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tion properties is considered to be cost[16, 15, 9. 3],
¢ = dk, defined as the product of degree (d) and di-
ameter (k) and usually stated in terms of n the
number of nodes in the network, ¢ = f(n), to fa-
cilitate comparison. The degree of a network is the
maximum of the number of edges connected to any
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merit is considered to be cost, the product of de-

gree and diameter. We argue that avera age cost,
bemg the product of average degree and diameter,

is more appu\,a.un: than the conventional cost and
propose a general method of “top-down” network
construction that prov ides networks o

O(logg N) where B = o(N) is a bound on maxi-

be traversed to get from any node to any other
node. It is desirable fromn a manufacturing point
of view to have a small degree since routers need to
be built that can handle the degree of the network
and the monetary cost may be quadraticaily related
to the router degree. But small degree tvpically
necessitates a large diameter and compromise is in-
evitable. Furthermore, other desirable characteris-

mum degree and N is the number of nodes. From tics such as scalability(d, 11}, routing{2], bi-section
this we show an example topology that has aver- width{8] and fault-tolerance|3, 1] may impose fur-

age cost of © \B?AF;—N} By doing so we examine a

class of networks with constant average cost, that
is, networks whose average cost is fixed to a con-
stant value as the size of the network incrcases to
infinity. We then identify those aspects that are
undesirable, namely some nodes have infinite de-
gree, and show methods of trading an increase in
diameter for a reduction in degree.

1 Introduction

Interconnection network topology is a fundamental
research topic in the area of parallel and distributed
computing. Continual operation of efficient and ef-
fective communication between processing elements
or nodes is a desirable characteristic of all inter-
connection networks. The foremost figure of merit
used to identify networks with efficient communica-
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ther compromise(i0, 12, 14j.

Our previous research provided a class of net-
works based on the T network{7, 6]. We utilised
the concept of averege cost when comparing the T
networks since it was seen that the convenuonal
cost metric did not properly exhibit the merits of
the Y structure. The average cost is defined as the
product of average degree and diameter. Here we
cstablish a firmer understanding of cost and its re-
lationship to average cost. We note that the degree
of a network is related to the number of edges. This
is because each edge that is added to a network in-
creases the degree of two nodes by one. That is.
one may talk about total degree, 6, being the sum
of the degree, d;, for each node,

n
§=7) di=2e (1)
where e is the number of edges. The average degree

then becomes available: d = §/n.
The average degree seems to provide a better
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quantity for comparison based on the following
grounds:

1. the average degree takes into account the num-
ber of edges and

2. the physical construction cost of routers has
a greater potential for decline than the wiring
costs.

In 1 we note that the mazimum degree, d, does
not embody the real number of edges, e, used to
construct the network. We can provide many ex-
amples, and indeed the T network is one, where
the maximum degree simply fails to provide a valid
quantity of measure. In 2 we appeal to the predic-
tion that the cost of routers will generally decrease
faster than the cost of wiring (edges). This has
the effect of mcaning that to some limit, the cost
of routers with degree less than that limit, will be
identical or at least related by a constant factor.
Advances in optical network construction may well
produce such a router that no longer needs elec-
tronic switching or physical guides for the signal.

So we are now in a position to claim that the av-
erage cost, ¢ = dk. is a suitable quantity of measure
for the merit of a network topology.

The difference between maximum cost and aver-
age cost of some popular networks is actually zero.
This is so when the average degree is equal to the
maximum degree. Such a case only occurs when
the degree of every node in the network is the same.
We will refer to networks exhibiting this property
as reqular networks. Almost every popular network
is regular: ring. torus. hypercube and CCC[13] for
instance. The fat-tree is not regular since the de-
gree of nodes on lower levels decreases. Regularity
also tends to decrease the physical cost since every
router in the network is identical and thus easier
to manufacture. Unfortunately, as will be exempli-
fied later, it seems that regular networks will never
actually provide low cost in the average sense. We
will show with simple examples that low cost net-
works can be produced with the tradeoff being the
acceptance of non-regular topologies.

A clear criticism is that some networks may ex-
ist with infinite maximum degree but finite aver-
age degree. We address this criticism in the first
half this paper by showing simple examples of this
phenomenon and a way of countering the criticism
by stipulating a bound to the maximum degree in
terms of the network size.
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2 A class of constant average
cost networks

We now present an example of networks that pro-
vide fixed average cost with an infinite number of
nodes. The existence of such networks as purely
theoretical entities shows an interesting aspect of
network topology and illuminates a method of net-
work comparison that seems under-treated in pop-
ular literature.

First consider one of the simplest of networks,
the star networks. The average degree of a star
network d = =1+l pyltiplied by the diame-
ter, 2. produces an average cost ¢ = (4 — :‘—1) which
approaches 4 as n -+ oo. The maximum cost ap-
proaches infinity though because the maximum de-
gree is equal to (n — 1). The simple example seems
to illustrate a short fall when considering average
cost as a function of average degree since the star
network may immediately be claimed to be near the
best in terms of ¢ when compared to for instance
some more elaborate networks discussed in our pre-
vious work. To combat this criticism we ask for the
examination of the maximum degree in terms of
the number of nodes. The comparison will become
clearer with the following example.

Consider the completely connected network. ev-
erv node is connected to every other node. Before
looking at the average cost we transform the net-
work to produce a new network, C, by replacing
everv edge with a node of degree 2. Figure 1 shows
the formation of C(4) network from a 4 node com-
pletely connected network.

(a) Completely connected graph (b) C(4) graph
Figure 1: A completely connected network trans-
formed to a C network.

The average degree of C d = %%(‘"—):l—)

multiplied by the diameter, 4, gives ¢ = 41(—'"—':—11-)-
which approaches 16 as n — oco. Note that the
number of nodes is now N = -"—%1'-'1 The maxi-
mum degree as a function of the number nodes is
no longer (N — 1) as it was for the star network
but now d = V2N — 1, where it can be shown



through an approximate (16 N2 >» 2N) polynomial
g) < € < 1. This indicates
that N for the C network increases proportionally
larger than the corresponding N for the star net-
work with increase in maximum degree. In other
words a C network with maximum degree d has
more nodes than a star network of the same max-
imum degree. This clearly identifies a statement
of comparison in terms of a function that indicates
the maximum degree in terms of number of nodes.
The maximum degree is not always a function of the
number of nodes though. For the hypercube net-
work it is, since the number of nodes dictates the
exact size of the network. For the CCC network
it is not since the size may vary but the maximum
degree remains constant. These things aside. the
hypercube and CCC networks do not exhibit finite
average cost when the number of nodes approaches
infinity.

solution that (1 -

Let us continue our discussion by modifying the
C network. Replace each edge of a completely con-
nected network with not just a single node of degree
2 but a new network, namely the Y(2¢) network, to
form a new C network. The T network has average
degree 4 with diameter ¢. It also has the property
that the two outer nodes. with degree 2t — 1. are
directly connected and that from any node inside
the network it takes onlv % steps to get to either of
these outer nodes. Figure 2 shows the construction
of this network from a completely connected net-
work of size 4. Note that the previous C network
is basically an instance of the new C network with
t=20.

Figure 2: A completely connected network trans-
formed to a C network using 1("7_‘—’ Y (2') networks.

The average degree of this new C network is
found by remembering that the 2¢ nodes in each
of the ﬂ"T_l—) T networks so introduced have aver-
age degree 4. The wavy lines represent T networks.
The remaining n nodes have average degree (n—1).
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The combined average

2'n(n — )4+ n(n - 1)2

d=
2tnn—1)+2n~4

(2)

is seen to remain at approximately the average of
the T network. The diameter of C is seen to be no
larger than £+1+3+1+% = t+5 and so the average
cost is € = 4(t + 5) which is partially independent
of the new number of nodes N = 22=Yat 4 We
now examine the maximum degree as a function of
the number of nodes. The maximum degree of this
network is seen to be max(n ~ 1,2¢t). If 2t =n -1
then d =~ 2log (%) = QO(log N).

These previous networks provide examples of re-
ducing the maximum degree while attempting to
maintain as small as diameter as possible. In gen-
eral we establish that the average cost is applica-
ble only if the mazimum degree is bounded by some
B = f(N) such that B approaches 0 as N ap-
proaches infinity. Also we ensconce that for the
case of average cost analysis only networks with ir-
reqular degree topology will provide minimum costs.
If the maximum degree of any network is beyond
the bound B then the network is deemed to be un-
realisable or high cost. An actual order of bound
as found in the literature to be acceptable as ex-
hibited by the hypercube and other networks is
B = O(log N'). The next logical step is to attempt
to reduce the maximum degree to a value less than
or equal to B, by sacrificing either size or diam-
eter or both and thus create a usable (realisable)
network with low cost.

3 General construction
of large networks with low
average cost

In this section we explain a method of reducing
the degree of an arbitrary network by replacing
those nodes with degree above some bound with
another network. The method is most applicable
when applied to those networks that have a con-
stant diameter but suffer from large maximum de-
gree. The idea is to construct a final network from
a set of networks with decreasingly smaller degree.
If the diameter of these networks is constant then
the resulting diameter should be quite small (pos-
sibly also constant) but will depend upon the rate
at which the maximum degree can be reduced to a
bounding value and the corresponding rate at which
the diameter increases. This mathematical concept
is briefly analysed at the end of the section.



Consider a large network, index by a, of size
N, nodes, G4(Na), constructed using some method
yielding fixed finite diameter, k., and average de-
gree, d,. We will use d, to represent the maximum
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other important quantities we need to define are the
total degree (refer to Equation 1, 4, = \—‘N da;

and a new quantity that we will refer to as saturated
degree ¢; = d,N,.

The difference between these values provides us
with a capacity,

Ka =Sa — 0q (3)

Let us assume the problem with G, is that the num-
ber of nodes with degree greater than the bounding
value, B, is greater than 0 or that a, > 0.

Llllb means LHd.L Ua lb Illgﬂ lIl cost d.nCl cannot Ue
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degree d,, then it must be true that
d: < d, (4)

Also, a network cannot be used as a super node if
the capacity, &, of the network is not equal to or
larger than the degree of ihe node being replaced.
This is because if the capacity of the network is
not larger than the degree of the node it is replac-
ing the maximum degree of the network will need
to increase and this increase may then violate the
previous condition concerning maximum degree. In
other words, if G, is the network that replaces a
node of degree d,, then it must be true that

Ky > d, . (5)

If these two conditions (4 and 3) are true then the
network G, can become a super node within the
network G,. We now construct a new network, Gy,
by replacing all a, nodes in G, with an identical
copy of a valid super node, namely G,. To simplify
our consideration we make the following assump-
tions:
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¢ The number of nodes in both G, and G, that
have maximum degree d, and d, is equal to a,
and «, respectively and
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Under these assumptions the G, network is de-
scribed by

ky = ko + 2k, dy =dz, ap = ag0s.

From the restrictions given in Equation 4 d; <
d, and thus we have succeeded in reducing the max-
imum degree of the starting network. The sacrifice
of the reduction in degree was an increase in diam-
eter and an increase in the average degree in each
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bated by allowing the capacity of the super node to
be some factor !argnr than the dno‘rm of the node
it is replacing. Note that both of the networks
used in this construction had a near infinite size
but fixed finite diameter. The addition of two such
fixed finite diameters while creating a total number
of nodes equal to N, —a, + Npa, may seem more of
a bonus rather than a detriment. Our interest does
not at the moment lie in analysing this cost trade-
off. We are concerned with whether we can reduce
the maximum degree to a value lower than or equal
to B while maintaining a sinaller order of increase
in diameter. Note that the network G} constructed
as above does in fact have a lower maximum degree
than the starting network, G,. We thus continue
this process of super node substitution until the
maximum degree of any node in the network is less
than B. To continue we establish B in relation to
N, by providing equation B = f(N,).

As was stated earlier this function is typically
logarithmic. Its exact nature is unimportant at this
time though. We now find the number of replace-
ments or the level of expansion needed to achieve
bounded degree.

The essence of this technique, and as it seems,
the essence of constructing large low cost networks,
is the ability to find networks with small maxi-
mum degree and further more for the purposes of
this technique with finite diameter when an infinite



number of nodes is considered. For a set of con-
stant, average cost networks S = {S),Ss,....Sa},
we arrange them in decreasing order of their de-
grees such that V(z.y)((1<:.y<n)/\(z<y))(d1 > dy)7
where d; is the maximum degree of S;. Of course,
other networks would also satisfv the conditions for
S) such as the completely connected network. We
need to apply the other restriction concerning ca-
pacity as stated in Equation 5 to this set of net-
works Viz y)((1<z.y<niaiz<y)(Ky > dz), where & is
the capacity of the network as stated in Equation
3.

We apply the technique of degree reduction as
outlined above with G, = S5, and G, = S» and
successively with G, = S, and G, = S3, etc. That
is, we use S, to reduce Si, S; to reduce S, and so
forth. We continue to do this until the maximum
degree of the S network is less than or equal to
B. A network created in this fashion will have a
maximum degree no bigger than B, by definition.
Given Assumption 3 stated earlier the final diame-
ter however will increase as now A = ¢(j), where j
is the index such that the network S; has maximum
degree no bigger than B. The critical factor in all
this is g(j) since it dictates the final diameter and
hence the two cost metrics:

c=B-g() ¢=d g()

of which the second has been shown to be of
greater insight. We now show the relationship be-
tween the rate at which the maximum degree is
reduced to a be no bigger than B and the rate at
which the diameter increases. Remember an im-
portant point here is that the initial diameter was
asymptotically zero {constant).

We introduce a reducing function. R(d). that
provides ihe resulting egree ol a network after one
phase of degree reduction. If the initial degree was
do then after one reduction the new degree d, is
R{dyp) and after the second reduction the degree d;
is R(R(do)) and so after j phases the degree d; is
R (dy). Essentially we want to find j such that:

RUV(do) < B < f(No) (6)

where Ny is the total nodes in the network. We are
being a little coarse here since the total nodes actu-
ally increases after each phase of reduction but we
do not take this into account (a worst case approx-
imation). It seems that for the network structures
we will consider (in the next section) the increase in
the number of nodes does no more than double the
original number. This though is a consideration of
classical network topology.
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As was stated earlier we would like the reducing
function to reduce the maximum degree at a rate
faster than the corresponding increase in diameter.
This concept is illustrated in the example Figure 3
where the starting degree, dy, was set to 10000. The
figure shows an arbitrary choice of lower bound, B.
It is shown that the degree falls below the lower
bound at j = 2.

A

1000 [%.
1000
decreasing degree
100 \  crusses the bound al j=2 increasing diameter

gy of maximun degiee. d

Z

aumber of reductons, §

Figure 3: An illustration of a function that reduces
the degree while a second function operates to in-
crease the diameter.

To mathematically describe what is happening
we state dy in terms of Ny, dy = h(\p) and rewrite
Equation 6:

RYY(R(No)) < f(No) (7)

In other words we mav choose to investizate the
product ¢ = ¢(j)RY(dy) and find jo such that

’;—j. = 0. Alternatively we may choose to in-
(J)

1(9(0))°
R~ is the inverse function and the cases when
w<1lw=1and w > 1 Itis difficult for this
mathematics to continue without actual functions.
So now we investigate a possible set of networks

based on the previous understanding.

J=Jje

vestigate the limit w = lim;_  z=F where

4 An example construction

\We construct a network based on the general con-
struction method just proposed.

Consider a completely connected network of size
n. with each of its edges replaced by a single node



of degree 2. This network was examined earlier in
the paper and the following properties hold:
- 4n—4

d=n~-1,d= , k=4
n+1

We assume the problem with this network is that
d > B, where B is some bound to maximum de-
gree, such that the network cannot be feasible built.
We state what we would like B to be in terms of
the total nodes B = log(N), where N ~ "—2 and so

d = 27 which is a value much larger than our
desired boundmg value. We now construct an ap-
propriate super node to replace each of the n nodes
in a manner prescribed earlier. We choose a sim-
ple network, constructed using the same method as
the starting network but with fewer nodes. In other
words we construct a super node from a completely
connected network of size n’ with its edges replaced
by a single node of degree 2 making the total nodes,
N' equal ton' + L'L‘_)—_” The capacity of the su-
per node must be equal to or greater than n - 1.

We can do this by setting n' = [\/2(n - 1)1.
Now we must establish two things about this su-
per node:

e its maximum degree, d', is less than d and

e its capacity, &', is greater than or equal to d.

Since both of these are clearly true the super
node we have constructed is valid. The good thing
is that a whole set of such super nodes must exist
that are also valid since the constructed super node
is topologically identical to the network that it will
become a super node of. Thus, a super super node
may be constructed in the same manner. We now
calculate the number of times such a replacement
must occur. 'Chis value is the value for j in the
previous section. We note that each time a node of
degree d is replaced, it is replaced effectively with a
network whose maximum degree, d’, may be writ-
ten d' ~ /d.

Assume we need j phases to cause d < B. The
maximum degree, after j phases, of the total net-
work is then d¥” ~ ¥d. But d = 2% so

. B41 841
d9) = 25%  and we would like 2557 < B, which
works out easily j > log (logB)

Since the total nodes has increased (remember
we are taking a worse case approximation that does
not take into account this increase) it is true that

B <log N so
log ¥V
> 1 —_— 8
7 =708 (loglogN) )
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Now what does the value of j tell us. It says how
many ‘levels’ of super nodes we must use to get the
desired maximum bound on degree. But as we re-
duce the maximum degree the diameter is increas-
ing. For this example the diameter after j phases
of expansion k; = 37_ 22, and asymptotically
kJ‘ = (")(2] )

To find the average cost we remember that the
average degree must be constant for these types of
networks from the principles shown earlier. This
constant factor, d, is equal to 4 but its value is
unimportant since it is constant. Now we state the
average cost & = ©(27) or from Equation 8

¢=0 (et

We now examine the case when the bound, B,
is any lower order function of N: B = o(N). We
have, using the same start network and network
set, S, d = n — 1 = V2N, and hfill ¥ = d¥ =
(2N )2—#" From d®¥' < B and ignoring the factor
2 we have 27+1 > (28 log ¥ N = [log(logg N)] and

= 0(2) = G(logB N ), therefore, because the
average degree is fixed,

¢ = O(logg N) (9)

For the when
B =1log"N, ¢ = (ﬁ‘lﬁ_—,’%—ﬁ ,forany i > 1.
Interestingly the conventional maximum cost is
c=0 (ﬁﬁ%ﬁlog(") N ) More simply, for the
casewhenB Ne,0<e<1,&=06(L), and for
€= 2=, &€ = ©(log N). Clearly, the rough asymp-
totic analy51s is only a guide towards establishing
the actual cost of the final network.

5 Conclusion

Classical network topology has identified inany
“bottom-up” approaches to designing low cost net-
works. From this point of view, a network topolo-
gist starts with small size low cost network and at-
tempts to add extra nodes while keeping the degree
and diameter small. We presented a “top-down”
approach to designing networks that starts with an
arbitrary large network of arbitrary large degree
but constant diameter and proceeds by attempting
to reduce the degree to be less than some bound
at a rate faster than the corresponding increase in
diameter. We provided a general method for doing
so that resulted in an average cost of O(logg N)
for some bound B = o(N) and showed an example
based on this method that produces a network with



: log N
average cost in the order of © (Elxo‘gﬁ) where N

fee tlim smcccntiine Af A o al X N\ XIS~
i§ L€ NUMoer 01 nNuaes in une network (Size). ve
have not yet investigated the opposite alternative of
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stant degree and attempting to reduce the dlameter
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degree nor the apparent zyzigy, or conjunction of
these two opposing methods. We leave this for fu-

ture research.
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