
Stable Models and Non-Determinism in
Logic Programs with Negation

Domenico Sacccit
Dipartimento di Sistemi,

Universiti della Calabria, Rende, Italy

Carlo Zaniolo
MCC

Austin, Texas, USA

ABSTRACT
Previous researchers have proposed generalizations of Horn clause logic to support negation and nondeterminism as two
separate extensions. In this paper, we show that the stable model semantics for logic programs provides a unitied basis
for the treatment of both concepts. Fit, we introduce the concepts of partial models, stable models, strongly founded
models and deterministic models and other interesting classes of partial models and study their relationships. We show
that the maximal determini stic model of a program is a subset of the intersection of all its stable models and that the
well-founded model of a program is a subset of its maximal det erministic model. Then, we show that the use of stable
models subsumes the use of the non-deterministic choice construct in LDL and provides an alternative definition of the
semantics of this construct. Finally, we provide a constructive definition for stable models with the introduction of a pro-
cedure, called buc~ruckingfkpoint, that nondeterministically constructs a total stable model, if such a model exists.

1. Introduction

The problem of negated goals in rules represents a
fast progressing area of research in deductive databases.
Thus, the concept of stratified programs that was intro-
duced only three years ago [ABW, CH, N, Vl] is now
regarded as a standard notion, efficiently supported in
systems such as NAIL! [VI and LDL [NT]. Much of
the current research focuses on going beyond the limita-
tions of stratified programs [KP]. The important con-
cepts of locally stratified programs and perfect models
were proposed for this purpose [pl, P2, P3]. More
recent work aims at going beyond local stratification, in
order to express situations such as the following exam-
ple, which describes a game where one wins if the
opponent has no moves:

wins(X) c move (X ,Y), +vins (Y).

Suppose that there is only one Move fact, as follows:

t This author’s work was done in part under contract by
MCC and was also supported by the Italian National Research
Council as part of the project “Sistemi Informatici e Calcolo
Parallelo”.

Permission to copy without fee all or part of this matertial is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that the copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

move (a b).

Then this program is not locally stratified; however, it
has a meaningful minimal model (the winner is obvi-
ously a) and the program does not seem to be ambigu-
ous or faulty. Well-founded models and stable models
represent two important proposals for going beyond
local stratification [GL, P4, PP, V2, VRS]. Recent
research focuses on constructive characterizations for
well-founded models Ip4, R, V2] and on the notions of
partial models, lP4]. The definition of partial models
used in [p4, P5] is based on 3-valued logic: the Her-
brand base of each program is partitioned into three sets,
respectively, containing ground atoms that are known to
be true, false, or are otherwise undefined. Total models
correspond to the case where the set of undefined
ground terms is empty.

An important difference between stable model
semantics and well-founded model semantics is that,
while a program has always a unique well-founded
model (either total or partial), it can have several alter-
native stable models. In this paper, we show that this
endows logic languages with the power to express
don’t-care non-determinism in a purely declarative
framework. We also clarify the relationships between
different semantics for negation, by proposing a more
general definition of partial models, establishing a
hierarchy between various models, and showing that
well-founded models are contained in the deterministic

0 1990 ACM 089791-352-3/90/0004/0205 $1.50 205

http://crossmark.crossref.org/dialog/?doi=10.1145%2F298514.298572&domain=pdf&date_stamp=1990-04-02

intersection of all stable models.

Let us illustrate these points with an example. We have
a database of students taking courses, as follows:

takes(andy, engl).
takes(ann, math).
takes(mark, engl).
takes(mark, math).

Say that we want to find the courses taught and an arbi-
trary student for each course. Then we can write the fol-
lowing rule:

a-st (St ,Crs)ttakes (St ,Crs), -dif-st (St ,Crs).
dif -st (St ,Crs)tSt l#St ,

takes (St l,Crs), a-st (St l,Crs).

The intuitive meaning of this program is that a given
student taking a course should be included in the a-st
answer, unless a different student also taking the same
course is already included in the answer.

As we will discuss in more details later, under the
stable model semantics [GL], this program has four
stable models, each containing one of the following four
pairs:

Table 1. Four alternative solutions

<aMandy, engl), a-st(ann, math)>
<a-st(mark, engl), a-st(mark, math)>
<a_st(ann, math), a-st(mark, engl)>
aMan&, engl), a-st(mark, math)>

Each of these four stable models satisfies the intended
semantics: Find an arbitrary student for each course.

As this example illustrates, there is a real need for
don’t care non-determinism in logic programming appli-
cations. To satisfy this strong need, special constructs
were introduced, such as the declarative constructs of
choice in LDL [KN,NTj, the witness operator in [AV],
and the procedural cut construct in Prolog (although the
cut serves many other purposes as well). However, no
special construct is needed once a stable model seman-
tics is used for logic programs, since the (multiple)
stable models semantics subsumes the LDL choice con-
struct, which, in turn, provides a declarative substitute to
Prolog’s cut [KNj. The well-founded model semantics is
not suitable for the example application, inasmuch as it
produces a partial model that blurs the meaning by
assigning an “undefined” classification to all the a-st
facts listed above.

The contribution of this paper is three-fold

(1) an in-depth study of the properties of partial
models, stable models and other interesting classes

of models and their relationships;

(2) the identification of the power of stable models to
express non-determinism, with a proof that they
subsume the semantics of programs with LDL’s
choice construct;

(3) the invention of a constructive semantics for stable
models via a generalized fixpoint procedure, called
backtracking fixpoint.

The paper is organized as follows. In Section 2, we
introduce partial models and stable models and, in Sec-
tion 3 and Section 4, we define strongly-founded
models, deterministic models and elucidate the relation-
ships between stable models and well-founded models.
In Section 5, we consider a generalization of locally
stratified programs and for the new class of programs
(weakly stratilied) for which a stable model always
exists. In Section 7 we show the relationship of stable
model semantics with LDL’s choice construct. In Sec-
tion 6, we present the backtracking fixpoint procedure
for constructing stable models. Because of space limita-
tions, some of the proofs will be omitted, they can be
found in [SZ].

2. Partial Models, Founded Models and Stable
Models

Let us start by defining our language (Horn clauses
plus negated goals in rules, as Prolog) and basic con-
cepts and notation jUJj.

A term is a variable, a constant, or a complex term
of the form f (tl, . . . , t,,), where tl, . . . , t,, are terms.
An atom is a formula of the language that is of the form
p(t) where p is a predicate symbol of a finite arity (say
n) and t is a sequence of tem~ of length n (arguments).
A literal is either an atom (positive literal) or its nega-
tion (negative literal). An atom A, and its negation, i.e.,
the literal 4, are said to be the complement of each
other. In general, if B is a literal, then -8 denotes the
complement of B. The absolute value of a literal B,
denoted abs(B) is defined as abs(B)=B if B is positive,
and abs (B)=-S if B is negative.

A rule is a formula of the language of the form

Q +Ql, . . . , Q,,,.
where Q is a atom (head of the rule) and Q t, . . . , Q,
are literals (goals of the rule). A term, atom, literal or
rule is ground if it is free of variables. A ground rule
with no goals is a fact. A logic program is a set of
rules. A rule without negative goals is called positive (a
Horn clause); a program is called positive when all its
rules are positive.

206

Given a logic program P, the Herbrand universe
for P, denoted HP, is the set of all possible ground
terms recursively constructed by using constants and
function symbols occurring in P . The Herbrand Base of
P, denoted BP, is the set of all possible ground atoms
whose predicate symbols occur in P and whose argu-
ments are elements of the Hp. A ground instance of a
rule r in P is a rule obtained from r by replacing every
variable X in r by e(X), where $ is a mapping from all
variables occurring in r to terms in the Herbrand
universe. The set of all ground instances of r are
denoted by ground (r); accordingly, ground (P) denotes
u,,p ground (r).

Let X be a set of ground literals; then -X denotes
the set (1A I A E X), X+ (resp., X-) denotes the set of
all positive (resp., negative) literals in X. Finally, x
denotes all elements of the Herbrand Base which do not
occur in X, i.e., X = (A I A E BP and neither A nor
4 is inX).

Definition 1. Let P be a logic program.

(4

(b>

(cl

Given a subset I of BP u -BP, I is an interpreta-
tion of P if it is consistent, i.e., there are no two
complementary elements in it. Moreover, if
I+ v --,I-=Bp, the interpretation I is called total;
and it is called partial otherwise.

A total model, M of P is a total interpretation of P
that makes each ground instance of each rule in P
true (where a ground literal is true if and only if it
belongs to M).

A minimal model M of P is a total model for
which there exists no other total model N such that
N+ is a proper subset of M+. 0

It is well-known that a positive program has a
unique minimal model which represents its natural
meaning. The set of positive 1iteraIs in the minimal
model can be determined using a fixpoint computation.
This computation is based on the immediate conse-
quence transformation Tp : 2”’ v4p+=2Bp that is
defined as Tp(X)= (AIAtA1,...,A, is in
ground(P) and Ai EX for each lliin). The transfor-
mation Tp is monotone in the complete lattice of set
subsumption, and, then, the least fixpoint of Tp exists
[T] and is denoted by Tp”(0). If P is a positive program
then M+ = T;(0), where M is the minimal model of P .

In order to analyze the meaning of programs with
negation, we now introduce the notion of partial model.

Dejinition 2. A partial interpretation M of a program P
is a partial model for P if for each 4 in M-, every
rule in ground(P) with head A contains at least one

goal,sayB,suchthat-& isinM. 0

The predicates which do not occur in M (i.e., those
in M) are not known to be true or false and, then, they
can be thought of as “undefined facts”. Our definition
of partial model, that is different from others proposed
in the past lP41, only guarantees that assuming a fact
false cannot be later contradicted by changes in the
value of undefined facts. The following intuitive pro-
perty holds.

PROPOSITION 1. Every partial model is a subset of
some total model.

PROOF. Let P be a program and M be a partial
model of P . Consider the set N = M u a. In order to
prove the proposition it is sufficient to show that N is a
total model. By construction, N is consistent and every
element of BP occurs in N; therefore N is a total
interpretation of P . So we only need to prove that every
rule in ground(P) is made true by N. Let A be the
head of an arbitrary rule r in ground (P); since N is
total, either A is in N+ or -,A is in N-. Let us only con-
sider the case that -,A is in N- as the proof is trivial in
the former case. By construction, -4 is also in M-;
therefore, by definition of partial model, there exists a
goal r , say B , such that -8 is in M. But M is a subset
of N by construction; so -8 is also in N. Thus the rule
r ismadetruebyN. 0

From the above proposition, it follows that the
definition of partial model is actually a generalization of
the definition of total model.

COROLLARY 1. For total interpretations, Dejinitions
lb and 2 are equivalent. 0

Example 1. Consider the following program:

p(a) + -P(b).

P(C) + p(b).

p(d) + P(C).

(p(a), -p(b), -p(c)) is a partial model and is a subset
of the total minimal model (p(a), -p(b), 7p(c),
-p(d)). q

We now present the definition of stability for total
models as introduced in [GLI. First of all, given a pro-
gram P and a total model M for P , we define the posi-
tive instantiation of P w.r.t. M, denoted Pnr, as follows:
PM is the positive program obtained from ground (P) by
deleting (a) each rule that has a negative goal -,A with
A in M, and (h) all negative goals from the remaining
rules.

Dejinition 3. A total model M is stable if
T& (0) = M+. Cl

207

Example 2. Consider the following program having O-
arity predicate symbols:

u t-Iv.

v t +A.

There are three total models: M, = (u, -s), M,= (v,
+),Ms= (u,v). OnlyMtandMzarestable. Cl

We next extend the notion of stability also to partial
models. To this end, we first extend the definition of
positive instantiation to the case of partial models.
Given a program P and a partial model M for P, the
positive instantiation of P w.r.t. M, denoted Pu, is the
positive program obtained from ground(P) by deleting
(a) each rule that has a negative goal 4 with A in M,
(b) each rule where an undefined element occurs (i.e.,
the head or the absolute value of one of its goals is in
M) and (c) all negative goals from the remaining rules.

Definition 4. Let P be a logic program.

(a) A partial model M for P is founded if
T;u (0) = M+.

(b) A partial model M for P is stable it is founded and
it is not a proper subset of any other founded
model. 0

Since no total model can be a subset of another
model, we have the following property:

FACT 1. For total models Definitions 2 and 4b are
equivalent. q

As proven next, in general, given a partial model
M, T& (0) is a subset of M+.

PROPOSITION 2. Let M be a partial model of a logic
program P . Then TFM (0) c M+.

PROOF. Consider the program PM and the set
N = N+ u N; where N+ = M+ and N- contains all
negative liter& in M- whose complement is in the Her-
brand Base of PM. By construction of PM and N, N is
a total interpretation of PM. We now show that N is
actually a total model of PM. In fact, consider an arbi-
trary rule r of Pnr. Saythattheheadofr isA. IfA is
in N+ then r is obviously made true by N. Suppose now
that -4 is in N-. Let r^ be the original rule in
ground (P) from which r has been derived. By
definition of partial model, i contains at least one goal,
say B , such that 4 is in M . We have that B is posi-
tive because otherwise r would have not been derived
(see part (a) of the definition of PM). Hence, 4 is in
M- and then, in N- by construction of N-. Therefore,
one of the goals of r is false and, then, r is made true
by N. So N is a total model for PM. Let L be the

(unique) minimal model of the positive program Py.
Obviously L+ E N+. But N+ = M+ and L+ = TFu (0); so

T;u (0) c M+. El

The elements in M+ - T& (0) can be thought of as
assumptions, in the sense that they cannot be actually
inferred in PM. We next formalize this intuition about
assumptions. To this end, we first present the notion of
unfounded set as given in [VRS] and a related notion
(assumption set).

Definition 5. Let I be a partial interpretation of a pro-
gram P and X be a non-empty subset of BP.

(a) X is an unfounded set w.r.t. I if for each A in X,
every rule with head A in ground(P) has some
goalg suchthatg isinX or7g isin].

(b) X is an assumption set w.r.t. I if for each A in X,
every rule with head A in ground (P) has some
goalwhichisnotin1 -X. 0

Obviously every unfounded set is an assumption set
but the converse is not true. For total interpretations, the
two concepts coincide.

THEOREM 1. A partial model M is founded if and
only if no subset of M+ is an assumption set w.r.t. M.

PROOF. Let P be a logic program and M be a par-
tial model for it.

(If-part). Suppose that no subset of M+ is an
assumption set w.r.t. M; we have to prove that M is
founded. We proceed by contradiction and we assume
that M is not founded, thus Tp; (0) # M+. But

T?u (0) t M+ by Proposition 2; so T& (0) c M+. Let
X = M+ - T& (0). By assumption, X is not empty. Let
A be any element in X. There exists no rule r in
ground (P) with head A such that each of its goal is in
M - X because otherwise, since the corresponding rule
inPnr hasallgoalsinM+-X andM+-X=Tp;(0),
A would be in TFu (0) by definition of least fixpoint.

Hence, X is an assumption set w.r.t. M (contradiction).
Therefore TFu (0) = M+ and M is founded.

(Only-Ifpart). Suppose now that M is founded; we
prove that no subset of M+ is an assumption set w.r.t.
M. Again we proceed by contradiction and we assume
that X E M+ is an assumption set w.r.t. M. Let
N = N+ u N- be the (unique) minimal model of PM.
Obviously, N+ = M+ = Tp; (0). Consider now the set
L =L+uL-, where L+=N+-X and L-=-X UN-.
By construction, L is a total interpretation of PM. We
now show that L is actually a total model of PM. In
fact, consider an arbitrary rule r of PM. Say that the

208

head of r is A. If A is in L+ then r is obviously made
true by L. Suppose now that -4 is in L-. There are two
possible cases:

(a) 4 is also in N-. Hence, since r is made true by
N, there exists a goal of r , say B , such that -B is
in N-. By construction of L-, -B is also in L- and,
then,r isalsomadetruebyL.

(3) 4 is in -X. Let F be the original rule in
ground (P) from which r has been derived. By
definition of assumption set, there exists a goal of
r,sayB,suchthatB isnotinM-X.B isinM+
because otherwise r would have not been derived
(see part (a) of the definition of PM). Hence, B is
in X and is a goal of r as well. Therefore, since
one of the goals of r is false w.r.t. L, r is made
truebyL.

It follows that L is a model of Pnr and we get a
contradiction since L+ c N+ by construction and N is
the minimal model of PM. Therefore any subset X of
M+ is not an assumption set w.r.t. M. Cl

COROLLARY 2. A total model M is stable if ana’ only
if no subset of M+ is an assumption set w.r.t. M. 0

Example 3. Consider the program of Example 2:

u t-Iv.

v t +A.

and the stable model M1 = (u, TV). We have that (u)
is not an assumption set w.r.t. M1 since the goal of the
first rule is in M1 - (u). Note that (u,v) is an assump
tion set (but not an unfounded set) w.r.t. the empty set.
Consider now the following program:

a c Ta.

btTc,d.

c t d.

d t b.

We have that the (Tb ,lc ,Td) is the unique stable
model. Note that (A) is an assumption set w.r.t. it.
Moreover, (b ,c ,d) is an unfounded set w.r.t. the empty
set. 0

Note that every program has at least one (possibly
partial) stable model since the empty set is always a
founded model.

FACT 2. There exists a stable model for every pro-
gram. 0

3. 3-Valued Models, Strongly-Founded Models and
Well-Founded Models

Following P5], we define a 3-valed logic with
T(rue), F (false), and U (undefined), ordered as follows
F < U < T. Given a program P , an interpretation I,
andagroundliteralA,value(A)isT ifA isinI,F if
-J is in Z and U if the abs of A is in i. Moreover,
the value of a conjunction C of ground literals is the
minimal value of the literals in the conjunction, i.e.,
value (C) = min4 in c(vafue (A)). If C is empty the we
assume that value (C) = T.

Definition 6. Let P be a program and I be an interpre-
tation for it. Then I is a 3-valued model for P if for
each rule r in ground(P), value (A) 2 value (C), where
A is the head of r and C is the conjunction of the goals
ofr. 0

We next show that 3-valued models are a subclass
of partial models.

THEOREM 2. Let P be a program and I be an
interpretation for it. Then, I is a 3-valued model for P
if and only if I is a partial model such that every subset
of r is an assumption set w.r.t. I. 0

Example 4. Consider the following program:

a.

bt Tc, c.

c tb.

d te.

Here we have that the total model (a ,-b ,-,c ,-d ,-e) is
both stable and 3-valued. The partial model (a,~) is 3-
valued but not founded; the empty set is a founded par-
tial model that is not 3-valued. Cl

We now turn our attention to a particular class of
the models that are both 3-valued and founded. Such
models correspond to the stable models as defined in
lm.
Definition 7. A partial model M is strongly-founded if
M is 3-valued, founded and no subset of fi is an
unfounded set w.r.t. M. 0

Example 5. Consider the program of Example 4. The
partial model (a,-b,+) is founded and 3-valued but
not strongly-founded since (d ,e) is an unfounded set
w.r.t. M. 0

As it will be shown next, strongly-founded models
are fixpoints of the following monotonic transformation
first defined in PRS]. We lirst observe that, given a
program P and an interpretation Z for it, the union of
all unfounded sets w.r.t. I (denoted by UP(~)) is also an

209

unfounded set w.r.t. I. Moreover, let
Wp (I) = Tp(1) u -Up (1). Then we have the following
theorem:

THEOREM 3. Let P be a logic program.

(a) Every strongly-founded model for P is a fixpoint of

WP.

(b) If an interpretation M for P is a fixpoint of Wp,
then M is a 3-valued model for P and no subset of
a is an unfounded set w.r.t. M. Cl

Example 6. Consider the following program:

P C-TP.

a c7p.

a c b.

b c a.

The 3-valued model (a b) is a fixpoint of Wp but is
not founded (thus, the converse of Part a of Theorem 3
does not hold). The 3-valued model (p) is not a
fixpoint of W, although no subset of M is an unfounded
set w.r.t. M (thus, the converse of Part b of Theorem 3
does not hold). Cl

Stable models are fixpoints of Wp since, as proven
next, they are strongly-founded.

PROPOSITION 3. Stable models are strongly-founded.
El

Since Tp, Up and Wp are monotonic transforma-
tions in the complete lattice of set subsumption, Wp has
a least fixpoint [TJ. This defines the well-founded model
of P [VRS].

Definition 8. Let P be a program. The well-founded
model of P is the least fixpoint of Wp. 0

PROPOSITION 4. Let P be a program. The well-
founded model for P is strongly-founded and is the
intersection of all strongly-founded models for P . 0

Thus, by the above proposition, the well-founded
model is the minimal strongly-founded model.

Example 7. Consider the following program:

a t Tb.

b c--a.

dt+,c.

c cd.

The well-founded model is (+ ,-4) and is the intersec-
tion of the two (total) stable models (a ,Tb ,~c ,Td) and
(b,Ta,Tc,Td). El

4. Deterministic Models

In this section we show that stable models capture
and express the notion of non-determinism in logic pro-
grams with negation. To elaborate this point, let us
return to the example in the introduction.

Example 8. Consider the following program:

takes (andy , engl).
takes (ann , math).
takes (mark, engl).
takes (mark, math).
a-st (St, Crs) t takes(St , Crs), -&f-St (St, Crs).
dif -st (St, Crs) c

St 1 # St, takes (St 1, Crs), a-st (St 1, Crs).

Consider the following set:

M’= (takes (andy ,engl), takes (ann math),
takes (mark ,engl), takes (mark math),
a-st (andy ,engl), a-st (ann math),
dif -st (mark ,engl), dif -st (mark math)) .

Let M- = 7(Bp - M’), where BP is the Herbrand base
of the program. Obviously M = M+ u M- is a total
model. It is easy to see that M is a stable model. But
this is not the only stable model since a simple sym-
metry argument let us infer that there are four stable
models each containing one of the four pairs in Table 1.
Indeed, given the complete symmetry between these
four models, the idea of one being preferable over
another would be semantically unfounded. The sym-
metry of the situation instead suggests that we have here
an instance of don’t-care non-determinism -fully cap-
turing the original intention “Find an arbitrary student
for each course”. Note that the well-founded model only
contains the takes facts whereas all a-st predicates
remain undefined. Cl

We can now establish a clear relationship between
stable models and non-determinism.

Definition 9. Let P be a logic program.

(a) The intersection of all the stable models for P will
be called the deterministic set for P .

(b) Every strongly-founded model which is contained in
the deterministic set will be called a deterministic
model.

(c) A maximal (resp., minimal) deterministic model for
P is a deterministic model that is not a proper sub-
set (resp.. superset) of any other deterministic
model. 0

The next two examples show that the deterministic
set is not necessarily a partial model and that a partial
model contained in the deterministic set is not neces-

210

sarily strongly-founded.

Example 9. Consider the following program P 1:

u +Yl,*2.

41+ a.

q2+ b.

a t Tb.

b t Ta.

There are two stable models: M 1 = (b ,q2, -a ,lq l,lu)
and M2= (a,ql, Tb,lq2,lu) (note that both models
are total). The deterministic set is (+) and obviously
is not a partial model.

Consider now the following program P2:

a.

P +3,a.

4 + -p,a.

r t p.

r t q.

Here there are two stable models (a ,p ,r , 3) and
(a ,q ,r , 7 p). The deterministic set is (a ,r) and is a
partial model in this case but not founded. 0

We now show that the well-founded model is the
unique minimal deterministic model.

PROPOSITION 5. The well-founded model is the
unique minimal deterministic model.

PROOF. Let P be a logic program. Since a stable
model is strongly-founded by Proposition 3, the well-
founded model is a subset of every stable model by Pro-
position 4, thus it is contained in the deterministic set.
Moreover, as the well-founded model is srrongly-
founded by Proposition 4, the well-founded model is a
deterministic model. Finally, since it is the intersection
of all strongly-founded models, none of its subsets is
strongly-founded It follows that the well-founded model
is the unique minimal deterministic model. 0

COROLLARY 3. Every logic program has at least one
deterministic model. 0

Note that for the program P2 of Example 9 the
well-founded model is (a), which coincides with the
maximal deterministic model. The next example shows
that, in general, this is not the case.

Example 10. Consider the following program:

a t 7b.

b t 7a.

a t +.

c t 7a,l b.

There is only one stable model, namely, M = (a,
Ib,-rc) whereas the well-founded model is empty.
Obviously M is the maximal deterministic model, i.e.,
the program is deterministic in a sense. The well-
founded model is unable to realize that the fourth rule
can never be fired, and thus cannot draw the necessary
consequences.

Every program has a unique maximal deterministic
model.

THEOREM 4. The maximal deterministic model is
unique. Cl

We summarize the class/subclass relationships
between the various models in the diagram of Figure 1.

PARTIAL MODELS

/\
3-VALUED MODELS FOUNDED MODELS

\/
STRONGLY FOUNDED MODELS

/\
STABLE MODELS DET. MODELS

/\
MAX. DET. MODELS WELL-FOUNDED MODELS

Fig. 1. The classlsubclass relationships between models.

It is important to remember that the diagram of Figure 1
only represents a partial order. Thus the class of
Strongly Founded Models is a subset of the class of 3-
Valued Models and of Founded Models, but it is not
equal to their intersection. Also, the class of well-
founded model coincides with that of minimal deter-
ministic models. Finally, the class relationship of Fig-
ure 1, should not be confused with the relationship
between instances, which can instead be summarized as
follows: the well-founded model of a program P is a
subset of the maximal deterministic model for P , which,
in turn, is a subset of each stable model for P.

The fact that the well-founded model can be a
proper subset of the maximal deterministic model indi-
cates that that well-founded models am not sufficient to
fully capture the deterministic implications of a logic
program. This supplies a Iirst motivation for going
beyond well-founded semantics. An even stronger
motivation follows from the fact that stable models pro-
vide a formal ground for expressing ‘non-deterministic’
aspects of logic programming. This is the topic of the
section following the next one.

211

5. Weakly Stratified Programs

A useful formalism to analyze semantics for nega-
tion is the (ground) dependency graph. Given a logic
program P , the dependency graph of P , denoted Gp , is
a directed graph whose nodes are all elements of BP
and whose arcs are defined as follows. Given two nodes
A andB,thereisanarcfromA toB ifthereexistsa
rule in ground(P) such that B is the head of the rule
and A one of the goals; moreover, if A is negated then
the arc is marked. We note that problems with the
semantics of negation are generated by cycles with
marked arcs.

A program P is locally stratified Cpl, P2, P3] if (a)
there are no cycles with marked arcs in Gp and (b) no
node of Gp is the end node of a path having an infinite
number of marked arcs. It is known that if a program is
locally stratified then it has a total well-founded model
[VRS] (and, then, this model is also stable). We now
show that the larger class of programs for which only
condition (a) holds have interesting properties. In fact,
for such programs the existence of a total stable model
(but not its uniqueness) is guaranteed. Note that in gen-
eral such a total stable model is not well-founded
model.

Definition 10. A program P is weakly stratified if there
are no cycles with marked arcs in Gp . 0

It turns out that every locally stratified program is
also weakly stratified but the converse is not true. But
for programs without function symbols, such as Datalog
programs, the two notions coincide.

THEOREM 5. If a program is weakly stratified then
each of its stable models is total. 0

COROLLARY 4. Every weakly stratifred program has
a total stable model. 0

We next show that, given a program and a founded
model, the part of the program that is “relevant” for the
model is weakly stratified.

Given a program P and a partial model M for P ,
the enabled instantiation of P w.r.t. M, denoted P&, is
the program obtained from ground(P) by deleting each
rule that has a goal not in M ; in other words, Pi con-
tains all “enabled” rules of ground(P), i.e., those rules
for which all goals are true.

PROPOSITION 6. Let P be a program and M be a
partial model for it. If M is founded then P,& is weakly
stratified. 0

6. Choice Models

Having thus examined the theoretical aspects of
non-determinism in programs with negation, let us next
establish their relationship to the semantics of declara-
tive constructs for defining non-determinism in deduc-
tive databases. For this purpose, we can limit our atten-
tion to the usual framework of total models. Thus from
now on, we will say models to mean total models, and
a model of P is represented only by its positive literal%
i.e., the model M stands for M u +Bp - M). The
notion of declarative semantics for non-determinism in
logic-based languages has been studied in [KNI, where
the choice construct was introduced and it was shown
that in terms of expressive power, it provides a declara-
tive replacement for Prolog’s cut. The choice construct
is efficiently supported in the current LDL implementa-
tion, and it has proven critical in important applications
[zl.

The meaning of a program with choice constructs is
defined by its choice models, as discussed next.

Example II. Consider the following program with
choice.

a-st (St, Crs) t takes (St, Crs), choice ((Crs), (St)).
takes (andy, engl).
takes (arm, math).
takes (mark, engl).
takes (mark, math).

The choice goal in the first rule specifies that the a-st
predicate symbol must associate exactly one student to
each course. Thus the above program has the following
four “choice” models:

M1=(a-st(andy,engl), a-st(ann,math)) u X,
MF(a-st(mark,engl), a-st(mark math)) u X,
M,=(a-st (mark ,engl), a-st (ann math)) u X ,
M,=(a-st(andy ,engl), a-st(mark math)) u X.

where X is the set of takes facts in Example 11. We
will show later in this section, that the above sets
correspond to the stable models of the program in
Example 8.0

Let us now formalize the notion of choice model.
A choice predicate is a predicate of the form
choice((X),(Y)), where X and Y are disjunct lists of
variables (note that X can be empty). A choice rule is a
rule having one or more choice predicate as goals.
Finally, a choice program is a positive program such
that

(a) At least one of its rule is a choice rule,

212

(b)

Cc)

No choice predicate occurs in the head of any rule,
and

The head of each of its choice rules is not mutually
recursive with some of the goals of the rule. (More
about this stratification condition for choice will be
said later.)

Let P be an choice program and suppose that the
rules of P are numbered with distinct indices. The posi-
tive version of P , denoted by PV(P), is the positive
program obtained from P by removing all choice goals.
Moreover, the extended version of P, denoted by
EV(P), is the positive program obtained from P by
replacing each choice rule in P , say

ri: A t B,C.

where i is the index of the rule, C is the conjunction of
all choice goals and B is the conjunction of all remain-
ing goals, with the two following rules:

A t B, extChoicet(Z).

extChoicei(Z) t B.

where Z are all variables in the choice goals, listed in
the order they occur in such goals.

Let Ii and Z2 be two interpretations from two possi-
bly different Herbrand bases of two, possibly different
programs. Then we define IlN2 as (A I A is in Ii and
the predicate symbol of A also occurs in 12). It turns
out that, when Ii/I2 = la, then Ii is identical to I2
modulo additional literals whose predicate symbols are
not in I2

PROPOSITION 7. Let P be a choice program, M and
N be the minimal models of PV(P) and of EV(P),
respectively. Then NIM = M. Cl

Note that the only predicates of EV(P) which do
not occur in PV(P) are those with symbol eXtChoiCei .

Consider any of such predicate, day extChoicei(Z) with
arity n = I ZI . This predicate correspond to an nary
database relation Rt (m) whose attribute names are the
variables in Z and whose tuples are ((2) I extChoicet (z)
is in the minimal model of EV(P)). Given the rule ri in
P to which the new predicate is associated, we define
the following set F of functional dependencies on Ri:

F =(X -+ Y I choice ((X),(Y)) is a goal of ri) .

A reduced version of Ri is a maximal subset of Ri for
which all the functional dependencies in F hold. Note
that a reduced version of Ri is not necessarily unique
and is empty if and only if Ri is empty.

We can now define a reduced version of P , denoted
as RV(P), as the program obtained from EV(P) by

replacing each rule of the form

extChoicet(Z) t B.

with the set Of facts (eXtChoiCet (Z) I (Z) is in Si),
where Si denotes an arbitrarily chosen reduced version
of Rt. Note that, as a reduced version of Ri is not
necessarily unique, P may have several reduced ver-
sions.

Dejnition II. Let P be an choice program. The
minimal model of every reduced version of P is a
choice model for P . 0

Example 12. Consider the following choice program P :

colored (G ,C) tcolor (C), glass(G),
choice ((C),(G)), choice ((G),(C)).

color (green).
color (red).
color (fuxia).
glass (mine).
glass (yours).

PV(P) is obtained from P by replacing the first rule
with the following one:

colored (G ,C) t color(C), glass(G).

According to the minimal model of PV(P), both my
and your glass are colored with all three available
colors. EV(P) is obtained from P by replacing the lirst
rule with the following two rules:

colored (G ,C) t color (C), glass (G),
extChoice (C ,G).

extchoice (C,G) t color(C), glass(G).

(Note that we do not need any index for there is only
one choice rule in P .) The attribute names of the rela-
tion R are C and G and its tuples are ((a ,b) I a is
green, red or f uxia and b is mine or yours). The set
of functional dependencies associated to R is F =
(C + G, G + C). A reduced version of R is S =
((mine ,red), (yours green)). Therefore, the program,
composed by the following rules:

colored (G ,C) t color(C), glass(G),
extchoice (C ,G).

extchoice (mine ,red).
extChoice (yours ,green).

and by all facts in P defining color and glass is a
reduced version of P. According to this program, a
choice model for P assign the color red to my glass
and the color green to your glass. It is easy to see that
each choice model assigns exactly one color to each
glass in such a way that the two glasses do not share the
same color. Therefore, the choice rule of P can be read

213

as follows: “From all possible combinations of colors
and glasses, choose a combination for which each glass
is colored with at most one color and the same color is
used for at most one glass”. 0

Thus choice models introduce the notion of non-
deterministic choice in logic programming and, there-
fore, enlarge its expressive power. The very meaning of
the choice construct can be summarized as follows. A
number of constraints are imposed upon the database
relation corresponding to the head predicate of the
choice rule; then any maximal subset of this relation
satisfying these constraints can be selected. A direct
implementation of this definition is rather inefficient
since it would require (i) computing the model for the
positive version of the program and, then, (ii) checking
for functional dependencies in various subsets and, (iii)
computing the model of a reduced version of the pro-
gram whose size (i.e., the total number of symbols in
the program) is polynomially bounded in the size of the
original program.

We will next propose an alternative definition of
choice models in terms of stable models. This illustrates
the ability of stable models to capture non-determinism
and is also conducive to more efficient computation. In
fact, we can map a program with choice into a program
with negation whose size is linear in the size of the
choice program. Moreover, as it will be shown in the
next section, a choice model can be computed efficiently
from the constructed program.

Given a choice program P , the stable version of P ,
denoted by SV(P), is the program with negation
obtained from P by the following two transformation
steps:

(a) Replace each choice rule in P , say

ri: A t B,C.

where i is the index of the rule, C is the conjunc-
tion of all choice goals and B is the conjunction of
all remaining goals, with the two following three
rules:

A t B, chosent(Z).

choseni (Z) t extChoicei (Z), Tdiff Choicei (Z).

extChoicei(Z) t B.

where Z are all variables in the choice goals, listed
in the order they occur in such goals, and

(b) For each goal choice ((X),(Y)) in C, add a new rule
as follows;

diff Choicei (Z) t choseni (U), Y f 9.

where U is a list of variable obtained from Z by
replacing .every variable Y in Y by a new variable
2 and Y # Y is the conjunction of comparison
predicates Y # 9, one for each Y in Y.

PROPOSITION 8. Let P be a choice program. Then
ISV(P)I = @(IPI x n), where ISV(P)I and IIP I are the
sizes of SV(P) and P , respectively, and n is the maxi-
mal number of choice goals in any choice rule of P . El

Example 13. Consider the choice program P of Exam-
ple 12. The stable version of P is the program com-
posed by the following rules:

colored (G ,C) t color(C), glass(G), chosen (C ,G).
chosen (C ,G) t extchoice (C ,G),

-dif f Choice (C ,G).
extchoice (G ,C) t color(C), glass(G).
diff Choice (C ,G) t chosen (C ,&), G #G’.
diff Choice (C ,G) c chosen (6 ,G), C&J’.

and by all facts in P defining color and glass. (Note
that, again, we did not introduce indices since there is
only one choice rule in P .) It can been easily seen that
SV(P) can be read in the same way as P as follows:
“From all possible combination of colors and glasses,
choose a combination for which the same glass is
colored with at most one color and the same color is
used for at most one glass”. 0

It follows directly from the definition of SV(P) that
every total model of the stable version of a program is
stable and corresponds to a choice model.

LEMMA 1. Let P be a choice program. Then every
stable model of SV(P) is total and SV(P) has at least
one stable model. 0

THEOREM 6. Let P be a choice program. Then

(a) for each choice model M for P , there exists a
stable model N of SV (P) such that N IM = M , and

(b) for each stable model N for SV(P) there exists a
choice model M for P such that NIM = M. 0

Thus, given a program with choice constructs there
exists an equivalent program with negation, such that
(disregarding new predicate symbols), the new program
has a set of stable models which is exactly the set of
choice models of the old program.

Example 14. Consider the program’ P of Example 12
and its stable version, SV(P), of Example 13. It is easy
to see that the choice models of P coincide with the
stable models of SV(P), modulo the predicates with
symbols chosen, extchoice and diff Choice. Consider
now the program of Example 11. Its stable version is
the following program:

214

a-st (St, Crs) t takes (St, Crs), chosen (Crs , St).
chosen (Crs, St) t extchoice (Crs, St),

-dif f Choice (Crs , St).
extchoice (Crs, St) t takes (St, Crs).
diff Choice (Crs , St) c chosen (Crs , s), St &
takes (andy , engl).
takes (am, math).
takes (mark, engl).
takes (mark, math).

Note that the program in Example 8 can be obtained
from the program above by removing some redundant
predicates. (Indeed the predicates chosen and a-st are
identical, and so are takes and extchoice .) These redun-
dancies follows from the generality of the construction
used to build the stable versions. 0

We note that, in the definition of choice program,
we have introduced two restrictions. The first restriction
is that the head of each choice rule is not mutually
recursive with any of the goals (stratified programs WA.
choice). It can be shown that this restriction can be
lifted without changing substantially the results; how-
ever, the definition of stable versions becomes more
complex. For simplicity of presentation and because
every program with choice in recursive rules can be
substituted by a program stratified w.r.t. choice, we
will not discuss here this general case.

The second restriction is that the choice program
does not contain negative goals. Obviously, general pro-
grams with choice and negated goals in recursive rules
are intractable inasmuch as there is no semantics for
general programs with negation. However, some kind
of negation (e.g., stratified negation [ABW, CH, N, Vll)
can be allowed. For instance, it can be shown that most
results of this section can be extended to programs
stratified w.r.t. negation.

7. Backtracking Fixpoint

We have seen that stable models provide a general-
ization to well-founded semantics capable of expressing
the notion of non-determinism. An apparent deficiency
of stable models is that no constructive way is currently
known to realize this semantics. We next address this
problem by the introduction of a generalized fixpoint
computation that uses non-determinism and backtrack-
ing. The computation of stable models is described in
Figure 2.

In the procedure of Figure 2, we use the immediate
consequence transformation Tp and its least fixpoint
Tp”(0). Moreover, we denote by fi the Horn version of
a program P , i.e., the positive program obtained from P

by viewing each negative literal lp(A) as a new posi-
tive literal with predicate symbol -g . Let X be a set of
negative ground literals (regarded as facts); following
the notation in [V2], we define Sp(X) = T;JO)-X -
i.e., the positive literals in the least fixpoint (and
minimum model) of P^ given a fixed set of negative
ground literals X .

begin
M,, := S,(0); h, := 0;
i := 0; stable := true; done := false;
while stable and not done do

’ := i+l;
L’ Ci = 0 then

done := true
else

Lt := order (Ct);
conflict-rule := true;
while stable and conflict-rule do

if Li z 0 then
r := next (Li);
ai := Mi-LU N(r);
Mt := Sp (Mt);
conflict-rule I= conflict (Mi at);

else
i := i-1;
if i=O then stable := false endif

endif
end

endif
end;
if stable then
output Mt-1 “is a stable model”
else
output “No stable models”
endif

end.

Fig. 2. Stable Backtracking Fixpoint

The procedure of Figure 2 starts at level 0 by deter-
mining all ground predicates that can be inferred using
only positive ground literals. In terms of the Sp nota-
tion, MO = S,(0) is computed. No negative ground
literal is assumed: we set n;iu = 0. Then we move up to
level 1. Here, we consider the set C 1 of all rules in
ground(P) with negative literals in their bodies such
that (i) all positive literals are in MO, and (ii) all nega-
tive literals, as well as the head predicate, are not in MO.
More in general, at the generic level i>l, Ci denotes the
set of all rules r in ground(P) such that:

(i) all positive literals in the body of r are in Mt-1,

(ii) r has at least one negative literal, say 4, such
that neither 4 is in A?i-1, nor N is in Mt-1,

(iii) the head of r is not in Mi-1.

215

Thus, r has the following form (assuming that the lists
of P ‘s and d’s are not empty):

H t PI,. . . .P,, -&, . . . , -&, -,N1,. . . ,-,N,.

such that

(1) H 6 Mivl;

(2) Pj (lyln) E Mi-1;

(3) 4j (l<jG?Z) E 1cii-1;

(4) Nj (l~~jlr) & Mt-1 and +j (lljll) ~~i_l.

If Ci is empty, then we are done, and Mi-1 is a stable
model. Otherwise, all the rules in Ci are inserted into
the list Li in an arbitrary order (see function order).
Then the first rule r is removed from Lt (see function
next) and taken into consideration. Say that r has a
structure shown above; then we add (-JVt, . . . , a,),
returned by the function call N(r), to the set ai-1 of all
negative ground literals that have been assumed up to
level i -1. In this way, we obtain fii , the set of all nega-
tive ground liter& assumed up to level i ; we use such
negative literals to infer all possible positive ground
literals through the program PI i.e., we compute Mi as
Sp(i@i). At this point, we invoke the function
conflict (Mifit) which returns true only when there
exists some Q in Mi such that -Q is in fii. If there is
no conflict, then we move up to the next level; other-
wise, we remain at level i and we retry with another
rule in Li. If Li happens to be empty then we backtrack
to the level i-l and select another rule for this level. If
we eventually get back to level 0, no more alternatives
are possible and the procedure stops by declaring that
the program has no stable models.

PROPOSITION 9. The procedure “Stable Backtracking
Fixpoint” applied to a program P has the following
properties:

(a) if the procedure terminates then the result returned
by the procedure is correct, and

(b) when HP is finite. the procedure always terminates.
Cl

Thus, if the procedure terminates on P returning
“no stable model”, then P has no stable model. If the
procedure terminates and returns a set of facts Mi-1,
then MiSl constitutes a stable model. However, termina-
tion can only be guaranteed for certain classes of pro
grams, such as Datalog programs. The possibility of
non-termination, is typical of constructive semantics of
programs with negation, including well-founded models
[p4, V2], and stratified models [ARWj. Indeed it is
interesting to compare our backtracking fixpoint with the
standard stratified fixpoint computation which is rou-

tinely used in practical applications [ARW].

Say then that we are given a stratified program,
where c is the total order among predicate names
induced by the stratification. Now, we need to order
rules in ground (P) as follows. Given two rules r 1 and
r2 with head predicates symbols q1 and q2, then rle2 if
q1cq2. We can now introduce the following simple con-
straint to the function order: if r1e2, while r2vl does
not hold, then rr must appear before r2 in
Li:=order(Ci). Under such a constraint the procedure
of Figure 2 never backtracks on stratitied programs, and
thus it reduces to the standard and efficient fixpoint-
based computation of stratilied programs [ABWJ.

A second class of programs, for which our pro-
cedure behaves surprising well even for infinite
universes, are the stable versions of choice programs.

PROPOSITION 10. Let P be a choice program. Then
the procedure “Stable Backtracking Fixpoint” applied to
W(P) has the following properties:

(a) it never backtracks and never outputs “no stable
models”;

(b) for each level i, Mi s Mt+l and Mi E M, where M
is a stable model of SV(P). Cl

Thus the operational semantics of stable models
contirms what we already know from the LDL imple-
mentation: making a choice is a complex operation
the semantic viewpoint, but computationally it is a
rather simple one.

8. Conclusions

Starting from a new definition of partial model, we
have singled out a number of interesting classes of
models. In particular, we have shown that the novelty of
stable models w.r.t. the well-founded model is that they
introduce a kind of non-determinism in a logic program.
This property has been then confirmed by the fact that
the non-deterministic choice construct used in LDL
(KN, Z] can be explained in terms of stable model
semantics. Finally we have presented a procedure for
computing stable models. Although its termination can-
not be guaranteed for infinite universe, if the procedure
terminates then it determines a total stable model (if
any). A number of new applications are made possible
by the formal semantics of non-determinism proposed
here; for instance, it is used in [Z] to model the notion
of object identity in predicates.

216

ACKNOWLEDGEMENTS. The authors would like to
thank Luigi Palopoli, for several seminal discussions,
and Vladimir Lifschitz and Francesca Rossi for tbeir
comments on a earlier version of this paper.

References

[AV] Abiteboul S., and V. Vianu, ‘Fixpoint Exten-
sions of First-Order Logic and Datalog-Like
Languages,” Proc. Fourth Symposium on Logic
in Computer Science (L&X), IEEE Computer
Press, pp. 71-89, 1989.

[ABW] Apt, K., Bair, H., and Walker, A., “Towards a
Theory of Declarative Knowledge,” Minker, J.
(ed.), Morgan Kaufman, Los Altos, 1987, pp.
89-148.

0-U

ELI

[KNI

[JQI

[Ll

ml

CNTl

[PII

l-W

Char&a, A., Harel, D., “Horn Clauses and Gen-
eralization”, Journal of Logic Programming 2,
1, 1985, pp. 320-340.

Gelfond, M., Lifschitz, V., “The Stable Model
Semantics for Logic Programming”, Proc. 5th
Inc. Conf. and Symp. on Logic Programming,
MIT Press, Cambridge, Ma, 1988, pp. 1070-
1080.

Krishnamurthy, R. and Naqvi, S.A., “Non-
Deterministic Choice in Datalog”, Proc. 3rd Inc.
Conf. on Data and Knowledge Bases, Morgan
Kaufmann Pub., Los Altos, 1988, pp. 416-424.

Kolaitis, P.G. and Papadimitriou C.H., ” Why
not Negation by Fixpoint,” ACM SIGMOD-
SIGACT Symp. on Principles of Database Sys-
tems, March 1988, pp. 231-239.

Lloyd, J.W., Foundations of Logic Program-
ming, Springer Verlag, Berlin, 1987.

Naqvi, S.A., “A Logic for Negation in Database
Systems,” in Foundations of Deductive Data-
bases and Logic Programming, (Minker. J. ed.),
Morgan Kaufman, Los Altos, 1987.

Naqvi S. and S. Tsur, “A Logical Data
Language for Data and Knowledge Bases,”
Computer Science Press, New York, 1989.

Przymusinski, T.C., “On the Semantics of
Stratified Deductive Databases and Logic Pro-
grams”, Journal of Automated Reasoning, to

appear.

Przymusinski, T.C., “On the Declarative and
Procedural Semantics of Deductive Databases
and Logic Programs”, in Foundations of Deduc-
tive Databases and Logic Programming,
(Minker, J. ed.), Morgan Kaufman, Los Altos,

P31

P41

WI

PPI

Km

Iv1

lwl

WI

[VW

El

1987, pp. 193-216.

Pmymusinski, T.C., “Perfect Model Semantics”,
Proc. 5th Inc. Conf and Symp. on Logic Pro-
gramming, MIT Press, Cambridge, Ma, 1988,
pp. 1081-1096.

Przymusinski, T.C., ‘Every Logic Program has
a Natural Stratification and an Iterated Fixed
Point Model”, Proc. ACM Symp. on Principles
of Database Systems, pp. 11-21, 1989.

Pmymusinski, T.C., “Well-Founded Models are
Intersections of 3-Valued Stable Models,” e-
mail communication, April 1989.

Prxymusinska, H, Pnymusinski, T.C.. “Weakly
Perfect Model Semantics for Logic Programs’,
Proc. 5th Inc. Con$ and Symp. on Logic Pro-
gramming, MIT Press, Cambridge, Ma, 1988,
pp. 1106-1120.

Ross, K., “A Procedural Semantics for Well-
Founded Negation in Logic Programs,” Proc.
ACM Symp. on Principles of Database Systems,
pp. 22-31, 1989.

Sacd D. and C. Zaniolo, “Partial Models,
Stable Models and Non-Determinism in Logic
Programs with Negation,” MCC/ACT Technical
Report, January 1990.

Ullman, J.D., Principles of Database and
Knowledge-Base Systems, Vol. I and 2, Com-
puter Science Press, Rockville, Md., 1989.

Van Gelder, A., “Negation as Failure Using
Tight Derivations for Logic Programs,” Proc.
3rd IEEE Symp. on Logic Programming,
Springer-Verlag, 1986, pp. 127-138.

Van Gel&r, A., “The Alternating Fixpoint of
Logic Programs with Negation”, Proc. ACM
Symp. on Principles of Database Systems, pp.
l-10, 1989.

Van Gelder, A., Ross, K., Schlipf, J.S.,
“Unfounded Sets and Well-Founded Semantics
for General Logic Programs”, ACM SIGMOD-
SIGACT Symp. on Principles of Database Sys-
tems, March 1988, pp. 221-230.

Zaniolo, C. “Object Identity and Inheritance in
Deductive Databases: an Evolutionary
Approach,,, Procs. 1st Inc. Conf. on Deductive
ana’ Object-Oriented Databases, Kyoto, Japan,
1989.

217

