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Abstract 

Many concurrent B-tree algorithms have been pro- 
posed, but they have not yet been satisfactorily ana- 
lyzed. When transaction processing systems require 
high levels of concurrency, a restrictive serialization 
technique on the B-tree index can cause a bottleneck. 
In this paper, we present a framework for construct- 
ing analytical performance models of concurrent B- 
tree algorithms. The models can predict the response 
time and maximum throughput. We analyze three al- 
gorithms: Naive Lock-coupling, Optimistic Descent, 
and the Lehman-Yao algorithm. The analyses are 
validated by simulations of the algorithms on actual 
B-trees. Simple and instructive rules of thumb for 
predicting performance are also derived. We apply 
the analyses to determine the effect of database re- 
covery on B-tree concurrency. 

1 Introduction 

Concurrency control is the activity of preventing 
harmful interference between asynchronous concur- 
rent processes in a database management system. 
Concurrent search structures, especially concurrent 
B-trees, are most often used in database systems. 
Applications such as airlines, telecommunications, 
banks, and real-time databases require 1000 or more 
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transactions per second; a transaction consists of 4- 
6 record accesses, most of them through indices [6]. 
If each transaction requires .l seconds, the multipro- 
cessing level will average around 100. At such high 
multiprocessing levels, restrictive serialization tech- 
niques result in a serialization bottleneck. 

Many concurrent B-tree algorithms have been pro- 
posed ([2,5,14,16,18,23]). These algorithms have not 
been satisfactorily analyzed, however. Bayer and 
Schkolnick [2] and Ellis [5] derive formulae for the 
number of locks held and the maximum number of 
concurrent operations, respectively, for their algo- 
rithms. These analyses don’t predict performance, 
though. Ford et. al ([20,21]) compares the different 
algorithms based on the number of locks that the al- 
gorithms place, and calculates performance for a bus- 
based architecture. This analysis does not take into 
account the probability that the locks conflict or the 
time that the locks are held, and is very dependent on 
the underlying computer architecture. Shasha et. al. 
[4] give architecture-independent formulae for calcu- 
lating upper and lower bounds on the performance of 
various B-tree algorithms. No deletes are allowed in 
the operation mix, however, and the analysis depends 
on crude assumptions about the flow of operations in 
the B-tree. Carey and Cheng [3] discuss a simulation 
model of concurrent B-trees. 

In this paper, we will discuss the framework of our 
analytical model. Using the framework and the ana- 
lytical tools that we have developed, we can analyze 
concurrent B-tree algorithms by a uniform method. 

2 The Concurrent B-tree Al- 
gorit hms 

The algorithms that we will consider are Naive Lock- 
coupling, Opiimistic Descent and Link-type. The first 
two algorithms are described in [2]. The Link-type 
algorithm was first proposed in [16], then extended 
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in [15,23]. 
The simplest B-tree concurrency control mecha- 

nism is to have each operation lock the entire tree. 
However, most update operations (i.e. inserts and 
deletes) change only a small portion of the tree. The 
Naive Lock-coupling algorithm ([2,17]) is a first step 
towards exploiting this fact. Each node must be 
locked before it is accessed. Lock-coupling requires 
that the child of a node must be locked before the 
lock on the parent may be released. Search opera- 
tions read lock (R lock) the root, search the root to 
choose the correct child, then R lock the child. Af- 
ter obtaining the R lock on the child, the lock on the 
parent is released. Insert and delete operations follow 
the same protocol, except that write locks (W locks) 
are used, and all ancestor locks are released if and 
only if the child node is safe for the operation. For 
example, insert operations only release the ancestor 
locks if the child is not full. When the leaf node is 
locked, all nodes that will be involved in restructur- 
ing are locked, so that the operation may restructure 
without interfering with the correct execution of other 
operations. 

The Naive Lock-coupling algorithm can be im- 
proved on by observing that a B-tree rarely restruc- 
tures. In the Optimistic Descent algorithm [2], the 
insert and delete operations place R locks down to 
the leaf, then W lock the leaf using lock-coupling. 
If the leaf is unsafe, the operation releases all of its 
locks and starts over, placing all W locks on the sec- 
ond pass. 

The Link-type algorithm ([16,23]) uses links to re- 
move the need for lock-coupling. Every node (ex- 
cept for the rightmost) is linked to its right neighbor. 
Operations place R locks to the leaf, and insert and 
delete operations place W locks on the leaves. At 
most one lock is held at a time. If a node becomes 
too full after an insert, half of the keys in the node 
are transferred to a new sibling, the sibling is linked 
with its neighbors, the node lock is released, the par- 
ent node is locked, and a pointer to the new sibling 
is inserted into the parent. If the parent becomes too 
full, the process continues. If a node becomes lost 
navigating the B-tree, it can use the links to find the 
proper node. (In a merge-at-empty B-tree, merges 
are infrequent, provided inserts outnumber deletes, 
so we ignore them [lo]). 

3 The Analytical Framework 

We model a concurrent B-tree as an open system of 
queues. Our model makes several assumptions and 
approximations that are justified by the model’s close 

agreement with simulation. The queues represent the 
lock queues in which the operations must wait to ob- 
tain the required node locks. Each queue models a 
representative node on a different level of the tree 
(see Figure 1). 

3.1 Performance Measures 

To determine the performance of the various concur- 
rent B-tree algorithms, we need performance mea- 
sures. One obvious performance measure is the re- 
sponse time given by the algorithm. The response 
time of an operation is the time from the beginning 
to the end of an operation. An operation’s response 
time has two components: the time spent working 
and the time spent waiting. The time spent work- 
ing is assumed to be constant, for a given algorithm, 
while the time spent waiting will increase with in- 
creasing concurrency, and is the focus of study. 

Unlike the analyses in [2,5,4], this analysis mod- 
els the concurrent B-tree as being an open system. 
In an open system, the throughput is not an inter- 
esting measure: if all of the queues are stable, the 
throughput is equal to the arrival rate. Instead, we 
will calculate the m&mum tboughput, which is the 
maximum possible sustainable arrival rate. The max- 
imum throughput and the response time are comple- 
mentary performance measures. An algorithm with 
a higher maximum throughput usually has lower re- 
sponse times, but not always. 

3.2 Assumptions 

Arrival rate: The arrival rate into the queue that 
represents the root is proportional to the arrival rate 
of all operations (the rates are not necessarily equal 
because, depending on the algorithm, an operation 
might lock the root twice). The arrival rate into 
a lower queue is the arrival rate into the predeces- 
sor queue divided by the fanout on the predecessor’s 
level. We assume that the root’s arrival rate can be 
described by a Poisson process, and that the arrival 
rates in the succeeding queues can also be described 
by a Poisson process. This is a strong assumption, 
but not an uncommon one ([l&13]). 

Service time: The service time in each queue is 
the time that a lock is held, and depends on the al- 
gorithm. Lock coupling is modeled by defining the 
service time to include the time to access the node, 
the time spent waiting to lock the next level, and 
all further time that the lock must be held if the 
child is unsafe. This modeling assumption, combined 
with the previous assumption, removes the explicit 
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stochastic dependence between queues. We assume 
that the access times can be modeled by exponential 
distributions, and that the lock service times can be 
modeled by hyperexponential distributions (another 
strong assumption). 

Resource contention: We assume that resource 
contention can be described by a service-time dila- 
tion factor. This assumption allows us to separate 
the effects of resource contention and data contention 
(as, for example, in [22,26]), which in turn allows us 
to create a much simpler model than otherwise. We 
do not feel that this assumption is a strong assump- 
tion. While many of the algorithms require the per- 
formance of some extra work, the additional work is 
small even for the maximum sustainable throughput. 

Steady state: The analysis calculates the perfor- 
mance of an algorithm on a B-tree of a particular 
size. On the other hand, our restructuring parame- 
ters model the case when inserts outnumber deletes. 
Blocking decreases when the root’s fanout increases, 
and response times increase when the B-tree’s height 
increases. The analysis assumes that the queues reach 
a steady state, which implies that the B-tree doesn’t 
grow too quickly. This is usually a safe assumption, 
and is justified by comparison to the simulation re- 
sults. 

Lock types: Different types of operations place dif- 
ferent types of locks. In Naive Lock-coupling, for 
example, search operations place R locks and insert 
operations place W locks. An operation may place 
different types of locks during different phases of the 
operation (for example, insert operations in the op- 
timistic descent algorithm). We assume that R locks 
may be shared, but that W locks are exclusive (may 
not be shared with either R or W locks). We also 
assume that locks are granted in FCFS (First-Come, 
First Serve) order. We analyzed these types of lock 
queues in [8]. The assumptions made to analyze those 
queues must be made to analyze the concurrent B- 
tree algorithms. The primary assumptions are Pois- 
son arrivals and exponential service times. The re- 
sults of [S] are discussed in the Appendix. 

B-trees: Bayer and McCreight proposed a B-tree 
where keys are stored at all levels in the tree [l]. 
Wedelcind pointed out that the B+-tree, where all 
keys are stored in the leaves, is more appropriate for 
database applications [25]. All of the data structures 
studied in this paper are B +-tree, and the term B-tree 
will be an abbreviation for the term Bt-tree. 

The B-tree described by Wedekind restructures a 
node if it becomes less than half full [25]. We call this 
strategy merge-at-half. Most B-trees implemented in 
practice never restructure nodes due to underflow 
conditions. We call this strategy merge-at-empty. 
Johnson and Shasha compare the space utilization 
and restructuring rates of merge-at-half and merge- 
at-empty B-trees [9]. They find that merge-at empty 
B-trees have a significantly lower restructuring rate 
and a slightly lower space utilization, if there are more 
inserts than deletes in the instruction mix. Merge- 
at-empty is more appropriate than merge-at-half for 
concurrent B-tree algorithms. AlI algorithms studied 
in this paper use merge-at-empty B-trees. 

3.3 Framework 

The general analytical framework is the following: 
Classify operations based on whether they place R 
or W locks. Calculate the arrival rates and service 
times for the R and W locks in each queue. Calculate 
the expected waiting times for the R and W locks in 
each queue. The algorithm on the B-tree can handle 
the arrival rate if all of the queues are stable. The 
response time of an operation is the time the opera- 
tion would take alone plus the time spent waiting for 
locks. 

4 The Simulator 

We wrote a concurrent B-tree simulator and per- 
formed experiments. The simulator first builds a B- 
tree out of a sequence of insert and delete operations. 
Next, a sequence of concurrent B-tree operations is 
performed. The simulator uses the concurrent B- 
tree algorithm being studied to perform the concur- 
rent operations. The proportion of search, insert and 
delete operations is a parameter. The proportion of 
insert to delete operations in the construction phase 
is the same as the proportion in the concurrent oper- 
ation phase. 

The concurrent operations arrive in a Poisson pro- 
cess and then perform their action on the B-tree. 
All service times have exponential distributions. The 
only upper limit on the number of concurrent oper- 
ations is the amount of space allocated for them. If 
the simulator tries to create more concurrent opera- 
tions than there is space for, the simulator crashes. 
If a simulator crashes with a particular set of param- 
eters, the space allocated for concurrent operations 
is increased until the simulator doesn’t crash on any 
run, if possible. Otherwise, none of the simulator runs 
are reported. 

275 



The simulator collects a variety of statistics, in- 
cluding the operation response times and the lock 
waiting times. The simulator might also collect some 
algorithm-specific statistics. 

5 Analysis of Naive Lock- 
Coupling 

We model the concurrent B-tree as a sequence of jobs 
that pass through a series of FCFS R/W queues. 
Each job represents one of the operations and each 
queue represents a level in the B-tree. Since insert 
and delete operations always place write locks in this 
algorithm, we model them as W jobs. Search oper- 
ations always place read locks, so we model them as 
R jobs. The B-tree has h levels: the leaves are at 
level 1 and the root is at level h. The expected wait- 
ing time of an operation is the sum of the expected 
waiting times in all of the queues. The expected re- 
sponse time of an operation is the expected waiting 
time plus the expected service time for the operation. 
The expected service time is a direct calculation. In 
order to find the expected waiting time, we need to 
determine the arrival rate and the expected time that 
an operation holds a lock at each level in the B-tree 
and use these parameters on the FCFS R/W queue. 

In the following list of parameters, the cost of ac- 
cessing a node is the same as if the operations were 
to access the B-tree serially. 

Parameters 

Se(;): The expected time needed to search an i 
level node. 

M: The expected time needed to modify a (leaf 
level) node. 

Sp(i): The expected time needed to split an i 
level node (including the cost of modifying 
the parent node). 

Mg(i): The expected time needed to merge 
(delete) an i level node 

Pr[F(i)]: Probability that a level i node is insert- 
unsafe (full). 

Pr[Em(i)]: Probability that a level i node is 
delete-unsafe (empty). 

E(i): Expected number of children of level i 
node. 

X: Arrival rate of all operations. 

q,, qi, qd: Probability that an operation is a 
search, insert or delete operation, respec- 
tively. qs + Qi + Qd = 1. 

Variables 

T(o, i): Expected time that operation o holds a 
lock on a node at level i. 

PL,i Service rate of lock type L at level i. 

pur (i): Probability that a W lock is in the level i 
lock queue. 

. 
am: Expected time that a W lock, L, must wait 

for a preceding R locks in a level i queue if 
the queue had no other W locks when L 
arrived. 

r-(i): Expected time that a W lock, L, must wait 
for a preceding R locks in a level i queue if 
the queue had at least one other W lock 
when L arrived. 

R(i): Expected time to obtain a R lock on a level 
i node. 

W(i): Expected time to obtain a W lock on a 
level i node. 

PeT(o): Expected response time of operation o 
(total time in the system). 

Let us now analyze the expected time that an op- 
eration holds a lock on a node if some other operation 
might be waiting to lock the node. (If we are going to 
analyze the waiting time in a lock queue, these are the 
only service times that count.) Because the protocol 
for the concurrent operations uses lock-coupling, the 
waiting time on the 2 “’ level depends on the time to 
place a lock on an i - 1 th level node. Therefore, we 
will analyze the the waiting times from the leaf up. 
If a leaf might split, then the node above it will be 
locked. Therefore, if 02 is waiting for the leaf-level 
lock held by 01, 02 will only have to wait while 01 
performs the search/insert/delete on the leaf. If 02 is 
waiting for 01’s lock on the second level, 02 will have 
to wait while 01 searches the node, waits for a leaf 
lock, performs the operation if the leaf is op-unsafe, 
and restructures the leaf, if needed. In general, if 02 
is waiting for 01’s lock on a level i node, 02 will have 
to wait while 01 searches the level i node and locks 
a level i - 1 node. If the level i - 1 node is op-unsafe, 
the level i lock will be held for the level i - 1 lock 
service time. In addition, the level i - 1 node might 
be restructured. Using this observation, we get: 

Theorem 1 The expected time that operation o E 
{S, I, D} holds a lock on a level i node, i = 1,. . . , h, 
when another operation might be wading is 

level 1: (leaf level) 

search: T(S, 1) = Se(l) 

insert: T(I, 1) = M 
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delete: T(D, 1) = M 

level j: (1 < j 5 h) 

search: T(S, j) = Se(j) + R(j - 1) 

insert: T(1, j) = Se(j) + W(j - 1) 
+ Pr[F(j - l)]T(I, j - 1) 
+ %~(j - 1) IX2 WW)l 

delete: T(D, j) = Se(j) + W(j - 1) 
+ Pr[Em(j - l)]T(D, j - 1) 
+ Mg(j - 1) nil’, Pr[Em(k)] 

The probabilities that nodes are insert-unsafe or 
delete-unsafe can be determined from [lo]. In ad- 
dition, [lo] shows that if we use a merge-at-empty 
B-tree, and there are more inserts than deletes in 
the operation mix, then the probability that a leaf 
node merges is almost zero, and the probability that 
a merge propagates is infinitely smaller. Therefore, 
the formulae for T(D, j) can be simplified to 

Corollary 1 If theTe are at least 5% moTe inserts 
than deletes, 

T(D, 1) = M 

T(W) = S(j) + wi - 1) 
P@(l)] = (1 - 2q)/[(l- q).68N] 

WWN = 1/.69N l<j<h 

where N is the maximum node size. 

Proof: Under the assumption, Pr[F(l)J can be de- 
termined from the rule of thumb [lo] and Pr[F(j)], 
1 < j 5 h, is the same as that for a pure-insert tree 

PI . 
With T(Op, j) calculated, we can calculate the 

service time parameters for the level j FCFS R/W 
queue. Since inserts and deletes always place exclu- 
sive locks, we model them as W customers. Search 
operations place shared locks, so we model them as 
R customers. Let p&i be the service rate for R cus- 
tomers on the itL level, and let pw,i be the service 
rate for W customers on the ith level. Then: 

Proposition 1 

pR,i = l/V, i) 

~w,i = l/(&W, i) + &yT(D, 9) 

In order to finish the characterization of Naive 
Lock-coupling in terms of the R/W queues, we need 
to specify the arrival rates. Let Xi be the arrival rate 
of all jobs on level i. Let X&i be the arrival rate of 
R jobs on the a ‘G level, and let Xw,i be the arrival 
rate of W jobs on the ith level. The arrival rate to a 
level i queue is the arrival rate to the level i+ 1 queue 

divided by the fanout at level i+ 1. The fanout is the 
expected number of children of a level i + 1 node. At 
the root, the fanout depends on the number of items 
in the tree and the node size [9]. Below the root, the 
actual fanout is a constant that depends only on the 
maximum fanout (approximately .69N, as described 
in [9]). Therefore, we have: 

Proposition 2 

and 

&, = x 

Xi = Xi+l/E(i + 1) 

AR,i = qs Ai 

xw,i = (qi + Qd)h 

NOW We Can apply the parameters X&i, Xw,i, /‘R,i, 
,uw,i to a FCFS R/W queue and calculate the proba- 
bility that a W operation is in the queue, pw(i), and 
the extra work caused by the R operations, re(i) and 
r,,(i) by using Theorem 6 (in the appendix). The 
throughput of Naive Lock-coupling on a particular 
B-tree reaches its maximum when the nodes on some 
level in the B-tree are always W-locked. At this point, 
an increase in the arrival rate will not result in an in- 
crease in throughput, and the saturated queues will 
become unstable. Because of lock-coupling, the bot- 
tleneck node will always be the root. 

Theorem 2 The maximum throughput of the Naive 
Lock-coupling algorithm on a particular B-tree is lim- 
ited by the minimum awival rate such that pw(h) = 1 

Examining Theorem 1, we can see that the lock ser- 
vice times on level i, and thus pw (i), depend on the 
lock waiting times on level i - 1 (except at the leaves). 
Lock coupling gives the service time distributions a 
large variance: an operation might or might not have 
to wait for the next node and the next node might 
or might not be full. So, we cannot model the ser- 
vice time distribution as being exponential; instead 
we model the distribution as a series of exponential 
distributions. 

Divide the expected time that a W operation blocks 
other locks into three parts: the time that every W 
operation blocks other locks (the node search time 
plus the wait for readers), the wait to obtain the 
child’s lock, and the time spent holding the child’s 
lock, if the child is op-unsafe. If the queue for the 
child’s lock has another W operation in it, then the 
expected wait is r,(i - 1) + R(i - l)/p,(i - 1); oth- 
erwise the expected wait is r,(i - 1). The child’s 
queue will have a W operation in it with probabil- 
ity pw(i - 1). If the W lock is due to an insert op- 
eration (qi/(qi + nd)) and the child is insert-unsafe 
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(Pr[F(i - l)]), then the lock will be held for an ad- 
ditional T(I, i - 1) (as noted above, [lo] allows us to 
assume that nodes are almost never delete-unsafe). 
Additionally, the lock might be held while a split up 
to the child takes place. As a simplification, add this 
wait to T(1, i - l), as it will occur only if the child 
is insert-unsafe. If we model the stages as having ex- 
ponential distributions, the resulting server has a hy- 
perexponential distribution. See Figure 2. Kleinrock 
[12] describes how to calculate the expected waiting 
time for this server. Let: 

Pf = Qi Pr[F(i - l)]/(% •I qd) 

PO = pw(i - 1) 

t, = (se(i) + h(i)T,(i) + (1 - h(i))r,(i)) 

tf = l/(T(I, i - 1) + Sp(i - 1) ni=i Pr[F(k)]) 

PO = l/(R(i - l)/p,(i - 1) + ru(i - 1)) 
t, = PO/PO + (1 - Po)T& - 1) 

Then: 

Theorem 3 The lock waiting times are, for i = 
2 h: ,‘.., 

R(i) = * [We +pftft, +tZ +pfWf+ 

PO/d + Pf t; + (1 - Po)T,“(i - I)] 

W(i) = R(i) + pw(i)r,(i) + (1 - pw(i))r,(i) 

Proof: The expected waiting time for a M/G/l server 
is [12]: 

WC& (1) 

where z is the service time of the server. The value of 
2 can be found by differentiating the Laplace trans- 
form twice and evaluating at zero. 

Let: 

Use the FCFS analysis in [8] to calculate pw (1) (see 
the Appendix), (2) compute R(1) and W(1) using 
Theorem 4, (3) use Theorem 3 to compute the R and 
W lock waiting times for the other levels. If pw (i) < 1 
for all levels 1 5 i 5 h, the queues are stable and the 
algorithm will give a throughput equal to the arrival 
rate. Use the lock waiting times R(i) and the W(i) to 
compute the response times of the operations using 
Theorem 5. 

Pe = l/k 5.1 Analysis of Optimistic Descent 
p1 = Wf and the Link-type Algorithm 

Then the Laplace transform of the server is [12]: 

B*(s) = (*) (Pf (*) + (1 ?f)) 

(PO (gk) +b+&iTi) 

Take the second derivative of B*(s) and evaluate 
at zero: 

B*t2)(0) = 2[t,t, + p&G + t; + pftotf + 

PO/CL: + Pf t; + (1 - PC+% - 111 (2) 

Combine (1) and (2) to obtain the result l 

The leaves are an exception. Model their service 
time by an exponential distribution. 

Theorem 4 The lock waiting times at the leaves are: 

R(1) = && [l/Pw,l + Pw (lb&) 

+(I - P&))“e(l)) 

w(1) = R(l) + Ptu(l)Tt$) + (1 - Pw(l))T$) 

Proof: The waiting time of an M/M/l queue is p/[( l- 
p)p] ([12]). Apply Theorem 6 to obtain the result l 

After calculating all of the lock waiting times by 
starting at the leaves and working up, we can calcu- 
late the expected response times of the operations. 
The response time of an operation is the time needed 
to perform the operation in the absence of locking, 
plus all of the lock waiting times. 

Theorem 5 The response times of the search (S), 
delete (0) and insert (I) operations are: 

Per(S) = Cjh,lW) + R(i)) 

Per(D) = M + W(1) + ciZ2(Se(i) + W(i)) 

Per(l) = M + ‘j$, Se(i) + ~~=, W(i) + 

cj”3rIj,=, wYw%o) 

To summarize, the sequence of calculations is: ,P) 

For reasons of space, we will not analyze the Opti- 
mistic Descent algorithm or the Link-type algorithm 
in depth. Rather, we will describe how to modify 
the analysis of the Naive Lock-coupling algorithm to 
model the other two algorithms. 

In the Optimistic Descent algorithm, an update 
(insert or delete) operation makes an initial optimistic 
descent, where it follows the search operation’s pro- 
tocol, except for placing a W lock on the leaf. If the 
leaf needs to be restructured, it makes a second de- 
scent, placing W locks. To account for the second de- 
scent, create a new type of operation, the redo-insert 
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operation. The rate at which redo-insert operations 
enter the B-tree is the rate at which update oper- 
ations make second descents, qiPr[.F(l)]X. Use the 
four types of operations to calculate the R and W 
lock waiting times at each level. The response time 
of an insert operation is the time to make the first 
descent, plus Pr[F(l)] times the response time of a 
redo-insert operation. 

In the Link-type algorithm, all operations place R 
locks down to the leaf, then update operations W 
lock and search operations R lock the leaf, holding 
at most one lock at a time. If the node must be re- 
structured, it is half-split, the W lock on the node 
released and the parent W-locked. Therefore, the ar- 
rival rate of W locks to a leaf is E[h] - - -E[Z](qi+qd)k 
The arrival rate of W locks to a node above the 
leaf is the rate at which children of the node split, 
E[h] * * *E[3] Pr[F(l)]qiA and so on. Since there is no 
lock coupling, the service time of an R lock is the 
time to search the node and the service time of a W 
lock is the time to modify the node and potentially 
half-split it. A complication is that operations might 
cross links, which increases the arrival rates, and thus 
increases the probability that an operation crosses a 
link. However, link crossing is rare and has a negligi- 
ble effect on performance (see Figure 9). 

5.2 Resource Contention 

Since all access times are parameterized, resource 
contention can be factored in as a pre-calculation di- 
lation factor. Assuming that one has a model of the 
computer system, calculating the resource contention 
dilation factor is straight-forward. By Little’s Law, 
the number of active (non-blocked) operations is the 
arrival rate times the expected serial service. Blocked 
transactions can be assumed to be idle. The through- 
put is simply the arrival rate, if the concurrent B-tree 
algorithm is stable. These parameters can be used to 
calculate the dilation factor. 

5.3 Experiments and Comparison 

We ran simulation experiments for comparison with 
the analysis. The simulator ran until 10,000 concur- 
rent operations were performed. Figures 3 through 
8 show the comparisons. A node in the underlying 
B-tree held a maximum of 13 items. The concur- 
rent operations started when the B-tree held about 
40,000 items. The root of the B-tree had about 6 
children. The B-tree had 5 levels; it was assumed to 
have the two top levels in memory and the remain- 
ing levels on disk. The cost of disk accesses can be 
varied, but the figures show experiments in which the 

cost of accessing an on-disk node is 5 times the cost 
of accessing an in-memory node. The time to search 
the root was one time unit. The time to modify a leaf 
was twice the time to search the leaf, and the time 
to split a node was three times the time to search it. 
The time to modify the parent is included in the cost 
of a split. The proportions of concurrent operations 
were: qb = .3, qi = .5 and q,j = .2. At each setting of 
the parameters, 5 simulations were run, each with a 
different seed. 

Figures 3 and 4 compare analytical and simulation 
predictions of the search and insert response times 
of the Naive Lock-coupling algorithm. Figures 5 and 
6 show the comparison for the Optimistic Descent 
algorithm and figures ‘7 and 8 show the comparison 
for the Link-type algorithm. The response time of 
the operation is plotted against the arrival rate (or the 
throughput). The comparison shows that the analysis 
and the simulation predict the same response times. 

The response time curves tend to stay level with 
an increasing arrival rate, then increase rapidly as 
the arrival rate approaches the maximum throughput. 
The increase in the response time is due to increases 
in the waiting time. The rapid increase in the re- 
sponse time can be predicted from standard M/M/l 
queuing theory [12]. The response time of the lock- 
coupling algorithms increase even more rapidly than 
the M/M/l queue, however. The root writer utiliza- 
tion increases non-linearly with the increasing arrival 
rate, as is shown in figure 10 (for the Naive Lock- 
coupling algorithm). To go from pw = .5 to pw = 1 
requires less than a 50% increase in arrival rate. This 
is due to an increasing wait for a lock on one of the 
root’s children, and hence reflects the cost of lock- 
coupling. Figure 11 shows the maximum throughput 
plotted against the cost of accessing an node stored 
on disk (for Naive Lock-coupling). The cost of lock- 
ing nodes stored two levels below the root can have 
a significant impact on the performance of the algo- 
rithm. 

Figure 12 shows a comparison of the response times 
of the three algorithms. The Optimistic Descent al- 
gorithm has significantly better performance then the 
Naive Lock-coupling algorithm, and the Link type al- 
gorithm has significantly better performance than the 
Optimistic Descent algorithm. The Link-type algo- 
rithm achieves very high concurrency because only 
those nodes that are actually modified are W-locked, 
and the W locks are held for a relatively short period 
of time. 
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6 Rules of thumb 

The calculations of the previous section can gener- 
ate accurate predictions of the concurrent algorithm’s 
performance, but are somewhat cumbersome for gen- 
erating intuition about performance. We will derive a 
rule of thumb that will predict the arrival rate where 
pw = .5. Denote this arrival rate by X,,=,z. Increasing 
the arrival rate beyond this point will cause a dispro- 
portionate increase in waiting. The rules of thumb 
will predict an ‘effective maximum arrival rate’. 

Naive Lock-coupling The root is the bottleneck 
for the Naive Lock-coupling algorithm, so we will ap 
proximate X,,=.s for the root. The writer utilization is 
the writer arrival rate divided by the aggregate cus- 
tomer service rate: pW = X,/pa. (The time to serve 
an aggregate customer is the time to serve a W lock 
and all R locks immediately ahead of the W lock and 
for which the W lock must wait. See the Appendix.) 
Therefore, the writer arrival rate when the writer uti- 
lization is .5 is: 

Ll,p=.5 = I.42 

We need to approximate the aggregate customer ser- 
vice rate, or, equivalently, the expected time to serve 
an aggregate customer. We will approximate the ag- 
gregate customer service time by the time to search 
the root, get the next lock, search the child if the child 
is full, and wait for the preceding readers. Define: 

T =,l: time to serve an aggregate customer on level 1. 

T +,J: time to serve R customers that are ahead of a 
W customer on level 2. 

Then, 

T&h = Se(h) + W(h - 1) + G,h + 
Qi 

- Pr[F(i - l)]T,,h-1 
!?i + qd 

(3) 

We will approximate the time to serve the preced- 
ing readers first. If pW is known, the time to serve the 
preceding readers is, by Theorem 6, 

T,= (pwln(l+e)+ 

(l-Pw)ln(l+~))/pr 

Approximate pL, by pw and approximate A,/p,,, by 
Pw* 

T, B (hln(l+*)+ 

M ln l+pw%)/pT 
( (4) 

In the case of Naive Lock-coupling, X,/X, = 
!I‘/(1 - Qs), so 

At the root, pw = .5 and pt = l/Se(h). 

The wait for the lock on the child is approximately 

W(h - 1) M Pw'h-l Tt,h.,h-l 
l-&/,h-1 

Approximate Pw,h-l by pw/E(h) = 1/2E(h), so that 

W(h - 1) = T,,&(2E(h) - 1) (6) 

We need an approximation for T&h-l. Instead of 
continuing the approximations down the the leaves, 
approximate the time to get the next lock and search 
the next node, if it is full, by Se(h- 1)/2. In addition, 
use the approximation ln(1 + Z) M Z, so 

T&t x Se(h - 1) 1.5 + 
2E(h);; - qs) > 

(7) 

If we combine all of the approximations and adjust 
the arrival rate to count the search operations, we 
get: 

Rule Of Thumb 1 The arrivaZ rate to a Naive 
Lock-coupling algotithm such that the writer utiliza- 
tion is .5 is approximately 

APE.5 = 

[2(1 - !b) [Se(h) ( 1+1++&J>>+ 

If the maximum node size and root fanout is large 
enough, we can get an even simpler formula. 

Rule Of Thumb 2 (Limit) If the ma&mum node 
size and the Toot fanout aTe ZaTge, 

xp=*5 w 2(1- qI) [Se(h) (1 :ln (I+ &I))] 

Figure 13 shows a comparison between the analyt- 
ical predictions, rule of thumb 1, and the limit rule 
of thumb 2. The in-memory B-tree effective maxi- 
mum arrival rate closely matches the predictions of 
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rule of thumb 1. If the disk cost is 10, however, rule 
of thumb 1 vastly overestimates performance when 
the maximum node size is small. This is due to wait- 
ing for the expensive on-disk nodes. When the max- 
imum node size becomes large, the arrival rate, and 
thus the lock waiting time, on the on-disk levels be- 
comes small. rule of thumb 1 quickly approaches the 
limit rule of thumb 2. Notice that in the limit rule 
of thumb, the effective maximum utilization doesn’t 
increase with the maximum node size. 

Optimistic Descent The Optimistic Descent al- 
gorithm uses the same mechanism as Naive Lock- 
coupling, so the same analysis can be applied in de- 
riving a rule-of-thumb for the effective maximum uti- 
lization. The primary difference is that X, = A and 
A, = qi PI[P(I)]X, SO that 

Also, the reader arrival rate is certain to be much 
larger than the writer arrival rate, so we can’t use 
the approximation ln(1 + CC) m Z. 

Rule Of Thumb 3 The amGal rate to an Opti- 
mistic Descent algorithm such that the wTiter utiliza- 
tion is .5 is approximately 

x,=.5 M 

[2qi Pr[F(l)l ’ [Seth) (l + In (l + &)) 

+ (* + * PrvYh - 111) 

(se(z) ( lA + In (1+ 2E,h,,~Pr[F(1)~)))]] -’ 
If the maximum node size and root fanout is large 

enough, we can get an even simpler formula. 

Rule Of Thumb 4 (limit) If the maximum node 
size and the Toot fanout are large, 

4x.5 w 
1 

2gi Pr[F(l)l Se(h) l+ln l+ 2pi P:~F~I~~ 

Figure 14 shows a comparison between the analyt- 
ical predictions, rule of thumb 3, and the limit rule 
of thumb 4. Again, the rule of thumb makes better 
predictions as the maximum node size increases. 

Notice that for Optimistic Descent, the maximum 
arrival rate inversely depends on Pr[F(l)], which is 
inversely proportional to the maximum node size. 
This is in contrast to Naive Lock-coupling, where the 
effective maximum throughput is independent of the 
maximum node size. Thus, as the maximum node 

size increases, Optimistic Descent becomes increas- 
ingly better than Naive Lock-coupling. 

The rules of thumb suggest a design strategy for 
concurrent B-trees that use Naive Lock-coupling or 
Optimistic Descent. The bottleneck operation in Op- 
timistic Descent and Naive Lock-coupling is search- 
ing the root. Note that in Figures 13 and 14, the 
effective maximum throughput is plotted in units of 
time equal to the time to search the root. In general, 
the time to search the root will increase as the maxi- 
mum node size increases. If a binary search is used to 
search for the proper child of the root, then the time 
to search the root is of the form a + blog N, where 
N is the maximum size of the root. The maximum 
throughput of the Naive Lock-coupling algorithm de- 
pends on the time to search the root and not on the 
probability of splitting a leaf, so the maximum node 
size should be small. The maximum throughput of 
the Optimistic Descent algorithm, however, is pro- 

portional to N/log’ N, so the maximum node sizes 
should be as large as possible. 

Link-type algorithm The maximum throughput 
of a Link-type algorithm is limited by the level that 
first becomes saturated. Because the Link-type algo- 
rithms don’t use lock-coupling, this level is not nec- 
essarily the root. If we examine figure 12, we can see 
that a Link-type algorithm allows enormous concur- 
rency, enough to invalidate steady-state assumptions. 
Therefore, the Link-type algorithm has no effective 
maximum throughput. 

7 An Application of the Anal- 
ysis - Recovery 

In [24] the issue of database recovery as applied to 
concurrent data structures is discussed. A database 
manager will typically hold the exclusive locks that 
a transaction requests until the transaction commits 
([19,7]). If a transaction aborts, the previous values 
of the W-locked records can simply be written back 
without interfering with other transactions. 

If this algorithm is applied to concurrent B-trees, 
then any W lock placed on any node is held until 
the transaction commits. We will call this the Naive 
recovery algorithm. Shasha [24] points out that only 
the leaf locks need to be held for correct recovery. 
Retaining W locks on non-leaf nodes is called Tecovery 
overlock. We will call the protocol of releasing non- 
leaf W locks as soon as possible, but retaining leaf- 
level W locks until the transaction commits the Leuf- 
only recovery algorithm. 
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The Leaf-only recovery algorithm is clearly better 
than the Naive recovery algorithm. The question is, 
how much better? In particular, is it good enough 
to justify having one protocol for data locking and 
another for index locking? In order to answer this 
question, we modeled the effects of recovery on the 
Optimistic Descent algorithm. 

The modifications to account for recovery are sim- 
ple. Let Zrans be the expected time until the transac- 
tion commits. Calculate T(OP, i) (as in Theorem 1). 
At the leaf level, let T’(OP, 1) = T(OP, l)+T&,,,, for 
every OP that places a W lock for the Naive recovery 
algorithm or the Leaf-only recovery algorithm. Above 
the leaf, let T’(OP, i) = T(OP, i) + PI[F(~)]T~~,~, for 
every OP that places a W lock, for the Naive recov- 
ery algorithm. Let T’(OP, i) = T(OP, i) otherwise. 
Use the T’(OP, i) to calculate the lock waiting times. 

Figures 15 and 16 show a comparison of the re- 

sponse times of the Naive recovery algorithm and the 
Leaf-only recovery algorithm. A B-tree that does not 
support recovery is also shown. In the comparison, 
the cost of accessing an on-disk node as compared 
to an in-memory node is D = 10 and Ttlanr = 100, 
a conservative estimate of the remaining transaction 
time. In Figure 15, the maximum node size is 13, 
and the number of B-tree levels is 5 (as in figures 3 
through 8). In Figure 16, the maximum node size 
is 59, and the number of B-tree levels is 4. The 
Leaf-only recovery algorithm has slightly worse per- 
formance than the no-recovery algorithm. In con- 
trast, the Naive recovery algorithm has significantly 
worse performance than the Leaf-only algorithm. Us- 
ing the Leaf-only recovery algorithm is thus a simple 
method to significantly increase the performance of a 
concurrent B-tree. 

8 Conclusions 

This paper discusses a framework for analyzing the 
performance of concurrent B-tree algorithms. The 
framework allows concurrent algorithms to be ana- 
lyzed in a uniform manner. The analysis agrees with 
simulation results. 

Rules of thumb derived from the analysis provide 
intuition into the performance of concurrent data 
structure algorithms. The analyses can be applied 
to a variety of practical problems, including ranking 
and comparing the performance of the different con- 
current B-tree algorithms and determining the per- 
formance implications of recovery algorithms. 

The analysis shows that the Link-type algorithm 
is significantly better than the optimistic descent al- 
gorithm, which is significantly better than the Naive 

Lock-coupling algorithm. The rules of thumb show 
that the Naive lock-coupling algorithm works best on 
B-trees with small nodes and the Optistic Descent al- 
gorithm works best on B-trees with large nodes. An 
extension of the analysis shows that the Leaf-only re- 

covery algorithm is significantly better than the Naive 
recovery algorithm. 

Results that will appear in the full version of this 
paper include analyses of additional concurrent B- 
tree algorithms, including Two-Phase locking; a dis- 
cussion of performance implications, LRU buffering, 
and extensions to other concurrent data structure al- 
gorithms. 
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Appendix - the FCFS R/W 

Q ueue 

In [JSO], Johnson describes a FIFO queue in which 
readers are granted shared locks and writers are 
granted exclusive locks. Readers and writers arrive 
at rates & and X, and are served at rates iu, and 
pau, respectively. 

The queue is analyzed approximately using aggti- 
gate customeT8, which are writers together with all 
readers immediately ahead of the writer and for which 
the writer must wait. The analysis calculates the ser- 
vice time oi an aggregate customer. There are two 
cases: either there are no writers in the queue when 
the current writer arrives, or there is another writer 
in the queue. 

Let pm be the probability that there is a writer in 
the queue. Let f, be the expected time the current 
writer must wait for the readers immediately ahead 
of it if there is another writer in the queue when the 
current writer arrives, and let TV be the time that a 
writer must wait for the readers if there was no other 
writer in the queue. The analysis involves the fact 
that the time to sekve R concurrent readers grows 
logarithmicly tith it. The analysis shows that 

Theorem 6 

T, = ln(l + Pur~r/Ll) /c* 

Fe = Itl(l+(1+P,)x,/(cL++~w))/~ 

where purr is the robt of 

pw= Ll &+ ( zln(l+*)+ 

+*(1+ w)) 

The service time of the aggregate customer is 

T, = l//h + PW”Y + (I- Pw)Te 

283 



Naive Lock-coupling 
insert response time vs. arrival rate 

disk cost=5. 2 in-memory levels 

Y .._ 
g iJ 

queues model representative nodes 

Figure 1: Model of a concurrent B-tree. Figure 3: 
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Figure 2: Model of a Naive Lock-coupling server Figure 4: 
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Link-type algorithm Naive Lock-coupling 
expected number of links crossed maximum throughput vs. disk cost 

per leaf node accessed 2 levels in-memory, 3 on disk 
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Figure 10: Increasing root writer utilization in Naive 
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Figure 12: Comparison of response times of Naive 
Lock-coupling, Optimistic Descent and the Link-type 
algorithm 
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Naive Lock-coupling 
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Figure 13: Comparison of the Naive Lock-coupling 
rule-of-thumb against analytical predictions with 
varying disk cost, D 
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Figure 14: Comparison of the Optimistic Descent 
rule-of-thumb against analytical predictions with 
varying disk cost, D 
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