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Abstmct4revious techniques used for out of order exe- 
cution and speculative execution use modified versions of 
Tomosulo’s algorithm and re-order buffer. An extension to 
these algorithms for multi-threading is necessary in order 
to issue instructions from multiple streams of instructions 
dynamically and yet keep the consistency of state for the 
machine. We present an architecture which has a wide in- 
struction issue rate and can issue from multiple threads at 
a time. This asynchronous architecture has a mechanism 
to dynamically resolve data dependencies and executes in- 
structions out of order and speculatively without any spe- 
cial help from an optimizing compiler. Instructions from 
various threads are interleaved simultaneously to dynami- 
cally exploit ILP to the maximum that the architecture can 
provide. Consistency of state is maintained by precise in- 
terrupts and in-order commitment of instructions for all the 
threads in execution. 

cute concurrently and parallely on multiple logical pipelines, 
it allows User and Kernel threads to execute at the same 
time. Hence we named this architecture the Kernel-User 
Multithreaded Architecture (KUMA). 

During the coming years, feature sizes will continue to 
decrease and clock speeds will continue to increase, making 
the wire delays a larger percentage of overall signal delay. 
Only a small percentage of the die will be reachable during 
a single clock cycle [21]. According to an estimate, only 16 
% of the die length is reachable within one clock cycle for 
a 0.1 pm process at 1.2 GHz. This segregates an integrated 
chip into little isolated islands of logic. To deal with it, we 
need an architecture which is modularized and which has 
self-timed units. A proposed processor, Kin [22] is such an 
asynchronous architecture designed for future technologies. 
For the same reasons, KUMA is designed to be an asyn- 
chronous, modularized architecture. 

I. Introduction 

Advancing semiconductor technology will make it possi- 
ble to put a billion transistors on a single-chip in the coming 
years [19], [20]. This has prompted computer chip manu- 
facturers to develop architectures which can utilize the ex- 
tra transistors. Most of the extra chip space is being allo- 
cated to increased on-chip cache and more peripheral sup- 
port rather than to provide more functionality to the CPU 
core of the architecture. Increased functionality does not 
scale up due to a single path of control. VLIW, Superscalar 
and Multiscalar are few such designs which have been pro- 
posed and implemented to date. There is another paradigm 
called the multithreaded paradigm which has been around 
since the 1950s but has recently come of age (151. From 
the point of view of processor designers and manufacturers, 
it would be advantageous to have a corresponding perfor- 
mance gain in the processor with the increasing die size (or 
more specifically the decreasing feature sizes). 

As the number of transistors on a die is becoming larger 
and larger, multithreading on a uniprocessor system is be- 
coming more and more feasible. Such a single chip processor 
should have the ability to exploit ILP from multiple threads 
and switch between the threads in case of any latency oper- 
ation. In this paper we present such a processor, which ex- 
ploits parallelism from multiple threads. Not only does the 
processor architecture allow multiple User threads to exe- 
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A number of dynamic scheduling techniques have been 
proposed, some of which are: CDC 6600’s Scoreboard [12], 
Tomasulo’s algorithm [l], Decoupled execution [3], Regis- 
ter update unit(RUU) [2], Dispatch Stack [13], Deferred- 
scheduling Register-renaming instruction shelf(DRIS) [lo]. 
These techniques are well suited for either scalar architec- 
tures or superscalar architectures with limited issue rate. 
Some of these techniques create stalls or locks in the archi- 
tecture due to control and data dependencies. Also, some of 
them have the ability to support precise interrupts. Among 
the above schemes the Metaflow architecture [lo] has the 
ability to issue instructions out of order and speculatively 
via DRIS but lacks the ability to provide support for mul- 
tiple thread execution. The RUU method of allocating tags 
is a simplistic tag attaching method, however it reduces the 
amount of ILP that could be exploited because of the check- 
ing of dependencies at the issue stage. The architecture 
proposed by Hirata et al (171 concentrates mainly on mul- 
tiprocessor multithreading systems and holds a thread on 
a single processor before a conditional branch could be re- 
solved. 
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KUMA is a wide issue architecture issuing eight instruc- 
tions in a single cycle from up to eight active threads. The 
hardware mechanism of KUMA automatically resolves de- 
pendencies and removes stalls at the execution stage. It 
supports out-of-order execution and completion and flushes 
speculatively executed instructions in caze of a branch mis- 
prediction. Out of order and speculative execution is achieved 
through shelving similar to the Tomosulo’s Algorithm. De- 
pending on the number of threads active in the process 
queue, the utilization of the processor could be optimized for 
a given branch prediction accuracy by reducing the flushing 
of speculatively issued instructions. Since scheduling takes 
place at two stages in KUMA, the throughput for high pri- 
ority threads could be managed. Scheduling of instructions 
at two levels, namely the thread level and the instruction 
level and elimination of context-switches among the sub-set 
of the active threads, may provide KUMA the ability to -_-_- _ _ 
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good candidate for the new breed of multimedia uniproces- 
sor computers. Our goal is to achieve a cost-effective MIMD 
uni-processor with the ability to have high utilization and 
throughput. 

In this paper, we will concentrate on presenting the de- 
tails of the logical mechanism of the architecture. The rest of 
the paper is organized as follows: in section 2, KUMA pro- 
cessor architecture and the issues related to its relevancy 
are addressed. Hardware organization and explanation of 
various units of KUMA are presented in section 3. Section 
4 presents our empirical results and evaluation of the archi- 
tecture, concluding remarks and future work are presented 
in the last section. 

II. Processor Architecture 

A. Machine Model 

The most simplistic choice to the manufacturer of a unipro- 
cessor system is to adopt the “Cookie-cutter” approach; 
when the semiconductor technology improves so much that 
the number of transistors on a single die is several times 
than that were used for a scalar or super-scalar architec- 
ture, replicating a scalar or superscalar architecture to At 
a given die would be a plausible choice. Such a processor 
architecture is the 4 x two-issue multiprocessor proposed by 
Olukotun et al [S]. Depending on the amount of parallelism 
and granularity of the threads of the applications, they show 
that their multiprocessor is 10% to 100% better than a wide 
superscalar microarchitecture. 

Another choice would be to increase the peripheral sup- 
port or the on-chip cache size. Though this increases the 
performance of the processor by reducing the miss laten- 
ties etc, this does not directly correspond to the increase 
in processing power. Yet another approach would be to in- 
crease the number of functional units, which corresponds 
to the increase in processing power of the processor, pro- 
vided the utilization of these units is high. The utilization of 
these added resources could be increased if they are shared 
among the virtual pipelines. Since the functional units are 
the heart of any architecture, to increase resource utilization 
and throughput, we have to keep these as busy as possible. 
As Hirata et al [17] explain, the utilization of a functional 
unit could be expressed as U = v . lOO%, where N is the 
number of invocations of the unit, L is the issue latency of 
the unit, and T represents the total execution cycles of the 
program. If the utilization of a functional unit or a set of 
functional units is 30%, by unifying three virtual pipelines to 
share the same functional unit or the set of functional units, 
the utilization can be brought up to 90% provided the con- 
flicts between the threads sharing the functional units are 
properly resolved. Hence, the utilization of the functional 
units can be increased by unifying the virtual pipelines and 
running multiple threads simultaneously. The organization 
of such an architecture, and one which KUMA follows is 
as shown in Fig. 1. We try to unify two to eight virtual 
pipelines in KUMA. 

KUMA sets to exploit both the instruction level paral- 
lelism of the programs and the fine-grain and coarse-grain 
parallelism of threads on a single-chip multithreaded pro- 
cessor. Multithreading was shown to have significantly im- . . . 

some of our results on these three main issues. KUMA de- 
couples the instruction fetch hardware from the execution 
by using instruction queues, which reduces the impact of 
the fetch hardware on execution of the functional units. 

Data bandwidth demands for KUMA would be also high 
because of its wide issue rata. Multi-port, non-blocking 
caches would be capable of supporting such high data band- 
width demands [4]. The cheapest way to build multi-port 
cache is to build a banked cache. Owing to the intercon- 
nects however, multi-port non-blocking caches add complex- 
ity and delay compared to single-port blocking caches. We 
assume that with sufficient number of banks and Miss infor- 
mation/Status Holding Registers(MSHRs) the bandwidth 
requirement placed on the data cache is met. For more de- 
tails on the cache issues, we refer the reader to [4], [5], 
PI. 

). 
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Fig. 1. Organization of the architecture. 

B. Bmnch Prediction accuracy 

The branch predictor performance becomes very crucial 
when we have a deep pipeline or have very wide issue rates 
because of the wastage of speculative work in case of a 
branch misprediction. In the face of limited accuracy of 
branch predictors, our simulations show that the utilization 
of the architectures could be increased by issuing Rom mul- 
tiple threads simultaneously. To illustrate this point, we can 
use the “probability of commitment of a speculatively exe- 
cuted instruction” as an indicator for the performance and 
utilization of a processor. The probability of commitment of 
an instruction which is executing or was executed ahead of 
time, is directly proportional to the performance of the pro- 
cessor. Since performance per resources used gives us the 
utilization of the processor, a high probability of commit- 
ment of an instruction increases both the performance and 
utilization of the processor. However, when the turn around 
time of a critical application is of importance, one could for- 
sake utilization by speculatively executing as many instruc- 
tions as possible from that high priority thread. For general 

proved the performance of commercial environments by switch-purpose computing and applications, our former argument 
ing between 3-5 active threads on cache misses [lS]. holds, since most of the threads run at. slightly varying pri- 

Thread switching between the active threads takes place ority and overall throughput of the applications executing 
in KUMA. When multiple threads are issued at the same is of importance. Our later argument holds particularly for 
time, the instructions from these threads compete for the time-critical and real-time applications where fast response 
same functional units. These contentions are resolved on time and turn around time are crucial. 
two criteria; in favor of threads which have high priority and Taking the average run length of a program to be 5 and 
and against a thread which has many instructions already the branch prediction accuracies of 97.2%, 93%, 90% and 
executing speculatively. 85%, with different speculative execution window sizes, a 

KUMA issues eight instructions per cycle and hence needs table derived from a simple analytical model shows the prob- 
high instruction bandwidth to sustain its aggressive hard- abilities of commitment of instructions in various execution 
ware scheduling. Three major factors constrain the fetching window sizes. Table I shows these probabilities. For exam- 
of instructions [S]: instruction cache performance, branch ple, at 93% prediction accuracy, for a window size of 32, the 
prediction and instruction alignment. These issues have re- average probability of commitment of the speculatively exe- 
ceived much attention. In the following sections we present cuting instructions is about 77% for a scalar architecture. At 

467 



the same prediction accuracy and window size, if the archi- 
tecture were running four threads, the average probability 
of commitment would be around 90% and for eight, threads 
the corresponding probability of commitment would be 93%. 
These analytical results were confirmed by empirical results 
by running SPEC92 benchmark programs.(reference to our 
previous published paper) 

C. Cache Memory Bandwidth 

Cache memory bandwidth is as critical for a multithreaded 
architecture as is for any high issue rate processor. Since 
multiple threads are in execution at any given time, the 
architecture requires a significant bandwidth. To optimize 
the performance and to provide the required bandwidth, we 
need to And the proper correlation between the cache mem- 
ory and the fetch unit. Our simulations were conducted us- 
ing a set of benchmark program traces generated from the 
SPEC92 benchmark programs in the Dinero format. Con- 
sistently our results favored private instruction and data 
caches at the Ll level. At eight threads derived from dif- 
ferent processes, the miss rates for private caches are about 
one third that of the miss rates for shared caches. Increased 
associativity decreases the miss rate up to a point and LRU 
is better than random replacement policy. The size of the 
block(line) has a limitation in its implementability; a longer 
block size will increase the number of interconnections. We 
show that as we increase the block size for about 64 bytes 
for data and 128 or even 256 bytes for instructions, the 
miss rates decrease. The Empirical results show the Cache 
Memory configuration best suited for a multithreaded ar- 
chitecture would be as follows: Private Data Cache, Private 
Instruction Cache, 64 bytes per line(block) for Data Cache, 
64 bytes per line(block) for Instruction Cache, 4 way set as- 
sociativity for each cache, Least recently used replacement 
policy, 64 k Data Cache and 64 k Instruction Cache. We 
noticed that the average of data and instruction miss rates 
even at eight threads do not go beyond 1.5% for the above 
configuration. 

D. Instruction Fetching and alignment 

Rather than fetch only one instruction per access, an ad- 
vanced processor is generally implemented to fetch four or 
eight contiguous instructions. Conte et al [6] do a cost and 
performance trade-off study of various schemes for instruc- 
tion realignment. KUMA takes the fine-grain multithread- 
ing approach and issues eight contiguous instructions from 
one thread in each clock cycle. Therefore, the entire issue 
bandwidth is fllled with instructions from the same thread 
on a single clock cycle. This would avoid the need for stride 
accessing and memory interleaving. KUMA does not take 
any help from the compiler to issue the instructions and does 
not keep track of the availability of the functional units. In- 
stead it issues these eight contiguous instructions every cy- 
cle without any empty slots at the issue stage. Issuing of 
instructions from multiple threads based on functional units 
availability is not easy to implement. It requires compiler 
support and even leads to wasted issue slots per cycle. 

Also by eliminating the need for instruction dependency 
checking or functional unit availability checking at the fetch 
stage, we could fetch a whole block of instructions from 
the same thread in one clock cycle without any restrictions. 
Some of the fetched instructions in this case might be lost 
after re-alignment. We believe that this reduces the com- 
plexity of the memory configuration and the fetch unit. We 
present the design of the instruction fetch unit to support 
fine grain multithreading in KUMA. The instruction fetch 
unit is connected to the branch prediction unit (BPU). The 
BPU updates the program counters(PCs). If we have eight 
threads active at any time, we need eight PCs as shown in 
the Figure 2. Further, the BPU can be divided into two 
units: the scheduler and the predictor, according to the func- 
tionality. 

Fig. 2. Organization of Instruction Fetch Unit in KUMA 

D.l BPU-Scheduler 

The Scheduler sends the control bits (three bits for eight 
threads) to show which thread the next block of instruc- 
tions should be fetched from. Hence, it makes the decision 
on which thread the next block of instructions will come 
from and can avoid fetching from threads whose PC re- 
quires to be updated by the scheduler. In this category 
fall the threads which have just encountered a branch mis- 
prediction, threads which are waiting on a cache-miss, or 
threads which have just encountered an execution “block” 
(waiting) due to remote memory access, I/O operation, or 
made a blocked system call, or waiting for synchronization. 
A thread whose instructions are fetched in a particular cy- 
cle is automatically excluded from being scheduled the next 
clock cycle. This is because it takes one more clock cycle 
at least for the decoder to decode and update the branch 
history table to predict the next block of instructions. This 
exclusion is not strictly enforced, but if multiple threads 
are ready for execution then this technique is definitely pre- 
ferred. If all the threads are of equal priority and there are 
eight threads in the ready queue, the scheduler will schedule 
these threads in a round-rubin fashion, so that there will be 
eight. clock cycles before another block from the same thread 
is brought in. This will lighten the burden on the Branch 
Predictor. If there were eight cycles between fetching of 
each thread, we can even eliminate branch misprediction 
altogether, since the operation on which the branch is wait- 
ing might be already resolved for small branch frequencies. 
Also, out of the ready threads the Scheduler can get the 
thread which has the highest priority indicated and set by 
the operating system. It is important to support priorities 
for threads especially for KUMA, since issues both Kernel 
and User threads simultaneously. As is the practice, Kernel 
threads are given higher priority than the User threads and 
are scheduled ahead of User threads. 

D.2 BPU-Predictor 

The predictor makes all the branch predictions based on 
the history buffer it keeps for all the threads. It sends out 
the predicted address to the PCs and indicates to the BPU- 
Scheduler that the particular PC slot is valid. Only one 
access is made for a block of instructions, the fetch logic 
fetches and re-aligns these instructions. The PC increments 
at the stride of eight or the addread of the last instruction 
fetched for that thread as indicated by the fetch logic. There 
are two copies of each PC for each thread. One at the fetch 
stage, which indicates the instructions fetched and the other 
in the context of that particular thread, which indicates the 
instructions already committed. Whenever a bunch of in- 



TABLE I 

AvERAGE PROBABILITY OF EACH INsTRucTIoN COMMITTING IN THE WINDOW FOR DIFFERENT BRANCH PREDICTION ACCURACIES BASED ON THE 

ANALYTICAL MODEL. CALCULATIONS BASED ON ASSUMPTION OF AN AVERAGE RUN LENGTH OF 5. 

structions are flushed from a thread, the BPU loads the 
committed PC of that thread into the fetch unit PC. Hence 
the amount of speculative execution for a thread could be 
found from the difference of these two PCs. Explanation as 
to how the state of the machine is kept consistent is given 
later in this paper. 

The design shown in Fig. 2 is the over all logic of the 
fetch unit for KUMA and does not include the instruction 
alignment logic or the cache memory configuration. A huge 
block will increase the hardware complexity of the fetch unit, 
alignment logic and cache memory. We show the cost, per- 
formance trade-offs of the issue width for KUMA. 

III. Hardware Organization of KUMA 

The hardware organization of KUMA is shown in Fig. 3. 
As was pointed out in the last section, the issue and the exe- 
cution stages are decoupled by the use of instruction queues. 
For eight virtual pipelines we have nine instruction queues; 
one for each of the pipelines and one for temporary shelv- 
ing of instructions which the dispatch unit cannot issue in a 
particular cycle. The length of the queues depends on the 
instruction fetch unit implementation and the cache memory 
hierarchy. Each of these queues is tagged with the thread 
number, so that the dispatch unit knows which thread it is 
fetching from. The dispatch unit has the same issue width 
as the fetch unit. 

A. instruction Pipelines and Opcode 

The instruction pipelines in KUMA are as shown in Fig. 4. 
The second fetch cycle is for the dispatch-decode unit. The 
instructions are decoded twice. First decode is done by the 
dispatch-decode unit to And the function of the instruction. 
The second decode is to find out the actual operation. The 
instruction set format is as shown in Fig. 5. KUMA uses 
load-store, RISC instruction format. The instructions that 
do not have the second decode are executed by the Branch 
Prediction Unit(BPU) as explained later. The instruction 
opcode in Fig. 6 shows broadly the division between the 
functional unit and branch/transfer operations. All instruc- 
tions are 32 bit wide. We did not implement the “load 
register” instruction since the values are read automatically 
by the dispatch unit. 

KUMA is designed as an asynchronous architecture and 
hence is modularized in such a way that each module has 
it own control logic. This entails the use of self-timed units 
which are coupled to one another without the strict synchro- 
nization of a global clock. Hence each stage of the pipeline 
as shown in Fig. 4 may not have the same width. Elimina- 
tion of the global clock has more benefits than are obvious. 
A global clock is generally implemented as a huge gate (in 
fact it is the biggest gate on a processor) which switches 
on and off every cycle irrespective of whether the clock is 
needed (even when the processor is idle). Usually this is al- 
lowed since it is cumbersome to start and stop such a huge 
clock. None the less, this switching contributes to the maxi- 
mum dissipation of power (heat) than any other component 
on the processor (in some cases the heat generated by the 
clock is more than 50% of the total heat generated and is 

Fig. 3. Hardware Organization of KUMA. 

becoming a higher percentage as the clock speeds are in- 
crease and the feature sizes are decrease). Another problem 
is the clock skew; distributing a centralized clock signal to 
all the units on a die will not be possible when the signal 
at high clock speeds (above 1 GHz) can propagate less than 
$th of the die. An asynchronous architecture will solve the 
above problems; it was suggested that a centralized control 
combinatorial logic on a processor will be an architecture of 
the past in the coming years. 

B. Dynamic Scheduling in KUMA 

Dynamic scheduling in KUMA closely follows the Toma- 
sulo’s algorithm. This part of KUMA is the heart of the 
design. It follows the “Data Flow” principles of execution 
and resolves the conflicts in the hardware. It does out-of- 
order and speculative execution at the instruction level and 
is the most scalable part of the design. The negative factors 
are the increased complexity of interconnects and increase 
in associative searching. 

Interconnects could be drastically reduced by replacing 
crossbars with buzsez. The disadvantage of using busses is 
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the classic case of resolution of bus contention. Contention 
could be reduced by having multiple busses. Since having 
dedicated busses to connect units is not feasible, the func- 
tional units could be appropriately divided into groups to 
reduce number of busses and contention on them. 

Associative searching could also be reduced by dividing 
the functional units and the contexts into logical sets/groups. 
We are presently investigating how this sub-grouping of the 
search space would impact the performance in KUMA. 

C. Register Renaming 

To facilitate simultaneous execution of threads and to 
avoid costly context switches, KUMA makes use of multiple 
register contexts. At the least it uses one context for each 
virtual pipeline. Hence for an architectural setup of eight 
virtual pipelines, there are eight contexts. Each register is 
tagged (except the special purpose registers like the stack 
pointer, program counter etc) with two counters. One is 

Add/Sub .MUUDlV ‘\ Shlit Lngul \\ 

. . 
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Executed by Funcuonal Unrts : Executed by BPU 

Fig. 6. Example Instruction Opcode for KUMA. 

the “Commit Counter Tag(CCT)” and the other is the “Dis- 
patch Counter Tag(DCT)“. The DCTs are with the dispatch 
unit and the CCTs are with the instruction commit unit of 
the Branch Prediction Unit(BPU). Logically both the CCTs 
and the DCTs belong to the context of a particular virtual 
pipeline. 

The dispatch unit increments the corresponding DCT of 
the destination register of any instruction that it is issu- 
ing. This is regardless of the prior instructions issued or the 
source registers of the instruction being issued. Since the 
dispatch unit issues multiple instructions per cycle, it incre- 
ments the DCTs of the destination registers of the instruc- 
tions that it is issuing in that cycle in a sequential manner. 
Hence a DCT of a particular register could, in the worst case 
be incremented by the issue width if all the instructions had 
the same destination register and all the instructions issued 
have destination registers ( for example, arithmetic instruc- 
tions). 

The source operands are requested by the dispatch unit 
by the register number and the corresponding DCT at the 
moment of issuing of that instruction. If the DCT matches 
the corresponding CCT, the contents of the register have 
the “valid” contents and hence are read into the reservation 
station entry where the instruction is issued. If the DCT 
does not match the CCT of the particular register either in 
the Re-order Buffer (ROB) or the particular register con- 
text, the instruction is still issued to the reservation station 
and the ROB, except that the operand is not made available 
(and is so indicated by the state of the entries). 

With the above scheme, the dispatch unit does not check 
for the dependencies between the instructions. For a ma- 
chine type (2,l) 1 which we use for KUMA, Table II shows 
the number of source operands needed and the number of 
registers written to per cycle for various issue rates. The ta- 
ble also shows the number of comparisons between the reg- 
isters that need be done to resolve the dependencies among 
the issuing instructions. For simplicity we assume all are 
register-register instructions. If the machine waz checking 
for dependencies to rename the registers and resolve the 
conflicts, for a window size of 36 instructions, it has to do 
I296 comparisons. At the dispatch stage in KUMA, the 
number of comparisons for a eight issue configuration is 16. 
The comparisons are done between the counter tags for the 
corresponding registers. The comparisons are done to check 
for the availability of the “correct” operands and to fetch 
them (read) if the counter tags match. The comparisons to 
resolve dependency conflicts are completely avoided. The 
dispatch unit does not block the issue of instructions in 
KUMA due to dependency conflicts. However, when either 

‘If a general machine type is (n, m) , where n,m are always 2 1, 
such a machine has instructions reading at most “n” operands and 
writing results to at most “m” storage components. Machine type 
(2,l) corresponds to reading at most two operands and writing results 
to one storage component per instruction. 



TABLE II 

NUMBER OF OPERANDS AND DEPENDENCIES VERSUS THE ISSUE RATE 

FOR A MACHINE TYPE OF (2,l). 

Issue Rat Registers accessed Dependencies 
(2) Destination m i )$ource (n i) (72. (i’ + i)/2) 
1 1 I 2 2 
2 II 2 I 4 I 6 
4 4 8 20 
8 8 16 74 

16 16 32 272 

the Reservation Stations are full or the ROB is full, the 
dispatch unit shelves the instruction(s) and tries to issue 
it in the next clock cycle or when the thread the shelved 
instructions are from is scheduled. Our simulations have 
shown that for a particular issue rate and the number of 
functional units with their latencies, the sizes of the reser- 
vation stations and the ROB could be increased to eliminate 
this shelving at the dispatch unit altogether. The efficiency 
of the machine reduces nominally even if the instructions 
were allowed to be shelved by the dispatch unit. 

The request for source operands should be done not only 
to the register context but also to the ROB of the corre- 
sponding thread. The ROB needs to be searched for result 
values corresponding to the register number and DCT. The 
search is minimal since only the instructions issued but not 
committed need to be screened. 

D. Branch Prediction Unit 

The BPU keeps track of the issued instructions and the 
committed instructions. In case of a misprediction or ter- 
mination of execution of a thread, it flushes the issues in- 
structions from the ROB and the Reservation Stations. It 
commits the instructions in-order from the executed instruc- 
tions in the ROB and updates the program counter of the 
thread’s context. It checks the flags of the executed instruc- 
tions for any exceptions and calls the appropriate handler in 
case of exceptions or interrupts. Hence, precise interrupts 
are supported by the in-order commitment by the BPU. Un- 
der some circumstances the BPU flushes the speculatively 
issued instructions of that thread from the ROB and the 
Reservation Stations. The BPU also handles the loads and 
stores. It issues the requests for loads and stores in-order 
to the load-store unit. The load-store unit does speculative 
loads and load/store bypassing using queues. The loads and 
stores are issued as the BPU is committing them to keep 
the consistency of data. To avoid the data cache to be a 
bottle-neck, we need multi-port, non-blocking caches [4]. 

The state of the thread is kept consistent as we mentioned 
before by the in-order commitment of the instructions in the 
ROB by the BPU, even though the instructions are executed 
out-of-order. The entry of a ROB is shown in Fig. 8. Each 
entry in ROB is in one of four states at any time; Empty, 
Issued, Executed or Committed. Empty and Committed 
states suggest that the ROB entry is free and could be fllled 
by another instruction. The ROB is maintained as a “circu- 
lar buffer” for each thread. After the result of an operation 
is made available, the entry holds the contents and the flags 
of that execution till the BPU commits it. The conditions 
raised by an instruction executed are checked at the time of 
commitment according to the “Direct Check Concept”. The 
BPU increments the CCT of the particular register that it 
writes to. Once committed by the BPU, the instruction is 
completely executed and the state of that thread is perma- 
nently changed. 

E. Reservation Stations, Functional Units and Common Data Bus 

An entry of a reservation station is shown in Fig. 7. The 
status entry indicates four states: both operands are not 

Fig. 7. An entry in the Reservation Station. 

Fig. 8. An entry in the Re-Order Buffer. 

able, and both operands are available (ready for issue). The 
functional units read from the shelved instructions from the 
reservation stations either using a round-robin scheme or a 
simple priority scheme. In the case of the latter, instructions 
from the threads whose priority is higher are issued to the 
functional units before the lower priority threads. There 
is also a mechanism to by-pass at the reservation stations 
as there is at the dispatch stage when the instructions are 
by-passed from the instruction queues. 

The functional units could themselves be pipelined. They 
take out an entry from the reservation station whenever they 
are ready (depending on that particular functional unit la- 
tency) to process another instruction. In case of long latency 
functional units, there could be a mechanism to abort the 
processing of an instruction in the middle of its execution. 
Though not a necessity, this would allow the BPU to ter- 
minate the execution of instructions of a particular thread 
from the functional units in case the thread was terminated. 

The results are put out to the Common Data Bus(CDB) 
by the functional units. Fig. 9 shows the format of the CDB. 
The update unit reads from the CDB and updates the en- 
tries in the ROB and the reservation stations. To keep the 
machine from running into a dead-lock, the update unit also 
needs to attach the results to the shelved instruction queue 
(not the instruction queues that the dispatch unit has not 
attempted to issue before) if the source registers and the 
corresponding DCTs match for a particular thread. If this 
is not done, the temporarily shelved instructions in the in- 
struction queue might miss the temporary state of a partic- 
ular register and depending on the instruction dependencies 
of the thread the machine would eventually run into a dead- 
lock. 

At the update stage, the CDB could be implemented as 
a crossbar. However the complexity of the interconnections 
would be high for a large number of functional units. The 
best case would be to implement the transfer of results from 
the functional units to the ROB and reservation stations as 
multiple busses. This would reduce the bus contention with 
an ideal case of a bus per functional unit, to avoid contention 
logic on a bus altogether. 

F. Pmgmm Run on KCJMA 

Without a mechanism for register renaming or shelving 
the free-flow of execution is largely hampered in any pro- 
cessor. When a particular register is reserved by a func- 
tional unit while it is executing, so that it can write the 
results of the operation to that register, issuing of any fur- 
ther instructions which make a read or write access to this 
register would be stalled without the above mechanisms. 
Correctness of scheduling depends on timing of three ac- 
tions: issuing, reading of operands, and writing of results. 

Fig. 9. The Format of the Common Data Bus. available, first operand is available, second operand is avail-471 



R3=Rl +R2 add r3, rl. r2 

R4=R4/R3 div r4, r4, r3 

R3=Rl *CO mu1 r3, rl #lo0 

R.5 = RS + R3 add r5, r5, r3 

R3 = R3 + R3 add r3. r3, r3 

Fig. 10. A sample program. 

Fig. 11. Dynamic Dependency Resolution in KUMA. 

In KUMA we use both register renaming and shelving dy- 
namically to keep the correctness of scheduling. The state 
is kept consistent by the in-order commitment by the ROB. 
The dynamic scheduling in KUMA works as a data-flow ex- 
ecution machine entirely dependent on the availability of 
data. Our aim was to make the execution mechanism in 
KUMA work for a general case of eight-pipelined architec- 
tural model, hence requiring a robust implementation for 
multithreading. 

We take a sample program code as shown in Fig. 10 to 
show how KUMA resolves the dependencies automatically 
in hardware. This particular sequence of instructions is 
shown to run into a deadlock with the original Tomosulo’s 
algorithm by Muller et al [23]. Fig. 11 shows the actual 
program run. The example shows reservation stations of 
two functional units: the adder/subtracter and a multipli- 
cation/divider. For clarity we show that same ROB entry 
numbers as the sequence of instructions. Instructions 1, 4 
and 5 are issued to the adder/subtracter while instructions 
2 and 3 are issued to the multiply/divider. The counter 
tags with the reservation stations and the ROB are DCTs 
while the register context counters are the CCTs. There 
are three references to the register number 3 in the se- 
quence and its corresponding DCT is incremented in se- 
quential order as seen in the ROB. Though register number 
3 is read four times in this sequence of instructions, the fifth 
instruction need not have the two source registers as regis- 
ter number 3 for the original Tomosulo’s algorithm to run 
into a dead-lock. It could be observed that the instructions 
issued to the reservation stations have the corresponding 
DCTs of the destination registers when they were issued. 
This mechanism feeds the right operands to the functional 
units. The executed instructions are committed in-order 
at the ROB and the register context holds the appropri- 
ate CCTs (the counter associated with the ROB entry is 
also written to the register context along with the register 
contents). This scheme works quite efficiently and exploits 
the ILP of a thread to the maximum, the negative factor 
being only the associative searching of the thread number, 
counter tags, and the register numbers. However, total ex- 
haustive searching could be reduced by reducing the size of 
the thread and counter tags and grouping of reservation sta- 

TABLE III 

INSTRUCTIONS EXECUTED PER CYCLE (IPC)FOR VARIOUS NUMBER 

OF THREADS AXD ISSUE RATES FOR KIJMA. 

tions and sub-dividing register contexts. We are presently 
investigating this. 

IV. Estimation 

A. Simulotion Model 

We built the simulator for KUMA as both behavioral 
and structural models using the Verilog Hardware Descrip- 
tion Language. The simulator was again rewritten using 
C++Sim [24]; KUMA related results presented in this pa- 
per were all derived from this simulator. Though this simu- 
lator couId keep the timing constraints strictly, one negative 
aspect of this simulator is its relative slowness. We feel that 
the speed could have been vastly improved if the model was 
more abstract than conforming to the actual structure of the 
machine. However, our design followed the structure of the 
machine so as to give us more scope to validate the archi- 
tecture. The slowness of the machine is compounded by the 
simultaneous execution of multiple threads making it time 
consuming to execute huge benchmark programs. Though 
our simulator is portable, we have it only running on DEC 
Alpha with OSFl because the C++Sim library available to 
us is only for this platform. 

B. Empin’col Results 

We divided the task of testing the architectural design 
into validation and performance analysis. To test the de- 
sign, we ran different programs we wrote. These programs 
had different granularity of instruction dependencies. If an 
instruction’s result is used in the very next instruction as a 
source, then we called it a granularity of one. If the result 
is used by the second instruction after it, the granularity is 
two, and so forth. For each run of a program of a particular 
granularity, we check if the state of the context is what we 
expect. The state of the machine at the end of the execution 
of a program with any granularity and of any configuration 
of the machine should be consistent and correct. The ma- 
chine should not either run into a dead-lock or the state at 
the end of the execution be incorrect. The architecture of 
KUMA was thus validated for different programs we hand- 
crafted. KUMA resolves the dependencies dynamically as 
we explained in the previous sections. 

To analyze the performance of the architecture we wrote 
a program with a granularity of 18. Further, we assumed 
perfect branch prediction. We avoided the load-store and 
branch instructions and ran programs with arithmetic in- 
structions. We took a base architecture of 266 entries for 
Re-Order Buffer, 16 Functional Units with latency of 1 and 
64 entries for each Reservation Station. We chose 1 bus each 
for each of the functional units to update the ROB and the 
Reservation Stations. Round-robin policy was used to issue 
instructions at the issue and the dispatch stages. The func- 
tional units take out the instructions from the resenration 
stations in a round-robin fashion too. Though by-passing 
was used, we did not test the other issuing policies. The 
choice of the above configuration was to avoid “stalling of 
issue of instructions” at the dispatch stage, because either 
the reservation stations or the reorder buffer are full. Ta- 
ble III summarizes our results. The issue rate is varied from 
1 to 3 for different number of execution of threads, which 
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are varied from 1 to 16. [51 
The results show that the Instruction Executed per Cy- 

cle (IPC) increases as the issue rate and the number of 
threads increases. In general by increasing the issue rate 
of the instructions and the number of threads executing si- 
multaneously on the processor, we could greatly enhance 
the through-put of the processor. The fall of IPC at the 
edges ( for example issue rate of 8 and 4 threads) is because 
of the configuration parameters of the KUMA chosen and 
the round-robin policy of scheduling at the execution stage, 
these cases could be avoided by a proper configuration and 
issue rate. 

PI 

V. Conclusions and Future Work 

Simultaneous execution of threads on a single chip archi- 
tecture raises a lot of interesting questions but provides a 
number of possibilities to the designers. The interactions 
of the operating system and architecture become more in- 
tricate and intertwined. The execution of both User and 
Kernel threads concurrently, eliminates the need for con- 
text switches, at least amongst the active threads. Since 
modern and some commercial operating systems (Windows 
NT, Solaris etc) are threaded and modularized, and since 
more applications are being written using threads, an archi- 
tecture such as KUMA would be a prime candidate to make 
use of this trend. And also, KUMA could capitalize on the 
recent boom in multimedia applications. We briefly discuss 
some of the issues that affect KUMA. 
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1131 
Owing to simultaneous issue of threads the process struc- 

ture of the operating system becomes an integral entity of 
the architecture. The kernel threads could be allowed to 
execute on one or two virtual pipelines or all of them at the 
same time. In the same way, processing of interrupts and 
system calls could be processed exclusively by one or two 
virtual pipelines or all of them (asymmetric vs symmetric 
multithreading). 

1141 

Since scheduling of instructions takes place at couple of 
stages in the architecture (instruction fetch, dispatch and 

[I51 

Ml 
execution stages) the scheduling policies at these stages should [17] 
also be managed by the operating system, if they are not 
already hardwired. In some of the commercial processors 
available now a days, owing to the complexity of page ta- 
ble entries, at every context switch the TLB is flushed and 
updated, this lengthens the context switch time. A robust 
Virtual Memory System maintained by the Memory Man- P31 
agement Unit (MMU) ‘under the control of the kernel which 
allocates the Page Table Entries (PTEs) for all the multi- 
programming environment might reduce the time wasted 
in allocation and deallocation of these tables. However, we 
perceive a possible increase in virtual memory complexity 1191 

and protection problems. 
In this paper we presented a novel architecture that ex- PI 

ecutes threads simultaneously on a single chip architecture. 
By doing so, the functional units and resources are shared 
to get high through put and utilization. This architectural WI 
model needs further testing and analysis to make it a feasi- 
ble alternative to the existing architectural paradigms such 

P21 
as VLIW and Superscalar. 
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