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ABSTRACT

Knowledge graph construction consists of two tasks: ex-
tracting information from external resources (knowledge pop-
ulation) and inferring missing information through a statis-
tical analysis on the extracted information (knowledge com-
pletion). In many cases, insufficient external resources in
the knowledge population hinder the subsequent statistical
inference. The gap between these two processes can be re-
duced by an incremental population approach. We propose
a new probabilistic knowledge graph factorisation method
that benefits from the path structure of existing knowledge
(e.g. syllogism) and enables a common modelling approach
to be used for both incremental population and knowledge
completion tasks. More specifically, the probabilistic for-
mulation allows us to develop an incremental population
algorithm that trades off exploitation-exploration. Exper-
iments on three benchmark datasets show that the balanced
exploitation-exploration helps the incremental population,
and the additional path structure helps to predict missing
information in knowledge completion.
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1. INTRODUCTION

Relational knowledge graphs formalise our understanding
about the world. This in turn helps us reason and infer in
a wide range of tasks such as information retrieval, question
answering, and semantic parsing [5, 9, 12]. The construc-
tion of a knowledge graph is an active research area with
many important and challenging research questions. The
early stage of knowledge graph construction relies on the
knowledge population task where the goal is to max-
imise the number of discovered facts in the form of (en-
tityl, relation, entity2) triples. External sources such
as Wikipedia are used to extract the triples [8], or human
experts encode a prior knowledge manually [2]. Despite ef-
forts towards a comprehensive knowledge graph, even the
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largest commercial knowledge graph is still far from com-
plete [6]. The knowledge completion task has emerged
as a complement of the knowledge population task to scale
up the knowledge graph construction. Unlike the knowledge
population task, the goal of knowledge completion is to cor-
rectly predict unknown triples based on a statistical analysis
of the known triples [15, 19].

An obstacle to knowledge graph construction is a gap be-
tween knowledge population and completion. The more a
knowledge graph is populated, the better a statistical model
predict the unknown triples. In many cases, however, there
is insufficient external resource to extract knowledge, and
thus the construction relies solely on the incremental popu-
lation by human experts, which can be slow and costly. We
need an active way of selecting triples to be labelled, in or-
der to maximise the performance of the following knowledge
completion. A recent attempt at active incremental popula-
tion [10] has had difficulties simultaneously achieving a high
population and faithful reconstruction.

We propose a statistical relational model, providing a prob-
abilistic framework for both knowledge completion and knowl-
edge population. We formulate bilinear tensor factorisa-
tion [19] in a probabilistic way, where entities and relations
are embedded into a latent feature space. We propose an ex-
tension to the tensor factorisation model that incorporates
the path structure of a knowledge graph into the factorisa-
tion. The probabilistic formulation provides a natural way of
exploiting uncertainty of triples, allowing us to develop an
active triple selection for the incremental population. We
employ Thompson sampling [22] to find an optimal trade-
off between exploration and exploitation during the active
selection.

Based on experiments with three benchmark datasets, we
find that the additional path structure helps predict unob-
served triples, while the model without the path structure
is more helpful in the incremental population. This appar-
ent contradiction in results can be explained by the different
requirements on the latent structure. For knowledge com-
pletion, it is important to find good latent structures, For
incremental population, however, it is more important to ac-
curately estimate uncertainty such that we can explore the
latent space efficiently over time. To the best of our knowl-
edge, this is the first study that explicitly investigates the
contrasting effects of path structure in knowledge comple-
tion and incremental population.

Related work The literature on data factorisation and vec-
tor space models for relational data is vast. We give a
brief overview of related work along three design choices:



Table 1: The categorisation of factorisation prob-
lems with respect to three design considerations (see
main text for details).

Pr/N-Pr P/A M/T/C References

N-Pr P M 16
N-Pr A M 20
N-Pr P T 10][14]
N-Pr A T 10
N-Pr P C 18][7]
N-Pr A C -

Pr P M 17

Pr A M 11][23]

Pr P T * 125][21]

Pr A T *

Pr P C *

Pr A C *

the method, the learning strategy, and the data representa-
tion. In Table 1, we summarise related work along all com-
binations in each dimension. Our work address the uncov-
ered combination of three design choices in the probabilistic
method, indicated by an asterisk.
Probabilistic (Pr) / Non-Probabilistic (N-Pr) This
refers to two broad classes of model formulation, whether
an obtained model has a probabilistic interpretation.
Passive (P) / Active (A) This refers to two different
learning strategies, of passively learning a model given la-
beled data points, or actively requesting data points to be
labelled.
Matrix (M) / Tensor (T) / Composition (C) This
refers to three data representations. Matrix represents sin-
gle relational data such as (user, item). Tensor represents
multiple relational data such as (entity, relation, en-
tity2). Composition includes more complex structures of
multiple relational data such as (entityl - relationl -
entity2 - relation2 - entity3).

Model details and additional results can be found in the
online appendix [13].

2. PROBABILISTIC RESCAL

A relational knowledge graph consists of a set triples in the
form of (i, k, j) where i, j are entities, and k is a relation. A
triple can be distinguished in a valid triple and invalid triple
based on a semantic meaning of the triple. An example of
the valid triple in Freebase is (BarackObama, PresidentOf,
U.S.), and an example of the invalid triple is (Barack-
Obama, PresidentOf, U.K.). A knowledge graph can be
represented in a three-way binary tensor X' € {0, 1}V *K*¥N
where K is a number of relations, N is a number of entities,
and zi; € {0, 1} indicates whether the triple is valid.

We model the entity i as vectors e; and the relation k as
matrix Ry with an appropriately chosen latent dimension D.
This follows a popular model for statistical relational learn-
ing, which is to factorise the tensor into a set of latent vec-
tor representations, such as the bilinear model RESCAL [19].
RESCAL aims to factorise each relational slice X.;. into a set
of rank-D latent features as follows:

)

Xp~ERyE", fork=1,...,K

Here, E € RV*P contains the latent features of the entities

ei,...,eny and Ry € RP*P models the interaction of the
latent features between entities in relation k.

We propose a probabilistic framework that directly gen-
eralises RESCAL (PRESCAL) by placing priors over the latent
features. For each entity i, the latent feature of an entity
e; € RP is drawn from an isotropic multivariate-normal dis-
tribution with variance o2,

e; ~ N(0,021p). (1)

For each relation k, we draw matrix Ry from a zero-mean
isotropic matrix normal distribution with variance o2,

Ry ~ MN pxp(0,0.Ip,0-1Ip) (2)
or equivalently 75 = vec(Rg) ~ N(0,021p2)

where vec(Ry) denotes the flattening of the matrix.
PNORMAL We consider two observation models for z;x;:
real or binary variables. By placing a normal distribution
over Tikj,

Tikjlei, ej, Re ~ N(e{ Riej,03), (3)

we model the value of triple as a real variable. This is not
a natural choice since the triple is a binary variable, how-
ever, we can control the confidence on different observations
through the variance parameter o2. We develop a Gibbs
sampler to perform the posterior inference for the normally
distributed observation model. The conditional distribution
of each latent variable is given by:

plei|E_i, R, X 0e,00) = N (el i, A ) (4)
p(Rk‘E7X7UT701) :N(VeC(Rk)lukaAlzl) (5)

where the negative subscript —i indicates the every other
entity variables except entity i. Exact forms of the posterior
means and precision matrices are listed in Table 2, where
we have used the identity e/ Rre; = ry e; ® e;.

PLOGIT One may want to model the binary observation
more precisely. Here, we model x;x; as a Bernoulli random
variable whose probability is determined by logistic regres-
s10n:

p(zie; = 1) = o(e] Rie;), (6)

where o is a sigmoid function. We approximate the condi-
tional posterior of E and R by the Laplace approximation [1]
through an alternative sampling. The detailed derivations
are provided in Appendix A.

Thompson Sampling The probabilistic framework allows
us to quantify the uncertainty of predictive distribution,
which is then used to formulate an active learning algorithm.
Specifically, we adopt Thompson sampling for active learn-
ing, which finds an optimal trade off between exploitation
and exploration during active learning. Thompson sampling
provides a model based query selection process [3, 22]. Let
1.+ be a sequence of observed triples up to time ¢, and 6 is an
underlying parameter governing the rewards r. Thompson
sampling chooses the next action a (triple to label), accord-
ing to its probability of having high reward:

arg max/]l[ﬂi(r\a,@) = maxE(r|a’, 0) | p(8|z1::—1)d6,
where I is an indicator function. Note that it is sufficient to

draw a random sample from the posterior instead of com-
puting the integral.



Table 2: Parameters for Gibbs updates. The conditional of e¢; and Ry follows the normal distribution with
mean g and precision matrix A. ® is the Kronecker product.

var m A
€i éAZ_lgl %ij:zikjEXt(Rkej)(Rkej)T
vec(Ry)

We generalise the idea of a particle Thompson sampling
originally proposed in [11] for a matrix factorisation to the
tensor factorisation. The detailed algorithm is provided in
Appendix B.

3. COMPOSITIONAL RELATIONS

In this section, we propose a compositional relation model
that exploits the compositional structure of knowledge graphs
to capture the latent semantic structure of the entities and
relations. A very recent study shows the benefit of using
compositionality in the vector space model [7]. Here, we
further extend their framework in a probabilistic way.

The compositionality represents a semantic meaning of
a path over a knowledge graph that corresponds to a se-
quence of composable triples. For example, given two triples,
“Barack Obama is a 44th president of U.S.” (BarackObama,
President0f, U.S) and “Joe Biden was a running mate of
Barack Obama” (JoeBiden, RunningMateOf, BarackObama),
one can naturally deduce that the “Joe Biden is a vice pres-
ident of U.S.” (JoeBiden, VicePresidentOf, U.S.). Here
the composition of two relations, president of, and running
mate of, yields a compositional relation, vice president of.
More formally, if there is a sequence of triples where the tar-
get entity of a former triple is a source entity of a latter triple
in a consecutive pair of triples in the sequence, then we can
form a compositional triple as follows. Given the sequence
Of n triples (ilv khjl)? (i2, k27.j2)7 (7’37 k37j3) M (iTH kn,jn),
where j, = ix4+1 for all k, we form a compositional triple
(41, c(k1, k2, ..., kn),jn), where ¢ denotes the compositional
relation of the sequence of relations.

Let CF be a set of all possible compositions whose length
is up to L, ¢ € C be a sequence of relations, ¢(i) be ith
index of a relation in sequence ¢ and |c| be the length of
the sequence. With set of compositions CX, we can expand

set of observed triples X to set of compositional triples X’ ct
in which compositional triple x;.; is an indicator variable
that show the existence of the path from entity i to entity
j through sequence of relations ¢ in X'. Note that the com-
positional relation c is an abstract relation, and there might
be a multiple possible paths from entity i to j.

With these extended compositional triples, we again model
Zic; with a bilinear Gaussian distribution,

T 2
L(i,c(ky ko, skn),i) NN(ei Rc(k1,k27-~,kn,)ej70'6)7 (7)

where Re(k, ko) € RP*XP ig a latent matrix of compositional
relation ¢, and o2 is a covariance of the compositional triples.
Again the entity vectors are shared across the compositional
and non-compositional triples. With the compositions of
relations, the PRESCAL may place a new relation matrix R.
for each composition ¢. However the number of required
matrices increases exponentially with respect to the length
of composition. Consequently, the computational cost will
also increase exponentially. To limit the required number of

£

.
D ikiwgyext TikiBkes + 20500 vt Tiki Ry €5

AT | 7 Vg eat (€ ®e)(ei®e) T+ lpe | Y, exr Tiki(ei @ €5).

parameters, we propose two different ways of modelling the
compositional relation R..

3.1 Additive Compositionality

We define an additive compositional relation R. as a nor-
malised sum over the sequence of relation matrices in com-
position ¢, i.e., R. = ﬁ(RC(l) + Rea) + -+ + Re(jepy), then
compositional triple x;.; is modelled as

T(i,e) ~ N (e] Reej, 07) (8)

= N(efi
lc|
This treats the relations as vectors, finding the average of
a sequence of composed relations. The conditional distri-
bution of e; and Ry given the rest can be obtained in the
same way used for the posterior distribution of PRESCAL.
Parameter estimation is shown in Appendix C.1.

(Ret) + Rea) + -+ + Relel) €5, 02)-

3.2 Multiplicative Compositionality

Second, we define an multiplicative compositional relation
R. as a sequence of multiplication over relations in composi-
tion ¢, i.e. Re = Re(1)Re(2) - - - Re()e)), and the compositional
triple as a bilinear Gaussian distribution with the composi-
tional relation R.,

(ie.g) ~ N(ef RetyRe(2) - - Re(e|-1) Re(lenyess o) (9)

The multiplicative compositionality can be understood as a
sequence of linear transformation from the original entity
i with the compositional relations, and the inner product
between the transformed entity and target entity forms a
value of the compositional triple. Again, the details of the
parameter estimators are shown in Appendix C.2.

In contrast with the additive model, the multiplicative
model preserves the ordering in a compositional relation,
and hence the different orderings of relations result different
relations in the compositional model.

4. KNOWLEDGE COMPLETION

We first evaluate our model for the knowledge completion
task to measure the predictive performance of PRESCAL with
all non compositional and compositional variants. We eval-
uate the models on three benchmark datasets: KINSHIP,
UMLS, and NATION, and compare performances with the
original RESCAL. Detailed description of each dataset is
shown in Table 3.

Table 3: Description of datasets. Sparsity denotes
the ratio of valid triples to invalid triples.
Dataset | 7 rel | # entities | # triples | sparsity

Kinship 26 104 10,790 0.038
UMLS 49 135 6,752 0.008
Nation 56 14 2,024 0.184
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Figure 1: ROC-AUC scores of compositional mod-
els. The x-axis denotes the proportion and total
number of triples used for training. Error bars de-
note one standard deviation.

We set the compositional length L to two, split the dataset
into 20% for validation and 30% for testing. We vary the pro-
portion of training triples from 1% to 13% of datasets. For
RESCAL, we use the original implementation®, and measure
performance over 10 runs with random initialisations. For
PRESCAL and all the variants, we sample triples x;x; from its
posterior, and measure performance over 10 different sam-
ples. The performances of models are measured by the ROC-
AUC score on the test set ranked according to a posterior
mean: m Dk Y EXy {1 1 ' e X LTiks > Tikj], Where
X, and X, are the set of positive and negative triples in the
test set, respectively, and Z is a reconstructed triple.

Figure 1 shows the ROC-AUC scores of the compositional
models with the various baseline models. The PRESCAL with
the normal output (PNORMAL) or logistic output (PLOGIT)
generally outperform RESCAL, and PNORMAL outperforms
ProcIiT. We conjecture that an additional flexibility of con-
trolling the variance of triples makes PNORMAL to perform
better than PLOGIT. We compare the compositional model
with the original RESCAL, PNORMAL, and PLOGIT. In gen-
eral, the multiplicative compositional model (PCOMP-MUL)
outperforms the additive compositional model (PCOMP-ADD),
and performs better than the other baseline models when the
training set is small. For UMLS and NATION, PcoMP-MUL
has the best performance across the all training proportions.
For KINSHIP, however, PcOMP-MUL performs better when
the training proportion is less than 7%.

The goal of the compositional models is to factorise triples

"https://github.com /mnick/rescal.py
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Figure 2: Path prediction result with UMLS. The
performances of both compositional models remain
consistent whereas those of the non-compositional
models drop sharply as the length increases.

along with the graph structure as a whole. The triple pre-
diction task tells us a trained model is capable of triple
prediction, but does not tell whether the features can re-
cover the graph structure. If the model factorises the graph
structure properly, then the trained model can predict not
only triples but the graph structure as well. To validate the
model assumption, we evaluate a path prediction task. For
this task, we use 10% of UMLS dataset for training. We
compute an expected value of an unobserved path given a
trained model. The non-compositional models may not be
able to compute the expected value. In such a case, we
approximate paths with the multiplicative model assump-
tion in Equation 9. We vary the path length from 1 (triple)
to 4, and measure ROC-AUC scores on the reconstructed
compositional triples. Figure 2 shows the result of the path
prediction task. Both compositional models show consistent
performance regardless of the path length. However, the
performance of the non-compositional models drops sharply
as the length increases. The results show the compositional
models preserve graph structure in the embedded space. It
is worth emphasising that although the compositional length
for training is 2, the compositional models show consistent
results on predicting paths of length 3 and 4.

Table 4 shows an example of the path prediction result
starting from entity Mental-or-Behavioral (MB) Dysfunc-
tion followed by two relations Affects and Produces in the
UMLS dataset. Both compositional and non-compositional
models predict triples well. For length-2 path prediction,
only the compositional models can capture correct entities
on top 5. We also visualise the multi-dimensional entities in-
ferred by PNORMAL and PCOMP-MUL into a two-dimensional
space using spectral clustering [24] in Appendix D.

S. KNOWLEDGE POPULATION

In this section, we show results of incremental knowl-
edge population task using Thomson sampling on the three
datasets. Additional verification on the Thompson sampling
with synthetic datasets is also provided in Appendix E.

Experimental settings: We compare the Thompson
sampling models with AMDC models, and PRESCAL for pas-
sive learning. AMDC model has been proposed to achieve
two different active learning goals, constructing a predictive
model and maximising the valid triples in a knowledge base,
with two different querying strategies [10]. AMDC-PRED



Table 4: Example of path prediction from UMLS data. We predict top 5 entities in compositional triples
starting from entity Mental-or-Behavioral (MB) Dysfunction followed by two relations Affects and Produces.
Correct entities are bolded.

(a) Triple prediction: (MB Dysfunction, Affects, -)

Model | Top 1 Top 2 Top 3 Top 4 Top 5
PNORMAL Invertebrate Reptile Archaeon Bird Phy.-Function
ProaIr Cell-Function Disease-or- Cell-or- Exp.-Model-of- Mental-Process
Syndrome Molecular-Dysf. Disease
Pcomp-mMUL | Archaeon Fish Fungus Invertebrate Human
Pcomp-ADD | Path.-Function Bird Cell-or- Drug-Delivery- Congenital-
Molecular-Dysf. Device Abnormality

(b) Length-2 path prediction: (MB Dysfunction, Affects, Produces, -)
Model | Top 1 Top 2 Top 3 Top 4 Top 5

PNORMAL Clinical-Drug Sign-or-Symptom Org.-Attribute Drug-Delivery- Clinical-Attr.
Device
ProciT Amphibian Gov.-or-Reg.- Food Biologic-Func. Classification
Activity
Pcomp-MUL | Enzyme Body-Substance Biogenic-Amine Carbohydrate Immunologic-
Factor
PcompP-ADD | Immunologic- Body-Substance Molecular-Biology- Clinical-Drug Chemical-Viewed-
Factor Research-Technique Structurally

is a predictive model construction strategy and chooses a
triple which is the most ambiguous (close to the decision
boundary) at each time t. AMDC-POP is a population strat-
egy which aims to maximise the number of valid triples in
a knowledge base, choosing a triple with the highest ex-
pected value at each time. To train all models we only use
the observed triples up to the current time. For the pas-
sive learning with PRESCAL, we generate a random sample
at each time period. For the particle Thompson sampling
models, we set variance parameter o. and o, to 1, o, to 0.1,
and vary o, from 1 to 100.

We leave 30 % of triples as a test set to measure test error.
At each time period, each model chooses one triple to query,
if the selected triple is in the test set then we choose the
next highest expected triple that is not in the test set. All
models start from zero observation. After every query, a
model obtains a label of the queried triple from an oracle,
then the model updates the parameters.

Evaluation metric: We use two different evaluation met-
rics, the cumulative gain and ROC-AUC score, for the per-
formance comparison. The goal of the Thompson sampling
is to maximise the knowledge population through the bal-
anced querying strategy between exploration and exploita-
tion. To measure how many triples are obtained through
the querying stage, we compute the cumulative gain which
is the number of valid triple obtained up to time ¢t. Addi-
tionally, we compute the ROC-AUC score on the test set to
understand how this balanced querying strategy results in
making a predictive model.

Exploitation and exploration: Figure 3 shows the cu-
mulative gains and ROC-AUC scores of the Thompson sam-
pling on three real datasets. The model names with suffix
-TS represent the models adopting the Thompson sampling
strategy. PNORMAL-TS performs better than other baseline
models for the cumulative gain, and shows comparable re-
sult for the ROC-AUC scores. Both compositional models
perform worse than PNORMAL-TS across all datasets.

In the original AMDC [10], AMDC-POP model obtains more
valid triples than AMDC-PRED, and AMDC-PRED shows high

ROC-AUC scores than AMDC-POP. In our experiment, how-
ever, AMDC-POP shows comparable cumulative gain to AMDC-
PRED and even worse than AMDC-PRED for the UMLS. We
conjecture the initial observation and query size results in
the different performances: in the original experiment, the
model starts from a small set of training data, and the query
size was 1,000 for KINSHIP and UMLS. With larger query
size, the model focuses on exploit and takes advantages,
whereas in our experiment, we start from zero observation
and query one triple at each time, which makes the model
hard to exploit. This result shows the importance of balanc-
ing between exploitation and exploration.

We note that the compositional model performs worse
than the non-compositional models, especially than PNORMAL-
TS. This is counter-intuitive to our general understanding
where the model that performs well in the predictive task
also shows a better performance in the active learning.

6. CONCLUSION

Throughout the paper, we have considered the two knowl-
edge base construction tasks: knowledge population and
knowledge completion. Based on a probabilistic framework,
we propose new knowledge base factorisation methods where
the latent factorisation reflects the graph structure of a knowl-
edge graph. The probabilistic formulation allows us to quan-
tify the uncertainty of predictive distributions, which is then
used for the knowledge population task. The experiments
of two tasks on three datasets show that the compositional
model benefits graph structure for knowledge completion,
and the probabilistic formulation helps to explore the latent
space efficiently for knowledge population.
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Figure 3: The cumulative gain and ROC-AUC score of the Thompson sampling with passive learning and
AMDC models. Thompson sampling with PRESCAL (PNORMAL-TS) model achieves the highest cumula-
tive gain to compare with the other models and shows comparable performance on ROC-AUC scores.
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APPENDIX
A. POSTERIOR OF LOGISTIC OUTPUT

In this section, we provide the posterior distribution of
ProgiTr. The maximum a posterior estimate of e; or R
given the rest can be computed through standard logistic
regression solvers with the priors over e; and Ry as regu-
larisation parameters. Given the maximum a posteriori pa-
rameters e; , the posterior covariance S; of entity i takes the
form

S;l = Z O‘(e:TRkej)(]. - U(efTRkej))Rkej(Rkej)T

Tikj

+ > olej Riei)(1 - a(e] Ree)) Ry ei (Rie) " + Io. .

Tjki

The posterior covariance of Ry can be computed in the same
way. Let Rj, is a maximum a posterior solution of Ry given
E. Then, the conditional posterior covariance Sy of relation
k has the form of:

St =" alel Ries)(1 — o(e] Riey))éyes; + Loy

Tikj

where €;; = e; @ e;.

B. PARTICLE THOMPSON SAMPLING

We introduce a particle Thompson sampling algorithm for
the incremental knowledge population with the proposed
PRESCAL models. In the incremental population task, a
knowledge base starts with some initial observations, and at
each time period, the agent select one triple to be labelled by
an external system, i.e. human experts. The queried triple
is chosen selectively based on past observations. Each label
incurs a cost, so the goal is to obtain as many valid triples
as possible within a given budget.

Thompson sampling provides a model based query selec-
tion process, and has been gaining an increasing attention
because of its competitive empirical performance as well as
conceptual simplicity [3, 22]. Let yi.: be a sequence of re-
wards up to time ¢, and 0 is an underlying parameter gov-
erning the rewards. With Thompson sampling, an agent
chooses action a according to its probability of being opti-
mal:

argmax/]l[E(r|a,0) :ma}XE(r|a'79) p(8)y1:¢—1)db,

where I is an indicator function. Note that it is sufficient to
draw a random sample from the posterior instead of com-
puting the integral.

We formulate Thompson sampling for incremental knowl-
edge population system as follows. First, we assume there
are optimal latent features E* and R*, and the triples are
generated through Equation 1— 3. At time ¢, the system
draws samples E' and R’ from the posterior distribution,

and then chooses an optimal triple (i, k, j)* = arg max, . ; e; Rie;

to be queried. Finally, with the newly observed triple x(; i j)=,
the system updates the posterior of the latent features.

The main difficulty of applying Thompson sampling is a
sequential update for the posterior of the latent features with
new observations over time. Unlike the point estimation al-
gorithms such as the maximum likelihood estimator, com-
puting a full posterior with MCMC requires extensive com-
putational cost. To make the algorithm feasible, we employ

Algorithm 1 Particle Thompson sampling for probabilistic
RESCAL with Gaussian output variable

Input: X°, 0,,0,0.
fort=1,2,... do
Thompson Sampling:
hy ~ Cat(w'™1)
(i, k, J)  argmax p(zi; | B, R"-1)
Query (i,k,7) and observe x;i;
Xt xt-ty {wzk]}
Particle Filtering:
Vh, wh, o p(zi|E", R™)
if ESS(w') < N then
resample particles
wh <+ 1/H
end if
for h=1to H do
Vk, Ryt ~ p(Ry,| X", EM=1 R )
Vi7 e?t ~ p(ei‘Xty E—i7 Rht)
end for
end for

> Reweighing

> see Table (2)
> see Table (2)

a sequential Monte-Carlo (SMC) method for online poste-
rior inference, generalising an algorithm proposed in [11] to
tensors.

The SMC starts with H number of particles, each of which
starts with likelihood weight w, = 1/H, and a set of ran-
domly sampled latent features E™ and R". With a slight
abuse of notation, let X* be a set of observed triples up
to time ¢. At time ¢, the system chooses one particle ac-
cording to the particle weights, and then generates a new
query via Thompson sampling from the selected particle.
After observing a new variable, the system updates the pos-
terior samples of every particle through the MCMC ker-
nels with the new observation. We first sample the rela-
tion matrices using Equation 5, and sample the entity vec-
tors using Equation 4. Under the mild assumption where
p(0|X1) = p(0|&"), © = {E, R}, the weight of each par-
ticle at time ¢ can be computed as follows [4]:

p(X']©)

m :p(xt|@:Xt71) (10)

wy, =
To keep the posterior samples on regions of high probabil-
ity mass, we resample the particles whenever an effective
sample size (ESS) is less than a predefined threshold. The
ESS can be computed as (3, wj) ™", and we set the thresh-
old to N/2. Resampling removes low weight particles with
high probability, while keeping samples from the posterior.
We summarise the particle Thompson sampling for PRESCAL
with the Gaussian output variable in Algorithm 12.

Both compositional models can use the same particle Thomp-

son sampling scheme described in Algorithm 1 with the con-
ditional distributions. However, the model can only query
the triples in the original tensor and not in the expanded
tensor because the compositional triples are unobservable.

We show that the Thompson sampling approach improves
over passive PRESCAL in experiments with real and syn-
thetic data. We also investigated the extension of the Rao-
Blackwellisation approach as proposed in [11], but we did
not observe any significant performance improvements.

*Download code here: https://git.io/vi3ZQ.



C. POSTERIOR DISTRIBUTION OF COM-
POSITIONAL RELATIONS

We provide the conditional posterior distributions of two
compositional models.

C.1 Additive Compositionality

The conditional distribution of e; given E_;, R, X*, XE®
is expanded from the posterior of PRESCAL by incorporating
compositional triples.

p(ei|E—i7R7Xt7XL(t)):N(ei|ui7Ai_l)7 (11)
where
pi = A7
1
A= > (Ruej)(Riey)"
¥ jhig € Xt
1
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To compute the conditional distribution of Ry, we first
decompose R. into two part where R. = ﬁRk + ‘CllTTlRC/k,

where R./, = Zk,EC/k Ry/. The distribution of composi-
tional triple is decomposed as follows:

1 -1
T(4,¢,0) NN(E?(HRJC + MTRC/IC)Q]',O'?). (12)

Then, the conditional distribution Ry, given R_j,, E, X", Xt®
is

p(Ri|B, X', X5 0, 00) = N(vee(Ri) e, A ), (13)
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Vectorisation of R. and R/, are represented as r. and r¢/x,
respectively.

The detail derivation of the posterior distribution is as
follows:

p(R|E, Rk, X)  p(X|R, E)p(Rx)
(zik; — €] Rie;)?
o H exp { 507

Tikj
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Completing the square results Equation 13.

C.2 Multiplicative Compositionality

Given a sequence of relations including relation k, Ry is
placed in the middle of the compositional sequence, i.e.,
eiTRc(l)RC@) - Rc(gk) . Rc(|c‘71)Rc(|c‘)ej7 where 0 is the
index of relation k. For notational simplicity, we will de-
note the left side e?Rc(l)RC(Q) .. Res -1y as é;(:ék), and
the right side RC<5k+1) ce Rc(\c|—1)Rc(\c|)€j as €;c(s,:)» there-
fore we can rewrite the mean parameter as é;';(:(;k)Rkéic((;k;).
With the simplified notations, the conditional of Ry is

p(Rk‘Ev'XvUT’UI) :N(VeC(Rk)““ﬁAI;l)v (14)
where

e = A e
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The conditional distribution of e; given the rest is the same
as the additive compositional case.

D. VISUALISATION

In Figure 4, we visualise the multi-dimensional entities in-
ferred by PNORMAL and PCOMP-MUL into a two-dimensional
space through the spectral clustering [24]. A circle repre-
sents an entity, and the size of the circle is proportional to
the uncertainty of the entity in the latent space. In the
UMLS dataset, the entities are categorised into 15 types,
e.g. Disorders, Living-Beings, Phenomena, etc. We use
the same color to represent the entities with the same type.
The entities with the same type are located closer to each
other with PcoMP-MUL than PNORMAL.

E. THOMPSON SAMPLING ON SYNTHETIC

DATA

In this section, we verify the sequential Thompson sam-
pling through a compositional and non-compositional syn-
thetic data sets.

E.1 Thompson sampling on non-compositional
synthetic data

We first synthesise two datasets following the model as-
sumptions in Section 2.  First, entities and relations are
generated from zero-mean isotropic multivariate normal dis-
tribution, with variance parameters oe = 1, o, = 1 (Eqn. 1
to 2), respectively. We generate two sets of output triples,
with the logistic output (Eqn. 6) and the Gaussian with o,
set to 0.1 (Eqn. 3), respectively .

To measure performance, we compute cumulative regret
at each time n as R(n) = Y i, @+ —;, where z; is the high-
est-valued triple among triples that have not been chosen up
to time t. Unlike the general bandit setting where one can
select a single item multiple times, in our formulation, we
can select one triple only once. So after selecting a triple
at time ¢, the selected triple will be removed from a set of
candidate triples.

Figure 5 shows the cumulative regret of the algorithm on
the synthetic data with varying size of entities and relations.
We compare the cumulative regret of the particle Thompson
sampling with the passive learning method where the model
choose a random triple at each time. All results are averaged
over 10 individual runs with different initialisations. Note
that the dataset with binary logistic output variables can be
used to train both logistic-output PRESCAL (PLOGIT) and
Gaussian-output PRESCAL (PNORMAL) whereas the dataset
with the Gaussian output can only be trained by PNOR-
MAL. Figure 5(a) and 5(b) show that with the logistic syn-
thetic dataset both models are capable to learn the latent
features of the generated triples, with logistic outperforming
the Gaussian; Figure 5(c) and 5(d) show that the Thomp-
son sampling for PNORMAL (PNORMAL-TS) outperform the
passive learning in the real valued dataset.

E.2 Thompson sampling on compositional syn-
thetic data

We conduct a second experiment on synthetic dataset to
understand how the Thompson sampling works for the com-
positional data. As in the first experiment, we first generate
entities and relations from zero-mean multivariate normal
with variance parameter o, = 1 and o, = 1. We generate

a set of triples with Gaussian output as in Equation 3. We
then synthesise two sets of expanded tensors using the pre-
viously used entities and relations based on the multiplica-
tive and additive compositional assumptions, defined in Sec
3, respectively. So we synthesise fully observable expanded
tensor XL where L = 2. We set both variance parameter
o, and o, to 0.1. Note that in a real world situation, the
expanded tensor can only be constructed through the ob-
served triples, and the triples in the expanded tensor cannot
be queried.

To run the particle Thompson sampling on the synthetic
dataset, we let the compositional models know which rela-
tion is composed by other relations. The non-compositional
PNORMAL model assumes each relation is independent to
one another. Therefore, the compositional model uses much
less number of parameters to model the same size of tensor
to compare with the non-compositional model. With this
fully observable expanded tensors, we run the Thompson
sampling of the compositional models. Figure 6 shows the
cumulative regrets on synthetic datasets. The multiplica-
tive and additive compositionality are used to generate the
dataset for Figure 6(a) and 6(b), respectively. The results
correspond to our assumption: the Thompson sampling for
multiplicative compositional model (PCOMP-ADD-TS) shows
lower regrets on the multiplicative data in Figure 6(a), and
the Thompson sampling for additive compositional model
(PcoMP-ADD-TS) shows lower regrets on the additive com-
positional data in Figure 6(b), and both have lower regrets
than passive learning or PNORMAL-TS without compositions.

F. POSTERIOR VARIANCE ANALYSIS

In section 5, we find that the compositional model per-
forms worse than the non-compositional models in the ac-
tive incremental population. We emphasise the difference
between two experiments; the goal of incremental popu-
lation is to maximise the number of triples whereas the
goal of knowledge completion in Section 4 is to maximise
the predictive performance. Nevertheless, the compositional
models do not outperform PNORMAL-TS in the active learn-
ing. This result can be partially understood in terms of the
balance between exploration-exploitation. Figure 7 shows
the average posterior variance of the entity vectors. We
compute the eigenvalues of posterior covariance matrix A; L
and trace the average eigenvalues over the iterations. As
shown in the figure, the average variance of the composi-
tional model shrinks much faster than the PNORMAL-TS.
Because the exploration-exploitation of the Thompson sam-
pling depends on the posterior uncertainty, the fast shrink-
age in the posterior variance may indicate the under ex-
ploration of the model. This is predictable to a certain
extent in the sense that one new triple with the composi-
tional models induces multiple new compositional triples,
so the uncertainties of entities and relations are measured
less than those with non-compositional model. Most active
learning algorithms utilise model uncertainty, and hence a
model with augmented structures such as the relation com-
positions should be more careful about reflecting its uncer-
tainty correctly.
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Figure 5: Cumulative regret of particle Thomp-

son sampling with Gaussian and logistic out-
put (PNORMAL-TS, PLOGIT-TS) against Passive
learning on synthetic datasets with logistic (top row,
a, b) and Gaussian (bottom row, c, d) output vari-
ables. The averaged cumulative regrets over 10
runs are plotted with one standard error. As the
model obtained more and more labeled samples from
Thompson sampling, the cumulative regrets increase
sub-linearly.
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Figure 6: Cumulative regret of particle Thompson

sampling of the compositional models on synthetic
dataset with N=5, D=5. The synthetic dataset has
three relations (K=3); the first two are indepen-
dently generated, and the third relation is composed
by the first two relations. The dataset used in (a)
is generated by the multiplicative assumption, and
the dataset used in (b) is generated by the additive
assumption.
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Figure 7: Trace plot of mean posterior variance

of the non-compositional model and compositional
Y-axis denotes the average posterior co-
variance, and X-axis denotes the number of queries.
The second plot magnifies the first plot.

models.



