since
more applications are being written using threads, an archi-
tecture such as KUMA would be a prime candidate to make
use of this trend. And also, KUMA could capitalize on the
recent boom in multimedia applications. We briefly discuss
some of the issues that affect KUMA.

]71

PI

PI

[lOI

Pll

PI

1131
Owing to simultaneous issue of threads the process struc-

ture of the operating system becomes an integral entity of
the architecture. The kernel threads could be allowed to
execute on one or two virtual pipelines or all of them at the
same time. In the same way, processing of interrupts and
system calls could be processed exclusively by one or two
virtual pipelines or all of them (asymmetric vs symmetric
multithreading).

1141

Since scheduling of instructions takes place at couple of
stages in the architecture (instruction fetch, dispatch and

[I51

Ml
execution stages) the scheduling policies at these stages should [17]
also be managed by the operating system, if they are not
already hardwired. In some of the commercial processors
available now a days, owing to the complexity of page ta-
ble entries, at every context switch the TLB is flushed and
updated, this lengthens the context switch time. A robust
Virtual Memory System maintained by the Memory Man- P31
agement Unit (MMU) ‘under the control of the kernel which
allocates the Page Table Entries (PTEs) for all the multi-
programming environment might reduce the time wasted
in allocation and deallocation of these tables. However, we
perceive a possible increase in virtual memory complexity 1191

and protection problems.
In this paper we presented a novel architecture that ex- PI

ecutes threads simultaneously on a single chip architecture.
By doing so, the functional units and resources are shared
to get high through put and utilization. This architectural WI
model needs further testing and analysis to make it a feasi-
ble alternative to the existing architectural paradigms such

P21
as VLIW and Superscalar.

REFERENCES]*31

[l] R.M.Tomasulo, “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units,“IB.Zl Journal, pp. 25-33,Jan 1967.

[2] G.S.Sohi, “Instruction Issue Logic for High-Performance, In-
terruptible, 1lultiple Functional Unit, Pipelined Computers”, 1241

“IEEE Transactions on Computers”, volume:39, pp. 349-359,
bfarch 1990.

[3] James E. Smith, “Decoupled Access/Execute Computer Archi-
tectures,” Conference Proceedings - The 9th Annual Symposium
on Computer Architecture, ,pp. 112-119, April 1982.

[4] Gurinder Sohi and Xlanoj Franklin, “High Bandwidth Data
Memory Systems for Superscalar Processors,” Proceedings of

4th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems(XSPLOS-IV), pp.
53-62, April 1991. 473

K.Olukotun B.Nayfeh L.Hammond K.Wilson and K.Chang,
“The Case for a Single-Chip Multiprocessor,” Proceedings of the
7th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS - VII),
pp. 2-11, October 1996.
T.,M.Conte K.N.Menezes P.M..Mills and B.A.Patel, “Optimiza-
tion of Instruction Fetch Mechanisms for High Issue Rates”, Pro-
ceedings of the 22nd Annual International Symposium on Com-
puter Architecture, Santa Margherita Ligure, Italy, pp. 333-344,
June, 1996.
Mike Johnson, “Superscalar Microorocessor Design,” P T R
Prentice-Hall, Inc. Englewood Cliffs; New Jersey 07632, 1991.
Manoi Franklin, “The Multiscalar Architecture - Technical Re-
port i 196,” University of Wisconsin Madison, Computer Sci-
ences Department, Madison , WI 53706, 1993.
T-Y Yeh and Y.N.Patt, “Two-Level Adaptive Branch Predic-
tion”, Proceedings of the 24th Annual ACM/IEEE Interna-
tional Symposium and Workshop on Microarchitecture. pp. 51-
61,November 1991.
V.Popescu M.Schultz J.Spracklen G.Gibson B.Lightner and
D.Isaman, “The Metaflow Architecture”, IEEE Micro, pp. lo-13
63-72, June, 1991.
J.Lee and A.J.Smith, “Branch Prediction Strategies and Branch
target Buffer Design,” IEEE Computer, pp. 6-22, Jan 1984.
Mountain Research Laboratories, Boulder, Colo., personal com-
munication, 1992.
J.L. Hennessy and D.A.Patterson, “Computer Architecture: A
Quantitative Approach”, Morgan Kaufmann Publishers, INC.,
San Mateo, CA, 1990.
H.Dwyer and H.C.Torng, “An Out-of-order Superscalar Proces-
sor with Speculative Execution and Fast, Precise Interrupts”,
Proceedings of the 25th Annual International Symposium on
Microarchitecture(MICR-25), pp. 272-281, 1992.
W.W.Hwu T.M.Conte and P.P.Chang, “Comparing Software
and Hardware Schemes for reducing the cost of branches”,
The 16th Annual Symposium on Computer Architecture,pp.224-
233,1989.
Peter Song, “Multithreading Comes of Age,” MicroProcessor Re-
port, pp. 13-18, July 14th,l997.
Tera Computer Compw, “Press Releases,”
http://www.tera.com/,1997.
H.Hirata K.Kimura S.Nagamine Y.Mochizuki A.Nishimura
Y.Nakase and T.Nishizawa, “An Elementary Processor Archi-
tecture with Simultaneous Instruction Issuing from Multiple
Threads”, “Proceedings of the 19th Annual International Sym-
posium on Computer Architecture, Gold Coast, Australia”, pp.
136-145,May,l992.
R.J.Eickemeyer R.E.Johnson
S.R.Kunkel B.H.Lim MSSauillante and C.E.Wu, “Evaluation of
Xlultithreaded Processors id Thread-Switch Policies”, “Inter-
national Symposium on High Performance Computing (ISHPC
‘97), Fukuoka, Japan”, pp. 75-90, November, 1997.
D.Burger and J.R.Goodman, “Billion-Transistor Architectures”,
IEEE Computer, pp. 46-49,September,l997.
Y.N.Patt S.J.Patel M.Evers D.H.Riendly and J.Stark, “One Bil-
lion Transistors, One Uniprocessor, One Chip”, IEEE Computer,
pp. 51-57, September, 1997.
Dough Matzke, “Will Physical Scalability Sabotage Performance
Gains?“. IEEE Computer, pp. 37-39. September, 1997.
Rakefet ‘Kol and R&Gino%, “Kin :‘A High Performance Asyn-
chronous Processor Architecture”, To appear in ACM Intema-
tional Conference on Supercomputing, 12 -17 July 1998, Mei-
bourne, Australia. - - -
S.M.Muller and W.J.Paul. “Makina the original scoreboard
mechanism deadlock free”,‘Proceed& of theQth Israeli Sym-
posium on Theory of Computing and Systems(ISTCS), IEEE
Computer Society, 1996.
Little, M. C., D. L. McCue, “ Construction and Use of a Simu-
lation Package in C++“, Computing Science Technical Report,
University of Newcastle upon Tyne, Number 437, July 1993 (also
appeared in the C User’s Journal Vol. 12 Number 3, March 1994).

