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Abstract 

We present a query language called GraphLog, based 
on a graph representation of both data and queries. 
Queries are graph patterns. Edges in queries represent 
edges or paths in the database. Regular expressions are 
used to qualify these paths. We characterize the expres- 
sive power of the language and show that it is equivalent 
to stratified linear Datalog, first order logic with tran- 
sitive closure, and non-deterministic logarithmic space 
(assuming ordering on the domain). The fact that the 
latter three classes coincide was not previously known. 
We show how GraphLog can be extended to incorpo- 
rate aggregates and path summarization, and describe 
briefly our current prototype implementation. 

1 Introduction 

The literature on theoretical and computational aspects 
of deductive databases, and the additional power they 
provide in defining and querying data, has grown rapidly 
in recent years. Much less work has gone into the design 
of languages and interfaces that make this additional 
power available in a convenient form. We propose here 
a language called GraphLog, based on a graph repre- 
sentation of both databases and queries. Graphs are 
a very natural representation for data in many appli- 
cation domains; for example, transportation networks, 
project scheduling, parts hierarchies, family trees, con- 
cept hierarchies, and Hypertext. GraphLog has evolved 
from the earlier language Gt proposed in [CMW88]; it 
differs from G+ in its more general data model, use of 
negation, and computational tractability. 

GraphLog queries ask for patterns that must be 
present or absent in the database graph. Each such 
pattern, called a query graph, defines a set of new edges 
(i.e., a new relation) that are added to the graph when- 
ever the pattern is found. GraphLog queries are sets 
of query graphs, called graphical queries. An edge used 
in a query graph either represents a base relation or is 
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itself defined in another query graph. GraphLog is well 
suited to a graphical interface in which users draw query 
graphs on a screen. A prototype implementation of such 
an interface is described in Section 5. 

The simplicity and power of the language rest on two 
main principles. The first is that edges in a query graph 
match edges or paths in the database graph. Regular 
expressions are used to qualify these paths. The sec- 
ond is that there is no recursive definition of new edges 
in a GraphLog query; any edge used in a query graph 
must have been defined elsewhere without directly or 
indirectly referring to the new edge being defined in the 
current query graph. 

The design of GraphLog makes the deliberate choice 
of avoiding the full power of Horn clauses with stratified 
negation. It is therefore important to characterize the 
set of expressible queries. In achieving this characteri- 
zation, we have as a side benefit clarified the relation- 
ship among three well-known query classes: queries ex- 
pressible in stratified linear Datalog, queries computable 
in non-deterministic logarithmic space, and queries ex- 
pressible with a transitive closure operator plus first- 
order logic, all of which turn out to coincide with the 
class expressible in GraphLog. 

The fact that there is a close relationship between 
linear Datalog and transitive closure has become some- 
what of a folk theorem in recent years. In [JAN87], it 
was shown how to evaluate a linear rule by a transitive- 
closure-like computation. The procedure is quite com- 
plex, due to the optimizations that the technique is in- 
tended to achieve. Negation is not mentioned. Ullman 
[UIISS] gives a construction to map a single linear rule 
into a transitive closure problem. He only considers 
rules with a single IDB predicate in the body, and no 
negation. The connection between linear programs and 
transitive closure is also considered in [CK86], and in 
fact the proof of their Theorem 2 can be used to derive 
one of our results when negation is not considered. 

Our result establishes a simple translation procedure 
that takes into account stratified negation. Given any 
linear program, this procedure outputs a program in 
which all recursive rules are transitive closures. We 
then use Immerman’s results on the power of the tran- 
sitive closure operator to show that the queries com- 
puted by stratified linear Datalog programs (assum- 

0 1990 ACM 089791-352-3/90/0004/0404 $1.50 404 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F298514.298591&domain=pdf&date_stamp=1990-04-02


ing an ordering on the domain) are exactly those com- 
putable in non-deterministic logarithmic space on the 
size of the database. Without an ordering of the do- 
main, we show that linear Datalog programs have non- 
deterministic logarithmic space data complexity (i.e., L- 
DATALOG C QNLOGSPACE), improving on results from 
[UvGSG, I<an87] that showed that’ L-DATALOG C QNC. 

These results reflect favourably on the design of 
GraphLog, since linear stratified Datalog is believed by 
many to express most “real life” recursive queries. We 
have also incorporated to the language the ability to 
compute aggregate functions and to summarize along 
paths. As a test case, we have considered in detail the 
application of GraphLog to one particular domain, Hy- 
perlezl systems, with encouraging results, which are de- 
scribed in [C&189]. 

2 The GraphLog Query Language 

Many databases can be naturally viewed as graphs. In 
particular, any relational database in which we can iden- 
tify one or more sets of objects of interest and rela- 
tionships between them can be represented by mapping 
these objects into nodes and relationships into edges. 

Example 2.1: Figure 1 shows a graph representation 
of a flights schedule database. Each flight number is 
associated with the cities it connects (by the predicates 
from and to), as well as with the departure and arrival 
times of the flight (by the predicates departure and ar- 
rival, respectively). There is also a unary predicate cap- 
ital that tells which cities are national capitals. 0 

In the example, we can think of labels such as from 
and to as edge types, carrying no additional informa- 
tion. In other cases, we would like additional attributes 
on both nodes and edges; for example, we might have 
chosen to represent a flight as a relationship between two 
cities that gives the departure and arrival times, labeling 
the edge with a literal of the form flight(21:45,23:15). In 
general, a tuple P(al,. . .,ai, bl,. . ., bj,cl,. . .,ck) can 
be represented by an edge between nodes (al,. . . ,ai) and 
(bl,. . . ,bj) labelled P(c1,. . . ,ck). The precise definition 
of the kind of graphs that we are considering for repre- 
senting databases is given below. 

Definition 2.1: A directed labeled nztiltigraph G is a 
septuple 

where: N is a finite set of nodes; E is a finite set of edyes; 
LN is a set of Ilode labels; LE is a set of edge labels; L, 
the incidence function, is a function from E to N2 that 
associates with each edge in E a pair of nodes from N; 
I/, the node labeling function, is a function from N to 
LN that associates with each node in N a label from 
LN; 6, the edge labeling function, is a function from E 

‘Actually, it was known that L-DATALOG C Qid from 
the fact that L-DATALOG C sT~GE(logn) a.nd STAGE(logn) 
C QNC’. 0 111’ restdt SLOWS kit STAGE(TC-DATALOG) = 
STAGE(L-DATALOG). 

to LE that associates with each edge in E a label from 
LE. 0 

We would like to profit from a graph based repre- 
sentation of a database to express queries. In analogy 
with tableau queries, which define a relation by means 
of a tuple of “distinguished variables” that is in the 
answer whenever some “template” of tuples is present 
in the database, we want our expressions to describe a 
“graph pattern” that should be present for a “distin- 
guished edge” to define a relation. 

Definition 2.2: A directed labeled multigraph with a 
distinguished edge G,(,) is a ninetuple 

where (N, E U {e}, LN, LE U L,, L, Y, E) is a directed la- 
beled multigraph, c(e) E L, and E(e’) E LE for each e’ 
inE. q 

Below, we will formally define our “graph patterns” as 
directed labeled multigraphs with a distinguished edge, 
without isolated nodes, and having the following prop- 
erties. The nodes are labeled by sequences of variables. 
Each edge is labelled by a literal (i.e. positive or nega- 
tive occurrence of a predicate applied to a sequence of 
variables and constants) or by a closure literal, which 
is simply a literal followed by the positive closure op- 
erator. That is, if s is a literal, then s+ is a closure 
literal. Closure literals may only appear between nodes 
labelled by sequences of the same length. There is a dis- 
tinguished edge, which can only be labelled by a positive 
non-closure literal. 

Definition 2.3: A query graph G, is a directed labeled 
multigraph with a distinguished edge 

where LN is a set of sequences of variables, LE is a set of 
literals and closure literals, L, is a set of positive literals, 
there are no isolated nodes (i.e., for each n E N there 
exist 12’ E N, e’ E E such that either L(e’) = (n, n’) or 
Qe’) = (TL’, n)), and such that for each e’ E EU{e} with 
44 = (~~122)~ 1~(~1>1 = k1, [~(n2)1 = k2, and f(e’) = 
s, where s has 1 positions, the arity of s is ICI + k2 + 1 
and if k1 # k2, then s is not a closure literal. 2 q 

Example 2.2: Figure 2 shows a query graph. There 
are several different kinds of literals labeling the edges. 
The literal not-desc-of( P2) is the (necessarily positive) 
literal labeling the distinguished edge. The distin- 
guished edge of the query graph is graphically repre- 
sented by a bold line. The literal descendant+ labeling 

20bserve that we do not force a one-to-one mapping be- 
tween nodes and node labels; i.e., the same sequence of vari- 
ables can appear in more than one node. There are circum- 
stances (e.g., a cluttered picture, faster editing of graphs), in 
which repeating node labels can improve readability. How- 
ever, we believe that the one-one correspondence should be 
preferred: it is far more intuitive to identify nodes with 
variables. 
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Figure 1: A graph representation of a flights schedule database. 

the edge between Pl and P3 is a positive closure literal 
(notice the dashed edge; edges labeled with closure liter- 
als are drawn as dashed lines). The literal -descendant+ 
labeling the edge between P2 and P3 is a negative clo- 
sure literal. Note that we are representing negative lit- 
erals by crossing over the edges labeled with them, and 
showing the negative literals as if they were positive 
ones. Finally, person is a unary predicate. 

Intuitively, this query graph expresses the query that 
returns a ternary predicate not-desc-of(Pl,P3,P2) with 
the descendants P3 of person Pl who are not descen- 
dants of person P2. 0 

At the beginning of this section we mentioned our in- 
tentions of interpreting a query graph as a graph pattern 
that, when satisfied, defines a relation by means of its 
distinguished edge. We would like to read a query graph 
as follows: “if each of the edges in the graph pattern is 
present, then the relation defined by the distinguished 
edge holds.” 

This interpretation naturally corresponds to the way 
we read the rules of a logic program. The correspon- 
dence requires mapping each edge to an appropriate 
predicate. Mapping edges labeled with closure literals 
requires particular attention. We will match the edges 
of the query graph labeled with closure literals to paths 

in the graph of the database. Hence, the corresponding 
predicate will be defined by rules expressing the tran- 
sitive closure of the predicate in the literal labeling the 
edge. 

In light of the above discussion, we define a transla- 
tion function that associates a stratified Datalog pro- 
gram with a query graph. 

Definition 2.4: The logical translation function X is a 
function from query graphs to logic programs given by 
A(Gpo) = P where 

G po = (N, {el, . . . , ek},LN,LE,L,V,E,eO,L,,) 

and such that the rule 

So +-Sl,...,Sk. (1) 

is in P, where, for 0 5 i 5 k, if e(ei) = s,~(ei) = 
(721, nz), v(nl) = x and I = x, then 

1. if s is p(X,) (resp. -p(x)), then si is -em --- 
P(XI,XZ,X~) (rev. -P(XI,XZ~X~)), 

2. if s is = (resp. #), then si is x = x (resp. 
X#x2J3, 

3More precisely, the notation stands for a sequence of 
equality (resp. inequality) atoms, one for each pair of vari- 
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person 

d 

P2 

/ / x / descendant+ 

Figure 2: The descendants of Pl which are not descendants of P2. 

3. if s is p(X;)+ (resp. ‘p(x)+), then Si is --- -7- $(X1, X2, X3) (resp. -$(X1, X2, X3)) and the fol- 
lowing two rules are also in P: 

--- 
P’(X) y, w> 

--- 
+ P(X, y, W). (2) --- 

P/(X, y, w> 
--- 

+ P(X, 2, W), 
--- 

P’(-T y, W). (3) 

where 1x1 = IPI = 1771 = 1x1 = IJ$J, 1771 = 1x1 
and there are no repeated variables in IFI, IPI, 171, 

lm 
and no other rules are in P. q 

Example 2.3: The program listed in Figure 3 is the 
result of applying the logical translation function X to 
the query graph of Figure 2. 

The closure literals descendant+ are translated to an 
IDB predicate descendant-tc(X,Y) . One more rule defin- 
ing not-descendant-of(Pl,P2,P3) has one literal corre- 
sponding to each edge in the query graph. These literals 
appear negated, if the edge label is a negative literal, or 
they are IDB’s defined by other rules, like descendant- 
tc(X,Y), if the edge label is a closure literal. q 

A query graph corresponds to a logical rule, perhaps 
with some other rules expressing a slight generalization 
of transitive closure. The next step to specify a query 
is, of course, to express a set of rules by means of a set 
of graphs. 

Definition 2.5: A graphical query &7 is a finite set of 
query graphs whose edge labels contain two classes of 
predicate symbols: IDB predicates, denoted p, ~1, ~2, . . ., 
which are the ones that appear in the label of the distin- 
guished edge of some query graph; and EDB predicates, 

ables in the same component of each sequence. Note, hom- 
ever, that equality atoms are seldom (if ever) used. 

denoted q, a, 42, . . ., which are the ones that do not ap- 
pear in the label of the distinguished edge of any query 
graph. Cl 

As with logical programs, we will associate with a 
graphical query a graph with information about its 
structure. 

Definition 2.6: The dependence graph of a graphical 
query 6 is a directed graph whose nodes are the IDB 
and EDB predicates that appear in the edge labels of 
the query graphs in 6 and such that there is an edge 
from pi (resp. qj) to pi iff there is a query graph Gpi 
in 6 whose distinguished edge is labeled pi and which 
has pj (resp. qj) labeling some non-distinguished edge 
of Gpi. q 

The definition of the logical translation function X 
(defined for query graphs) is extended to operate on 
graphical queries by simply taking the union of the rules 
generated for each query graph. The semantics of a 
graphical query is determined by the usual semantics 
for the associated set of stratified Datalog rules. 

We allow as expressions of the GraphLog query lan- 
guage only those graphical queries with an acyclic de- 
pendence graph. Note that, although we disallow ex- 
plicit recursion, recursion is nevertheless implicit in the 
use of closure literals. 

Definition 2.7: Graphlog is the query language de- 
fined by the set of graphical queries G whose dependence 
graph is acyclic. The meaning of a graphical query 6 is 
the meaning of the program X(G) under stratified Dat- 
alog semantics. 0 

Example 2.4: Figure 4 shows a graphical query with 
two query graphs (each query graph is contained in a 
separate region within the box of its graphical query). 
The query applies to the database of Figure 1. The 
first query graph defines a predicate feasible(Fl,F2) be- 
tween two flights whenever the first flight arrives before 
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not-desc-of(Pl,P3,P2) +- descendanLtc(Pl,P3), 
1 descendanbtc(P2,P3), 
person(P2). 

descendant-tc(X,Y) +- descendant(X,Y). 
descendant-tc(X,Y) + descendant(X.Z), descendant-tc(Z,Y). 

Figure 3: The descendants of Pl which are not descendants of P2, in Datalog. 

Figure 4: Feasible flight connections. 

the departure of the second. The second defines a predi- 
cate stop-connected(Cl,C2) between two cities whenever 
there is a sequence of at least two feasible flights between 
them. 

If we wanted to include directly connected cities, we 
would have to draw another query graph. Below we 
will consider means of avoiding drawing several query 
graphs in situations like this. 

0 

The language can be made considerably more con- 
cise, without changing the semantics, by generalizing 
literals and closure literals to arbitrary regular expres- 
sions. We do this step by step as follows. Each of the 
new operators introduced is definable in terms of the 
basic language and is added only for convenience. 

If we want an edge in a query graph to represent either 
predicate pl or p2 we use the operator “I”, denoting 
the alternation of the predicates pl and p2 by pllp2. 

Note that care must be taken not to use variables that 
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do not appear in both p1 and ~2, referred to as ghost 
variables, elsewhere in the query graph, because they 
“vanish” from the IDB predicate that replaces the use of 
alternation. The expression pl ]ps constitutes the scope 
of the ghost variables in it. Therefore, a ghost variable 
must never occur outside its scope. 

Another useful shortcut is to avoid drawing several 
edges and nodes to represent a path along which the 
variables labeling the nodes will not be used elsewhere. 
We would like to simply write the sequence of predicates 
that appear along the path in just one edge. In order to 
do this we introduce the composition of the predicates 
pi and ps, denoted by plp2. 

We will also introduce an operator that “changes the 
direction of the arrow” in an edge of a query graph, 
the inversion of the predicate pi, denoted -pi. The 
usefulness of the inversion operator can be appreciated 
\vhen combined with composition. 

Our last addition is particularly useful when used to- 
gether with closure. If we have a closure literal p(X)+ 
labeling an edge of a query graph, it stands for a path 
in the graph representation of the database along which 
the ground literals p(a) always will have the same value 
a, for some a such that an appropriate valuation 0 has 
Q(X) = a. If we want to have a sequence of ground lit- 
eral labels whose values are not all the same along the 
path, but can be arbitrary, then we have to project out 
the component with variable X in predicate p. We want 
to avoid this extra query graph. The underscore (-) will 
stand in place of the variables that we want to project 
out. 

All the constructs we have considered so far are con- 
siderably more useful when used in combination with 
each other. We will define below the set of expressions 
that results from their combined usage. 

Definition 2.8: A path regular expression (p.r.e., for 
short) is an expression generated by the grammar 

EcS;(E)+; --(E);3E); (EIE); WE) 
where S stands for any literal. o 

Two new operators can be defined in term of the ones 
we have already seen: the Kleene closure of a p.r.e. 
E, denoted (E)“, which is equivalent to the expression 
(= I(E)+), and the optional operator ( ? ), that when 
applied to a p.r.e. E yields (E)? , which is equivalent 
to the expression (= IE). 

There are two aspects of p.r.e.‘s that deserve atten- 
tion. The first one is that restrictions apply in the use of 
ghost variables, the other is that the presence of nega- 
tion allows universal quantification of paths within one 
query graph.4 

From now on we will consider as GraphLog expres- 
sions the graphical queries that contain query graphs 

4Note that, with the translation to Datalog that we have 
been considering so far, safety of the equivalent logic pro- 
gram requires restricting the occurrence of negation to the 
outermost subexpression of a p.r.e. 

with p.r.e. in labels, and/or use the underscore in lit- 
erals; we know these extensions do not add anything to 
the language, but convenience and succinctness. 

Example 2.5: Suppose we are interested in find- 
ing among our friends, and the friends of our an- 
cestors, people who live in Toronto There is a resi- 
dence(P,L) predicate meaning that person P lives in city 
L. There is no parent predicate, but two predicates: fa- 
ther(Pl,P2) representing that Pl is the father of P2, and 
mother(Pl,P2,H) representing that Pl is the mother of 
P2 and giving also the name of the hospital H at which 
the relationship started. 

Figure 5 shows a graphical query with only one query 
graph having two nodes. Without p.r.e.‘s, it would have 
been necessary to use three query graphs, one of them 
with four nodes. 

Notice that we used the underscore in the position 
corresponding to the hospital in the mother relation. 
Had we used a variable H in that position, the variable 
H would have been a ghost variable and we would have 
asked for either ancestors that are fathers or ancestors 
that are mothers all of which had their descendants in 
the same hospital. q 

Example 2.6: Figure 6 represents a query in a soft- 
ware development environment. Nodes represents soft- 
ware modules, functions, or libraries. The predicate in- 
module(F,M) means that function F belongs to module 
M. Predicate calls-local(Fl,F2) means that function Fl 
calls some function F2 defined locally, i.e. within the 
same module. Predicate calls-extn(Fl,F2) means Fl calls 
external function F2. Finally, in-library(F,L) means that 
function F is in library L. The query shown in Figure 13 
defines predicate self-used(M), meaning that module M 
uses directly or indirectly the async-io library and M 
calls itself indirectly through some other modules. EI 

3 Expressive Power 

In this section we present results on the expressive power 
of GraphLog. A more detailed exposition can be found 
in [Con89]. We first introduce the transitive closure 
queries and some of their properties. 

Definition 3.1: A transitive closure formula is a for- 
mula TRd(Z; R), where I#@‘; R) is a domain relational 
calculus query such that Z is an sequence of variables 
of even length and R is free in 4(F; R) but bound in 
TR@; R) by the transitive closure operator T. The 
meaning of TR+(i; R) is g iven by the transitive closure 
of4(5;R). 0 

The relational calculus extended with transitive clo- 
sure formulas is denoted TC. 

There is one relationship between complexity classes 
and sets of queries expressed by a language that is par- 
ticularly relevant to our work. Consider the language 
PTC obtained from TC by allowing only positive (i.e. not 
within any negation signs) applications of the transitive 
closure operator. The following result, which requires 
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local-family-friends 

residence 

-(father 1 mother(-))* friend 

Figure 5: Finding the local family friends. 

(- in-module calls-extn+ in-module: 

- in-module (calls-local 1 calls-extn)* in-l&r& 

0 async-io 

Figure 6: Circularly used modules invoking code from the “async-io” library. 

the presence of an order relation on the domain, is from 
[Imm87]. 

Lemma 3.1: QNLOGSPACE = PTC< 

The set of queries expressed by formulas of the form 
FTRc#@; R) ( w h ere T is a vector of not necessarily dis- 
tinct free variables that are substituted for the compo- 
nents of the transitive closure), such that 4(F, R) is in 
E (where E is the set of existential first order queries), 
is denoted TE. In the presence of an order (<) in the 
domain and of two constants in the language, 0 and 
m, denoting resp. the first and last (in <) values of the 
domain5, it was shown in [Imm87] that PTCcl< = TE’*<. 

A surprising result in [Imm88a, Imm88b] is that 
FTC< = TC<, that is, PTC< is closed under complement. 
Together with Lemma 3.1 it shows that nondetermin- 
istic logspace is closed under complement, a formerly 
long-standing open problem in complexity theory, that, 
for instance, answers whether the context sensitive lan- 
guages are closed under complement [AU79]. We collect 

‘Notice that 1: = 0 iff 4y(y < z), which is a first order 
formula. Hence, by introducing a FO formula we can get rid 
of the constants 0 and m. 

in the next theorem the consequences of this result. 

Theorem 3.1: [Imm88a, Imm88b] QNLOGSPACE = 
T&‘< = ‘&‘< 

When we are not provided with an order relation, a 
result in [CH82] shows that the QLOGSPACE query that 
tests whether the size of the database domain is even is 
not a transitive closure query. Hence, we can conclude: 

Lemma 3.2: TC C QNLOGSPACE 

Now we present the definition of several special cases 
of Datalog programs. 

Definition 3.2: A linear logic program is one in which 
each rule has at most one recursive subgoal6 

A TC logic program is a linear program in which each 
recursive IDB predicate p is the head of exactly two 
rules of the form: 

r1 : P(Xl,..., Xn,Yl,... ,Y,) + 
PO(X1, . . . . &,K ,..., L). 

‘These are called piecewise linear programs in [UllSS], 
where the term linear logic program is used to refer to pro- 
grams in which each rule has at most one IDB subgoal. 
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r2 : P(xl,...,x2,K,...,Y,)+ 

PO(Xl,...,X,,~l,...,~n), 

P(Zl,...,Z,,~,...,Y,). 

Rules ri and rz are referred to as TC rules. EI 

The set of queries expressed by linear (resp. TC) 
Datalog programs will be denoted by L-DATALOG (resp. 
TC-DATALOG). 

The parallel complexity of logic programs was studied 
in [UvG86, I<an87]. It was shown there that L-DATALOG 
C QNC and that there are P-complete problems that 
are expressible in DATALOG. Therefore, linear Datalog 
programs do not express all DATALOG queries, unless NC 
= PTIME (a very unlikely fact). 

When we only consider stratified linear (resp. TC) 
logic programs as expressions we get a restriction of S- 
DATALOG denoted SL-DATALOG (resp. STC-DATALOG). 
The following relation between the transitive closure 
queries and the stratified TC Datalog queries holds: 

Lemma 3.3: TC = STC-DATALOG 

To study the expressive power of GraphLog, we first 
relate it to the stratified Datalog sublanguages we have 
been considering. 

Lelll~lla 3.4: TC = STC-DATALOG s GRAPHLOG c SL- 
DATALOG s S-DATALOG 

If we denote by MGRAPHLOG the subset of GRAPHLOG 
whose graphical queries do not have negated literals in 
any edge of the query graphs, we have the following 
Corollary. 

Corollary 3.1: TC-DATALOG c MGRAPHLOG c L- 
DATALOG s DATALOG 

Our main contribution in this section is to improve 
on the results of Lemma 3.4 and present several con- 
sequences. To this end we will give an algorithm that 
translates any stratified linear Datalog program into an 
equivalent stratified TC Datalog program. The idea be- 
hind the translation comes from an informal description 
of the evaluation of a single linear rule by a transitive 
closure computation given in [UllSS]. 

We will make use of constants in the translation pro- 
cess to represent a “signature” for predicates. Signa- 
tures allow the codification of several predicates into a 
wider one that carries the information of all the predi- 
cates; the signature tells which tuples in the wider pred- 
icate are from each of the original predicates. 

The reason for introducing constants is that they sim- 
plify the signature mechanism. We emphasize that con- 
stants are not necessary at all. Signature techniques 
that do not make use of constants (but at the expense 
of increased complexity) h ave been developed and pre- 
sented elsewhere: [CH85] presents a technique using in- 
equalities and [Shm87] d evelops a signature mechanism 
for Datalog without equalities nor inequalities. 

In light of the above discussion, we will present both 
the algorithm and the results following it without paying 
attention to the presence of constants. 

Algorithm 3.1: Translation of SL-DATALOG into STC- 
DATALOG. 

INPUT: A stratified linear Datalog program ‘PP. 

OUTPUT: An equivalent stratified TC Datalog program 
PIP 1 

METHOD: The first step is to determine the dependence 
graph ofPp. Let Si,..., ,$I be the strongly connected 
components (SCC’s) of PP. Then choose predicates 
el,..., e/l andti,..,, tp that are not in Pp. 

The remaining procedure for finding Pip is given in 
Figure 7. We make use of n + 1 distinct constants 
C,Cl,**.,Cn, where n is the maximum of the arities of 
the IDB’s of Pp. The notation ck stands for a sequence 
of k constants c. •i 

Example 3.1: Figure 8 shows the well-known “same 
generation” example. When given as input to Algo- 
rithm 3.1 the result is the program in Figure 9. 

The algorithm creates an edge from the start node 
(c,c,c) to the nodes reachable by the initialization rule 
for sg as rule ri in the procedure of Figure 7. Note that 
the constant sg is the signature for the predicate sg(X,Y) 
both in predicates e and t. Then, the edges correspond- 
ing to the linear recursive rule for the sg predicate are 
added to the program as rule ri in the procedure of Fig- 
ure 7. The rule defining predicate sg in the TC Datalog 
program (i.e., the one introduced as as rule ri in the 
procedure of Figure 7) as well as the TC rules for predi- 
cate t express that whenever there is a path from initial 
values for sg to some node (X,Y), then (X,Y) is in sg. CI 

The correctness of Algorithm 3.1 can be proved by 
showing the equivalence of the input and output logic 
programs by an induction on the iterations of the naive 
evaluation within each strongly connected component 
of the dependency graphs of the programs. 

Theorem 3.2: Algorithm 3.1 correctly translates any 
SL-DATALOG program into an equivalent STC-DATALOG 
program in time polynomial in the size of the input. 

Corollary 3.2: Algorithm 3.1 correctly translates any 
L-DATALOG expression into an equivalent TC-DATALOG 
program. 

Theorem 3.3: TC = STC-DATALOG = GRAPHLOG = 
SL-DATALOG 

Proof: The existence of Algorithm 3.1 sl~ows that SL- 
DATALOG C STC-DATALOG. The results of Lemma 3.4 
conclude the proof. EI 

As a consequence of the above theorem and of 
Lemma 3.2, we can bound the data complexity of 
GraphLog. 

Lemma 3.5: GRAPHLOG C QNLOGSPACE c QNC 

The result of Theorem 3.3 can be specialized for 
monotone queries. 

Corollary 3.3: TC-DATALOG = MGRAPHLOG = L- 
DATALOG 
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for each SCC Sl of Pp, 15 15 1’ do 
if there are no recursive rules in 5’1 then 

for each rule r whose head is a predicate in Si do add r to PI, 
else begin 

let m be the maximum arity of the predicates ~1,. . . ,p, in St 
for each recursive rule rr in PP 

rl :24(X1,.. *,X,i) tPj(~,...,Y,j),‘l,...,Sk. 
do add the rule ri to P’p 

ri : el(Yl, . . . ,Ynj, Cjmsnj+l, X1,. . .,X,,, cy-“‘+l) +-Sl,...,Sk. 

for each non-recursive rule r2 in Pp 
rz:pi(xl,..., &;)tSl,..., Sk. 

do add the rule I-6 to PIP 
2-h : el(P,Xl,. . .,Xni,cTsnitl) “sl,...,sk. 

add the TC rules for predicate tl to P’, -- 
tl(X,Y) c el(J?,L). 
tl(‘jT,‘5) + e1(5?,Z),t@,Y). 

for each predicate p; in Sl, 1 s i < n 
do add the rule r$ toz’, 

7-i : pi(Z) +- tl(Cm,X,Cr-“i+l). 

end 

Figure 7: Translation of SL-DATALOG into STC-DATALOG. 

11 

sg(X,Y) t- parent( sg(Z,W), parent(Y,W). 

Figure 8: The “same generation” query, in linear Datalog. 

e(Z,W,sg,X,Y,sg) + parent(X,Z),parent(Y,W). 

e(c,c,c,X,X,sg) + person(X3). 

t(Xl,X2,X3,Yl,Y2,Y3) 4- e(Xl,X2,X3,Yl,Y2,Y3). 
t(X1,X2,X3,Yl,Y2,Y3) c t(X1,X2,X3,Z1,Z2,Z3), t(Z1,22,Z3,Y1,Y2,Y3>. 

sg(X,Y) + t(c,c,c,W,sg). 

Figure 9: The “same generation” query, in TC Datalog. 
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0 
cq 

Figure 10: Relative expressive power of the query languages considered. 

Proof: The result is a consequence of the property of 
Algorithm 3.1, presented in Corollary 3.2, together with 
Corollary 3.1. •i 

We are finally in a position to improve on the data 
complexity result for linear Datalog. 

Lemma 3.6: L-DATALOG c QNLOGSPACE 

Proof: From Lemma 3.3 we have that L-DATALOG 
= TC-DATALOG. By definition TC-DATALOG C STC- 
DATALOG and Lemma 3.3 shows that STC-DATALOG = 
TC. Considering the result of Lemma 3.2 that proves 
that TC C QNLOGSPACE, we conclude that L-DATALOG 
c QNLOGSPACE. 0 

The results on complexity can be tightened in the 
presence of an order relation. 

Lemma 3.7: TC< = STC-DATALOG< = 
GRAPHLOG< =SL-DATALOG< = QNLOGSPACE 

Proof: By Lemma 3.1 we know that QNLOGSPACE = 
PTC<. By definition PTC E TC. Together with the result 
of Lemma 3.2, we conclude that QNLOGSPACE = TC<. 
Theorem 3.3, which is not affected by the presence of 
an order relation, completes the proof of the chain of 
equa.lities in the hypothesis. o 

An interesting consequence from Theorem 3.3 
and Theorem 3.1 is that any graphical query in 

GRAPHLOG~~< has an equivalent one in which only one 
edge has a closure literal label. 

We know that there is no algorithm that given any lin- 
ear Datalog program will find an equivalent TC Datalog 
program with only one application of transitive closure: 
there exists a property (having a “one-sided” equiva 
lent program) that is undecidable for the former class 
but decidable for the latter [Nau87]. On the other hand 
stratified linear programs (with constants and an order 
relation) collapse into equivalent programs with only 
one application of transitive closure, by the same argu- 
ment applied in the previous paragraph. 

The diagram of Figure 10 summarizes the relation- 
ships between the expressive power of the query lan- 
guages we have considered. The sets of queries ex- 
pressed by relational calculus, fixpoint formulas and 
Datalog with inflationary semantics, are denoted FO, FP 
and DATALOG~, respectively. The relative height within 
the picture represents the expressive power of the query 
languages shown (omitting technical details like pres- 
ence of an order relation to simplify the diagram), but 
the sets of queries at the right hand side of the diagram 
are monotone, hence incomparable with the ones at the 
left hand side. Our main result has been to prove that 
the languages enclosed within each of the two large el- 
lipses have equivalent expressive power. 
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4 Aggregation and Sumniarization 

To justify our claim of “real life” queries in the title, 
we need to include two additional features: aggregation 
and path summarization. 

For introducing aggregation in Graphlog, we have 
defined an extension to Datalog that incorporates ag- 
gregate functions. We have proved that our extension 
captures the class of first order queries with aggregates 
of [Klu82]. We could have defined GraphLog with ag- 
gregates by translating it to a query language based on 
logic programming with sets, like LDL [TZ8G]. LDL 
provides the facilities necessary for defining aggregation 
and does so within the logic programming framework. 
The problem is that logic programming with sets has 
(arbitrary) exponential data complexity (see [Bee88]). 
Our proposal instead retains polynomial time data com- 
plexity. However, the expressive power results of Section 
3 do not apply when aggregate operators are considered. 

There are several kinds of applications that require 
not only aggregation of sets of values appearing in edge 
labels, but also the capability to summarize informa- 
tion along paths. For example: “find the length of a 
shortest path between two nodes”. Our approach inte- 
grates aggregation and path summarization uniformly. 
Since space does not allow a complete description, we 
illustrate with an example. 

Example 4.1: Consider a task scheduling database 
storing data about which tasks affect which others, rep- 
resented by the predicate affects(Tl,T2), and about the 
duration and scheduled start of each task in the predi- 
cates duration(T,D) and scheduled-start(T,S). Durations 
and scheduled starts are both measured in days since 
some initial day 0. 

Figure 11 shows how to define in GraphLog a pred- 
icate delayed-start(T,DS) that answers the question: 
“how a would delay DS in task T affect other tasks?” 
The first query graph simply “moves” the duration of a 
task T2 to a new edge defined from any task Tl which 
affects T2 to T2. The second query graph defines a 
predicate earlier-start(E) from Tl to T2, where E is the 
longest sum of durations along all paths from Tl to T2. 
In the last query graph, the new start time from task 
Tl when task T is delayed by DS is defined by a simple 
calculation. Cl 

5 Prototype Iniplenientation 

The original effort consisted in the specialization of 
a Smalltalk-80TM graph editor product (NodeGraph- 
80 [Ada87]) for editing query graphs and displaying 
database graphs. The resulting editor supports graph 
“cutting and pasting”, as well as text editing of node 
and edge labels, node and edge repositioning and re- 
shaping, scrolling over large graphs, storage and re- 
trieval of graphs as text files, etc. 

Once the graph editor was available, the quer! eval- 
uation component was developed to support G edge 
queries. These are simple queries containing two nodes 

with one edge connecting them; the edge may be la- 
belled by an arbitrary regular expression. The algo- 
rithms used to search the database for answers are dis- 
cussed in [MW89]. The user interface lets the user dis- 
play the database graph (or part of it) in a window and 
the query graph in another. The answers may be dis- 
played by highlighting qualifying paths directly on the 
database graph, or viewing them one by one in a sepa- 
rate window, or by turning their union into a new graph 
which can then itself the queried. The latter possibility 
supports iterative filtering of large and complex graphs. 

The current prototype handles arbitrary GraphLog 
queries, not including aggregation and summarization. 
The screendump in Figure 12. shows three queries on a 
database of flights, where the nodes are cities and the 
edges are flights. There is one binary predicate for each 
airline; for example, the edge labelled AA from Buenos 
Aires to Lima means there is a flight between those two 
cities on Aerolineas Argentinas. The three queries are 
in the three small windows at the top of the display. 

The large window displays the result of the leftmost 
query: define a loop labelled RT-scale going from a city 
back to itself if the city is a scale on a sequence of Cana- 
dian Pacific flights from Rome to Tokyo. The result is 
being displayed by highlighting on the database window 
all instances of the new edge. 

The G*/GraphLog system graphs are held in main 
memory, as Smalltalk-80TM objects. However, the 
system has an interface for processing G+/GraphLog 
queries on top of the Neptune hypertext front-end to 
the Hypertext Abstract Machine (HAM) [DS86]. The 
HAM is a general-purpose, transaction-based, multi- 
user server for a hypertext storage system. Using this 
interface, queries on large graphs may be posed. 

6 Conclusions 

We have described the GraphLog query language and 
characterized its expressive power. In doing so, we 
established the equivalence in expressive power of 
GraphLog, stratified linear Datalog, non-deterministic 
logarithmic space, and transitive closure. Our results 
imply that GraphLog is in QNC, hence amenable to ef- 
ficient parallel implementations. Furthermore, imple- 
mentations can benefit from the existing work on tran- 
sitive closure computation and linear Datalog optimiza- 
tion (see [U1189] for references). 

An interesting research direction is the application 
of GraphLog to data models with complex objects and 
object identity. Our complexity results suggest that 
GraphLog may provide a good trade-off between com- 
putational complexity and expressive power. Current 
proposals (as in [Bee88]) either require exponential time 
or fail to express transitive closures. An exception is the 
polynomial time restricted language of [AK89]; however, 
this proposal uses inflationary semantics for negation, 
while we use the more natural and simpler stratified 
semantics. 
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duration-of-next(-)+<D> 

earlier-start(MAX(SUM(D))) 

Figure 11: How a delay DS in task T would affect other tasks. 

Figure 12: Displaying the answer of a GraphLog query. 
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