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ABSTRACT

The amount of image data available on the web is growing
rapidly: on Facebook alone, 350 million new images are up-
loaded every day. Making sense of this data requires new
ways of efficiently indexing, annotating, and querying such
enormous collections. Research in computer vision has tack-
led this problem by developing algorithms for localizing and
labeling objects in images. Object classification algorithms
have been recently scaled up to work on thousands of object
classes [8] based on the ImageNet database [2].

The next frontier in analyzing images is to go beyond clas-
sifying objects: to truly understand a visual scene, we need
to identify how the objects in that scene relate to each other,
which actions and events they are involved in, and ultimately
recognize the intentions of the actors depicted in the scene.
The key to achieving this goal is to develop methods for
parsing images into structured representations. A num-
ber of approaches have recently been proposed in the lit-
erature, including Visual Dependency Representations [4],
Scene Graphs [7], and Scene Description Graphs [1]. All of
these models represent an image as a structured collection
of objects, attributes, and relations between them.

In this presentation, we will focus on Visual Dependency
Representations (VDRs), the only approach to image struc-
ture that is explicitly multimodal. VDRs start from the
observation that images typically do not exist in isolation,
but co-occur with textual data such as comments, cap-
tions, or tags; well-established techniques exist for extract-
ing structure from such textual data. The VDR model ex-
ploits this observation by positing an image structure that
links objects through geometric relations. Text accompa-
nying the image can be parsed into a syntactic dependency
graph [9], and the two representations are aligned, yielding
a multimodal graph (see Figure 1). Well-established syn-
chronous parsing techniques from machine translation [11]
can be applied to this task, and resulting VDRs are useful
for image description and retrieval [5, 3, 10].

Parsing images into multimodal graph structures is an im-
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portant step towards image understanding. However, for full
understanding, representing the semantics of the image is
also crucial. For example, the images in Figure 2 can all
be described using the verb play (and presumably are as-
signed similar VDRs). However, a different meaning (verb
sense) of play is evoked by each image. This has led to the
new task of visual verb sense disambiguation [6]: given an
image and a verb, assign the correct sense of the verb, i.e.,
the one that corresponds to the action depicted in the im-
age. We propose an unsupervised algorithm based on Lesk
which performs visual sense disambiguation using textual,
visual, and multimodal embeddings. In this presentation,
we will discuss how the two tasks of VDR parsing and vi-
sual verb disambiguation can be combined to yield more
complete syntactico-semantic image representations, which
can then underpin applications such as image retrieval, im-
age description, and visual question answering.
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A man is riding a bike down the road.
A car and trees are in the background.
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A man is riding a bike down the road.

Figure 1: Example from the Visual and Linguistic Treebank [4]: (a) image annotated with object regions;
(b) human-generated image description; (c) visual dependency representation for the image (top) aligned
with the linguistic dependency representation for the description (bottom).

Figure 2: Example from the Verb Sense (VerSe) dataset [6]: three visual senses of the verb play: (a) partici-
pate in sport, (b) play an instrument, and (c) be engaged in playful activity. The images are taken from MS
COCO, which also includes image segmentations and descriptions.
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