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Abstract 

Classical network topology has identified many 
“bottom-up” approaches to designing low cost in- 
terconnection networks. The foremost figure of 
merit is considered to be cost, the product of de- 
gree and diameter. We argue that average cost, 
being the product of average degree and diameter, 
is more applicable than the conventional cost and 
propose a general method of Yap-down” network 
construction that provides networks of average cost 
0(log, N) where B = o(N) is a bound on maxi- 
mum degree and N is the number of nodes. From 
this we show an example topology that has aver- 

agecostofQ(,J~~~N). By doing so we examine a 

class of networks with constant average cost, that 
is, networks whose average cost is fixed to a con- 
stant value as the size of the network increases to 
infinity. We then identify those aspects that are 
undesirable, namely some nodes have infinite dc- 
gree, and show methods of trading an increase in 
diameter for a reduction in degree. 

1 Introduction 

Interconnection network topology is a fu!tdamctntal 
research topic in the areaof parallel and distributed 
computing. Continual operation of efficient and cf- 
fective communication between processing elements 
or nodes is a desirable characteristic of all intw- 
connection networks. The foremost figurc~ of nlchrit 
used to identify networks with eflicicnt c.unmIunica- 
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tion properties is considered to be cost[l6, 15: 9. 51: 
c = dk, defined as the product of degree (d) and di- 
ameter (k) and usually stated in terms of n the 
number of nodes in the network, c = f(n), to fa- 
cilitate comparison. The degree of a network is the 
maximum of the number of edges connected to an\ 
single node. The diameter of a network is the max- 
imum of the minimum number of edges needed to 
be traversed to get from any node to any other 
node. It is desirable from a manufacturing point 
of view to have a small degree since routers need to 
be built that can handle the degree of the network 
and the monetary cost may be quadratically related 
to the router degree. But small degree typically 
necessitates a large diameter and compromise is in- 
evitable. Furthermore, other desirable characteris- 
tics such as scalability[4, 111, routinsf2], &section 
width[8] and fault-tolerancei3, l] may impose fur- 
ther compromise[lO, 12, 141. 

Our previous research provided a class of net- 
works based on the Y network[7, 61. We utilised 
the concept of cruetage cost when comparing the T 
networks since it wits see11 that tile conventional 
cost metric did not properly eshibit the merits of 
the T structure. The average cost is defined as the 
product of average degree and diameter. Here we 
establish a firmer understanding of cost and its re- 
lationship to average cost. We note that the degree 
of a network is related to the number of edges. This 
is because each edge that is added to a network in- 
creases the degree of two nodes by one. That is. 
one may talk about total degree, 6, being the sum 
of the degree, di , for each node, 

6=xdi=2e (1) 

where e is the number of edges. The average degree 
then becomes available: a = 6/n. 

The average degree seems to provide a better 
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quantity for comparison based on the following 
grounds: 

1. the average degree takes into account the num- 
ber of edges and 

2. the physical construction cost of routers has 
a greater potential for decline than the wiring 
costs. 

In 1 we note that the maximum degree, d, tiocs 
not embody the real number of edges, e, used to 
construct the network. \Ve can provide many ex- 
amples, and indeed the Y network is one, where 
the maximum degree simply fails to provide a valid 
quantity of measure. In 2 we appeal to the predic- 
tion that the cost of routers will generally decrease 
faster than the cost of wiring (edges). This has 
the effect of meaning that to some limit, the cost 
of routers with degree less than that limit, will be 
identical or at least related by a constarlt factor. 
Advances in optical network construction may well 
produce such a router that no longer needs elec- 
tronic switching or physical guides for the signal. 

So we are non- in a position to claim that the w 
erage cost. T = dk. is a suitable quantity of measure 
for the mrrit of a network topology. 

The difference between maximum cost and aver- 
age cost of some popular networks is actually zero. 
This is so ~vhen the average degree is equal to the 
maximum degree. Such a case only occurs when 
the degree of every node in the network is the same. 
\Ve will refer to networks exhibiting this property 
as regular networks. Almost every popular network 
is regular: ring. forus. hypercube and CCC[l3] for 
instance. TIN> fat-trw is not regular since the de- 
gree of ~mcic~s on lower levels decreases. Regularit) 
also tends to decrease the physical cost since every 
router in the network is identical and thus easier 
to manufacture. Unfortunately, as will be exempli- 
fied later, it seems that regular networks will never 
actually provide low cost in the average sense. We 
will show with simple examples that low cost net- 
tvorks can 1~1 produced with the tradeoff being the 
acceptance of non-regular topologies. 

.i\ clear criticism is that some networks may ex- 
ist with infinite nlaximum degree but finite aver- 
age degree. \\‘e atldress this criticism in the first 
half this paper \)I. &owing simple examples of this 
phenomenon and a \vay of countering the criticism 
by stipulating a bound to the maximum degree in 
terms of the netn-ork size. 

2 A class of constant average 
cost networks 

\t’e now present an example of networks that pro- 
vide fixed average cost with an infinite number of 
nodes. The existence of such networks as purely 
theoretical entities shows an interesting aspect of 
network topology and illuminates a method of net- 
work comparison that seems under-treated in pop- 
ular literature. 

First consider one of the simplest of networks? 
the star networks. The average degree of a star 
net\\.ork d = b-l)+)d multiplied by the diame- 
ter. 2. produces an average cost C = (4 - i) which 
approaches 1 as n -+ 30. The maximum cost ap- 
proaches infinity though because the maximum de- 
vree is equal to (n - 1). The simple example seems 0 
to illustrate a short fall when considering average 
cost as a function of average degree since the star 
netlvork may immediately be claimed to be near the 
best in terms of C when compared to for instance 
some more elaborate networks discussed in our pre- 
-.*ious work. To combat. this criticism we ask for the 
examination of the maximum degree in terms of 
the number of nodes. The comparison will become 
clearer with the following example. 

Consider the completely connected network. ev- 
ery node is connected to every other node. Before 
looking at the average cost we transform the net- 
work to produce a new network, C, by replacing 
every edge with a node of degree 2. Figure 1 shows 
the formation of C(4) network from a 4 node com- 
pletely connected network. 

(31 Completely connected graph (b) C(4) P-@ 

Figure 1: A completely connected network trans- 
formed to a C network. 

The average degree of C d = w 
4(n-I) 

multiplied by the diameter, 4, gives E = 4~ 
which approaches 16 as n + co. Note that the 
number of nodes is now N = e. The maxi- 
mum degree as a function of the number nodes is 
no longer (N - 1) as it was for the star network 
but now d = w%? - 1, where it can be shown 
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through an approximate (16N’ >> 2N) polynomial 

solution that (1 - 3) < c < 1. This indicates 
that N for the C network increases proportionally 
larger than the corresponding N for the star net- 
work with increase in maximum degree. In other 
words a C network with maximum degree d has 
more nodes than a star network of the same max- 
imum degree. This clearly identifies a statement 
of comparison in terms of a function that indicates 
the maximum degree in terms of number of nodes. 
The maximum degree is not always a function of the 
number of nodes though. For the hypercube net- 
work it is, since the number of nodes dictates the 
exact size of the network. For the CCC network 
it is not since the size may vary but the maximum 
degree remains constant. These things aside. the 
hypercube and CCC networks do not exhibit finite 
average cost when the number of nodes approaches 
infinity. 

Let us continue our discussion by modifying the 
C network. Replace each edge of a completely con- 
nected network with not just a single node of degree 
2 but a new network, namely the Y (21) network. to 
form a new C network. The T network has average 
degree 4 with diameter t. It also has the property 
that the two outer nodes. with degree 2t - 1. are 
directly connected and that from any node inside 
the network it takes only $ steps to get to either of 
these outer nodes. Figure 2 shows the construction 
of this network from a completely connected net- 
work of size 4. Sote that the previous C network 
is basically an instance of the new C network with 
t = 0. 

Figure 2: A completely connected network trans- 
formed to a C network using v Y (2’) networks. 

The average degree of this new C network is 
found by remembering that the 2’ nodes in each 
of the w T networks so introduced have aver- 
age degree 4. The wavy tines represent T networks. 
The remaining R nodes have average degree (n - 1). 

The combined average 

d = 2%(n - 1)4 + n(n - 1)2 
2%(n - 1) + 272 Z 4 (2) 

is seen to remain at approximately the average of 
the Y network. The diameter of C is seen to be no 
larger than $+1+3+1+$ = t+5 and so the average 
cost is E = 4(t + 5) which is partially independent 
of the new number of nodes N = 92’ +n. We 
now examine the maximum degree as a function of 
the number of nodes. The maximum degree of this 
network is seen to be max(n - 1,2t). If 2t = n - 1 
then d x 2log ($) = OOogN). 

These previous networks provide examples of re- 
ducing the maximum degree while attempting to 
maintain as small as diameter as possible. In gen- 
eral we establish that the average cost is applica- 
ble only if the maximum degree is bounded by some 
B = f(N) such that B approaches 0 as N ap- 
proaches infinity. Also we ensconce that for the 
case of average cost analysis only networks with ir- 
regular degree topology will provide minimum costs. 
If the maximum degree of any network is beyond 
the bound B then the network is deemed to be un- 
malisable or high cost. An actual order of bound 
as found in the literature to be acceptable as ex- 
hibited by the hypercube and other networks is 
B = Q(log fY). The next logical step is to attempt 
to reduce the maximum degree to a value less than 
or equal to B, by sacrificing either size or diam- 
eter or both and thus create a usable (r&sable) 
network with low cost. 

3 General construction 
of large networks with low 
average cost 

In this section we explain a method of reducing 
the degree of an arbitrary network by replacing 
those nodes with degree above some bound with 
another network. The method is moat applicable 
when applied to those networks that have a con- 
stant diameter but suffer from large maximum de- 
gree. The idea is to construct a final network from 
a set of networks with decreasingly smaller degree. 
If the diameter of these networks is constant then 
the resulting diameter should be quite small (pos- 
sibly also constant) but will depend upon the rate 
at which the maximum degree can be reduced to a 
bounding value and the corresponding rate at which 
the diameter increases. This mathematical concept 
is briefly analysed at the end of the section. 
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Consider a large network, index by a, of size 
N, nodes, G, (N,), constructed using some method 
yielding fixed finite diameter, k,, and average de- 
gree, (5,. We will use d, to represent the maximum 
degree of G, and &.i to represent the degree of 
node i in G,. We also define a quantity a, to repre- 
sent the number of nodes in G, with degree larger 
than B, where B is some bound in terms of Nar 
above which the degree is deemed high cost. The 
other important quantities we need to define are the 
total degree (refer to Equation l), 6, = C? d,,i 
and a new quantity that we will refer to as saturated 
degree <a = d,N,. 

The difference between these values provides us 
with a capacity, 

na = Ca - &I (3) 

Let us assume the problem with G, is that the num- 
ber of nodes with degree greater than the bounding 
value, B, is greater than 0 or that Q, > 0. 

This means that G, is high in cost and cannot be 
built. iVe would like a a = 0. We need to reduce the 
degree of oa nodes in G, to be less than B. Note 
that some nodes in G, may have degree less than 
d, and greater than B. To reduce the degree of the 
Q, nodes we will use the technique of replacing each 
of these nodes with a new network or super node. 
The super node must be constructed of nodes of 
maximum degree less than the node it is replacing 
otherwise the replacement defeats itself. In other 
words, if G, is the network that replaces a node of 
degree d,, then it must be true that 

d, -c da C-1) 

Also, a network cannot be used as a super node if 
the capacity, n, of the network is not equal to or 
larger than the degree of the node being replaced. 
This is because if the capacity of the network is 
not larger than the degree of the node it is replac- 
ing the maximum degree of the network will need 
to increase and this increase may then violate the 
previous condition concerning maximum degree. In 
other words, if G, is the network that replaces a 
node of degree d,, then it must be true that 

ti:, zd, (5) 

If these two conditions (1 and 5) are true then the 
network G, can become a super node within the 
network G,. \Ve now construct a new network, Gb, 
by replacing all on nodes in G, with an identical 
copy of a valid super node, namely G,. To simplify 
our consideration we make the following assump- 
tions: 

l The number of nodes in both G, and G, that 
have maximum degree d, and d, is equal to a, 
and Q, respectively and 

l A traversal through either network between 
any two nodes that takes no more than k steps 
passes through exactly two of the o nodes (this 
assumption will be clarified later). 

Under these assumptions the Gb network is de- 
scribed by 

kb = k, + 2k,, db = d,, ab = ~~a=. 

From the restrictions given in Equation 4 db < 
d, and thus we have succeeded in reducing the max- 
imum degree of the starting network. The sacrifice 
of the reduction in degree was an increase in diam- 
eter and an increase in the average degree in each 
of the super node networks. The average degree in- 
creases because d, edges are connected (in an arbi- 
trary manner) to each super node network. If the 
capacity of the super node network was equal to 
the degree of the node it replaced then the average 
degree would be increased to equal the maximum 
degree. This is not a problem, but may be com- 
bated by allowing the capacity of the super node to 
be some factor larger than the degree of the node 
it is replacing. Note that both of the networks 
used in this construction had a near infinite size 
but fixed finite diameter. The addition of two such 
fixed finite diameters while creating a total number 
of nodes equal to N, -a, + Nba, may seem more of 
a bonus rather than a detriment. Our interest does 
not at the moment lie in analysing this cost trade- 
off. \\‘e are concerned with whether we can reduce 
the maximum degree to a value lower than or equal 
to B while maintaining a smaller \;rder of increase 
in diameter. Note that the network Gc constructed 
as above does in fact have a lower maximum degree 
than the starting network, G,. We thus continue 
this process of super node substitution until the 
maximum degree of any node in the network is less 
than B. To continue we establish B in relation to 
N, by providing equation B = f(No). 

As was stated earlier this function is typically 
logarithmic. Its exact nature is unimportant at this 
time though. We now find the number of replace- 
ments or the level of expansion needed to achieve 
bounded degree. 

The essence of this technique, and as it seems, 
the essence of constructing large low cost networks, 
is the ability to find networks with small maxi- 
mum degree and further more for the purposes of 
this technique with finite diameter when an infinite 
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number of nodes is considered. For a set of con- 
stant, average cost networks S = { S1, S?, . . . . S,}, 
!ve arrange them in decreasing order of their de- 
w= such that V(=,,)((l<,.,<,,),(,,,))(d, > 41, 
where d, is the maximum degree of S,. Of course, 
other networks would also satisfy the conditions for 
5’1 such as the completely connected network. We 
need to apply the other restriction concerning ca- 
pacity as stated in Equation .J to this set of net- 
lvorks V(z.v)((l<z.y<n)~(r<~))(~~ 2 A), where li is 
the capacity of the network as stated in Equation 
3. 

1Ve apply the technique of degree reduction as 
outlined above with G, = S1 and G, = 5’2 and 
successively with G, = S:! and G, = S:j: etc. That 
is, we use S, to reduce Sl, SI to reduce Sz and so 
forth. We continue to do this until the maximum 
degree of the S network is less than or equal to 
B. .4 network created in this fashion will have a 
maximum degree no bigger than B, by definition. 
Given .-issumption 3 stated earlier the final diame- 
ter however will increase as now K = g(j), where j 
is the index such that the network .S, has maximum 
degree no bigger than B. The critical factor in all 
this is g(j) since it dictates the final diameter and 
hence the two cost metrics: 

c=B.g(j). c:=&(j). 

of which the second has been shown to be of 
greater insight. \Ve now show the relationship be- 
tween the rate at which the masimum degree is 
reduced to a be no bigger than B and the rate at 
which the diameter increases. Remember an im- 
portant point here is that the initial diameter was 
asymptotically zero (constant). 

\Ve introduce a reducing function. R(d). that 
provide;, Ihe resa!t;ng ;!i-giee old network after one 
phase of degree reduction. If the initial degree was 
C& then after one reduction the new degree dl is 
R(a&) and after the second reduction the degree dp 
is R(R(&)) and so after j phases the degree d, is 
R(j)(&). Essentially we want to find j such that: 

R(j)@,,) < B < f(.Y,) - - (6) 

where !V, is the total nodes in the network. \\ are 
being a little coarse here since the total nodes actu- 
ally increases after each phase of reduction but we 
do not take this into account (a \vorst case appros- 
imation). It seems that for the network structures 
we will consider (in the nest section) the incrrase in 
the number of nodes does no more than double the 
original number. This though is a consideration of 
classical network topology. 

As was stated earlier we would like the reducing 
function to reduce the maximum degree at a rate 
faster than the corresponding increase in diameter. 
This concept is illustrated in the esample Figure 3 
where the starting degree. do. was set to 10000. The 
figure shows an arbitrary choice of lower bound. B. 
It is shown that the degree falls below the loner 
bound at j = 2. 

Figure 3: -in illustration of a function that reduces 
the degree while a second function operates to in- 
crease the diameter. 

To mathematically describe what is happening 
we state do in terms of NC,, do = II(.Yo) and reivrite 
Equation 6: 

In other words we m2;’ choose to invcstizatc :he 
product c = g(j)R(J)(&) and find jo such that 
nc 

I dj jzJ, 
= 0. Alternatively we may choose to in- 

vestigate the limit w = limjhx, .-,$;‘&,,, , where 

R-(J) is the inverse function and the cases when 
w < 1, w = 1 and w > 1. It is difficult for this 
mathematics to continue without actual functions. 
So now we investigate a possible set of networks 
based on the previous understanding. 

4 An example construction 

\Ve construct a network based on the general cm- 

struction method just proposed. 

Consider a completely connected network of size 
R: with each of its edges replaced by a single node 



of degree 2. This network was examined earlier in 
the paper and the following properties hold: 

d=n-1, ,=4n, k=4. 
n+l 

We assume the problem with this network is that 
d >> B, where B is some bound to maximum de- 
gree, such that the network cannot be feasible built. 
\Ve state what we would like B to be in terms of 
the total nodes B = log(N), where N z $ and so 
d = 29, h’ h. w lc 1s a value much larger than our 
desired bounding value. \Ve now construct an ap- 
propriate super node to replace each of the n nodes 
in a manner prescribed earlier. We choose a sim- 
ple network, constructed using the same method as 
the starting network but with fewer nodes. In other 
words we construct a super node from a completely 
connected network of size n’ with its edges replaced 
by a single node of degree 2 making the total nodes, 
,v’, equal to n’ + w. The capacity of the ju- 
per node must be equal to or greater than n - 1. 

We can do this by setting n’ = [,/ml. 

Now we must establish two things about this su- 
per node: 

e its maximum degree, d’, is less than d and 

l its capacity, n’, is greater than or equal to d. 

Since both of these are clearly true the super 
node we have const,ructed is valid. The good thing 
is that a whole set of such super nodes must exist 
that are also valid since the constructed super uode 
is topologically identical to the network that it will 
become a super node of. Thus, a super super node 
tnay be constructed in the same manner. \Ve now 

calculate the number of times such a replacement 
must occur. ‘ihs value is the value for j in the 
previous section. We note that each time a node of 
degree d is replaced, it is replaced effectively with a 
network whose maximum degree, d’, may be writ- 
ten d’ sz &. 

Assume we need j phases to cause d 5 B. The 
maximum degree, after j phases, of the total net- 
work is then d(J)’ z ‘c/;i. But d = 2F SO 
d(J)’ = 2*, and we would like 2s 5 B, nhich 

works out easily j 2 log & . 
( > 

Since the total nodes has increased (remember 
we are taking a worse case approximation that does 
not take into account this increase) it is true that 
B <_ log .Y so 

Now what does the value of j tell us. It says how 
many ‘levels’ of super nodes we must use to get the 
desired maximum bound on degree. But as we re- 
duce the maximum degree the diameter is increas- 
ing. For this example,the diameter after j phases 
of expansion kj = Ci=, 2i+2, and asymptotically 
kj = o(2j). 

To find the average cost we remember that the 
average degree must be constant for these types of 
networks from the principles shown earlier. This 
constant factor, d; is equal to 4 but its value is 
unimportant since it is constant. Now we state the 
average cost E = @(2j) or from Equation 8 

R-e now examine the case when the bound, B, 
is any lower order function of N: B = o(N). We 
have, using the same start network and network 
set, S, d = n - 1 z m, and hfilI d(‘)’ = d* = 
(2N)*. From d(‘)’ 5 B and ignoring the factor 
2 we have 2j+’ > !9~? - log B =+ j = [log(log, N)J and 

Icj = O(2j) = 8(log, N), therefore, because the 
average degree is f&d, 

E = 8(logs N) (9) 

Interestingly the conventional maximum cost is 
c= Q ( $$z& log(‘) N) . More simply, for the 

case when B 
I 

= N’, 0 < c < 1, E = 8 ($), and for 
c = - E = @(log N). Clearly, the rough asymp- 
toti%%ysis is only a guide towards establishing 
the actual cost of the final network. 

5 Conclusion 

Classical network topology has identified many 
“bottom-up” approaches to designing low cost net- 
works. From this point of view, a network topolo- 
gist starts with small size low cost network and at- 
tempts to add extra nodes while keeping the degree 
and diameter small. We presented a “top-down” 
approach to designing networks that starts with an 
arbitrary large network of arbitrary large degree 
but constant diameter and proceeds by attempting 
to reduce the degree to be less than some bound 
at a rate faster than the corresponding increase in 
diameter. We provided a general method for doing 
so that resulted in an average cost of 0(log, N) 
for some bound B = o(N) and showed an example 
based on this method that produces a network with 
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average cost in the order of 0 (l$&) where iv 
is the number of nodes in the network (size). We 
have not yet investigated the opposite alternative of 
starting with an arbitrary large diameter but con- 
stant degree and attempting to reduce the diameter 
at a rate faster than the corresponding increase in 
degree nor the apparent zyzigy, or conjunction of 
these two opposing methods. We leave this for fu- 
ture research. 
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