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ABSTRACT

Recently, proactive systems such as Google Now and Mi-
crosoft Cortana have become increasingly popular in reform-
ing the way users access information on mobile devices. In
these systems, relevant content is presented to users based
on their context without a query in the form of information
cards that do not require a click to satisfy the users. As a
result, prior approaches based on clicks cannot provide re-
liable measurements of user satisfaction with such systems.
It is also unclear how much of the previous findings regard-
ing good abandonment with reactive Web searches can be
applied to these proactive systems due to the intrinsic dif-
ference in user intent, the greater variety of content types
and their presentations.

In this paper, we present the first large-scale analysis of
viewing behavior based on the viewport (the visible fraction
of a Web page) of the mobile devices, towards measuring
user satisfaction with the information cards of the mobile
proactive systems. In particular, we identified and analyzed
a variety of factors that may influence the viewing behavior,
including biases from ranking positions, the types and at-
tributes of the information cards, and the touch interactions
with the mobile devices. We show that by modeling the
various factors we can better measure user satisfaction with
the mobile proactive systems, enabling stronger statistical
power in large-scale online A /B testing.
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Figure 1: This figure shows the variety of informa-
tion cards in two proactive systems: Cortana (left)
and Google Now (right).

1. INTRODUCTION

Proactive systems such as Google Now and Microsoft Cor-
tana have become increasingly popular on mobile devices in
recent years. In these systems, relevant content is presented
to the users based on the context and the personal interests
without requiring users to submit a query. Due to the highly
contextual and personal nature of the proactive system, it
is challenging to measure the user satisfaction, especially on
a large scale. One possible solution to this is to leverage in-
teractions such as clicks as implicit relevance feedback from
users, which were found to be successful in various applica-
tions and previous research [17, 7, 4, 14, 15, 20, 21, 34].

However, the presented content in the proactive systems
is usually in the form of information cards, which often con-
tains sufficient information without requiring users to click.
As a result, previous approaches based on click signals would
fall short as lack of click may actually represent good aban-
donment rather than dissatisfaction [24, 32] as was found
in previous research for reactive Web searches [5]. Instead,
viewing behavior or user attention, as captured by the view-
port changes on mobile devices [10, 9, 23], could be valuable
to derive satisfaction measures for the mobile proactive sys-
tems.

Yet, it is unclear how much of the previous findings re-
garding good abandonment and the viewport-based atten-
tion can be applied to the proactive systems, due to the
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intrinsic difference in user intent [30] and the greater va-
riety of content presented on individual impressions of the
proactive systems. Figure 1 illustrates some examples of in-
formation cards for Google Now and Microsoft Cortana. As
we can see, some information cards, like weather and stocks
are simple answers that may not require users to click on
to satisfy their information needs, while other cards such as
news cards would require longer view time to parse the con-
tent and are more likely to receive clicks from users to read
about the news articles of interest. Such variety imposes
a great challenge to develop accurate and robust satisfac-
tion measures from viewport-based viewing behavior that
has not been addressed in previous research [9, 23].

Another limitation of most of the previous research [23,
10, 9] in this new area is that the data is collected from
controlled user studies where the number of samples is small
thus it is unclear how much the findings would be generalized
on a large scale.

In this paper, we aim to fill in the gaps by conducting
large-scale analysis of the viewport-based viewing behavior
on mobile devices and focus on understanding and modeling
the viewing behavior to better measure the user satisfaction
with such systems. We make the following contributions:

e presents the first large-scale analysis of viewport-based
viewing behavior on mobile devices;

e presents the first in-depth study on developing satis-
faction measures for mobile proactive systems;

e identifies and characterizes a variety of biases that may
impact the viewing behavior;

e demonstrates the effectiveness of viewport-based met-
rics for evaluating proactive systems on a large scale;

e demonstrates the improvements of viewport-based met-
rics through addressing the various identified biases.

2. RELATED WORK

Due to the difficulty of collecting large amount of user
explicit labels for relevance measurement, in information re-
trieval community, researchers have elected to leverage im-
plicit feedback from users to infer relevance. For Web search,
click signals have been widely used as implicit feedback to
measure user satisfaction at scale [16, 18, 33]. However,
click-through is noisy as some clicks may be drawn because
of the attractiveness of the search results rather than its in-
trinsic relevance [18]. As a result, users may bounce back
from the landing page to the search engine result pages
(SERPs) shortly after the click [18, 11] if the clicked result
was not relevant, while spend longer time on the landing
page if the search result was relevant [26].

To address the presentation bias of click-through, the post-
click dwell time of the landing page is widely adopted [26, 20,
21, 34]. For example, in [26], the authors conducted a study
focusing on the correlation between explicit feedback and
news article reading time, and discovered that readers tend
to spent significantly more time on interesting articles. In
addition, they also discovered that article relevance only has
weak correlation with their lengths, hence concluding that
most readers only read part of the articles. However, some
follow-up research works have suggested that the dwell time
metric is not universally applicable to all types of retrieval
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tasks [20, 21], particularly for tasks with complex informa-
tion needs [21]. Hence, the threshold needs to be carefully
tuned according to the task types [34].

In addition, research has been conducted to measure a
variety of user behavioral signals as implicit feedback. For
example, in [4], the authors studied the relationship between
mouse scrolling and page relevance and discovered their pos-
itive correlation. In [7], the authors collected over 30 implicit
implicit measures from users. The study indicated that the
combination of the right measures can lead to good predic-
tions of user satisfaction. Among them, the exit type (how
users left the page) and time to first click are good indica-
tors to measure relevance. Furthermore, user behavior on
the SERPs, when combined with page dwell-time and ses-
sion level information, were found to significantly improve
result ranking in the aggregate (e.g., [1]), and can be fur-
ther improved by personalizing these measures (e.g., [25]).
Fine-grained implicit feedback has been studied as well. For
example, Buscher et al. [2] rely on eye-tracking data to deter-
mine which parts of a document have been read, skimmed,
or skipped. The read and skimmed parts of the document
were taken as relevant, while skipped document parts were
ignored. The authors report considerable improvements for
re-ranking of result lists, when including gaze-based feed-
back on the segment level compared to relevance feedback
on the document level. The limitation of leveraging eye-
tracking though is its lack of scalability due to its limited
accessibility [2, 23].

Mouse activity is another important channel, emerged in
recent years, to collect implicit feedback, which not only
captures user attention at the similar fine granularity to eye-
tracking but is also highly scalable due to its prevalence.
One of the earliest research in this area is by Rodden et
al., where the authors identified the coordination patterns
between mouse and eye-movements [29]. Following this re-
search, Guo and Agichtein [8] showed that gaze positions
can be accurately predicted through modeling mouse move-
ments, and Huang et al. [13] conducted more in-depth analy-
sis and derived insights to improve the gaze-prediction mod-
els. Going beyond the regular Web search results, Naval-
pakkam et al. [27] conducted a controlled study to under-
stand the mouse and eye movement patterns regarding knowl-
edge panels on the right hand side of the SERPs, and also
identified the coordination between the two. Mouse activ-
ity was also found to be useful for predicting search result
relevance. In particular, cursor hovering and scrolling are
found to better predict user clicks than other signals [14]
and can be used as a good indicator to distinguish good
and bad search abandonments [15], especially, for results
that do not require a click to satisfy users, such as knowl-
edge panels that often provide information snippets on the
right hand side of the SERP [27]. Going beyond SERPs,
Guo and Agichtein [8] also discovered stronger correlation
of page relevance from mouse cursor movements compared
to dwell time, which enables substantial improvements in
relevance prediction and Web search result re-ranking. The
relevance prediction model is further improved by Lagun et
al. through mining the most frequent motifs of the mouse
movements [22].

Despite the success, the aforementioned implicit feedback
and behavioral signals were mainly designed for traditional
desktop devices with keyboards and mice. However, with
the increasing popularity of mobile touch-based devices such



as smart phones and tablet PCs, user behavior has greatly
changed for Web search [31] and the existing behavioral sig-
nals need to be adapted to remain effective as implicit feed-
back and satisfaction measures for these new devices[10, 12,
9, 23]. Given the relatively small screens of the mobile de-
vices, the viewport (i.e., the visible part of a Web page)
is found to correlate well with user attention [23], and the
way users change the viewports is found to be effective to
identify the relevance of the viewed Web pages [9] and the
elements on the SERPs [23] in two recent studies, respec-
tively. In particular, Guo et al. [9] found that the “inactive
time”, i.e., the time spent on the stabilized viewports, and
the speed and frequency users change the viewports are more
accurate indicators of document relevance compared to the
dwell time on the touch-enabled mobile devices. Comple-
mentarily, Lagun et al. [23] demonstrated a strong correla-
tion between user attention in terms of eye-gaze movements
and viewport-based viewing time for mobile Web searches,
finding that increased scrolling and increased time below
were strong signals of answer dissatisfaction. Yet, as far
as we know, the studies on this topic have solely based on
controlled user studies so far, and no studies have been con-
ducted to analyze the viewing behavior based on viewports
on mobile devices on a large scale, making it unclear how
the existing findings might generalize.

Most recently, mobile proactive systems have become in-
creasingly popular for accessing information on the mobile
devices, which not only require zero-query but also present
content to users in the form of cards that require no clicks
to satisfy their information needs. To the best of our knowl-
edge, Shokouhi and Guo [30] is the first and still only study
on user interaction with these systems, which focuses on
understanding the general usage patterns and discovering
connections between the reactive Web search behavior and
the user interactions with the proactive systems. Yet, the
understanding of viewport-based viewing behavior and the
modeling of the behavior to better measure user satisfaction
remains an important opened question.

In this work, we aim to address these two important ques-
tions by conducting a large-scale analysis on viewport-based
viewing behavior, with a focus on developing satisfaction
measures of the newly emerged proactive systems. In par-
ticular, we compare and contrast the behavioral differences
between traditional desktop search, mobile reactive search,
and the zero-query proactive interaction paradigm, and pre-
vious findings from smaller scale controlled user studies. We
show that the viewport-based viewing behavior can improve
the measurement of user satisfaction with proactive systems
compared to using click and dwell time based measures. We
also identify a few important factors that may influence the
viewing behavior of the users, and show that by modeling
these factors, we may better measure user satisfaction.

3. DATA DESCRIPTION & TERMINOLOGY

The data set used in this paper was collected from a com-
mercial personal digital assistant, namely Microsoft Cor-
tana, which provides proactive recommendations to millions
of users on their mobile devices every day, based on the con-
text and their interests. While reactive impressions start
with a query, a proactive impression is triggered when the
user launches the digital assistant. Similar to the reactive
search scenarios, our proactive logs are organized as proac-
tive impressions, each of which consists of a ranking of proac-
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tive cards presented to the user together with correspond-
ing interaction logs recorded such as clicks, viewports and
scrolling. Each of the proactive cards are designed to sat-
isfy a domain-specific set of information needs such as news,
finance, traffic, sports, and travel (see examples in Figure
1). As the displayed content of the card is often sufficient to
satisfy the user’s information need without requiring a click
[30], viewport logging is needed to infer how much time users
spent viewing the content and, in turn, how likely they are
satisfied with the content.

In our study, viewport logging is enabled through JavasS-
cript embedded in the proactive impressions, and the view-
port data is buffered and then sent back to the server through
HTTP requests. We record the screen size, the positions and
sizes of the cards rendered on the proactive impressions in
pixels, as well as the viewport changing events with times-
tamps, allowing us to reconstruct the viewing behavior of
the users and calculate the time users spent dwelling on
each card.

Given the viewport logging, the view time, or reading
time® of the card can then be derived by distributing du-
rations of viewports to each card based on its coverage and
exposure as defined in [23], where coverage is defined as how
much of the card area was visible to a user and exposure
is defined as how much of the viewport real estate did the
card occupy. The total view time for a card is then computed
as the sum of coverage and exposure-weighted time across
all viewports. This calculation of view time was found to
be best correlated with gaze data collected from eye-tracker
[23] among a few different variants, exhibiting strong correla-
tions (e.g., 0.7 for %time on an element between gaze-based
and viewport-based times).

Now that we have view time inferred, we can further de-
rive user satisfaction metrics from the view time. For exam-
ple, we can threshold on the view time to derive the notion
of a SAT view, which, in previous research (e.g., [30]) was
determined as a view with duration above 30 seconds (fol-
lowing earlier work on determining SAT click [7]). However,
no prior work was done to understand whether this widely
used threshold of post-click dwell time is optimal for de-
termining user satisfaction from proactive information card
viewing without a click. This is the key research question
we aim to address in this paper.

In our proactive logs, each user is represented using a con-
sistent and anonymized identifier in the system. For our ex-
periments we first randomly sampled 500,000 unique users
from a period of 1 month between June 1 to July 1, 2015.
In total, we observed over 3 million impressions from the
proactive logs. We then extracted the mobile reactive logs
from a commercial search engine (Microsoft Bing Mobile)
for the same set of users to capture their mobile reactive
queries and interactions during the same time period. In to-
tal, there are over 6.5 million reactive impressions. In addi-
tion, we collected 1-month search logs from the Web vertical
of Microsoft Bing for a random sample of 500,000 users? in
the U.S. search market. Those Web search users have a total
of 3 million impressions. The statistics are summarized in
Table 1.

1We use these two terms interchangeably in this paper.
2The anonymized identifier for desktop search is not consis-
tent with the mobile logs.



Table 1: Summary of data sets used in this paper.

Data Set # Users # Impressions
Mobile Proactive 500,000 3,182,863
Mobile Reactive 500,000 6,572,829
Desktop Search 500,000 3,993,096
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Figure 2: Positional bias of results in three sce-
narios: Desktop search, Mobile search and Mobile
Proactive.

4. ANALYZING VIEWING BEHAVIOR

In this section, we present in-depth analysis on the viewing
behavior using large-scale interaction logs. We organize the
discussion around a variety of factors that may influence the
viewport-based viewing behavior and may lead to biases in
designing user satisfaction metrics.

4.1 Positional Bias

The positional bias of Web search results have been exten-
sively studied [16, 3, 18, 6]. Generally speaking, a result that
is ranked higher tend to receive more clicks than a lower-
ranked result, not only because its higher relevance but also
because the higher chance of being viewed and higher per-
ceived relevance due to its ranking position. In our study,
we compare click through rate (CTR) and view time (calcu-
lated as described in Section 3) by position across the thee
different experiences, namely, mobile proactive experience,
mobile reactive search, and desktop reactive search.
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In Figure 2 (a), we show the CTR? of top-10 results re-
turned by the three experiences. In addition to the obvi-
ous positional decay, two interesting observations can be
made. First, the CTR on the proactive cards are order-of-
magnitude smaller compared to the reactive search scenar-
ios, confirming that the proactive cards are indeed less likely
to require a click to satisfy the users. Note that the content
of the information cards tend to have higher quality on av-
erage compared to reactive search results by design, so the
overall lower CTR on proactive cards cannot be explained
by overall low quality [30]. The CTR for mobile reactive is
also relatively lower compared to desktop search, which is
likely due to the prevalence of instant answers that result in
similar good abandonments [23]. Second, the decay of mobile
scenarios are much more smoothed (decay factors 0.45 for
proactive and 0.69 for mobile) compared to the sharp drop
of CTR from the first position for desktop reactive search
(decay factor: 1.48). This observation about reactive search
scenarios is consistent with previous findings on lower refor-
mulation rate on mobile, where users tend to examine more
results due to lower network connection and more difficulty
in typing as identified in previous research (e.g., [19, 9]).

Positional decay of view time is also observed as shown
in Figure 2 (b). In contrast to CTR, the average view time
for the two mobile scenarios are much higher, which can be
also explained by the higher prevalence of answer like re-
sults presented in the mobile scenarios. Interestingly, while
the decay of reactive searches appear to be pretty smoothed
(decay factors 0.43 for desktop and 0.41 for mobile), there
is a sharp drop of view time for mobile proactive (decay fac-
tor: 0.93). One explanation is related to the peek view of
the proactive experience, where users may see the top half
of the first card (under the reactive search box) before en-
tering proactive. As a result, users are more likely to enter
the proactive experience when the top card is relevant, and
spend more time viewing it. This again confirms the utility
of view time for proactive, as similar decay is not observed
for the sparser signal in CTR for proactive.

The monotonic positional decay of view time distribution
for mobile reactive search is also particularly interesting as
it stands against findings in previous work [23] based on a
controlled user study of 24 users and 20 tasks. In that study,
the authors discovered a bump for the view time distribution
around the second and third position, where the view time is
calculated using the identical formula based on viewports as
in this paper. The explanation of the difference may be due
to the nuances in the small scale study — e.g., the knowledge
answers that the study focused on tend to appear around
the second position, which may attract more attention from
users. In contrast, our analysis based on millions of impres-
sions covers a wider variety of mobile search experiences,
which is more representative and generalizable. In our fu-
ture work, we plan to look into different slices of queries to
further understand the variance among query classes in view
time positional distribution.

4.2 Card Type Bias

Figure 3 shows the biases in view time and CTR for differ-
ent card types. Note that, as certain types of cards may be
ranked consistently higher than others, the higher view time
and/or CTR they receive may be (in part) due to the posi-

3Due to the sensitivity of CTR, all reported CTR numbers in
this paper are scaled w.r.t. the largest value in the context.
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Figure 3: This figure shows the biases in view time
and CTR for different card types. The bars are or-
dered decreasingly by view time (left y-axis).
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Figure 4: This figure shows the correlation between
card size and view time. The card size is calculated
by its area = width * height (pixels).

tion bias. To decouple from positional bias in this analysis,
we consider card impressions that are at top position. As
we can see, Travel and News cards have the highest CTR
due to their interactive nature. In particular, the Travel
card is a collection of mini-cards with snippets of relevant
information (e.g., flight, traffic, nearby attractions) and of-
ten requires a click to get full information. Similarly, News
card usually only shows the title and a snippet of the news
and a click is required to obtain the full content. In contrast,
cards such as Sports, which shows match scores, have high
view time but low CTR as most of the needed information
can be obtained via its displayed content.

4.3 Presentation Bias

The other aspect of card bias comes from the difference
in their presentations. It is common to assume that richer
presentation often leads to higher user engagement and bet-
ter user satisfaction. Indeed, both eye-gaze and mouse-track
studies shown that regardless of their relevance, results with
images present always attract much more attention that
those with plain text [23]. We conduct such study in our
data and was able to observe the similar bias for the proac-
tive systems. As shown in Tale 2, we can see that cards with
images yield much higher view time and CTR, regardless of
their positions and relevance.

In addition, in our scenario, we also study how the size of
cards affect the view time. To achieve this, we measure the
size of cards by its area of pixels. E.g. a card of size 300 by
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Table 2: This table shows the difference between
cards that have images and have no images. Statis-
tical significance (SS) tests indicate both view time
and CTR are different.

Card Type View Time CTR
With Images 2.07£2.34 0.019+0.03
No Images 1.53+1.55 0.01140.01

SS Different? Yes (p-val< 0.01) Yes (p-val< 0.01)

~
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Figure 5: This figure shows the average view time
per card by the size of the mobile devices.

200 pixels has a 60,000 pixel-area. Figure 4 shows the rela-
tionship between card size and the average view time using
a scatter plot. In general, we can observe that cards with
large sizes tend to yield higher view time. The R-squared
value of 0.47 also confirms a significant positive correlation
between these two variables.

4.4 Device Bias

Another factor that may bias viewing behavior lies in
the difference of the device size. While bigger devices may
present multiple cards in one viewport, smaller devices may
only present a fraction of a single card. To study this effect,
we break down the impressions by the display size of devices,
which is the diagonal measure of the screen. In Figure 5, we
illustrates the effect of device sizes to the average viewing
time for each proactive impression. In general, we observe
a reduction of view time as the device size increases (except
for those 4.3-inch phones). The best-fit one-degree poly-
nomial curve has -0.34 slope and 5.56 residual scores, with
an r-squared value of 0.48 and p-value of 0.04, confirming
the negative correlation between view time and device size.
This discovery indicates that bigger screens can help users
fulfill their information need more efficiently, as users don’t
have to change viewports as frequently, which introduces
unnecessary overhead. To enable more accurate measures
of satisfaction across devices, adjusting for such bias can be
beneficial.

4.5 Attention Shift on Swiping Directions

As shown in 4.1 and previous research [16, 3, 18, 6], users
tend to focus their attention on the top of the screen, how-
ever, we hypothesize that the distribution of user attention
may change as users swipe to change their viewports. To
test this hypothesis at scale, we used clicks as proxy. The
idea is that the click position would align with user attention
even though clicks are sparser given the prevalence of proac-
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Figure 6: This figure shows the heatmaps of user
clicks after user swipes are performed. The data is
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which all have the same dimension (432*585 pixels).

Table 3: This table shows the user click statistics on
4.7-inch phones.

Swipe Direction Count Click Position (y-axis)
No Swipe = 295,311 265.48
Swipe Up t 922,783 271.82
Swipe Down | 198,105 313.69

tive cards not requiring a click to satisfy the users. In the
future, we plan to confirm the findings with an eye-tracking
study.

Figure 6 shows the heatmaps that represent the click dis-
tributions conditioned on the swipe directions. As expected,
for initial viewports without a swipe and viewports with
swipe-ups, we found that the clicks/attention are focused at
the top of the screen (Figure 6 (a) and (c)), but for view-
ports with swipe-downs, we found that the clicks/attention
are focused at the bottom of the screen (Figure 6 (b)). This
makes sense as users may tend to focus on the fraction of the
screen where new contents show up while swiping to change
the viewports.

In Table 3, we report the statistics of user click posi-
tions for these three conditions. As we can see, most of
the viewports with clicks are initial viewport (No Swipe),
and users tend to swipe down (198,105) much more often
than swipe back up (22,783). The click positions, relative to
the viewport y-coordinate, are also consistent with what we
observed in Figure 6. We further perform two-sampled inde-
pendent t-test on each pair of user click data: ttest(NoSwipe,
SwipeDown) = -135.474, p-val = 0; ttest(NoSwipe, SwipeUp)
= -8.837, p-val = 1.05¢™'%; ttest(SwipeDown, SwipeUp) =
39.87, p-val = 0 and confirm that the differences between
the three different conditions are statistically significant.

5. IMPROVING SAT METRICS

So far in the paper we have observed various factors that
may bias the viewing behavior, hence impacting the effec-
tiveness of using viewing behavior as a proxy of user satis-
faction with the information cards. In this section, we show
that our proposed model that addresses the various biases
enabled better SAT metrics for measuring user satisfaction.

To evaluate the SAT metrics on a large scale, we ran an
online A/B experiment for one week (from 3/11/2015 to
3/17/2015) with a sample of 1.3 million users, equally split
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Algorithm 1: Measure Metric Sensitivity

Input: MT: The metric for evaluation,
CTRL(MT): control users’ MT values,
TRET(MT): treatment user’s MT values,
N = {10, 50, 100, 1000...}: the sample number,
M: number of times to repeat for each exp
for each n in N

winrate = 0, varList = Empty()

do: repeat M times

SampleCtrl < SampleUser(n, CTRL(MT))

SampleTret < SampleUser(n, TRET(MT))

SampleCtriSum = sum(SampleCtrl)

SampleTretSum = sum(SampleTret)

if SampleTretSum > SampleCtriSum

winrate-++
varList.add(1)
else
varList.add(0)
end if
end do
winrate = winrate/M, std = STD(varList)
end for

for control and treatment. Specifically, the control and treat-
ment rankers were similar to the baseline default card ranker
and the more sophisticated machine-learned Carre ranker,
respectively, as described in [30], where the latter provides
significantly better ranking quality compared to the former.
We have also examined and triaged a variety of relevance
and engagement metrics to confirm the better quality of the
treatment ranker. In other words, we know for a fact that
treatment is better than control and use this as the ground
truth. We ensured that the magnitude of ranking quality im-
provement between this pair of experiments is representative
of typical ranker releases, so that the findings are general.

To compare the effectiveness of different SAT metrics, we
followed the procedure described in previous research [28].
Specifically, for a range of n, we randomly sample n users
from each of treatment and control for m times, compute the
means and variances for both, and see whether the difference
in the metrics is in agreement with the known difference in
ranking quality of control and treatment. A better metric
is the one that has higher agreement rate with the ground
truth with lower variance. Algorithm 1 sketches the details.
In our experiment, we varied the number of sampled users n
from 10 up to 500,000, and repeated m = 10,000 times for
each n, to test metric stability and sensitivity.

For the baseline metric to compare with, we adopt the
traditional click-based strategy as pseudo-relevance feedback
labels, which is defined as:

e SATClick: For each proactive impression, if a user
clicked on a card and viewed the content for more than
30 seconds, the card is considered relevant (gets a score
of 1). Otherwise the card is non-relevant (gets a score
of 0). The 30-second satisfaction cut-off of post-click
dwell time has been found to be fairly optimal and has
been widely used in prior work [7]. The comparison
among different time threshold of SATClick is beyond
the scope of this paper.

As a first attempt to combine view-based and click-based
signals, we define a threshold-based metric based on card
view time:



e SATView(s): For each proactive card, if the view
time of the card is greater than s seconds, the card
is considered relevant. Otherwise the card is non-
relevant. The view time calculation of an information
card (as described in Section 3) follows previous re-
search [23] .

In the literature, there has been no clear definition for the
SAT cut-off value of SATView. Therefore, we aimed to fill
the gap by experimenting with a variety of cut-off values s
to measure the impact. In Table 4, we show the sensitivity
values of SATClick, SATView(s) metrics with different s, as
well the hybrid of these two types of metrics (i.e., SAT =
SATClick or SATView(s)).

From the table, we can observe that when the sample rate
is low (e.g., 10 random users), most of the metrics perform
no better than random guess. With the increased number of
sample users, some metrics gradually become more sensitive
than others. The first and second columns show a head-
to-head comparison between the performance of SATClick
and SATView(30). We can easily observe that at all sample
rate, SATView exhibited significantly higher win-rate and
lower standard deviation. The result indicates that, for the
proactive scenario, SATView(30) is a more sensitive metric
than SATClick.

We then consider the hybrid version of the two metrics
which is shown in the remaining columns of Table 4. In
general, we observe that combining SATClick and SAT View
indeed outperforms individual metrics significantly. Com-
paratively, combining SATClick with SATView of longer
view time (> 10 seconds) tends to yield better performance
than shorter view time (5 seconds). Nevertheless, statistical
significance test does not indicate any significant difference
among the sensitivity of SATView(10), SATView(15) and
SATView(30). While SATView(15) and SATView(30) seem
to converge faster to 1 with larger samples, SATView(10)
shows higher sensitivity when the sample size is small.

5.1 Normalizing SATView by Card Size

So far we have observed a more sensitive metric that is
a composition of two metrics using absolute time values to
determine user satisfaction. As we recall in our previous
discussion and shown in Figure 4, card view time is highly
correlated with its area size, which leads to strong positive
bias towards cards with large sizes. Therefore, we seek to
correct such bias by proposing to normalize SATView by the
size of the proactive cards, which is defined as (read as View
Time per Pixel)

ViewTime

VIP = Gordiidin + CardHeight

(1)

Table 5 depicts the results of VTP as a SAT metric, where
SATVTP (X PCTL) is used to denote the use of X per-
centile of VTP as the SAT threshold. Overall, we observe
that smaller VTP thresholds yield higher win-rate. Also,
when the threshold is set to be too high, the metric may
perform worse than random guess. Comparatively, VTP
alone does not perform as well as SATView as a viewport-
based metric as shown in the first two columns. However, the
combination of SATVTP (25 PCTL) with SATClick (the last
column) outperforms SATView(30) significantly and yields
the best result in our analysis — on par with SATClick or
SATView(30).
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Figure 7: The fitting result of card view time using
an exponential decay function.

The results from the above analysis suggest that in mea-
suring user satisfaction in the proactive scenario, both card
view time and clicks are essential in defining the correct SAT
metric. Interestingly, normalizing card view time by size did
not lead to significantly more sensitive metrics except for
slight improvements on small number of samples.

Next, we conduct additional analysis to remove various
other biases to further improve the metrics. We conducted
analysis on both the normalized and unnormalized versions
of the SAT metrics, and found that the normalized version
yields similar yet more sensitive metrics with additional bi-
ases (e.g., position, card type) addressed, compared to the
un-normalized version.

Therefore, due to the space constraint, we only report
following results based on the normalized SAT metric next,
which is defined as follows:

e SATHybird = SATClick or SATVTP (25 PCTL)

5.2 Addressing Positional Bias

The improvement of metric sensitivity so far encourages
us to explore other opportunities to correct the view bias.
In this section, we focus on addressing positional bias by
dynamically adjusting SAT threshold for different positions.
Recall that in the previous section setting VTP to its 25
Percentile yields the best performance, we thus take that as
a baseline approach. From Figure 2 (b) we saw that the view
time distribution looks like an exponential decay. Therefore,
we propose to fit an exponential function to estimate the
SAT view time at each position, which can be formulated as

(2)

where ¢ indicate the result position. Figure 7 shows the
curve-fitting result. The optimal value of parameter \ is
around 1.07, suggesting a linearly exponential decay. The
starting value Ny is set to be the best value of VT Py, which
according to our previous result, is 0.006.

Figure 8 illustrates an area plot comparing the original
metric of SATHybrid and the enhanced SATHybrid with
the position-decay equation integrated. In the figure, the
red and blue lines correspond to the win-rate of baseline
and position-decay metrics, respectively. The shaded areas
around each line indicate the standard deviation of respec-

i

SATVTP@i = Noe(=%)



Table 4: This table shows the result of sensitivity analysis according to Algorithm 1, in the form of

winrate+std. In general, metrics with higher win-rate and lower std are considered more sensitive.

# Users Win-Rate
Sampled
SATClick SATView(30) SATClick or SATClick or SATClick or SATClick or
SATView(5) SATView(10) SATView(15) SATView(30)
10 0.515 £ 0.500 0.526 £ 0.499 0.513 £ 0.500 | 0.525 £ 0.499 | 0.522 &£ 0.500 0.523 £ 0.499
50 0.525 £ 0.499 0.548 £ 0.498 0.530 £ 0.499 0.545 £ 0.498 0.545 £+ 0.498 | 0.549 + 0.498
100 0.534 + 0.499 | 0.561 £+ 0.496 | 0.541 £+ 0.498 | 0.562 + 0.496 0.565 + 0.497 | 0.565 + 0.496
500 0.578 £+ 0.494 0.629 £ 0.483 0.591 £+ 0.492 | 0.641 £ 0.480 | 0.639 £ 0.480 0.638 + 0.481
1,000 0.612 £+ 0.487 | 0.676 + 0.468 | 0.632 £+ 0.482 | 0.700 + 0.458 | 0.692 + 0.461 0.695 + 0.461
5,000 0.738 £ 0.440 | 0.847 £ 0.360 | 0.768 £ 0.422 | 0.873 + 0.333 | 0.873 &+ 0.334 0.865 £ 0.342
10,000 0.815 £ 0.388 0.930 £ 0.255 0.849 £ 0.358 0.952 £ 0.215 0.948 £+ 0.222 | 0.948 £ 0.221
20,000 0.900 £+ 0.300 | 0.984 £+ 0.127 | 0.930 £ 0.255 | 0.992 + 0.087 | 0.991 + 0.094 0.989 + 0.104
30,000 0.949 £+ 0.220 | 0.997 £ 0.055 | 0.975 £ 0.156 | 0.998 % 0.045 0.998 £+ 0.032 | 0.999 + 0.032
50,000 0.982 £+ 0.133 | 1.000 £+ 0.000 | 0.995 + 0.071 1.000 + 0.000 1.000 + 0.000 1.000 + 0.000
100,000 1.000 £ 0.000 | 1.000 # 0.000 | 1.000 % 0.000 1.000 % 0.000 1.000 + 0.000 1.000 + 0.000

Table 5: This table shows the result of sensitivity analysis for the VIP metric in eq. (1), in the form of

winratetstd. VTP Combined with SATClick becomes the most sensitive metric.

# Users Win-Rate
Sampled
SATView(30) SATVTP SATVTP (25 | SATVTP (50 | SATVTP (75 SATClick or
(Mean) PCTL) PCTL) PCTL) SATVTP (25
PCTL)

10 0.526 + 0.499 | 0.500 £ 0.500 | 0.509 £ 0.500 0.502 £ 0.500 0.497 £ 0.500 0.526 + 0.499
50 0.548 + 0.498 | 0.499 + 0.500 | 0.513 £ 0.500 0.504 4+ 0.500 0.496 £+ 0.500 0.555 + 0.497
100 0.561 4+ 0.496 | 0.497 £ 0.500 | 0.519 £ 0.500 0.503 £ 0.500 0.493 £ 0.500 0.563 + 0.495
500 0.629 + 0.483 | 0.489 &£ 0.500 | 0.537 £ 0.499 0.506 £ 0.500 0.483 £ 0.500 0.631 + 0.477
1,000 0.676 + 0.468 | 0.489 £ 0.500 | 0.555 £ 0.497 0.516 4+ 0.500 0.480 4 0.500 0.684 + 0.465
5,000 0.847 £ 0.360 | 0.457 £ 0.498 | 0.628 £ 0.483 0.529 £ 0.499 0.448 £ 0.497 0.863 + 0.326
10,000 0.930 + 0.255 | 0.451 £+ 0.498 | 0.679 £ 0.467 0.537 4+ 0.499 0.425 4+ 0.494 0.942 + 0.218
20,000 0.984 + 0.127 | 0.426 £ 0.494 | 0.738 £ 0.440 0.544 4+ 0.498 0.397 4+ 0.489 0.994 + 0.105
30,000 0.997 + 0.055 | 0.398 + 0.489 | 0.785 £+ 0.411 0.558 4+ 0.497 0.372 4+ 0.483 0.998 + 0.035
50,000 1.000 £ 0.000 | 0.410 £ 0.492 | 0.841 4 0.366 0.587 4+ 0.492 0.306 £ 0.461 1.000 £ 0.000
100,000 1.000 £ 0.000 | 0.369 £ 0.483 | 0.936 + 0.245 0.607 £ 0.488 0.258 £ 0.438 1.000 £ 0.000

tive win-rate. It is evident to see that by adding position-
decay to the SATVTP metric, the win-rate significantly in-
creases. In addition, the area of standard deviation is also
substantially smaller than the baseline. We can observe that
the position-decay metric quickly converges to 100% agree-
ment rate with the ground truth given only 20,000 random
users, while the baseline does not converge until given 2.5-
time more (50,000) users.

5.3 Addressing Card Type Bias

Furthermore, to address the bias of different card types,
our studies have suggested that cards differ greatly in both
view time and CTR, according to previous discussion in Fig-
ure 3. Therefore, we propose to use different threshold values
for each type of answers.

We started with the néive version of per-card-type nor-
malization via statistics such as mean and median, yet none
resulted in significant improvements in metric sensitivity.
What ended up working was the per-card-type SAT thresh-
old derived from time-to-click. The intuition here is that
users are more likely to be satisfied with viewing the card
when they click (to explore more), thus the time-to-SAT-
click distribution is closer to the SAT view distribution. To
implement this idea, we first filter out impressions where no
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Figure 8: This figure shows the effect of addressing
positional bias, which successfully increased the win-
rate with less users (the blue line) as well as lowered
the variance (the blue area).

cards receive any SAT clicks, thus leaving impressions with
only SAT cards in our data. We then estimate the SAT for
view time using the time-to-click from the most-recent stable
viewport to the action of user clicks. After that, we aggre-
gate these time periods for each type of card and compute



VPo VP2 VPi1 VP, click
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Figure 9: This figure shows the calculation of time-
to-click value for setting the threshold of SAT views.

Table 6: This table shows the VTP SAT thresh-
old derived for each type of answer, relative to the
largest threshold of all types (i.e., News).

Card Type Rel. VTP SAT Threshold (%)
News 100.00%
Local 57.62%

Weather 17.36%
Sports 15.35%
Traffic 14.05%
Travel 10.51%

BestNearby 10.39%

Calendar 6.85%
Finance 1.30%
Events 1.18%

the maximum likelihood of the mean and standard deviation
to use as SAT threshold.

It is important to differentiate stable viewports from un-
stable ones when defining the SAT threshold. In unstable
viewports, users are primarily searching/glancing instead of
carefully viewing. We require a viewport to at least last for
one second to be considered stable. Figure 9 illustrates an
example.

Table 6 shows the SAT VTP threshold derived for each
type of answer, relative to the largest threshold across all
types (i.e., News). As we can see, the SAT VTP thresh-
old for News card is significantly higher than other types of
card, showing that users tend to read slower on news (i.e.,
spend more time viewing the same size of area) thus re-
quiring higher threshold for users to be satisfied with news.
At the other end of the spectrum are Finance and Events
cards, which have much sparser content and require only
quick glances for users to be satisfied.

In Figure 10, we compare the original version of SATHy-
brid with the card-type adjusted version. In particular, the
card-type adjustment is even more effective compared to the
position-bias adjustment, which converges even faster requr-
ing only 15,000 random users compared to the 20,000 ran-
dom users required, as shown in Figure 8, for addressing the
position bias.

5.4 Addressing Other Biases

Given the success of the addressing positional and card bi-
ases, a natural extension would be combining both of them
to see whether a stronger metric can be found. In our ex-
periment, we used a simple way to combine them by mul-
tiplying the card-specific SAT threshold (as shown in Ta-
ble 6) at each position with the position-decay factor in eq.
(2). Indeed, this combination further improves upon the
SATHybrid with Card-Type Adjustment metric. However,
the improvement is not statistically significant. Both met-
rics converge at 15,000 users and show very slight difference
at 10,000 users (0.998 vs. 0.993 win-rate). This is under-
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Figure 10: This figure shows the effect of addressing
card-type bias, where we use the mean of view time
to adjust each card type.

standable since the bias in card type may already encode
part of the position bias as discussed earlier in Section 4.2.

We have also made several efforts to address other types
of biases identified in the earlier analysis in the paper, such
as device size and shift of attention . Nevertheless, none of
them were found to give significant further improvements
over the original version of SATHybrid. We defer further
investigation on this part in future work.

6. CONCLUSION AND FUTURE WORK

In this paper, we presented, to the best of our knowledge,
the first large-scale study of viewing behavior for mobile de-
vices and the first in-depth analysis of viewport-based sat-
isfaction metrics for mobile proactive systems. We compare
and contrast the findings with previous research for reactive
Web searches that are based on small-scale controlled user
studies, identifying interesting similarities and differences.
We have also identified and characterized a variety of fac-
tors that may influence the viewing behavior, including the
positional bias, the various biases that are imposed by the
types and attributes of the information cards, the devices,
and how users interacted with the system.

Through running and analyzing data from a large-scale
A/B live experiment, we demonstrated that the viewport-
based metrics are more effective compared to metrics that
are solely based on click-through and landing page dwell
time in measuring user satisfaction with the proactive sys-
tems. We also showed that by addressing the various iden-
tified biases, in particular, through addressing the position
and card type biases, we can further improve the satisfaction
metrics significantly.

In the future, we plan to complement our analysis with
controlled user studies to provide more qualitative insights
into the proposed satisfaction measures. While having done
some preliminary analysis comparing the two systems, we
also plan to conduct large-scale analysis on viewing behav-
ior for reactive Web searches, to have even deeper under-
standing of the similarities and differences in user behavior
between the newly emerged mobile proactive systems and
the long-existing reactive Web search systems.
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