
A Framework for the Performance Analysis of Concurrent
B-tree Algorithms

Theodore Johnson, johnsnthQcsd2.nyu.edu
Dennis Shasha, shasha@cs.nyu.edu

Courant Institute of Mathematical Sciences, New York University *

Abstract

Many concurrent B-tree algorithms have been pro-
posed, but they have not yet been satisfactorily ana-
lyzed. When transaction processing systems require
high levels of concurrency, a restrictive serialization
technique on the B-tree index can cause a bottleneck.
In this paper, we present a framework for construct-
ing analytical performance models of concurrent B-
tree algorithms. The models can predict the response
time and maximum throughput. We analyze three al-
gorithms: Naive Lock-coupling, Optimistic Descent,
and the Lehman-Yao algorithm. The analyses are
validated by simulations of the algorithms on actual
B-trees. Simple and instructive rules of thumb for
predicting performance are also derived. We apply
the analyses to determine the effect of database re-
covery on B-tree concurrency.

1 Introduction

Concurrency control is the activity of preventing
harmful interference between asynchronous concur-
rent processes in a database management system.
Concurrent search structures, especially concurrent
B-trees, are most often used in database systems.
Applications such as airlines, telecommunications,
banks, and real-time databases require 1000 or more

‘This work was partially supported by the National Science
Foundation under grant number IRI-89-1699 and by the Office
of Naval Research under grant number N00014-85-K-0046.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise , or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791-352-319010004/0273 $1.50 273

transactions per second; a transaction consists of 4-
6 record accesses, most of them through indices [6].
If each transaction requires .l seconds, the multipro-
cessing level will average around 100. At such high
multiprocessing levels, restrictive serialization tech-
niques result in a serialization bottleneck.

Many concurrent B-tree algorithms have been pro-
posed ([2,5,14,16,18,23]). These algorithms have not
been satisfactorily analyzed, however. Bayer and
Schkolnick [2] and Ellis [5] derive formulae for the
number of locks held and the maximum number of
concurrent operations, respectively, for their algo-
rithms. These analyses don’t predict performance,
though. Ford et. al ([20,21]) compares the different
algorithms based on the number of locks that the al-
gorithms place, and calculates performance for a bus-
based architecture. This analysis does not take into
account the probability that the locks conflict or the
time that the locks are held, and is very dependent on
the underlying computer architecture. Shasha et. al.
[4] give architecture-independent formulae for calcu-
lating upper and lower bounds on the performance of
various B-tree algorithms. No deletes are allowed in
the operation mix, however, and the analysis depends
on crude assumptions about the flow of operations in
the B-tree. Carey and Cheng [3] discuss a simulation
model of concurrent B-trees.

In this paper, we will discuss the framework of our
analytical model. Using the framework and the ana-
lytical tools that we have developed, we can analyze
concurrent B-tree algorithms by a uniform method.

2 The Concurrent B-tree Al-
gorit hms

The algorithms that we will consider are Naive Lock-
coupling, Opiimistic Descent and Link-type. The first
two algorithms are described in [2]. The Link-type
algorithm was first proposed in [16], then extended

http://crossmark.crossref.org/dialog/?doi=10.1145%2F298514.298580&domain=pdf&date_stamp=1990-04-02

in [15,23].
The simplest B-tree concurrency control mecha-

nism is to have each operation lock the entire tree.
However, most update operations (i.e. inserts and
deletes) change only a small portion of the tree. The
Naive Lock-coupling algorithm ([2,17]) is a first step
towards exploiting this fact. Each node must be
locked before it is accessed. Lock-coupling requires
that the child of a node must be locked before the
lock on the parent may be released. Search opera-
tions read lock (R lock) the root, search the root to
choose the correct child, then R lock the child. Af-
ter obtaining the R lock on the child, the lock on the
parent is released. Insert and delete operations follow
the same protocol, except that write locks (W locks)
are used, and all ancestor locks are released if and
only if the child node is safe for the operation. For
example, insert operations only release the ancestor
locks if the child is not full. When the leaf node is
locked, all nodes that will be involved in restructur-
ing are locked, so that the operation may restructure
without interfering with the correct execution of other
operations.

The Naive Lock-coupling algorithm can be im-
proved on by observing that a B-tree rarely restruc-
tures. In the Optimistic Descent algorithm [2], the
insert and delete operations place R locks down to
the leaf, then W lock the leaf using lock-coupling.
If the leaf is unsafe, the operation releases all of its
locks and starts over, placing all W locks on the sec-
ond pass.

The Link-type algorithm ([16,23]) uses links to re-
move the need for lock-coupling. Every node (ex-
cept for the rightmost) is linked to its right neighbor.
Operations place R locks to the leaf, and insert and
delete operations place W locks on the leaves. At
most one lock is held at a time. If a node becomes
too full after an insert, half of the keys in the node
are transferred to a new sibling, the sibling is linked
with its neighbors, the node lock is released, the par-
ent node is locked, and a pointer to the new sibling
is inserted into the parent. If the parent becomes too
full, the process continues. If a node becomes lost
navigating the B-tree, it can use the links to find the
proper node. (In a merge-at-empty B-tree, merges
are infrequent, provided inserts outnumber deletes,
so we ignore them [lo]).

3 The Analytical Framework

We model a concurrent B-tree as an open system of
queues. Our model makes several assumptions and
approximations that are justified by the model’s close

agreement with simulation. The queues represent the
lock queues in which the operations must wait to ob-
tain the required node locks. Each queue models a
representative node on a different level of the tree
(see Figure 1).

3.1 Performance Measures

To determine the performance of the various concur-
rent B-tree algorithms, we need performance mea-
sures. One obvious performance measure is the re-
sponse time given by the algorithm. The response
time of an operation is the time from the beginning
to the end of an operation. An operation’s response
time has two components: the time spent working
and the time spent waiting. The time spent work-
ing is assumed to be constant, for a given algorithm,
while the time spent waiting will increase with in-
creasing concurrency, and is the focus of study.

Unlike the analyses in [2,5,4], this analysis mod-
els the concurrent B-tree as being an open system.
In an open system, the throughput is not an inter-
esting measure: if all of the queues are stable, the
throughput is equal to the arrival rate. Instead, we
will calculate the m&mum tboughput, which is the
maximum possible sustainable arrival rate. The max-
imum throughput and the response time are comple-
mentary performance measures. An algorithm with
a higher maximum throughput usually has lower re-
sponse times, but not always.

3.2 Assumptions

Arrival rate: The arrival rate into the queue that
represents the root is proportional to the arrival rate
of all operations (the rates are not necessarily equal
because, depending on the algorithm, an operation
might lock the root twice). The arrival rate into
a lower queue is the arrival rate into the predeces-
sor queue divided by the fanout on the predecessor’s
level. We assume that the root’s arrival rate can be
described by a Poisson process, and that the arrival
rates in the succeeding queues can also be described
by a Poisson process. This is a strong assumption,
but not an uncommon one ([l&13]).

Service time: The service time in each queue is
the time that a lock is held, and depends on the al-
gorithm. Lock coupling is modeled by defining the
service time to include the time to access the node,
the time spent waiting to lock the next level, and
all further time that the lock must be held if the
child is unsafe. This modeling assumption, combined
with the previous assumption, removes the explicit

274

stochastic dependence between queues. We assume
that the access times can be modeled by exponential
distributions, and that the lock service times can be
modeled by hyperexponential distributions (another
strong assumption).

Resource contention: We assume that resource
contention can be described by a service-time dila-
tion factor. This assumption allows us to separate
the effects of resource contention and data contention
(as, for example, in [22,26]), which in turn allows us
to create a much simpler model than otherwise. We
do not feel that this assumption is a strong assump-
tion. While many of the algorithms require the per-
formance of some extra work, the additional work is
small even for the maximum sustainable throughput.

Steady state: The analysis calculates the perfor-
mance of an algorithm on a B-tree of a particular
size. On the other hand, our restructuring parame-
ters model the case when inserts outnumber deletes.
Blocking decreases when the root’s fanout increases,
and response times increase when the B-tree’s height
increases. The analysis assumes that the queues reach
a steady state, which implies that the B-tree doesn’t
grow too quickly. This is usually a safe assumption,
and is justified by comparison to the simulation re-
sults.

Lock types: Different types of operations place dif-
ferent types of locks. In Naive Lock-coupling, for
example, search operations place R locks and insert
operations place W locks. An operation may place
different types of locks during different phases of the
operation (for example, insert operations in the op-
timistic descent algorithm). We assume that R locks
may be shared, but that W locks are exclusive (may
not be shared with either R or W locks). We also
assume that locks are granted in FCFS (First-Come,
First Serve) order. We analyzed these types of lock
queues in [8]. The assumptions made to analyze those
queues must be made to analyze the concurrent B-
tree algorithms. The primary assumptions are Pois-
son arrivals and exponential service times. The re-
sults of [S] are discussed in the Appendix.

B-trees: Bayer and McCreight proposed a B-tree
where keys are stored at all levels in the tree [l].
Wedelcind pointed out that the B+-tree, where all
keys are stored in the leaves, is more appropriate for
database applications [25]. All of the data structures
studied in this paper are B +-tree, and the term B-tree
will be an abbreviation for the term Bt-tree.

The B-tree described by Wedekind restructures a
node if it becomes less than half full [25]. We call this
strategy merge-at-half. Most B-trees implemented in
practice never restructure nodes due to underflow
conditions. We call this strategy merge-at-empty.
Johnson and Shasha compare the space utilization
and restructuring rates of merge-at-half and merge-
at-empty B-trees [9]. They find that merge-at empty
B-trees have a significantly lower restructuring rate
and a slightly lower space utilization, if there are more
inserts than deletes in the instruction mix. Merge-
at-empty is more appropriate than merge-at-half for
concurrent B-tree algorithms. AlI algorithms studied
in this paper use merge-at-empty B-trees.

3.3 Framework

The general analytical framework is the following:
Classify operations based on whether they place R
or W locks. Calculate the arrival rates and service
times for the R and W locks in each queue. Calculate
the expected waiting times for the R and W locks in
each queue. The algorithm on the B-tree can handle
the arrival rate if all of the queues are stable. The
response time of an operation is the time the opera-
tion would take alone plus the time spent waiting for
locks.

4 The Simulator

We wrote a concurrent B-tree simulator and per-
formed experiments. The simulator first builds a B-
tree out of a sequence of insert and delete operations.
Next, a sequence of concurrent B-tree operations is
performed. The simulator uses the concurrent B-
tree algorithm being studied to perform the concur-
rent operations. The proportion of search, insert and
delete operations is a parameter. The proportion of
insert to delete operations in the construction phase
is the same as the proportion in the concurrent oper-
ation phase.

The concurrent operations arrive in a Poisson pro-
cess and then perform their action on the B-tree.
All service times have exponential distributions. The
only upper limit on the number of concurrent oper-
ations is the amount of space allocated for them. If
the simulator tries to create more concurrent opera-
tions than there is space for, the simulator crashes.
If a simulator crashes with a particular set of param-
eters, the space allocated for concurrent operations
is increased until the simulator doesn’t crash on any
run, if possible. Otherwise, none of the simulator runs
are reported.

275

The simulator collects a variety of statistics, in-
cluding the operation response times and the lock
waiting times. The simulator might also collect some
algorithm-specific statistics.

5 Analysis of Naive Lock-
Coupling

We model the concurrent B-tree as a sequence of jobs
that pass through a series of FCFS R/W queues.
Each job represents one of the operations and each
queue represents a level in the B-tree. Since insert
and delete operations always place write locks in this
algorithm, we model them as W jobs. Search oper-
ations always place read locks, so we model them as
R jobs. The B-tree has h levels: the leaves are at
level 1 and the root is at level h. The expected wait-
ing time of an operation is the sum of the expected
waiting times in all of the queues. The expected re-
sponse time of an operation is the expected waiting
time plus the expected service time for the operation.
The expected service time is a direct calculation. In
order to find the expected waiting time, we need to
determine the arrival rate and the expected time that
an operation holds a lock at each level in the B-tree
and use these parameters on the FCFS R/W queue.

In the following list of parameters, the cost of ac-
cessing a node is the same as if the operations were
to access the B-tree serially.

Parameters

Se(;): The expected time needed to search an i
level node.

M: The expected time needed to modify a (leaf
level) node.

Sp(i): The expected time needed to split an i
level node (including the cost of modifying
the parent node).

Mg(i): The expected time needed to merge
(delete) an i level node

Pr[F(i)]: Probability that a level i node is insert-
unsafe (full).

Pr[Em(i)]: Probability that a level i node is
delete-unsafe (empty).

E(i): Expected number of children of level i
node.

X: Arrival rate of all operations.

q,, qi, qd: Probability that an operation is a
search, insert or delete operation, respec-
tively. qs + Qi + Qd = 1.

Variables

T(o, i): Expected time that operation o holds a
lock on a node at level i.

PL,i Service rate of lock type L at level i.

pur (i): Probability that a W lock is in the level i
lock queue.

.
am: Expected time that a W lock, L, must wait

for a preceding R locks in a level i queue if
the queue had no other W locks when L
arrived.

r-(i): Expected time that a W lock, L, must wait
for a preceding R locks in a level i queue if
the queue had at least one other W lock
when L arrived.

R(i): Expected time to obtain a R lock on a level
i node.

W(i): Expected time to obtain a W lock on a
level i node.

PeT(o): Expected response time of operation o
(total time in the system).

Let us now analyze the expected time that an op-
eration holds a lock on a node if some other operation
might be waiting to lock the node. (If we are going to
analyze the waiting time in a lock queue, these are the
only service times that count.) Because the protocol
for the concurrent operations uses lock-coupling, the
waiting time on the 2 “’ level depends on the time to
place a lock on an i - 1 th level node. Therefore, we
will analyze the the waiting times from the leaf up.
If a leaf might split, then the node above it will be
locked. Therefore, if 02 is waiting for the leaf-level
lock held by 01, 02 will only have to wait while 01
performs the search/insert/delete on the leaf. If 02 is
waiting for 01’s lock on the second level, 02 will have
to wait while 01 searches the node, waits for a leaf
lock, performs the operation if the leaf is op-unsafe,
and restructures the leaf, if needed. In general, if 02
is waiting for 01’s lock on a level i node, 02 will have
to wait while 01 searches the level i node and locks
a level i - 1 node. If the level i - 1 node is op-unsafe,
the level i lock will be held for the level i - 1 lock
service time. In addition, the level i - 1 node might
be restructured. Using this observation, we get:

Theorem 1 The expected time that operation o E
{S, I, D} holds a lock on a level i node, i = 1,. . . , h,
when another operation might be wading is

level 1: (leaf level)

search: T(S, 1) = Se(l)

insert: T(I, 1) = M

276

delete: T(D, 1) = M

level j: (1 < j 5 h)

search: T(S, j) = Se(j) + R(j - 1)

insert: T(1, j) = Se(j) + W(j - 1)
+ Pr[F(j - l)]T(I, j - 1)
+ %~(j - 1) IX2 WW)l

delete: T(D, j) = Se(j) + W(j - 1)
+ Pr[Em(j - l)]T(D, j - 1)
+ Mg(j - 1) nil’, Pr[Em(k)]

The probabilities that nodes are insert-unsafe or
delete-unsafe can be determined from [lo]. In ad-
dition, [lo] shows that if we use a merge-at-empty
B-tree, and there are more inserts than deletes in
the operation mix, then the probability that a leaf
node merges is almost zero, and the probability that
a merge propagates is infinitely smaller. Therefore,
the formulae for T(D, j) can be simplified to

Corollary 1 If theTe are at least 5% moTe inserts
than deletes,

T(D, 1) = M

T(W) = S(j) + wi - 1)
P@(l)] = (1 - 2q)/[(l- q).68N]

WWN = 1/.69N l<j<h

where N is the maximum node size.

Proof: Under the assumption, Pr[F(l)J can be de-
termined from the rule of thumb [lo] and Pr[F(j)],
1 < j 5 h, is the same as that for a pure-insert tree

PI .
With T(Op, j) calculated, we can calculate the

service time parameters for the level j FCFS R/W
queue. Since inserts and deletes always place exclu-
sive locks, we model them as W customers. Search
operations place shared locks, so we model them as
R customers. Let p&i be the service rate for R cus-
tomers on the itL level, and let pw,i be the service
rate for W customers on the ith level. Then:

Proposition 1

pR,i = l/V, i)

~w,i = l/(&W, i) + &yT(D, 9)

In order to finish the characterization of Naive
Lock-coupling in terms of the R/W queues, we need
to specify the arrival rates. Let Xi be the arrival rate
of all jobs on level i. Let X&i be the arrival rate of
R jobs on the a ‘G level, and let Xw,i be the arrival
rate of W jobs on the ith level. The arrival rate to a
level i queue is the arrival rate to the level i+ 1 queue

divided by the fanout at level i+ 1. The fanout is the
expected number of children of a level i + 1 node. At
the root, the fanout depends on the number of items
in the tree and the node size [9]. Below the root, the
actual fanout is a constant that depends only on the
maximum fanout (approximately .69N, as described
in [9]). Therefore, we have:

Proposition 2

and

&, = x

Xi = Xi+l/E(i + 1)

AR,i = qs Ai

xw,i = (qi + Qd)h

NOW We Can apply the parameters X&i, Xw,i, /‘R,i,
,uw,i to a FCFS R/W queue and calculate the proba-
bility that a W operation is in the queue, pw(i), and
the extra work caused by the R operations, re(i) and
r,,(i) by using Theorem 6 (in the appendix). The
throughput of Naive Lock-coupling on a particular
B-tree reaches its maximum when the nodes on some
level in the B-tree are always W-locked. At this point,
an increase in the arrival rate will not result in an in-
crease in throughput, and the saturated queues will
become unstable. Because of lock-coupling, the bot-
tleneck node will always be the root.

Theorem 2 The maximum throughput of the Naive
Lock-coupling algorithm on a particular B-tree is lim-
ited by the minimum awival rate such that pw(h) = 1

Examining Theorem 1, we can see that the lock ser-
vice times on level i, and thus pw (i), depend on the
lock waiting times on level i - 1 (except at the leaves).
Lock coupling gives the service time distributions a
large variance: an operation might or might not have
to wait for the next node and the next node might
or might not be full. So, we cannot model the ser-
vice time distribution as being exponential; instead
we model the distribution as a series of exponential
distributions.

Divide the expected time that a W operation blocks
other locks into three parts: the time that every W
operation blocks other locks (the node search time
plus the wait for readers), the wait to obtain the
child’s lock, and the time spent holding the child’s
lock, if the child is op-unsafe. If the queue for the
child’s lock has another W operation in it, then the
expected wait is r,(i - 1) + R(i - l)/p,(i - 1); oth-
erwise the expected wait is r,(i - 1). The child’s
queue will have a W operation in it with probabil-
ity pw(i - 1). If the W lock is due to an insert op-
eration (qi/(qi + nd)) and the child is insert-unsafe

277

(Pr[F(i - l)]), then the lock will be held for an ad-
ditional T(I, i - 1) (as noted above, [lo] allows us to
assume that nodes are almost never delete-unsafe).
Additionally, the lock might be held while a split up
to the child takes place. As a simplification, add this
wait to T(1, i - l), as it will occur only if the child
is insert-unsafe. If we model the stages as having ex-
ponential distributions, the resulting server has a hy-
perexponential distribution. See Figure 2. Kleinrock
[12] describes how to calculate the expected waiting
time for this server. Let:

Pf = Qi Pr[F(i - l)]/(% •I qd)

PO = pw(i - 1)

t, = (se(i) + h(i)T,(i) + (1 - h(i))r,(i))

tf = l/(T(I, i - 1) + Sp(i - 1) ni=i Pr[F(k)])

PO = l/(R(i - l)/p,(i - 1) + ru(i - 1))
t, = PO/PO + (1 - Po)T& - 1)

Then:

Theorem 3 The lock waiting times are, for i =
2 h: ,‘..,

R(i) = * [We +pftft, +tZ +pfWf+

PO/d + Pf t; + (1 - Po)T,“(i - I)]

W(i) = R(i) + pw(i)r,(i) + (1 - pw(i))r,(i)

Proof: The expected waiting time for a M/G/l server
is [12]:

WC& (1)

where z is the service time of the server. The value of
2 can be found by differentiating the Laplace trans-
form twice and evaluating at zero.

Let:

Use the FCFS analysis in [8] to calculate pw (1) (see
the Appendix), (2) compute R(1) and W(1) using
Theorem 4, (3) use Theorem 3 to compute the R and
W lock waiting times for the other levels. If pw (i) < 1
for all levels 1 5 i 5 h, the queues are stable and the
algorithm will give a throughput equal to the arrival
rate. Use the lock waiting times R(i) and the W(i) to
compute the response times of the operations using
Theorem 5.

Pe = l/k 5.1 Analysis of Optimistic Descent
p1 = Wf and the Link-type Algorithm

Then the Laplace transform of the server is [12]:

B*(s) = (*) (Pf (*) + (1 ?f))

(PO (gk) +b+&iTi)

Take the second derivative of B*(s) and evaluate
at zero:

B*t2)(0) = 2[t,t, + p&G + t; + pftotf +

PO/CL: + Pf t; + (1 - PC+% - 111 (2)

Combine (1) and (2) to obtain the result l

The leaves are an exception. Model their service
time by an exponential distribution.

Theorem 4 The lock waiting times at the leaves are:

R(1) = && [l/Pw,l + Pw (lb&)

+(I - P&))“e(l))

w(1) = R(l) + Ptu(l)Tt$) + (1 - Pw(l))T$)

Proof: The waiting time of an M/M/l queue is p/[(l-
p)p] ([12]). Apply Theorem 6 to obtain the result l

After calculating all of the lock waiting times by
starting at the leaves and working up, we can calcu-
late the expected response times of the operations.
The response time of an operation is the time needed
to perform the operation in the absence of locking,
plus all of the lock waiting times.

Theorem 5 The response times of the search (S),
delete (0) and insert (I) operations are:

Per(S) = Cjh,lW) + R(i))

Per(D) = M + W(1) + ciZ2(Se(i) + W(i))

Per(l) = M + ‘j$, Se(i) + ~~=, W(i) +

cj”3rIj,=, wYw%o)

To summarize, the sequence of calculations is: ,P)

For reasons of space, we will not analyze the Opti-
mistic Descent algorithm or the Link-type algorithm
in depth. Rather, we will describe how to modify
the analysis of the Naive Lock-coupling algorithm to
model the other two algorithms.

In the Optimistic Descent algorithm, an update
(insert or delete) operation makes an initial optimistic
descent, where it follows the search operation’s pro-
tocol, except for placing a W lock on the leaf. If the
leaf needs to be restructured, it makes a second de-
scent, placing W locks. To account for the second de-
scent, create a new type of operation, the redo-insert

278

operation. The rate at which redo-insert operations
enter the B-tree is the rate at which update oper-
ations make second descents, qiPr[.F(l)]X. Use the
four types of operations to calculate the R and W
lock waiting times at each level. The response time
of an insert operation is the time to make the first
descent, plus Pr[F(l)] times the response time of a
redo-insert operation.

In the Link-type algorithm, all operations place R
locks down to the leaf, then update operations W
lock and search operations R lock the leaf, holding
at most one lock at a time. If the node must be re-
structured, it is half-split, the W lock on the node
released and the parent W-locked. Therefore, the ar-
rival rate of W locks to a leaf is E[h] - - -E[Z](qi+qd)k
The arrival rate of W locks to a node above the
leaf is the rate at which children of the node split,
E[h] * * *E[3] Pr[F(l)]qiA and so on. Since there is no
lock coupling, the service time of an R lock is the
time to search the node and the service time of a W
lock is the time to modify the node and potentially
half-split it. A complication is that operations might
cross links, which increases the arrival rates, and thus
increases the probability that an operation crosses a
link. However, link crossing is rare and has a negligi-
ble effect on performance (see Figure 9).

5.2 Resource Contention

Since all access times are parameterized, resource
contention can be factored in as a pre-calculation di-
lation factor. Assuming that one has a model of the
computer system, calculating the resource contention
dilation factor is straight-forward. By Little’s Law,
the number of active (non-blocked) operations is the
arrival rate times the expected serial service. Blocked
transactions can be assumed to be idle. The through-
put is simply the arrival rate, if the concurrent B-tree
algorithm is stable. These parameters can be used to
calculate the dilation factor.

5.3 Experiments and Comparison

We ran simulation experiments for comparison with
the analysis. The simulator ran until 10,000 concur-
rent operations were performed. Figures 3 through
8 show the comparisons. A node in the underlying
B-tree held a maximum of 13 items. The concur-
rent operations started when the B-tree held about
40,000 items. The root of the B-tree had about 6
children. The B-tree had 5 levels; it was assumed to
have the two top levels in memory and the remain-
ing levels on disk. The cost of disk accesses can be
varied, but the figures show experiments in which the

cost of accessing an on-disk node is 5 times the cost
of accessing an in-memory node. The time to search
the root was one time unit. The time to modify a leaf
was twice the time to search the leaf, and the time
to split a node was three times the time to search it.
The time to modify the parent is included in the cost
of a split. The proportions of concurrent operations
were: qb = .3, qi = .5 and q,j = .2. At each setting of
the parameters, 5 simulations were run, each with a
different seed.

Figures 3 and 4 compare analytical and simulation
predictions of the search and insert response times
of the Naive Lock-coupling algorithm. Figures 5 and
6 show the comparison for the Optimistic Descent
algorithm and figures ‘7 and 8 show the comparison
for the Link-type algorithm. The response time of
the operation is plotted against the arrival rate (or the
throughput). The comparison shows that the analysis
and the simulation predict the same response times.

The response time curves tend to stay level with
an increasing arrival rate, then increase rapidly as
the arrival rate approaches the maximum throughput.
The increase in the response time is due to increases
in the waiting time. The rapid increase in the re-
sponse time can be predicted from standard M/M/l
queuing theory [12]. The response time of the lock-
coupling algorithms increase even more rapidly than
the M/M/l queue, however. The root writer utiliza-
tion increases non-linearly with the increasing arrival
rate, as is shown in figure 10 (for the Naive Lock-
coupling algorithm). To go from pw = .5 to pw = 1
requires less than a 50% increase in arrival rate. This
is due to an increasing wait for a lock on one of the
root’s children, and hence reflects the cost of lock-
coupling. Figure 11 shows the maximum throughput
plotted against the cost of accessing an node stored
on disk (for Naive Lock-coupling). The cost of lock-
ing nodes stored two levels below the root can have
a significant impact on the performance of the algo-
rithm.

Figure 12 shows a comparison of the response times
of the three algorithms. The Optimistic Descent al-
gorithm has significantly better performance then the
Naive Lock-coupling algorithm, and the Link type al-
gorithm has significantly better performance than the
Optimistic Descent algorithm. The Link-type algo-
rithm achieves very high concurrency because only
those nodes that are actually modified are W-locked,
and the W locks are held for a relatively short period
of time.

279

6 Rules of thumb

The calculations of the previous section can gener-
ate accurate predictions of the concurrent algorithm’s
performance, but are somewhat cumbersome for gen-
erating intuition about performance. We will derive a
rule of thumb that will predict the arrival rate where
pw = .5. Denote this arrival rate by X,,=,z. Increasing
the arrival rate beyond this point will cause a dispro-
portionate increase in waiting. The rules of thumb
will predict an ‘effective maximum arrival rate’.

Naive Lock-coupling The root is the bottleneck
for the Naive Lock-coupling algorithm, so we will ap
proximate X,,=.s for the root. The writer utilization is
the writer arrival rate divided by the aggregate cus-
tomer service rate: pW = X,/pa. (The time to serve
an aggregate customer is the time to serve a W lock
and all R locks immediately ahead of the W lock and
for which the W lock must wait. See the Appendix.)
Therefore, the writer arrival rate when the writer uti-
lization is .5 is:

Ll,p=.5 = I.42

We need to approximate the aggregate customer ser-
vice rate, or, equivalently, the expected time to serve
an aggregate customer. We will approximate the ag-
gregate customer service time by the time to search
the root, get the next lock, search the child if the child
is full, and wait for the preceding readers. Define:

T =,l: time to serve an aggregate customer on level 1.

T +,J: time to serve R customers that are ahead of a
W customer on level 2.

Then,

T&h = Se(h) + W(h - 1) + G,h +
Qi

- Pr[F(i - l)]T,,h-1
!?i + qd

(3)

We will approximate the time to serve the preced-
ing readers first. If pW is known, the time to serve the
preceding readers is, by Theorem 6,

T,= (pwln(l+e)+

(l-Pw)ln(l+~))/pr

Approximate pL, by pw and approximate A,/p,,, by
Pw*

T, B (hln(l+*)+

M ln l+pw%)/pT
((4)

In the case of Naive Lock-coupling, X,/X, =
!I‘/(1 - Qs), so

At the root, pw = .5 and pt = l/Se(h).

The wait for the lock on the child is approximately

W(h - 1) M Pw'h-l Tt,h.,h-l
l-&/,h-1

Approximate Pw,h-l by pw/E(h) = 1/2E(h), so that

W(h - 1) = T,,&(2E(h) - 1) (6)

We need an approximation for T&h-l. Instead of
continuing the approximations down the the leaves,
approximate the time to get the next lock and search
the next node, if it is full, by Se(h- 1)/2. In addition,
use the approximation ln(1 + Z) M Z, so

T&t x Se(h - 1) 1.5 +
2E(h);; - qs) >

(7)

If we combine all of the approximations and adjust
the arrival rate to count the search operations, we
get:

Rule Of Thumb 1 The arrivaZ rate to a Naive
Lock-coupling algotithm such that the writer utiliza-
tion is .5 is approximately

APE.5 =

[2(1 - !b) [Se(h) (1+1++&J>>+

If the maximum node size and root fanout is large
enough, we can get an even simpler formula.

Rule Of Thumb 2 (Limit) If the ma&mum node
size and the Toot fanout aTe ZaTge,

xp=*5 w 2(1- qI) [Se(h) (1 :ln (I+ &I))]

Figure 13 shows a comparison between the analyt-
ical predictions, rule of thumb 1, and the limit rule
of thumb 2. The in-memory B-tree effective maxi-
mum arrival rate closely matches the predictions of

280

rule of thumb 1. If the disk cost is 10, however, rule
of thumb 1 vastly overestimates performance when
the maximum node size is small. This is due to wait-
ing for the expensive on-disk nodes. When the max-
imum node size becomes large, the arrival rate, and
thus the lock waiting time, on the on-disk levels be-
comes small. rule of thumb 1 quickly approaches the
limit rule of thumb 2. Notice that in the limit rule
of thumb, the effective maximum utilization doesn’t
increase with the maximum node size.

Optimistic Descent The Optimistic Descent al-
gorithm uses the same mechanism as Naive Lock-
coupling, so the same analysis can be applied in de-
riving a rule-of-thumb for the effective maximum uti-
lization. The primary difference is that X, = A and
A, = qi PI[P(I)]X, SO that

Also, the reader arrival rate is certain to be much
larger than the writer arrival rate, so we can’t use
the approximation ln(1 + CC) m Z.

Rule Of Thumb 3 The amGal rate to an Opti-
mistic Descent algorithm such that the wTiter utiliza-
tion is .5 is approximately

x,=.5 M

[2qi Pr[F(l)l ’ [Seth) (l + In (l + &))

+ (* + * PrvYh - 111)

(se(z) (lA + In (1+ 2E,h,,~Pr[F(1)~)))]] -’
If the maximum node size and root fanout is large

enough, we can get an even simpler formula.

Rule Of Thumb 4 (limit) If the maximum node
size and the Toot fanout are large,

4x.5 w
1

2gi Pr[F(l)l Se(h) l+ln l+ 2pi P:~F~I~~

Figure 14 shows a comparison between the analyt-
ical predictions, rule of thumb 3, and the limit rule
of thumb 4. Again, the rule of thumb makes better
predictions as the maximum node size increases.

Notice that for Optimistic Descent, the maximum
arrival rate inversely depends on Pr[F(l)], which is
inversely proportional to the maximum node size.
This is in contrast to Naive Lock-coupling, where the
effective maximum throughput is independent of the
maximum node size. Thus, as the maximum node

size increases, Optimistic Descent becomes increas-
ingly better than Naive Lock-coupling.

The rules of thumb suggest a design strategy for
concurrent B-trees that use Naive Lock-coupling or
Optimistic Descent. The bottleneck operation in Op-
timistic Descent and Naive Lock-coupling is search-
ing the root. Note that in Figures 13 and 14, the
effective maximum throughput is plotted in units of
time equal to the time to search the root. In general,
the time to search the root will increase as the maxi-
mum node size increases. If a binary search is used to
search for the proper child of the root, then the time
to search the root is of the form a + blog N, where
N is the maximum size of the root. The maximum
throughput of the Naive Lock-coupling algorithm de-
pends on the time to search the root and not on the
probability of splitting a leaf, so the maximum node
size should be small. The maximum throughput of
the Optimistic Descent algorithm, however, is pro-

portional to N/log’ N, so the maximum node sizes
should be as large as possible.

Link-type algorithm The maximum throughput
of a Link-type algorithm is limited by the level that
first becomes saturated. Because the Link-type algo-
rithms don’t use lock-coupling, this level is not nec-
essarily the root. If we examine figure 12, we can see
that a Link-type algorithm allows enormous concur-
rency, enough to invalidate steady-state assumptions.
Therefore, the Link-type algorithm has no effective
maximum throughput.

7 An Application of the Anal-
ysis - Recovery

In [24] the issue of database recovery as applied to
concurrent data structures is discussed. A database
manager will typically hold the exclusive locks that
a transaction requests until the transaction commits
([19,7]). If a transaction aborts, the previous values
of the W-locked records can simply be written back
without interfering with other transactions.

If this algorithm is applied to concurrent B-trees,
then any W lock placed on any node is held until
the transaction commits. We will call this the Naive
recovery algorithm. Shasha [24] points out that only
the leaf locks need to be held for correct recovery.
Retaining W locks on non-leaf nodes is called Tecovery
overlock. We will call the protocol of releasing non-
leaf W locks as soon as possible, but retaining leaf-
level W locks until the transaction commits the Leuf-
only recovery algorithm.

281

The Leaf-only recovery algorithm is clearly better
than the Naive recovery algorithm. The question is,
how much better? In particular, is it good enough
to justify having one protocol for data locking and
another for index locking? In order to answer this
question, we modeled the effects of recovery on the
Optimistic Descent algorithm.

The modifications to account for recovery are sim-
ple. Let Zrans be the expected time until the transac-
tion commits. Calculate T(OP, i) (as in Theorem 1).
At the leaf level, let T’(OP, 1) = T(OP, l)+T&,,,, for
every OP that places a W lock for the Naive recovery
algorithm or the Leaf-only recovery algorithm. Above
the leaf, let T’(OP, i) = T(OP, i) + PI[F(~)]T~~,~, for
every OP that places a W lock, for the Naive recov-
ery algorithm. Let T’(OP, i) = T(OP, i) otherwise.
Use the T’(OP, i) to calculate the lock waiting times.

Figures 15 and 16 show a comparison of the re-

sponse times of the Naive recovery algorithm and the
Leaf-only recovery algorithm. A B-tree that does not
support recovery is also shown. In the comparison,
the cost of accessing an on-disk node as compared
to an in-memory node is D = 10 and Ttlanr = 100,
a conservative estimate of the remaining transaction
time. In Figure 15, the maximum node size is 13,
and the number of B-tree levels is 5 (as in figures 3
through 8). In Figure 16, the maximum node size
is 59, and the number of B-tree levels is 4. The
Leaf-only recovery algorithm has slightly worse per-
formance than the no-recovery algorithm. In con-
trast, the Naive recovery algorithm has significantly
worse performance than the Leaf-only algorithm. Us-
ing the Leaf-only recovery algorithm is thus a simple
method to significantly increase the performance of a
concurrent B-tree.

8 Conclusions

This paper discusses a framework for analyzing the
performance of concurrent B-tree algorithms. The
framework allows concurrent algorithms to be ana-
lyzed in a uniform manner. The analysis agrees with
simulation results.

Rules of thumb derived from the analysis provide
intuition into the performance of concurrent data
structure algorithms. The analyses can be applied
to a variety of practical problems, including ranking
and comparing the performance of the different con-
current B-tree algorithms and determining the per-
formance implications of recovery algorithms.

The analysis shows that the Link-type algorithm
is significantly better than the optimistic descent al-
gorithm, which is significantly better than the Naive

Lock-coupling algorithm. The rules of thumb show
that the Naive lock-coupling algorithm works best on
B-trees with small nodes and the Optistic Descent al-
gorithm works best on B-trees with large nodes. An
extension of the analysis shows that the Leaf-only re-

covery algorithm is significantly better than the Naive
recovery algorithm.

Results that will appear in the full version of this
paper include analyses of additional concurrent B-
tree algorithms, including Two-Phase locking; a dis-
cussion of performance implications, LRU buffering,
and extensions to other concurrent data structure al-
gorithms.

References

PI

PI

PI

]41

PI

PI

PI

PI

PI

PO1

R. Bayer and E.M. McCreight. Organization and
maintainance of large ordered indices. Acta In-
formatica, 1(3):173-189, 1972.

R. Bayer and M. Schkolnick. Concurrency of
operations on B-trees. Acta Informatica, 9:1-21,
1977.

M. Carey and C.Y. Cheng. B+-tree locking: a
performance perspective. 1986. manuscript.

V. Lanin D. Shasha and J. Schmidt. An Analyti-
cal Model foT the Performance of Concurrent B-
tree algorithms. NYU Ultracomputer Note 311,
NYU Ultracomputer lab, 1987.

C.S. Ellis. Concurrent search and inserts in 2-3
trees. Acta Informatica, 14(1):63-86, 1980.

J. Gray et. al. One thousand transactions per
second. In IEEE Compcon, pages 96-101, 1985.

T. Haerder and A. Reuter. Principles of
transaction-oriented database recovery. ACM
Computing Swveys, 15(4):12-83,1983.

T. Johnson. Approximate analysis of reader and
writer access to a shared resource. to appear in
ACM SIGMETRICS ‘90.

T. Johnson and D. Shasha. Random B-trees with
Inserts and Deletes. Technical Report 453, NYU
Dept. of C.S., 1989.

T. Johnson and D. Shasha. Utilization of B-
trees with inserts, deletes and modifies. In
ACM SIGACT/SIGMOD/SIGART Symposium
on Principles of Database Systems, pages 235-
246, 1989.

282

Pll

Cl21

P31

P4

P51

WI

P71

PI

PI

PO1

Pll

PI

PI

L. Kleinrock. Communication Nets; Stochas-
tic Message Flow and Delay. McGraw Hill,
reprinted by Dover Publications, New York,
1964.

L. Kleinrock. Queueing Systems. Volume 1,
John Wiley, New York, 1975.

L. Kleinrock. Queueing Systems. Volume 2,
John Wiley, New York, 1976.

H.T. Kung and P.L. Lehman. Concurrent ma-
nipulation of binary search trees. ACM l’kansac-
tions on Database Systems, 5(3):354-382, 1980.

V. Lanin and D. Shasha. A symmetric concur-
rent B-tree algorithm. In 1986 Fall Joint Com-
puter Conference, pages 380-389, 1986.

P.L. Lehman and S.B. Yao. Efficient locking
for concurrent operations on B-trees. ACM
!&ansactions 011 Database Systems, 6(4):650-
670, 1981.

J.K. Metzger. Manzgilzg Simultaneous Opem-
tions in Large Onlered Indezes. Technical Re-
port, Technische Universitat Munchen, Institut
fur Informatik, 1975. TUM-Math. report.

Y. Mond and Y. Raz. Concurrency control
in B+-trees databases using preparatory oper-
ations. In 11th International Conference on
Very LaTge Databases, wages 331-334, Stock-
holm, Aug. 1985.

N. Goodman P.A. Bernstein and V. Hadzilacos.
Recovery algorithms for database systems. In
Proc. IFIP Congress, 1983.

M. Jipping R. Ford and R. Schultz. On the Per-
formance of Concurrent Tree Algorithms. Ted-
nical Report 85-07, University of Iowa, 1985.

M. Jipping R. Ford, R. Schultz, and B. Wen-
hardt. On the performance of concurrent tree
algorithms. submitted for publication.

I.K. Ryu and A. Thomasian. Performance anal-
ysis of centralized databased with optimistic
concurrency control. Performance Evaluation,
7:195-211, 1987.

Y. Sagiv. Concurrent operations on B*-trees
with overtaking. In Fourth Annual ACM
SfGACT/SIGMOD SympoaiPrm opt the Princi-
pies of Database Systems, pages 28-37, ACM,
1985.

PI

PI

WI

9

D. Shasha. What good are concurrent search
structure algorithms for databases anyway?
Datahase Engineering, 8(4):84-90, 1985.

3. Wedekind. On the selection of access paths
in a data base system. In J.W. Klimbie and
K.L. Koffeman, editors, Database Management,
pages 385-397, North Holland Publishing Com-
pany, 1974,

R. Suri Y.C. Tay and N. Goodman. Lock-
ing performance in centraked databases. ACM
?knsacti~hJ on Database System*, 10(43:415-
462, 1985.

Appendix - the FCFS R/W

Q ueue

In [JSO], Johnson describes a FIFO queue in which
readers are granted shared locks and writers are
granted exclusive locks. Readers and writers arrive
at rates & and X, and are served at rates iu, and
pau, respectively.

The queue is analyzed approximately using aggti-
gate customeT8, which are writers together with all
readers immediately ahead of the writer and for which
the writer must wait. The analysis calculates the ser-
vice time oi an aggregate customer. There are two
cases: either there are no writers in the queue when
the current writer arrives, or there is another writer
in the queue.

Let pm be the probability that there is a writer in
the queue. Let f, be the expected time the current
writer must wait for the readers immediately ahead
of it if there is another writer in the queue when the
current writer arrives, and let TV be the time that a
writer must wait for the readers if there was no other
writer in the queue. The analysis involves the fact
that the time to sekve R concurrent readers grows
logarithmicly tith it. The analysis shows that

Theorem 6

T, = ln(l + Pur~r/Ll) /c*

Fe = Itl(l+(1+P,)x,/(cL++~w))/~

where purr is the robt of

pw= Ll &+ (zln(l+*)+

+*(1+ w))

The service time of the aggregate customer is

T, = l//h + PW”Y + (I- Pw)Te

283

Naive Lock-coupling
insert response time vs. arrival rate

disk cost=5. 2 in-memory levels

Y .._
g iJ

queues model representative nodes

Figure 1: Model of a concurrent B-tree. Figure 3:

lP(i-1)

\

W

L(i-1) L.--J

insert response time , x) , ,..

01 I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6

arrival rate

+ simulation - analytical

Naive Lock-coupling
search response time vs. arrival rate

disk cost=5. 2 in-memory levels

60 search response time

7

3. _.

*(J

..

...

.i

...................................

.. ..? -- ,.:.,

..........

,o -(.. .I_..._..........._._......... .._..

0 I 1 I I 1
0 0.1 0.2 0.3 0.4 0.5 0.6

arrival rate

+ sim. - analytical

Figure 2: Model of a Naive Lock-coupling server Figure 4:

284

Optimistic Descent
insert response time vs. arrival rate

disk cost=5

response time 60 ,’ .._................. .._.... .,_..............................._................

60 - .._ .._.._..._... ._..._..._...__........_............................... ,..._..._..._

40 _ .._ .._

I , +

0 I I I I I , I
0 0.5 1 1.5 2 2.5 3

arrival rate

- analytical + simulation

Figure 5:

Optimistic Descent
search response time vs. arrival rate

disk cost& 2 in-memory levels

response time

7o 1 ‘.’

60

!

.._. .._... _ .._..._... ._..._. .._

50 _........................ ..,,._............

I

,...._ .._... .._........

40 ~..............,.,,,.........................,,,.,..~...............

30
1 r'

2oj $ --t/T .-c .g

0 I I I 1 I 0 I I I I I I
0 0.5 1 1.5 2 2.5 3 0 2 4 6 6 10 12 14

arrival rate arrival rate

Link-type algorithm
Insert response time

disk cost=5

response time 30 -... .._.......... .,......_,,._........

25 - ._ .._..._..._...__... .._ .,. _._..._..._.._........_.. .._.... .._. _,.,.,.._..._.,._
I .I. A *

,o

i

.,.,_,,

5 -

0 I I I 1 I I 1
0 2 4 6 a 10 12 14

arrival rate

- analytical + simulation

Figure 7:

Link-type algorithm
search response time

disk cost=5

response time 20 -.... .._.._.......... .._.._....

T T

,5 - . .._.. ,.,.._..._....

,o -.... ,,.._..................._. .._ .._.,._........................,,.......,

5 - ..,._..._ .._,.._. ._.

- analytical + simulation - analytical + simulation

Figure 6: Figure 8:

285

Link-type algorithm Naive Lock-coupling
expected number of links crossed maximum throughput vs. disk cost

per leaf node accessed 2 levels in-memory, 3 on disk

number of links crossed 0,006

f. *

0+=---i
0 2 4 6 8 10 12

arrival rate

- anttkytical + simulation

disk cost-l 0 Figure 9:

Naive Lock-coupling
cost of bck-coupCng vs. arrival rate

disk wsb5. 2 inmemOry levels

0 0.1 0.2 0.3 0.4 0.6 0.6

arrival rate

- utilization

Figure 10: Increasing root writer utilization in Naive
Lock-coupling

Woug hput

' 1' "

0.2 ,,...
,lo

1 2 3 4 5 6 7 6 9 10

disk cost

- maximum throughput

Figure 11:

Comparison of insert response times
disk cost=5

response time 70

1
.._.......... ,. .._..._ .,. .,. .,,,., ,.,,,. ._

0 I I I , ,
0 2 4 6 s 10 12 14

arrival rate

- Naive Lodt-owpling Optimistic Descant
- - Link-type

Figure 12: Comparison of response times of Naive
Lock-coupling, Optimistic Descent and the Link-type
algorithm

286

Naive Lock-coupling
Rule-of-thumb

comparison with model predictions

effective max arrival rate 0 ,,

1

0.3

0.2 j....... .._......... ,..,._.. _....................

0, ,
oJ

0 50 100 150 200 250

maximum node size

- R.O.T. ".."'. D-l --D-s - D-10 - llmh

Figure 13: Comparison of the Naive Lock-coupling
rule-of-thumb against analytical predictions with
varying disk cost, D

Optimistic Descent
Rule of Thumb

Comparison with model predictions

effective max arrival rate 20 ,...’ ., ., _..._...__..._..._ ,. .._..._..........._.. ._..

0 I I I I 1 I I I
0 10 20 30 40 50 60 70 80 90

maximum node size

- R.O.T. “_“. D-1 -- D-5 - D-10 - limit

Figure 14: Comparison of the Optimistic Descent
rule-of-thumb against analytical predictions with
varying disk cost, D

Comparison of Recovery Algorithms
Optimistic Descent insert response time

Maximum node size=1 3

response time , 00 ,.

60 .._....

20
1

0 1 , I I I 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

arrival rate

- none Naive - -. Leaf-only

Figure 15:

Comparison of Recovery Algorithms
Optimistic Descent insert response time

maximum node size=59

response time 80 ,.

70
1

,.._,...................................,

60 .._..._..._..._.._..._......,............. .._..._ f _..........._..._

0 1 I I I I I / I

0 2 4 6 0 10 12 14

arrival rate

- none ..- Naive - - Leaf-only

Figure 16:

287

