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ABSTRACT
This paper studies approximation of graph pattern queries
using views. Given a pattern query Q and a set V of views,
we propose to find a pair of queries Qu and Ql, referred to as
the upper and lower approximations of Q w.r.t. V, such that
(a) for any data graph G, answers to (part of) Q in G are con-
tained in Qu(G) and contain Ql(G); and (b) both Ql and Qu

can be answered by using views in V. We consider pattern
queries based on both graph simulation and subgraph isomor-
phism. We study fundamental problems about approxima-
tion using views. Given Q and V, (1) we study whether there
exist upper and lower approximations of Q w.r.t. V. (2) How
to find approximations that are closest to Q w.r.t. V if exist?
(3) How to answer upper and lower approximations using
views in V? We give characterizations of the problems, study
their complexity and approximation-hardness, and develop
algorithms with provable bounds. Using real-life datasets,
we verify the effectiveness and efficiency of approximating
simulation and subgraph queries using views.

1. INTRODUCTION
Answering relational queries using views has been exten-

sively studied for decades (see [9] for a survey). The idea
has recently been extended to graph pattern queries such as
graph simulation [8] and SPARQL [13], and has proven effec-
tive. A pattern query Q can be answered using a set V of pat-
tern views V1, . . . , Vn if, for any data graph G, the matches
Q(G) to Q in G can be computed using nodes and edges in
the view answers V1(G), . . . , Vn(G). Here a view Vi is sim-
ply a pattern query whose match result in G is materialized.
However, although desirable, in many cases queries cannot be
exactly answered as such, when there are only limited views.

Not all is lost. Even when Q cannot be exactly answered
using V, Q may still be upper and lower “bounded” via ap-
proximations that can be answered using V. More specifically,
there may exist two patterns Qu and Ql for Q, such that

(1) both Qu and Ql can be answered using V;

(2) Q is contained in Qu and contains Ql, i.e., for all data
graphs G, Ql(G) ⊆ Q(G) and Q(G) ⊆ Qu(G), where
⊆ denotes the inclusion of match results.

That is, Q(G) can be upper and lower bounded by Qu(G)
and Ql(G) for any G. We call Qu and Ql upper and lower
approximations of Q w.r.t. V. That is, Qu and Ql together
give us an approximation of Q using views in V.

Example 1: Consider a recommendation network G taken
from [16] and shown in Fig. 1. A node denotes an entity
labeled with expertise, e.g., project manager (PM), software
developer (SD), software tester (ST), user interface designer
(UD) and business analyst (BA); an edge e.g., (PM, SD) in-
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Figure 1: Querying recommendation network

dicates that SD worked well under the supervision of PM in
previous projects. A human resource manager wants to set up
a team to develop a new software product. The requirement
is specified by a pattern queryQ1, also shown in Fig. 1 (in the
dashed rectangular). It aims to find a group of PM, SD, UD
and ST, that (1) both SD and UD worked well under PM, and
(2) there exists a ST worked well under SD and UD. A graph
pattern matching process is conducted for Q1 on G, based
on graph simulation [10], to find matched nodes in G to Q1.

Suppose that a set of views V = {V1,V2,V3,V4} is defined
and their answers in G are cached, as shown in Fig. 1. Ob-
serve the following. (1) Q1 cannot be answered using the
views only, as there exist no views that can be combined
to get the match result of Q1. (2) However, there exist two
pattern graphs Qu and Ql can be answered using view an-
swers IG[V1], IG[V2] and IG[V1], IG[V3], respectively, yield-
ing match result Qu(G) = {PMi,UDj,SDk,STh} (i, j, k ∈ [1,
2], h ∈ [1, 3]) and Ql(G) = {PM2,UD2, SD2, STh}(h ∈ [1,
3]). (3) One can verify that Q1(G) = {PMi,UD2, SDk, STh}
(i, k ∈ [1, 2], h ∈ [1, 3]). Therefore, Ql(G) ⊆ Q1(G) ⊆ Qu(G).
These indicate that, although Q cannot be exactly answered
using views, it can be approximately answered with the
views.

Consider another pattern query Q2 also shown in Fig. 1.
A business analyst (BA) is in demand for the project. This
is reflected in Q2 by a new node labeled with BA (colored in
blue) with an edge from PM to BA. One can verify that Q2

cannot be answered using the views. Worse still, there exist
no pattern graphs that can upper and lower bound Q2 as
Qu and Ql for Q1. However, the answers to subgraphs of Q2,
e.g., Q1, can be approximated by Qu and Ql using views. 2

To make full use of this idea, several fundamental prob-
lems call for a full treatment. How to formalize upper and
lower approximations w.r.t. views so that we can cover both
“complete” approximation (e.g., Q1 above) and “subgraph”
approximation (e.g., Q2) using views? Given a query Q and
views V, does Q have an upper (resp. lower) approximation
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Qu (resp. Ql) w.r.t. V? How to find accurate approximations
for Q w.r.t. V, i.e., Qu and Ql that are closest to Q?

Contributions. This paper tackles these questions.

(1) We propose upper and lower approximation of graph pat-
tern queries w.r.t. a set V of views (Section 2). We consider
both simulation and subgraph patterns, based on graph sim-
ulation [8, 10] and subgraph isomorphism [18], respectively.

(2) We study fundamental problems for upper and lower
approximations for simulation queries (Section 3). We
develop characterizations and investigate their complexity.

(3) We develop algorithms with provable guarantees to find
approximations closest to Q w.r.t. V (Sections 4 and 5).

(4) We extend the study to subgraph queries (Section 6). We
characterize upper and lower approximations of subgraph
queries w.r.t. views. We also study subgraph query answer-
ing using views to build a query-driven approximation frame-
work for both simulation and subgraph queries.

(5) On real-life datasets, we experimentally verify the effec-
tiveness and efficiency of the framework (Section 7).

Related work. We categorize previous work as follows.

Query answering using views. There has been recent work
on answering graph queries using views over graph data, such
as simulation queries [8] and SPARQL queries [12, 13] over
graph and RDF data, respectively. This work extends the
prior work in the following. (1) We consider approximating
graph queries using views i.e., find approximate answers
using views instead of exact answers as in [8, 12, 13]. (2)
We also investigate subgraph isomorphism query answering
using views, which has not been studied before.

Query approximation. Closer to us is approximate query an-
swering, which can be classified as (a) data-driven approxima-
tion which builds data synopses first on which the queries are
then evaluated [6,11], (b) query-driven approximation [3,5,7],
which uses “cheaper” queries Q′ instead of the original
queries Q and computes answers to Q′ as approximate an-
swers to Q, and (c) heuristic approximation which computes
approximate answers via compromised search [15,17,20].

This work differs from theirs in the following. (1) We
study graph pattern matching queries based on graph
simulation and subgraph isomorphism, instead of relational
queries [5–7, 11] or graph primitives [15]. (2) Unlike data-
driven and heuristic approximation [6, 11, 15, 17, 20], we
consider query-driven approximation, which approximates
queries in the absence of data graphs. (3) We focus on approx-
imate queries that can be answered using views, which is not
considered in previous work on query-approximation [5, 7].

2. QUERY-DRIVEN APPROXIMATION
In this section, we review basic notions and formulate up-

per and lower approximations w.r.t. views.

Graphs. A data graph G is a triple (V,E, l), where (1) V is
a finite set of nodes; (2) E ⊆ V ×V is a set of edges, in which
(v, v′) denotes the edge from v to v′; (3) l() is a function such
that for each node v in V , l(v) is a label in a label set Σ.

We write G as (V,E) when it is clear from the context. The
size of G, denoted by |G|, is defined to be the total number of
nodes and edges in G, i.e., |G| = |V | + |E|. For a graphG, we
denote by VG and EG the nodes and edges of G, respectively.

Subgraphs. Graph H(Vs, Es, lH) is a subgraph of data graph
G(V,E, l), denoted as Gs[Vs, Es], if (1) for each node u ∈ Vs,

u ∈ V and lH(u) = l(u), and (2) for each edge (u, u′) ∈ Es,
(u, u′) ∈ E. That is, subgraph Gs[Vs, Es] only contains a
subset of nodes and edges of graph G.

A subgraph H of G is an induced subgraph if for any nodes
v and v′ in H, (v, v′) is an edge in H if it is an edge in G.

Pattern queries. A pattern queryQ is a directed connected
graph (VQ, EQ, lQ), where VQ, EQ and lQ are analogous to
their counterparts in data graphs. We simply write Q as
(VQ, EQ) when it is clear from the context.

We consider two semantics of graph pattern matching.

Simulation queries. Graph G matches pattern Q via graph
simulation [10], denoted by Q ≺ G, if there exists a binary
match relation R ⊆ VQ×V such that (a) for each (u, v) ∈ R,
lQ(u) = l(v); (b) for each node u in VQ, there exists a node
v in V such that (i) (u, v) ∈ R, and (ii) for any edge (u, u′)
in Q, there exists an edge (v, v′) in G such that (u′, v′) ∈ R.

For any G that matches Q, there exists a unique maximum
match relation via graph simulation [10], denoted by RM .

Simulation queries are widely used in social community
analysis and social marketing [4].

Subgraph queries. Graph G matches pattern Q via subgraph
isomorphism [18], denoted byQ�G, if there exists a subgraph
Gs of G that is isomorphic to Q, i.e., there exists a bijection
h from VQ to Vs such that (a) (u, u′) ∈ EQ if and only if
(h(u), h(u′)) ∈ Es; and (b) for each u ∈ VQ, lQ(u) = l(h(u)).

Match results and images. For simulation queries, the
match result Q(G) to Q in G is a subset of nodes of G, such
that a node v ∈ Q(G) if and only if v is in RM . The image
of Q in G, denoted by IG[Q], is the subgraph Gs[Vs, Es] of
G, where (1) Vs = Q(G), and (2) an edge (v, v′) ∈ Es if and
only if there exists an edge (u, u′) in Q with (u, v) ∈ RM and
(u′, v′) ∈ RM . Intuitively, the image IG[Q] is a subgraph of
G with nodes from Q(G) and associated matched edges in G.

Similarly, for subgraph queries, the match result Q(G) to
Q in G is a subset of nodes in G that are in some subgraph
Gs of G isomorphic to Q. The image IG[Q] of Q in G is a
subgraph of G consisting of all those nodes and edges in G
that are in some subgraph Gs of G isomorphic to Q.

A pattern query Q1 is equivalent to pattern query Q2 if
for any data graph G, Q1(G) = Q2(G).

Views. A view query (or simply view), denoted by V, is a
pattern query whose images in data graphs are cached. We
also consider both simulation views and subgraph views. For
a set V of views, we denote by ||V|| and |V| the cardinality of
V and the total size of views in V, respectively.

Note that, for both simulation and subgraph queries Q,
their images are subgraphs of the data graph G, even though
there may exist exponentially many isomorphisms from Q
to G. This ensures that the cached view images are of total
size bounded by ||V|||G| instead of an exponent in |G| or ||V||.
Query answering using views ([8]). Consider a set V of
views V1, . . . ,Vn. Following [8], a queryQ is answerable using
views in V if there exists another query A such that for all
data graphs G, (1) A only refers views in V and their images
IG[V] = {IG[V1], . . . , IG[Vn]} in G, and (2) A is equivalent
to Q, i.e., the match result to A in G is the same to Q(G).

Intuitively, when a pattern query Q is answerable using
views in V, for any data graph G, Q(G) can be identified by
accessing the images IG[V] of views in G only.

Example 2: Consider pattern query Q2 and view set V in
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Fig. 1. The match image IG[Vi] (i ∈ [1, 4]) of each view Vi in
V is given in Fig. 1, denoted by edges and the isolated nodes.
Observe that Qu and Ql are answerable using V. Indeed,
Qu(G) can be answered by combing view images IG[V1] and
IG[V2], and Ql(G) can be answered via IG[V1] and IG[V3]. 2

Partial and complete query containment. Pattern
Q is partially upper contained in pattern Qu, denoted by
Q vU Qu, if there exists an induced subgraph Qs of Q such
that for any graph G, Qs(G) ⊆ Qu(G). Similarly, Q partially
lower contains pattern Ql, denoted by Ql vL Q, if there ex-
ists an induced subgraph Qs of Q such that for any graph
G, Ql(G) ⊆ Qs(G). In particular, when Qs is Q above, Q is
called completely upper contained in Qu, denoted by Q vc

U
Qu; and completely lower contains Ql, denoted by Ql vc

L Q.

Example 3: Consider pattern queries Q1, Q2, Qu, Ql and
view set V in Fig. 1 of Example 1. One can verify that
Q1 vc

U Qu, Q2 vU Qu, Ql vc
L Q1 and Ql vL Q2.

In particular, consider data graph G of Fig. 1 and Q1 as
an induced subgraph of Q2. Observe the following. Q1(G)
= {PMi,UD2, SDk, STh}(i, k ∈ [1, 2], h ∈ [1, 3]). The match
results of Qu and Ql are Qu(G) = {PMi,UDj, SDk, STh}
(i, j, k ∈ [1, 2], h ∈ [1, 3]) and Ql(G) = {PM2,UD2,SD2, STh}
(h ∈ [1, 3]). Therefore, Ql(G) ⊆ Q1(G) ⊆ Qu(G). 2

We are ready to define upper and lower approximations.

Upper and lower approximations. A graph pattern Qu

is an upper approximation of Q w.r.t. V, if (1) Q vU Qu

and (2) Qu is answerable using V. Similarly, a graph pattern
Ql is a lower approximation of Q w.r.t. V if (1) Ql vL Q
and (2) Ql is answerable using V. We consider non-empty
approximations, i.e., patterns with at least one edge.

In particular, if Q vc
U Qu (resp. Ql vc

L Q) in condition (1),
i.e., Q (resp. Ql) is completely upper (resp. lower) contained
in Qu (resp. Q), then we call Qu (resp. Ql) a complete upper
(resp. lower) approximation of Q w.r.t. V.

Example 4: Continue Example 3. We know that Q2 vU Qu

and Ql vL Q2. Furthermore, from Example 2 we also know
that Qu and Ql are answerable using V. Thus, Qu (resp. Ql)
is an upper (resp. lower) approximation of Q w.r.t. V,

In particular, Qu (resp. Ql) is a complete upper (resp.
lower) approximation of Q1 w.r.t. V. Indeed, Q1 vc

U Qu,
Ql vc

L Q1, and both Qu and Ql are answerable using V. 2

3. FUNDAMENTAL ANALYSES
In this section, we first study some properties of simulation

query containment (Section 3.1). We then study fundamental
problems for upper and lower approximations and investigate
their complexity and approximability (Section 3.2). We will
extend the study to subgraph queries in Section 6.

3.1 Characterizations
To study approximation, it is essential to characterize

simulation query containment and answering using views.

Query containment. We first characterize containment of
simulation queries below.

Theorem 1: Consider simulation queries Q, Qu and Ql,

(1) Q vU Qu if and only if (iff) Qu ≺ Q;

(2) Q vc
U Qu iff Qu ≺ Q and VQ = VIQ[Qu];

(3) Ql vL Q iff there exists an induced subgraph Qs of Q

such that Qs ≺ Ql and VQl = VIQl
[Qs]; and

(4) Ql vc
L Q iff Q ≺ Ql and VQl = VIQl

[Q];

Here IQ′ [Q
′′] is the image of Q′′ in Q′. 2

Intuitively, the characterization boils down the contain-
ment testing of simulation queries to simulation testing be-
tween the queries. We will use this later in the paper.

Query answering using views. A characterization for sim-
ulation query answering using views is given in [8]. To make
the paper self-contained, we cite it as follows (rephrased).
We will extend it to subgraph queries in Section 6.

Lemma 2 [8]: For a view set V and a simulation query Q,
Q can be answered using V iff EQ =

⋃
V∈V EIQ[V]. 2

Example 5: Consider pattern query Ql and view set V in
Fig. 1. One can verify that Ql can be answered using V, as⋃

Vi∈V(i∈[1,4]) EIQl
[Vi] = {(PM, SD), (PM,UD)}∪{(PM,SD),

(SD, ST)} ∪ {(SD,UD), (SD, ST), (UD,ST)} ∪ ∅ = EQl . 2

Based on the characterization, an algorithm for answering
simulation queries using views is also given in [8].

3.2 Fundamental Problems and Complexity
We next study fundamental problems related to upper and

lower approximations. For each of them, we also study special
cases where approximations are required to be complete.

Existence of approximation. Upper and lower approxi-
mations do not always exist, as shown in Example 1. We
first investigate the existence of (complete) approximation.

Existence of upper approximation. The first problem, de-
noted by EUA (resp. EUAc), is to ask, for any pattern Q and
set V of views, whether there exists an upper approximation
Qu (resp. complete upper approximation Qc

u) for Q using V.

Theorem 3: For a simulation query Q and set V of views,

(a) there exists an upper approximation for Q using V iff
there exists V ∈ V such that the match result V(Q) 6= ∅;

(b) there exists a complete upper approximation for Q using
V iff VQ =

⋃
V∈V VIQ[V]; and

(c) EUA and EUAc are quadratic time in |Q| and |V|. 2

We will constructively prove Theorem 3(c) in Section 4,
by giving quadratic time algorithms for EUA and EUAc.
The proof of Theorem 3(a,b) is deferred to the full version.

Example 6: Consider pattern query Q1 and view set V in
Fig. 1. By Theorem 3(a), there exists an upper approxima-
tion for Q1 w.r.t. V since V1(Q1) 6= ∅ for view V1 in V.
Furthermore, by Theorem 3(b), one can verify that there
exists a complete upper approximation for Q1 w.r.t. V, since⋃

Vi∈V(i∈[1,4]) VIQ1
[Vi] = {PM, SD,UD,ST} = VQ1 . 2

Existence of lower approximation. Similarly, we study the ex-
istence of lower (resp. complete lower) approximation for
simulation query Q using V, denoted by ELA (resp. ELAc).

Theorem 4: For any simulation query Q and set V of views,

(a) there exists a complete lower approximation Qc
l of Q

using V iff EQ ⊆
⋃

V∈V EI
Q̂
[V];

(b) ELAc is in O(|V||Q|2) time; and in contrast,

(c) ELA is NP-complete.

Here Q̂ is the complete graph of Q. 2
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Unlike upper approximation, the existence of generic lower
approximation is much harder than complete approximation.

We will give a constructive proof of Theorem 4(b) in Sec-
tion 5, by giving a PTIME algorithm for ELAc. The proofs
for Theorem 4(a,c) is deferred to the full version.

Example 7: Consider pattern query Q1 and view set V
in Fig. 1. By Theorem 4(a), there exists a complete lower
approximation for Q1 w.r.t. V. Indeed, by computing simula-

tion for views Vi ∈ V (i ∈ [1, 4]) on the complete graph Q̂1 of
Q1,

⋃
Vi∈V(i∈[1,4])EI

Q̂1
[Vi] = {(PM, SD), (PM,UD), (SD,UD),

(SD, ST), (UD, ST)} ⊇ EQ1 . 2

Closest approximation. There may exist multiple approx-
imations for a simulation pattern query Q w.r.t. views V. We
naturally want to compute the one that is closest to Q, i.e.,
the closest approximation. Below we first define the notion
of closeness to measure the quality of approximations. We
then study closest upper and lower approximations.

Closeness. Consider two patterns Q1 and Q2, we define the
closeness of Q1 and Q2, denoted by clo(Q1, Q2), as the num-
ber of edges in Q1 and Q2 that are not in the edge-induced
maximum common subgraph of Q1 and Q2. Intuitively, the
smaller clo(Q1, Q2) is, the closer Q1 and Q2 are.

Closest upper approximation. The closest (resp. complete
closest) upper approximation problem, denoted by CUA (resp.
CUAc), is to find, given a simulation queryQ and views V, the
upper (resp. complete upper) approximation Qu (resp. Qc

u)
of Q that is closest to Q, i.e., for any other (resp. complete)
upper approximation Q′u (resp. Q′cu ), clo(Qu, Q) ≤ clo(Q′u, Q)
(resp. clo(Qc

u, Q) ≤ clo(Q′cu , Q)). We refer to Qu (resp. Qc
u)

as the closest (resp. complete) approximation to Q w.r.t. V.
Although the closeness measure clo is NP-hard due to the

hardness of computing maximum common subgraphs, the
analysis of closest upper approximation is efficient.

Theorem 5: Both problems CUA and CUAc are quadratic
time in |Q| and |V|. 2

We will give a constructive proof of Theorem 5 in Section 4,
by giving quadratic time algorithms for CUA and CUAc.

Closest lower approximation. Similarly, the closest (resp.
complete closest) lower approximation problem, denoted by
CLA (resp. CLAc), is to compute, given a simulation query Q
and views V, the lower (resp. complete lower) approximation
Ql (resp. Qc

l ) of Q that is closest to Q, if exists.
Unlike upper approximation, the analysis of closest lower

approximation is much harder. Denote by DCLA (resp.
DCLAc) the decision problem of CLA (resp. CLAc), which
is to decide, given Q, V and a natural number k, whether
there exists a lower (resp. complete lower) approximation Ql

(resp. Qc
l ) such that clo(Ql, Q) ≤ k (resp. clo(Qc

l , Q) ≤ k).
Denote by OCLA (resp. OCLAc) the optimization problem
of CLA (resp. CLAc), which is to compute the minimum
closeness clo(Ql, Q) (resp. clo(Qc

l , Q)) for all lower (resp.
complete lower) approximations Ql (resp. Qc

l ) of Q using V.
Then we have the following.

Theorem 6: (1) Both DCLA and DCLAc are NP-complete.

(2) Both OCLA and OCLAc are not in APX. 2

Despite the hardness, we will develop approximation
algorithms with guarantees for CLA and CLAc in Section 5.

Algorithm CUAsimc

Input: Simulation query Q, set V of simulation views.
Output: A complete upper approximation of Q w.r.t. V if exists.

1. for each V in V do compute the image IQ[V] of V in Q;
2. Vu :=

⋃
V∈V VIQ[V]; Eu :=

⋃
V∈V EIQ[V]; Let Qu be (Vu, Eu);

3. if Vu = VQ then return Qu;
4. return “no”; /* no complete upper approximation for Q*/

Figure 2: Algorithm CUAsimc

4. UPPER APPROXIMATION
In this section, we develop algorithms for computing closest

upper approximations, as a constructive proof of Theorem 5.
The algorithms are based on a small model property of

upper approximation. Consider a simulation query Q and a
set V of simulation views. We have the following property.

Lemma 7: For any upper (resp. complete upper) approxima-
tion Qu (resp. Qc

u) of Q w.r.t. V, there exists a subgraph Qs

(resp. Qc
s with VQc

s
= VQ) of Q equivalent to Qu, such that

◦ Qs (resp. Qc
s) is also an upper (resp. complete upper)

approximation of Q w.r.t. V; and

◦ Qs (resp. Qc
s) is closer to Q than Qu, i.e., clo(Qs, Q) ≤

clo(Qu, Q) (resp. clo(Qc
s, Q) ≤ clo(Qc

u, Q)). 2

This ensures that, for any upper approximation Qu of Q
w.r.t. V, if Qu is not a subgraph of Q, then there must exist
another upper approximation Qs of Q w.r.t. V that is a
subgraph of Q, such that (i) Qu and Qs are equivalent, i.e.,
Qu(G) = Qs(G) for any G; and (ii) Qs is at least as close to
Q as Qu is w.r.t. the closeness. Thus, we only need to focus
on subgraphs of Q when computing upper approximations
of Q, instead of the infinitely many upper approximations.

Based on Lemma 7, we develop exact algorithms for CUA
and CUAc, as a proof of Theorem 5. We start with CUAc.

4.1 On Complete Upper Approximation
The algorithm for CUAc, denoted by CUAsimc, is shown

in Fig. 2. It takes as input a simulation query Q and a set V
of simulation views, and returns the closest complete upper
approximation of Q using V if it exists.

More specifically, algorithm CUAsimc first computes the
images IQ[V] of all views V of V in Q (line 1), and then
constructs a subgraph Qu of Q with nodes and edges from
the images (line 2). It returns Qu if it covers all nodes in
Q (line 3); and “No” otherwise (line 4), i.e., there exists no
complete upper approximation for Q w.r.t. V.

Example 8: Consider pattern query Q1 and view set V in
Fig. 1. CUAsimc first computes the images IQ1 [Vi] (i ∈ [1, 4])
of all views Vi of V in Q1 (line 1), and then constructs a
subgraph Qu of Q1 with Vu = {PM, SD,UD,ST}, and Eu

= {(PM, SD), (PM,UD), (SD,ST)} (line 2). It finally checks
that Vu = VQ1 . Thus CUAsimc returns Qu as the closest
complete upper approximation, as shown in Fig. 1 (line 3). 2

Correctness & Complexity. The algorithm is in O((|VQ| +
|EQ|)|V|+ |VQ|2) time, where |V| =

∑
V∈V(|VV|+ |EV|). In-

deed, observe that line 1 of CUAsimc takes O((|VQ|+|EQ|)|V|)
time and the checking in line 3 takes at most O(|VQ|2) time.

To see algorithm CUAsimc is correct, observe the following.
(1) By Lemma 7, the closest upper approximation of Q w.r.t.
V, if exists, must be a subgraph of Q. (2) Any subgraph Qs
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Algorithm CLAsimc

Input: Simulation query Q, set V of views.
Output: A complete lower approximation of Q w.r.t. V if exists.

1. for each V in V do

2. compute image I
Q̂

[V] of V in Q̂;

3. neg(V) := EI
Q̂
[V] \ EQ; pos(V) := EI

Q̂[V]
∩ EQ;

4. U := ∅;
5. while EQ 6⊆

⋃
V∈U

EI
Q̂
[V] and

⋃
V∈V

pos(V) 6⊆
⋃

V′∈U
EI

Q̂
[V′] do

6. find V in V \ U minimizing ρ(V) =
|neg(V)|

|pos(V)\
⋃

V′∈U EI
Q̂

[V′]|
;

7. U := U ∪ {V};
8. Vl :=

⋃
V∈U VIQ̂[V]

; El :=
⋃

V∈U EI
Q̂
[V]; Let Ql be (Vl, El);

9. if EQ ⊆ EQl
then return Ql;

10. return “no”; /* no complete lower approximation for Q*/

Figure 3: Algorithm CLAsimc

of Q that can be answered using V contains only nodes and
edges from Qu computed by CUAsimc(line 2). (3) Therefore,
Qu is the closest upper approximation of Q w.r.t. V. (4)
Algorithm CUAsimc returnsQu if and only ifQu is a complete
upper approximation of Q w.r.t. V.

4.2 Extending to Generic Approximation
We next present algorithm CUAsim that extends CUAsimc

for problem CUA as follows. First, CUAsim computes Qu in
the same way as CUAsimc does. Instead of checking whether
all nodes in Q are covered by Qu, it directly returns Qu if
Qu is not empty; and returns “no” otherwise.

Example 9: Recall pattern query Q2 and view set V in
Fig. 1. Algorithm CUAsim constructs Qu as shown in Fig. 1
in the same way as in Example 8, and directly returns it as
the closest upper approximation of Q2. 2

Correctness & Complexity. Following the analysis of algo-
rithm CUAsimc, one can verify that algorithm CUAsim deter-
mines whether there exists, and if so finds the closest upper
approximation of Q in O((|VQ|+ |EQ|)|V|) time.

These together complete the proof of Theorems 3 and 5.

5. LOWER APPROXIMATION
In this section, we develop approximation algorithms with

guarantees for CLA and CLAc, to handle the hardness of com-
puting closest lower approximations as shown in Theorem 6.

The algorithms are based on a small model property as
follows. Consider simulation query Q and set V of simulation

views. Let Q̂ be the complete graph of Q.

Lemma 8: For any lower (resp. complete lower) approxima-
tion Ql (resp. Qc

l ) of Q w.r.t. V, there exists a subgraph Qs

(resp. Qc
s with VQc

s
= VQ) of Q̂ equivalent to Ql, such that

◦ Qs (resp. Qc
s) is also a lower (resp. complete lower)

approximation of Q w.r.t. V; and

◦ Qs (resp. Qc
s) is closer to Q than Ql, i.e., clo(Qs, Q) ≤

clo(Ql, Q) (resp. clo(Qc
s, Q) ≤ clo(Qc

l , Q)). 2

Lemma 8 tells us that we only need to consider subgraphs

of the complete graph Q̂ of Q when computing lower
approximations of Q w.r.t. V. Based on this, below we
develop approximation algorithms for CLA and CLAc. We
start with complete lower approximations for CLAc.

5.1 On Complete Lower Approximation
The algorithm for CLAc, denoted by CLAsimc and shown

in Fig. 3, computes a complete lower approximation of Q
w.r.t. V if exists, and returns “no” otherwise. It works in
three steps. (a) It first computes the images of views in V in

the complete graph Q̂ of Q. (b) It then derives a subgraph

Ql of Q̂ from the images. (c) Finally it checks whether Ql

covers all edges of Q and returns Ql if so.
More specifically, for each view V in V, it computes the

image IQ̂[V] of V in the complete graph Q̂ of Q, with two

additional sets neg(V) and pos(V) (lines 1-3). Here neg(V)
contains edges in the image IQ̂[V] that are not edges of Q,

and pos(V) contains edges that are both in IQ̂[V] and Q.

It then iteratively identifies relevant views in V (lines 4-7).
In each iteration, it selects V in V with minimum ρ(V) =

|neg(V)|
|pos(V) \

⋃
V′∈U EI

Q̂
[V′]|

among all views in V that are not selected yet (lines 6-7). The
iteration terminates when either all edges in Q are covered

by images of selected views in Q̂ or no more new edges in
Q can be covered by selecting the remaining views (line 5).
Intuitively, ρ(V) denotes the “average number” of edges in
S(V) per edges in Q that are newly covered by V, where

S(V) is the set of edges in Q̂ that are covered by V but are
not in Q. Algorithm CLAsimc chooses V with minimum ρ(V)
to get more edges in Q covered while covering as few edges
that are not in Q as possible. With Lemma 8, we will show
later that this leads to a lower approximation close to Q.

Finally, CLAsimc builds a graph Ql that consists of nodes

and edges in the images of the selected views in Q̂ (line 8). It
returns Ql as the closest complete lower approximation if Ql

covers all edges in Q, and returns “no” otherwise (lines 9-10).

Example 10: Recall pattern query Q1 and view set V in
Fig. 1. For each view Vi (i ∈ [1, 4]) in V, algorithm CLAsimc

computes the image of Vi in the complete graph Q̂1 of Q1

(lines 1-3). It then enters the iteration process. In first it-
eration, CLAsimc selects V1 with minimum ρ(V1) = 0 and
adds it into U , while ρ(V2) = 0, ρ(V3) = 1

2
and ρ(V4) = +∞.

In the second iteration, it selects V2 with minimum ρ(V2)
= 0 while ρ(V3) = 1

2
and ρ(V4) = +∞. In the third iter-

ation, it selects V3 with minimum ρ(V2) = 1 while ρ(V4)
= +∞, and stops the process as the termination condi-
tion EQ1 ⊆

⋃
Vi∈U(i∈[1,3])EI

Q̂1[Vi]
holds (lines 4-7). Finally,

CLAsimc builds a graph Ql, as shown in Fig. 1, and returns
Ql as the closest complete lower approximation as Ql covers
all edges in Q1 (lines 8-10). 2

Although problem CLAc does not admit any approxima-
tion algorithm with constant approximation ratios as shown
in Theorem 6(2), we show that algorithm CLAsimc has the
following provable performance guarantee. For each edge e
in EQ̂ \ EQ, let occ(e) be |{V | e ∈ EI

Q̂
[V],V ∈ V}|, i.e., the

number of views in V whose images in Q̂ contain e.

Theorem 9: Algorithm CLAsimc is a maxe∈E
Q̂
\EQ

occ(e) ·
ln(maxV∈V |EI

Q̂
[V] ∩ EQ|)-approximation algorithm that al-

ways returns a complete lower approximation of Q w.r.t. V
in O(|V||Q|2)-time whenever there exists one. 2

By Theorem 1 and Lemma 2, one can verify that CLAsimc

returns a lower approximation of Q w.r.t. V in O(|V||Q|2)-
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Algorithm CLAsim

Input: Simulation query Q, set V of views.
Output: A lower approximation of Q w.r.t. V if exists.

1. for each V in V do compute image I
Q̂

[V] of V in Q̂ of Q;

2. Vl :=
⋃

V∈V VIQ̂[V]
; El :=

⋃
V∈V EI

Q̂
[V]; Let Ql be (Vl, El);

3. while there exist u, u′ in VQl
with (u, u′) ∈ EQ \ EQl

do
/* Ql is not an induced subgraph of Q yet */

4. for each V in V with u, u′ in VI
Q̂
[V] do

5. remove the view image I
Q̂

[V] from Ql;

6. if both u and u′ remain in VQl
of Ql then

7. u0 := argminv∈{u,u′} f(v);
8. remove from Ql all view images I

Q̂
[V] that contain u0;

9. if EQl
6= ∅ then return Ql;

10. return “no”; /* no lower approximation for Q */

Figure 4: Algorithm CLAsim

time whenever there exists one (detailed proof is deferred
to the full version). This also gives a proof of Theorem 4.
Below we focus on the approximation ratio of CLAsimc.

Let QOPT be the closest complete lower approximation
of Q w.r.t. V. By Lemma 2, there exists a subset UOPT of
views in V such that QOPT is composed by images of views in
UOPT, i.e., EQOPT =

⋃
V∈UOPT

EI
Q̂
[V]. Observe that clo(Ql, Q)

= |
⋃

V∈U neg(V)| and clo(QOPT, Q) = |
⋃

V∈UOPT
neg(V)|. Fur-

thermore, for any U ′ of views,

|
⋃

V∈U′ neg(V)|≤
∑

V∈U′ |neg(V)| =
∑

e∈
⋃

V∈U′ neg(V)
occ(e)

≤ maxe∈E
Q̂
\EQ

occ(e) · |
⋃

V∈U′ neg(V)|.

Thus,
clo(Ql, Q)

clo(QOPT, Q)
≤

∑
V∈U |neg(V)|

|
⋃

V∈UOPT
neg(V)|

≤
maxe∈E

Q̂
\EQ

occ(e) ·
∑

V∈U |neg(V)|∑
V∈UOPT

|neg(V)|
Observe that the while loop encodes an approximation-

preserving reduction from computing U with minimizing∑
V∈U neg(V) to the minimum weighted set cover prob-

lem [19], by treating EQ as the universe, pos(V) for views V
in V as the collection of sets, and neg(V) as the weight of each
set pos(V). Moreover, it simulates a B-approximation for
the later problem [19], where B = ln(maxV∈V |EI

Q̂
[V] ∩EQ|).

Thus,

∑
V∈U |neg(V)|∑

V∈UOPT
|neg(V)| ≤

B ·
∑

V∈U∗ |neg(V)|∑
V∈UOPT

|neg(V)| ≤ B, where

U∗ is the optimal solution to the reduced set cover problem.

Therefore,
clo(Ql, Q)

clo(QOPT, Q)
≤ maxe∈E

Q̂
\EQ

occ(e) · B. That

is, algorithm CLAsimc is a maxe∈E
Q̂
\EQ

occ(e) · ln(maxV∈V

|EI
Q̂
[V] ∩ EQ|)-approximation for problem CLAc.

5.2 On Generic Lower Approximation
We next develop an algorithm for problem CLA, to find

generic lower approximations. From Theorem 4(c), we know
that it is even NP-hard to decide whether there exists a lower
approximation of a given query Q and set V of views, not
to mention the closest one. In light of this and Theorem 6,
we develop an efficient heuristic algorithm for CLA.

The algorithm, denoted by CLAsim, is shown in Fig. 4. It

first computes the images of views in the complete graph Q̂
of Q and combines them into Ql (lines 1-2). It then checks
whether Ql is an induced subgraph of Q and iteratively re-
moves images of views from Ql to make it an induced sub-

graph if not (lines 3-8). It finally returns Ql as the lower
approximation of Q w.r.t. V if Ql is not empty (lines 9-10).

More specifically, algorithm CLAsim reduces Ql as follows.
In each iteration, it checks whether Ql is already an induced
subgraph of Q, by checking whether there exists an edge
(u, u′) in Q such that u, u′ ∈ VQl but (u, u′) is not in EQl

(line 3). If such an edge (u, u′) exists, it identifies all views V

in V whose images in Q̂ of Q contain u and u′, and removes
IQ̂[V] from Ql if so (lines 4-5). After that, it checks whether

both u and u′ remain in Ql (line 6), and identifies the one that
has smaller value of function f(v) = |N(v)|+ |H(v)|, where

N(v) = {(u, u′) |u, u′ ∈ VQl(v), (u, u
′) ∈ EQ \ EQl(v)},

H(v) = {(u, u′) |(u, u′) ∈ EQ ∩ (EQl \ EQl(v))},

in which Ql(v) is the pattern graph (
⋃

V∈V\S(v) VI
Q̂
[V],⋃

V∈V\S(v)EI
Q̂
[V]), where S(v) = {V | v ∈ VI

Q̂
[V],V ∈ V}.

Intuitively, N(v) contains the new “bad edges” in Ql after
removing all view images in Ql associated to v, and H(v)
contains the “good edges” in Ql that are removed due to the
removal of images related to v. The smaller f(v) is, the less
impact on clo(Ql, Q) when removing v from Ql via associ-
ated view images containing v. Therefore, algorithm CLAsim
removes the one from {u, u′} with smaller f(v) value from
Ql, by dropping all relevant view images (line 8).

Example 11: Consider pattern query Q2 and view set
V in Fig. 1. For each view Vi (i ∈ [1, 4]) in V, CLAsim

computes the image of Vi in the complete graph Q̂2 of Q2

and combines them into Ql, using the images of all the four
views (lines 1-2). CLAsim then checks and finds that Ql is
not an induced subgraph of Q2, as there exists an edge (PM,
BA) belonging to Q2 but not in Ql, while nodes PM and
BA in Ql (line 3). In order to make Ql an induced subgraph
of Q2, CLAsim enters the iteration process to remove “bad”
images from Ql. In the process, CLAsim first removes images
that contain PM and BA, and turns out no view needs to
be removed at this point (lines 4-5). It then removes images
contain either PM or BA. It finds that f(BA) = 0, less than
f(PM) = 2 (N(PM) = ∅ and H(PM) = {(PM, SD), (PM,
UD)}). Thus it removes all images containing BA from Ql,
i.e., IQ̂2

[V4] composed of one edge (UD,BA) (lines 6-8). The
remaining Ql is an induced subgraph of Q2 with non-empty
edge set, as shown in Fig. 1. CLAsim returns Ql as the
closest lower approximation of Q2 (line 9). 2

Correctness & Complexity. The correctness of CLAsim is
guaranteed by Theorem 1 and Lemma 2. It can be imple-
mented in O(|V||Q|2) time with an inverted index from nodes
in Q to images of views in V.

6. EXTENDING TO SUBGRAPH QUERIES
In this section, we extend the study of upper and lower ap-

proximations to subgraph queries. We first characterize and
revisit fundamental problems for approximating subgraph
queries (Sections 6.1 and 6.2). We then develop algorithms
for approximating and answering subgraph queries using
views (Section 6.3). We finally present a query-driven approx-
imation framework based on the algorithms (Section 6.4).

6.1 Characterizations
We develop characterizations for subgraph query contain-

ment w.r.t. views and subgraph query answering using views.
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Note that graph query answering using views has only been
studied for simulation queries [10] and subgraph queries have
not been investigated before.

Query containment. Subgraph query containment can be
characterized along the same lines as simulation queries.

Theorem 10: Consider subgraph queries Q, Qu and Ql,

(1) Q vU Qu iff Qu �Q;

(2) Q vc
U Qu iff Qu �Q and VQ = VIQ[Qu];

(3) Ql vL Q iff there exists an induced subgraph Qs of Q
such that Qs �Ql and VQl = VIQl

[Qs]; and

(4) Ql vc
L Q iff Q�Ql and VQl = VIQl

[Q]; 2

Subgraph query answering using views. Similarly, we
characterize subgraph query answering using views based on
the notion of images as follows.

Theorem 11: Consider subgraph query Q and views V,

(1) Q can be answered using V iff EQ =
⋃

V∈V EIQ[V]; and

(2) it is NP-complete to decide whether Q can be answered
using V. 2

6.2 Fundamental Problems and Complexity
Below we investigate the existence and closeness of upper

and lower approximations for subgraph queries.

Existence of approximation. We first revisit problems
EUA, EUAc, ELA and ELAc for subgraph queries.

Theorem 12: For a subgraph query Q and set V of views,

(1) there exists an upper approximation for Q using V iff
there exists V ∈ V such that the match result V(Q) 6= ∅;

(2) there exists a complete upper approximation for Q using
V iff VQ =

⋃
V∈V VIQ[V];

(3) there exists a complete lower approximation of Q using
V iff EQ ⊆

⋃
V∈V EI

Q̂
[V]; and

(4) problems EUA, EUAc, ELA and ELAc (decision version)
are all NP-complete. 2

In contrast to simulation queries, it is already NP-hard to
decide whether a subgraph query Q has a lower or upper ap-
proximation w.r.t. V. This is because it is NP-hard to decide
whether there exists an isomorphism from a view V to Q,
which is essential in deciding the existence of approximations.

Note that the complexity of ELA does not go up beyond NP,
though ELA is already NP-hard for simulation queries and
it involves isomorphism checking, which is NP-hard, when
comes to subgraph queries. Therefore, unlike simulation
queries, the existence of complete and generic lower approx-
imations have the same complexity for subgraph queries.

Closest approximation. Using the same closeness mea-
sure clo as for simulation queries in Section 3, we revisit
problems CUA, CUAc, CLA and CLAc for computing closest
approximations of subgraph queries w.r.t. subgraph views V.

Theorem 13: For a subgraph query Q and set V of views,

(1) pattern graph Qu(
⋃

V∈V VIQ[V],
⋃

V∈V EIQ[V]) is the
closest upper approximation of Q using V;

(2) if
⋃

V∈V VIQ[V] = VQ, Qc
u(
⋃

V∈V VIQ[V],
⋃

V∈V EIQ[V]) is
the closest complete upper approximation of Q; and

(3) problems CUA, CUAc, CLA and CLAc (decision version)
are all NP-complete. 2

Algorithm QAViso

Input: Subgraph query Q, set V of subgraph views.
Output: A query plan P to Q if Q can be answered using V.

1. P := [ ]; S := ∅;
2. for each V in V do if V(Q) 6= ∅ then S := S ∪ {V};
3. if

⋃
V∈S EIQ[V] 6= EQ then return “no”;

/* assume S = {V1, . . . , Vm} */
4. initialize P to [T1 = IG[V1]]; V := ∅;
5. for i in [1,m− 1] do
6. append Ti+1 = Ti 1 IG[Vi+1] to P;
7. add common nodes in Ti and IG[Vi+1] to V ;
8. append Tm+1 = σ(Tm, V, dQ) to P;
9. append Tm+2 = mat(Q,Tm+1) to P; return P;

Figure 5: Algorithm QAViso

Similar to ELA, CLA and CLAc for subgraph queries
have the same complexity as for simulation queries, though
subgraph isomorphism is used, which is already NP-hard.

6.3 Algorithms
We next study algorithms for approximating subgraph

queries with subgraph views.

Computing closest upper and lower approximations.
We develop algorithms for computing the closest upper and
lower approximations of subgraph queries w.r.t. subgraph
views, complete or generic, denoted by CUAisoc, CUAiso,
CLAisocand CLAiso, respectively, by minorly revising their
counterparts for simulation queries in Sections 4 and 5. The
only change is that we simply use subgraph isomorphism in-
stead of graph simulation when computing view images. The
correctness of these algorithms are guaranteed by the charac-
terizations in Sections 6.1 and 6.2, and small model properties
analogous to Lemma 7 and Lemma 8 for simulation queries.

Answering subgraph queries using views. Based on
Theorem 11, we also develop an algorithm for subgraph query
answering using views, denoted by QAViso, to support the
use of upper and lower approximations of subgraph queries.
Algorithm QAViso takes as input a subgraph query Q and a
set V of views and returns a query plan P for Q using V if Q
can be answered using V. For any data graph G, P(G) finds
Q(G) in G by accessing images IG[V] for views V in V only.

The plan P is a sequence of operations T1 = δ1, . . . , Tn =
δn, such that for any G, Tn(G) = Q(G), and moreover, each
δi is one of the following that only accesses the view images.

(a) Join G1 1 G2, where G1 and G2 are two graphs. G1 1

G2 returns all connected components of the graph (VG1 ∪
VG2 , EG1 ∪ EG2) that contain nodes from both G1 and G2.

(b) Filter σ(G,V, r), where G is a graph, V is a subset of
nodes in G and r is an integer. It returns the subgraph GV,r

of G that is induced by nodes of G within distance no larger
than r to some node in V .

(c) Match mat(Q,G), where Q is a pattern graph and G is

a data graph. It computes the match result Q(G) to Q in G.
Algorithm QAViso generates a plan P for Q and V as fol-

lows. It first checks whether Q can be answered by using
views in V and identifies relevant views if so, based on Theo-
rem 11 (lines 2-3). It then generates a plan P of three parts.
(i) The first part joins all images of relevant views together
(lines 4-7). (ii) The second part filters a subgraph of the
joined graph in (i) consisting of nodes that are within dis-
tance dQ to those nodes involved in the join, where dQ is the
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diameter of Q (line 8). (iii) The final part returns the match
to Q in the filtered subgraph in (ii) (line 9).

Remark. When identifying relevant views, view selection op-
timization can also be employed in QAViso, along the same
lines as for answering simulation queries using views [8], to
select those relevant views with minimum cost.

6.4 Putting things together
Algorithms developed above and in Sections 4 and 5, to-

gether with the one for answering simulation queries with
simulation views in [8], give us a framework of query-driven
approximation using views.

(a) Given a pattern query Q and views V, we first check
whether Q can be answered using V, via QAViso and [8].

(b) If so, we then generate query plans that exactly answer
Q using cached answered to views in V only, by algorithm
QAViso (resp. [8]) if Q is a subgraph (resp. simulation) query.

(c) Otherwise, we check whether there exist upper and lower
approximations of Q w.r.t. V and find the closest approxima-
tions Qu and Ql if exist, via algorithms CUAsimc, CUAsim,
CLAsimc, CLAsim, CUAisoc, CUAiso, CLAisoc and CLAiso.

(d) We generate query plans that answer Qu and Ql by using
V only, which are guaranteed to exist, via QAViso and [8].

7. EXPERIMENTAL STUDY
Using real-life data, we conducted two sets of experiments

to evaluate the effectiveness and the efficiency of our frame-
work of query-driven approximation using views.

Experimental setting. We first give the settings we used.

Real-life graphs. We used two real-life data graphs.

(1) Knowledge graph (DBpedia) was taken from DBpe-
dia 201504 [1] with 4.43M nodes, 8.43M edges and 735 labels.

(2) YouTube graph (YouTube) is a video network taken from
YouTube with 2.03M video nodes, 12.22M video-video di-
rected edges and 398 labels [2]. An edge from videos x to y
indicates that if one watch x, then he is very likely to watch y.

Queries. We implemented a generator for graph patterns. It
is controlled by three parameters: the number #n of nodes,
the number #e of edges, and label fv from an alphabet
Σ of labels in the corresponding real-life graphs. We use
(|VQ|, |EQ|) to denote the size of a pattern query Q(VQ, EQ).
We generated 100 patterns in total by varying #n from 3
to 11 and #e from 5 to 13.

Views. We generated a set of 60 views for each data graph
following [8,14]. The views were designed of sizes (2,1), (3,2),
(4,3) and (4,4), and we varied the structure for views of the
same size. (a) For DBpedia, each view image has 72K nodes
and edges in average, and view images in total take 32.58% of
the physical memory of the entire DBpedia dataset. (b) For
YouTube, each image takes 80K nodes and edges in average,
and all images take 34.29% of the memory of YouTube.

Algorithms. We implemented the following algorithms, all
in C++: (1) our algorithms CUAsimc, CUAsim, CLAsimc,
CLAsim and CUAisoc, CUAiso, CLAisoc, CLAiso for finding
closest complete and generic upper and lower approximations
of simulation queries and subgraph queries; (2) our algorithm
QAViso for answering subgraph approximations using views;
(3) QAVsim for answering simulation approximations using
views, taken from [8]; (4) conventional algorithms gSim [10]

% of views used 25% 50% 75% 100%
DBpedia:%-ap: sim(sub) 65(53)% 74(64)% 85(78)% 95(88)%
YouTube:%-ap: sim(sub) 72(61)% 80(69)% 88(81)% 98(90)%
DBpedia:%-apc: sim(sub) 53(41)% 64(52)% 75(68)% 88(82)%
YouTube:%-apc: sim(sub) 58(51)% 70(64)% 83(77)% 92(85)%
DBpedia:%-answerable 0(0)% 3(0)% 8(3)% 12(8)%
YouTube:%-answerable 0(0)% 5(1)% 10(4)% 17(10)%

Table 1: Percentages of queries approximable using V
and VF2 (using C++ Boost Graph Library) for answering
simulation and subgraph queries directly, respectively.

All the experiments were run on a machine with Intel
Core(TM) Duo 3.00GHz CPU and 16GB of memory. Each
test was repeated 10 times, and the average is reported here.

Experimental results. We next report our findings.

Exp-1: Effectiveness. We evaluated the effectiveness of up-
per and lower approximation of pattern queries using views.
By default we use all queries and views.

(1) Percentage of queries approximable using views. Vary-
ing the percentage of the total views used, we tested the
percentage of queries that (a) have upper or lower (resp.
complete upper or lower) approximations, denoted by %-ap
(resp. %-apc) and (b) can be answered using views, denoted
by %-answerable. The results are reported in Table 1.

Observe the following. (1) The majority of queries have
approximations with available views, among which a large
portion are complete. Indeed, 85% of simulation queries on
DBpedia and 81% of subgraph queries on YouTube have ap-
proximations when only 75% of the views are used, respec-
tively. The percentages are 75% and 77% when complete
approximations are considered. (2) Simulation queries are
more likely to have (complete) approximations than sub-
graph queries. (3) Very few patterns can be answered using
views. Indeed, even using all the views, only 12% and 17%
of simulation queries on DBpedia and YouTube can be an-
swered using the views, respectively. The percentages are
even lower for subgraph queries. This further verifies the
need for studying approximations using views.

(2) Accuracy of approximation using views. We evaluated
the average accuracy of the closest upper and lower approxi-
mations by the accuracy of their answers in the data graphs.
We use three measures: F-measure F (Q,Q′, G) for measur-
ing the accuracy of an upper or lower approximation Q′ w.r.t.
Q in G; and strong F-measure Fs(Q,Qu, Ql, G) and weak
F-measure Fw(Q,Qu, Ql, G) for measuring the accuracy of a
pair (Qu, Ql) of upper and lower approximations w.r.t. Q in
G. More specifically, for any two sets S and S′, let prec(S′, S)

= |S′∩S|
|S′| and recall(S′, S) = |S′∩S|

|S| . Then we define

• F (Q,Q′, G) =
2prec(Q′(G), Q(G)) · recall(Q′(G), Q(G))

prec(Q′(G), Q(G)) + recall(Q′(G), Q(G))

• Fs(Q,Qu, Ql, G) =
2prec(Qu(G), Q(G)) · recall(Ql(G), Q(G))

prec(Qu(G), Q(G)) + recall(Ql(G), Q(G))

• Fw(Q,Qu, Ql, G) =
2prec(Ql(G), Q(G)) · recall(Qu(G), Q(G))

prec(Ql(G), Q(G)) + recall(Qu(G), Q(G))

Intuitively, F (Q,Q′, G) is the conventional F-measure.
The strong F-measure Fs(Q,Qu, Ql, g) is a variant of F-
measure by using Qu(G) for prec and Ql(G) for recall, while
Fw(Q,Qu, Ql, G) uses Ql(G) for prec and Qu(G) for recall.
Ql is likely to have higher prec and Qu tends to have higher
recall. Therefore, the weak F-measure measures the accuracy
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(f) YT: vary |Q| (upper)
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Figure 6: Effectiveness of upper and lower approximation using views (DB = DBpedia; YT = YouTube)

of approximating Q with the “best” of Qu and Ql combined.
In contrast, the strong F-measure assesses the “worst” of Qu

and Ql together. In particular, when Qu and Ql are complete
upper and lower approximations of Q, prec(Ql(G), Q(G)) =
recall(Qu(G), Q(G)) = Fw(Q,Qu, Ql, G) = 1.

(a) Impact of Q. Varying the size |Q| of Q from (3, 5) to
(11, 13), we evaluated the impact of pattern queries Q on
the accuracy of upper and lower approximations Qu and
Ql, measured by F (Q,Qu, G), F (Q,Ql, G), Fw(Q,Qu, Ql, G)
and Fs(Q,Qu, Ql, G) on DBpedia and YouTube. The results
are shown in Figures 6(a), 6(b), 6(c) and 6(d) for DBpedia
and Figures 6(f), 6(g), 6(h) and 6(i) for YouTube.

Observe the following. (1) The closest upper and lower
approximations Qu and Ql computed by our algorithms are
capable to approximate Q well. The F-measure of both Qu

and Ql is consistently above 0.7 and 0.6 on DBpedia for sim-
ulation and subgraph queries, respectively. (2) Complete up-
per and lower approximations are much more accurate than
generic approximations. For example, for subgraph queries,
when only complete upper and lower approximations are
considered, the F-measure of upper approximations is 0.89

when |Q| is (11,13) while it is 0.82 for generic approxima-
tions. (3) Combining the best of Qu and Ql together can give
us much higher accuracy for approximating Q. Indeed, the
weak F-measure of Qu and Ql is consistently higher than the
F-measure of both Qu and Ql taken alone, on both DBpedia
and YouTube for both simulation and subgraph queries. For
example, for simulation queries, the weak F-measure is 0.93
when |Q| is (11,13) on DBpedia, while the F-measure of both
Qu and Ql is lower than 0.9. (4) Even when the worst of
Qu and Ql are taken together, i.e., the prec of Qu and the
recall of Ql, they are still capable of approximating Q well
with views. For example, the strong F-measure is above 0.7
when |Q| is (3, 5) on DBpedia for simulation queries. (5) The
accuracy of upper and lower approximations is not sensitive
to the size of Q for both simulation and subgraph queries.

(b) Impact of V. Varying the percentage of views used
from 20% to 100% and fixed the size |Q| of Q to be
(7,9), we evaluated the impact of views V on the accu-
racy of upper and lower approximations Qu and Ql, mea-
sured by F (Q,Qu, G), F (Q,Ql, G), Fw(Q,Qu, Ql, G) and
Fs(Q,Qu, Ql, G) on DBpedia and YouTube. The results are
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shown in Figures 6(k), 6(l), 6(m) and 6(n) for DBpedia and
Figures 6(p), 6(q), 6(r) and 6(s) for YouTube.

The results tell us the following. (1) More views lead
to higher accuracy of upper and lower approximations Qu

and Ql in all cases. For example, for simulation queries on
YouTube, the F-measure of Ql is above 0.52 when 20% of
the views are used, and it increases to 0.88 when 100% of
the views are used. Indeed, Qu and Ql are more close to Q
with more views, which lead to higher accuracy in terms of
their answers in the data graph. (2) The weak F-measure
of Qu and Ql combined is higher than both the F-measure
of Qu and of Ql, while the strong F-measure is the lowest.
This is consistent with the case of varying |Q| above.

(3) Speedup of approximation using views. We further evalu-
ated the benefit of using upper and lower approximations in
terms of the speedups. We compared the time for evaluating
upper and lower approximations Qu and Ql for Q together
(using QAVsim and QAViso) against the time for evaluatingQ
directly (using gSim and VF2). To eliminate the noises from
small approximations, we calculated the average evaluation
time over approximations that have accuracy (by F -measure)
above 0.6. The results are given in Figures 6(e), 6(j), 6(o)
and 6(t), and tell us the following. (1) Upper and lower ap-
proximations are much more efficient to answer than directly
evaluate Q on data graphs. Indeed, when all the views are
used, for subgraph (simulation) queries, the total evaluation
time of both Qu and Ql is 90 to 2000 (80 to 300) times faster
than that of Q with VF2 (gSim) on YouTube. Similar for
subgraph queries. (2) More views lead to better query plans
for answering upper and lower approximation using views, as
QAVsim contains an optimization procedure to select views
of larger size to answer queries.

Exp-2: Efficiency. We also evaluated the efficiency of our
algorithms. We found that they all took at most 2.7s for all
queries on both data graphs with all the views.

Summary. From the experiments we find the following.
(1) The closest upper and lower approximations are practical
and effective in approximating graph pattern queries using
views. About 65% (resp. 53%) simulation (resp. subgraph)
queries have upper and lower approximations using a small
number of views. (2) The approach is effective for both
simulation and subgraph queries. Upper and lower approxi-
mations achieve accuracy (Fw) above 0.79 and 0.86 and scale
with million graphs within 0.24s and 2.7s, for simulation
and subgraph queries, respectively, while it takes 42s and
5382s to evaluate the queries directly. (3) Our algorithms
are efficient: they take no more than 2.7s in all cases.

8. CONCLUSION
We have studied approximating simulation and subgraph

queries using views. We have proposed a notion of upper and
lower approximation of pattern queries w.r.t. a set of views.
We have studied their properties and characterizations. We
have also identified eight fundamental problems for approx-
imation using views, and investigated the complexity and
approximation-hardness. Based on the characterizations, we
have developed efficient exact and approximation algorithms
with provable bounds for computing the closest upper and
lower approximations, complete or not. We have also devel-
oped characterizations and algorithms for subgraph query
answering using views, an open question in [8]. These to-
gether give us a practical framework of query-driven approx-

imation using views. Our experimental results have verified
the effective and efficiency of our techniques and the frame-
work. These results extend the use of views from exact query
answering to query approximation.

The study of query approximation using views is still in
its infancy. One issue is to study optimal upper and lower ap-
proximations when views are associated with costs. Another
issue is to study optimal pair of upper and lower approxima-
tions covering the same part of the queries. The third topic is
to extend the idea to, e.g., relational queries. The fourth di-
rection is to study approximations for dynamic data graphs.
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