
GraphLog: a Visual Formalism
for Real Life Recursion

Mariano P. Consens Albert0 0. Mendelzon
consensOdb.toronto.edu mendelQdb.toronto.edu

Computer Systems Research Institute
University of Toronto

Toronto, Canada M5S lA4

Abstract

We present a query language called GraphLog, based
on a graph representation of both data and queries.
Queries are graph patterns. Edges in queries represent
edges or paths in the database. Regular expressions are
used to qualify these paths. We characterize the expres-
sive power of the language and show that it is equivalent
to stratified linear Datalog, first order logic with tran-
sitive closure, and non-deterministic logarithmic space
(assuming ordering on the domain). The fact that the
latter three classes coincide was not previously known.
We show how GraphLog can be extended to incorpo-
rate aggregates and path summarization, and describe
briefly our current prototype implementation.

1 Introduction

The literature on theoretical and computational aspects
of deductive databases, and the additional power they
provide in defining and querying data, has grown rapidly
in recent years. Much less work has gone into the design
of languages and interfaces that make this additional
power available in a convenient form. We propose here
a language called GraphLog, based on a graph repre-
sentation of both databases and queries. Graphs are
a very natural representation for data in many appli-
cation domains; for example, transportation networks,
project scheduling, parts hierarchies, family trees, con-
cept hierarchies, and Hypertext. GraphLog has evolved
from the earlier language Gt proposed in [CMW88]; it
differs from G+ in its more general data model, use of
negation, and computational tractability.

GraphLog queries ask for patterns that must be
present or absent in the database graph. Each such
pattern, called a query graph, defines a set of new edges
(i.e., a new relation) that are added to the graph when-
ever the pattern is found. GraphLog queries are sets
of query graphs, called graphical queries. An edge used
in a query graph either represents a base relation or is

Permission to copy without fee all or pan of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy othenvise, or to republish,
requires a fee and/or specific permission.

itself defined in another query graph. GraphLog is well
suited to a graphical interface in which users draw query
graphs on a screen. A prototype implementation of such
an interface is described in Section 5.

The simplicity and power of the language rest on two
main principles. The first is that edges in a query graph
match edges or paths in the database graph. Regular
expressions are used to qualify these paths. The sec-
ond is that there is no recursive definition of new edges
in a GraphLog query; any edge used in a query graph
must have been defined elsewhere without directly or
indirectly referring to the new edge being defined in the
current query graph.

The design of GraphLog makes the deliberate choice
of avoiding the full power of Horn clauses with stratified
negation. It is therefore important to characterize the
set of expressible queries. In achieving this characteri-
zation, we have as a side benefit clarified the relation-
ship among three well-known query classes: queries ex-
pressible in stratified linear Datalog, queries computable
in non-deterministic logarithmic space, and queries ex-
pressible with a transitive closure operator plus first-
order logic, all of which turn out to coincide with the
class expressible in GraphLog.

The fact that there is a close relationship between
linear Datalog and transitive closure has become some-
what of a folk theorem in recent years. In [JAN87], it
was shown how to evaluate a linear rule by a transitive-
closure-like computation. The procedure is quite com-
plex, due to the optimizations that the technique is in-
tended to achieve. Negation is not mentioned. Ullman
[UIISS] gives a construction to map a single linear rule
into a transitive closure problem. He only considers
rules with a single IDB predicate in the body, and no
negation. The connection between linear programs and
transitive closure is also considered in [CK86], and in
fact the proof of their Theorem 2 can be used to derive
one of our results when negation is not considered.

Our result establishes a simple translation procedure
that takes into account stratified negation. Given any
linear program, this procedure outputs a program in
which all recursive rules are transitive closures. We
then use Immerman’s results on the power of the tran-
sitive closure operator to show that the queries com-
puted by stratified linear Datalog programs (assum-

0 1990 ACM 089791-352-3/90/0004/0404 $1.50 404

http://crossmark.crossref.org/dialog/?doi=10.1145%2F298514.298591&domain=pdf&date_stamp=1990-04-02

ing an ordering on the domain) are exactly those com-
putable in non-deterministic logarithmic space on the
size of the database. Without an ordering of the do-
main, we show that linear Datalog programs have non-
deterministic logarithmic space data complexity (i.e., L-
DATALOG C QNLOGSPACE), improving on results from
[UvGSG, I<an87] that showed that’ L-DATALOG C QNC.

These results reflect favourably on the design of
GraphLog, since linear stratified Datalog is believed by
many to express most “real life” recursive queries. We
have also incorporated to the language the ability to
compute aggregate functions and to summarize along
paths. As a test case, we have considered in detail the
application of GraphLog to one particular domain, Hy-
perlezl systems, with encouraging results, which are de-
scribed in [C&189].

2 The GraphLog Query Language

Many databases can be naturally viewed as graphs. In
particular, any relational database in which we can iden-
tify one or more sets of objects of interest and rela-
tionships between them can be represented by mapping
these objects into nodes and relationships into edges.

Example 2.1: Figure 1 shows a graph representation
of a flights schedule database. Each flight number is
associated with the cities it connects (by the predicates
from and to), as well as with the departure and arrival
times of the flight (by the predicates departure and ar-
rival, respectively). There is also a unary predicate cap-
ital that tells which cities are national capitals. 0

In the example, we can think of labels such as from
and to as edge types, carrying no additional informa-
tion. In other cases, we would like additional attributes
on both nodes and edges; for example, we might have
chosen to represent a flight as a relationship between two
cities that gives the departure and arrival times, labeling
the edge with a literal of the form flight(21:45,23:15). In
general, a tuple P(al,. . .,ai, bl,. . ., bj,cl,. . .,ck) can
be represented by an edge between nodes (al,. . . ,ai) and
(bl,. . . ,bj) labelled P(c1,. . . ,ck). The precise definition
of the kind of graphs that we are considering for repre-
senting databases is given below.

Definition 2.1: A directed labeled nztiltigraph G is a
septuple

where: N is a finite set of nodes; E is a finite set of edyes;
LN is a set of Ilode labels; LE is a set of edge labels; L,
the incidence function, is a function from E to N2 that
associates with each edge in E a pair of nodes from N;
I/, the node labeling function, is a function from N to
LN that associates with each node in N a label from
LN; 6, the edge labeling function, is a function from E

‘Actually, it was known that L-DATALOG C Qid from
the fact that L-DATALOG C sT~GE(logn) a.nd STAGE(logn)
C QNC’. 0 111’ restdt SLOWS kit STAGE(TC-DATALOG) =
STAGE(L-DATALOG).

to LE that associates with each edge in E a label from
LE. 0

We would like to profit from a graph based repre-
sentation of a database to express queries. In analogy
with tableau queries, which define a relation by means
of a tuple of “distinguished variables” that is in the
answer whenever some “template” of tuples is present
in the database, we want our expressions to describe a
“graph pattern” that should be present for a “distin-
guished edge” to define a relation.

Definition 2.2: A directed labeled multigraph with a
distinguished edge G,(,) is a ninetuple

where (N, E U {e}, LN, LE U L,, L, Y, E) is a directed la-
beled multigraph, c(e) E L, and E(e’) E LE for each e’
inE. q

Below, we will formally define our “graph patterns” as
directed labeled multigraphs with a distinguished edge,
without isolated nodes, and having the following prop-
erties. The nodes are labeled by sequences of variables.
Each edge is labelled by a literal (i.e. positive or nega-
tive occurrence of a predicate applied to a sequence of
variables and constants) or by a closure literal, which
is simply a literal followed by the positive closure op-
erator. That is, if s is a literal, then s+ is a closure
literal. Closure literals may only appear between nodes
labelled by sequences of the same length. There is a dis-
tinguished edge, which can only be labelled by a positive
non-closure literal.

Definition 2.3: A query graph G, is a directed labeled
multigraph with a distinguished edge

where LN is a set of sequences of variables, LE is a set of
literals and closure literals, L, is a set of positive literals,
there are no isolated nodes (i.e., for each n E N there
exist 12’ E N, e’ E E such that either L(e’) = (n, n’) or
Qe’) = (TL’, n)), and such that for each e’ E EU{e} with
44 = (~~122)~ 1~(~1>1 = k1, [~(n2)1 = k2, and f(e’) =
s, where s has 1 positions, the arity of s is ICI + k2 + 1
and if k1 # k2, then s is not a closure literal. 2 q

Example 2.2: Figure 2 shows a query graph. There
are several different kinds of literals labeling the edges.
The literal not-desc-of(P2) is the (necessarily positive)
literal labeling the distinguished edge. The distin-
guished edge of the query graph is graphically repre-
sented by a bold line. The literal descendant+ labeling

20bserve that we do not force a one-to-one mapping be-
tween nodes and node labels; i.e., the same sequence of vari-
ables can appear in more than one node. There are circum-
stances (e.g., a cluttered picture, faster editing of graphs), in
which repeating node labels can improve readability. How-
ever, we believe that the one-one correspondence should be
preferred: it is far more intuitive to identify nodes with
variables.

405

Figure 1: A graph representation of a flights schedule database.

the edge between Pl and P3 is a positive closure literal
(notice the dashed edge; edges labeled with closure liter-
als are drawn as dashed lines). The literal -descendant+
labeling the edge between P2 and P3 is a negative clo-
sure literal. Note that we are representing negative lit-
erals by crossing over the edges labeled with them, and
showing the negative literals as if they were positive
ones. Finally, person is a unary predicate.

Intuitively, this query graph expresses the query that
returns a ternary predicate not-desc-of(Pl,P3,P2) with
the descendants P3 of person Pl who are not descen-
dants of person P2. 0

At the beginning of this section we mentioned our in-
tentions of interpreting a query graph as a graph pattern
that, when satisfied, defines a relation by means of its
distinguished edge. We would like to read a query graph
as follows: “if each of the edges in the graph pattern is
present, then the relation defined by the distinguished
edge holds.”

This interpretation naturally corresponds to the way
we read the rules of a logic program. The correspon-
dence requires mapping each edge to an appropriate
predicate. Mapping edges labeled with closure literals
requires particular attention. We will match the edges
of the query graph labeled with closure literals to paths

in the graph of the database. Hence, the corresponding
predicate will be defined by rules expressing the tran-
sitive closure of the predicate in the literal labeling the
edge.

In light of the above discussion, we define a transla-
tion function that associates a stratified Datalog pro-
gram with a query graph.

Definition 2.4: The logical translation function X is a
function from query graphs to logic programs given by
A(Gpo) = P where

G po = (N, {el, . . . , ek},LN,LE,L,V,E,eO,L,,)

and such that the rule

So +-Sl,...,Sk. (1)

is in P, where, for 0 5 i 5 k, if e(ei) = s,~(ei) =
(721, nz), v(nl) = x and I = x, then

1. if s is p(X,) (resp. -p(x)), then si is -em ---
P(XI,XZ,X~) (rev. -P(XI,XZ~X~)),

2. if s is = (resp. #), then si is x = x (resp.
X#x2J3,

3More precisely, the notation stands for a sequence of
equality (resp. inequality) atoms, one for each pair of vari-

406

person

d

P2

/ / x / descendant+

Figure 2: The descendants of Pl which are not descendants of P2.

3. if s is p(X;)+ (resp. ‘p(x)+), then Si is --- -7- $(X1, X2, X3) (resp. -$(X1, X2, X3)) and the fol-
lowing two rules are also in P:

P’(X) y, w>

+ P(X, y, W). (2) ---

P/(X, y, w>

+ P(X, 2, W),

P’(-T y, W). (3)

where 1x1 = IPI = 1771 = 1x1 = IJ$J, 1771 = 1x1
and there are no repeated variables in IFI, IPI, 171,

lm
and no other rules are in P. q

Example 2.3: The program listed in Figure 3 is the
result of applying the logical translation function X to
the query graph of Figure 2.

The closure literals descendant+ are translated to an
IDB predicate descendant-tc(X,Y) . One more rule defin-
ing not-descendant-of(Pl,P2,P3) has one literal corre-
sponding to each edge in the query graph. These literals
appear negated, if the edge label is a negative literal, or
they are IDB’s defined by other rules, like descendant-
tc(X,Y), if the edge label is a closure literal. q

A query graph corresponds to a logical rule, perhaps
with some other rules expressing a slight generalization
of transitive closure. The next step to specify a query
is, of course, to express a set of rules by means of a set
of graphs.

Definition 2.5: A graphical query &7 is a finite set of
query graphs whose edge labels contain two classes of
predicate symbols: IDB predicates, denoted p, ~1, ~2, . . .,
which are the ones that appear in the label of the distin-
guished edge of some query graph; and EDB predicates,

ables in the same component of each sequence. Note, hom-
ever, that equality atoms are seldom (if ever) used.

denoted q, a, 42, . . ., which are the ones that do not ap-
pear in the label of the distinguished edge of any query
graph. Cl

As with logical programs, we will associate with a
graphical query a graph with information about its
structure.

Definition 2.6: The dependence graph of a graphical
query 6 is a directed graph whose nodes are the IDB
and EDB predicates that appear in the edge labels of
the query graphs in 6 and such that there is an edge
from pi (resp. qj) to pi iff there is a query graph Gpi
in 6 whose distinguished edge is labeled pi and which
has pj (resp. qj) labeling some non-distinguished edge
of Gpi. q

The definition of the logical translation function X
(defined for query graphs) is extended to operate on
graphical queries by simply taking the union of the rules
generated for each query graph. The semantics of a
graphical query is determined by the usual semantics
for the associated set of stratified Datalog rules.

We allow as expressions of the GraphLog query lan-
guage only those graphical queries with an acyclic de-
pendence graph. Note that, although we disallow ex-
plicit recursion, recursion is nevertheless implicit in the
use of closure literals.

Definition 2.7: Graphlog is the query language de-
fined by the set of graphical queries G whose dependence
graph is acyclic. The meaning of a graphical query 6 is
the meaning of the program X(G) under stratified Dat-
alog semantics. 0

Example 2.4: Figure 4 shows a graphical query with
two query graphs (each query graph is contained in a
separate region within the box of its graphical query).
The query applies to the database of Figure 1. The
first query graph defines a predicate feasible(Fl,F2) be-
tween two flights whenever the first flight arrives before

407

not-desc-of(Pl,P3,P2) +- descendanLtc(Pl,P3),
1 descendanbtc(P2,P3),
person(P2).

descendant-tc(X,Y) +- descendant(X,Y).
descendant-tc(X,Y) + descendant(X.Z), descendant-tc(Z,Y).

Figure 3: The descendants of Pl which are not descendants of P2, in Datalog.

Figure 4: Feasible flight connections.

the departure of the second. The second defines a predi-
cate stop-connected(Cl,C2) between two cities whenever
there is a sequence of at least two feasible flights between
them.

If we wanted to include directly connected cities, we
would have to draw another query graph. Below we
will consider means of avoiding drawing several query
graphs in situations like this.

0

The language can be made considerably more con-
cise, without changing the semantics, by generalizing
literals and closure literals to arbitrary regular expres-
sions. We do this step by step as follows. Each of the
new operators introduced is definable in terms of the
basic language and is added only for convenience.

If we want an edge in a query graph to represent either
predicate pl or p2 we use the operator “I”, denoting
the alternation of the predicates pl and p2 by pllp2.

Note that care must be taken not to use variables that

408

do not appear in both p1 and ~2, referred to as ghost
variables, elsewhere in the query graph, because they
“vanish” from the IDB predicate that replaces the use of
alternation. The expression pl]ps constitutes the scope
of the ghost variables in it. Therefore, a ghost variable
must never occur outside its scope.

Another useful shortcut is to avoid drawing several
edges and nodes to represent a path along which the
variables labeling the nodes will not be used elsewhere.
We would like to simply write the sequence of predicates
that appear along the path in just one edge. In order to
do this we introduce the composition of the predicates
pi and ps, denoted by plp2.

We will also introduce an operator that “changes the
direction of the arrow” in an edge of a query graph,
the inversion of the predicate pi, denoted -pi. The
usefulness of the inversion operator can be appreciated
\vhen combined with composition.

Our last addition is particularly useful when used to-
gether with closure. If we have a closure literal p(X)+
labeling an edge of a query graph, it stands for a path
in the graph representation of the database along which
the ground literals p(a) always will have the same value
a, for some a such that an appropriate valuation 0 has
Q(X) = a. If we want to have a sequence of ground lit-
eral labels whose values are not all the same along the
path, but can be arbitrary, then we have to project out
the component with variable X in predicate p. We want
to avoid this extra query graph. The underscore (-) will
stand in place of the variables that we want to project
out.

All the constructs we have considered so far are con-
siderably more useful when used in combination with
each other. We will define below the set of expressions
that results from their combined usage.

Definition 2.8: A path regular expression (p.r.e., for
short) is an expression generated by the grammar

EcS;(E)+; --(E);3E); (EIE); WE)
where S stands for any literal. o

Two new operators can be defined in term of the ones
we have already seen: the Kleene closure of a p.r.e.
E, denoted (E)“, which is equivalent to the expression
(= I(E)+), and the optional operator (?), that when
applied to a p.r.e. E yields (E)? , which is equivalent
to the expression (= IE).

There are two aspects of p.r.e.‘s that deserve atten-
tion. The first one is that restrictions apply in the use of
ghost variables, the other is that the presence of nega-
tion allows universal quantification of paths within one
query graph.4

From now on we will consider as GraphLog expres-
sions the graphical queries that contain query graphs

4Note that, with the translation to Datalog that we have
been considering so far, safety of the equivalent logic pro-
gram requires restricting the occurrence of negation to the
outermost subexpression of a p.r.e.

with p.r.e. in labels, and/or use the underscore in lit-
erals; we know these extensions do not add anything to
the language, but convenience and succinctness.

Example 2.5: Suppose we are interested in find-
ing among our friends, and the friends of our an-
cestors, people who live in Toronto There is a resi-
dence(P,L) predicate meaning that person P lives in city
L. There is no parent predicate, but two predicates: fa-
ther(Pl,P2) representing that Pl is the father of P2, and
mother(Pl,P2,H) representing that Pl is the mother of
P2 and giving also the name of the hospital H at which
the relationship started.

Figure 5 shows a graphical query with only one query
graph having two nodes. Without p.r.e.‘s, it would have
been necessary to use three query graphs, one of them
with four nodes.

Notice that we used the underscore in the position
corresponding to the hospital in the mother relation.
Had we used a variable H in that position, the variable
H would have been a ghost variable and we would have
asked for either ancestors that are fathers or ancestors
that are mothers all of which had their descendants in
the same hospital. q

Example 2.6: Figure 6 represents a query in a soft-
ware development environment. Nodes represents soft-
ware modules, functions, or libraries. The predicate in-
module(F,M) means that function F belongs to module
M. Predicate calls-local(Fl,F2) means that function Fl
calls some function F2 defined locally, i.e. within the
same module. Predicate calls-extn(Fl,F2) means Fl calls
external function F2. Finally, in-library(F,L) means that
function F is in library L. The query shown in Figure 13
defines predicate self-used(M), meaning that module M
uses directly or indirectly the async-io library and M
calls itself indirectly through some other modules. EI

3 Expressive Power

In this section we present results on the expressive power
of GraphLog. A more detailed exposition can be found
in [Con89]. We first introduce the transitive closure
queries and some of their properties.

Definition 3.1: A transitive closure formula is a for-
mula TRd(Z; R), where I#@‘; R) is a domain relational
calculus query such that Z is an sequence of variables
of even length and R is free in 4(F; R) but bound in
TR@; R) by the transitive closure operator T. The
meaning of TR+(i; R) is g iven by the transitive closure
of4(5;R). 0

The relational calculus extended with transitive clo-
sure formulas is denoted TC.

There is one relationship between complexity classes
and sets of queries expressed by a language that is par-
ticularly relevant to our work. Consider the language
PTC obtained from TC by allowing only positive (i.e. not
within any negation signs) applications of the transitive
closure operator. The following result, which requires

409

local-family-friends

residence

-(father 1 mother(-))* friend

Figure 5: Finding the local family friends.

(- in-module calls-extn+ in-module:

- in-module (calls-local 1 calls-extn)* in-l&r&

0 async-io

Figure 6: Circularly used modules invoking code from the “async-io” library.

the presence of an order relation on the domain, is from
[Imm87].

Lemma 3.1: QNLOGSPACE = PTC<

The set of queries expressed by formulas of the form
FTRc#@; R) (w h ere T is a vector of not necessarily dis-
tinct free variables that are substituted for the compo-
nents of the transitive closure), such that 4(F, R) is in
E (where E is the set of existential first order queries),
is denoted TE. In the presence of an order (<) in the
domain and of two constants in the language, 0 and
m, denoting resp. the first and last (in <) values of the
domain5, it was shown in [Imm87] that PTCcl< = TE’*<.

A surprising result in [Imm88a, Imm88b] is that
FTC< = TC<, that is, PTC< is closed under complement.
Together with Lemma 3.1 it shows that nondetermin-
istic logspace is closed under complement, a formerly
long-standing open problem in complexity theory, that,
for instance, answers whether the context sensitive lan-
guages are closed under complement [AU79]. We collect

‘Notice that 1: = 0 iff 4y(y < z), which is a first order
formula. Hence, by introducing a FO formula we can get rid
of the constants 0 and m.

in the next theorem the consequences of this result.

Theorem 3.1: [Imm88a, Imm88b] QNLOGSPACE =
T&‘< = ‘&‘<

When we are not provided with an order relation, a
result in [CH82] shows that the QLOGSPACE query that
tests whether the size of the database domain is even is
not a transitive closure query. Hence, we can conclude:

Lemma 3.2: TC C QNLOGSPACE

Now we present the definition of several special cases
of Datalog programs.

Definition 3.2: A linear logic program is one in which
each rule has at most one recursive subgoal6

A TC logic program is a linear program in which each
recursive IDB predicate p is the head of exactly two
rules of the form:

r1 : P(Xl,..., Xn,Yl,... ,Y,) +
PO(X1, &,K ,..., L).

‘These are called piecewise linear programs in [UllSS],
where the term linear logic program is used to refer to pro-
grams in which each rule has at most one IDB subgoal.

410

r2 : P(xl,...,x2,K,...,Y,)+

PO(Xl,...,X,,~l,...,~n),

P(Zl,...,Z,,~,...,Y,).

Rules ri and rz are referred to as TC rules. EI

The set of queries expressed by linear (resp. TC)
Datalog programs will be denoted by L-DATALOG (resp.
TC-DATALOG).

The parallel complexity of logic programs was studied
in [UvG86, I<an87]. It was shown there that L-DATALOG
C QNC and that there are P-complete problems that
are expressible in DATALOG. Therefore, linear Datalog
programs do not express all DATALOG queries, unless NC
= PTIME (a very unlikely fact).

When we only consider stratified linear (resp. TC)
logic programs as expressions we get a restriction of S-
DATALOG denoted SL-DATALOG (resp. STC-DATALOG).
The following relation between the transitive closure
queries and the stratified TC Datalog queries holds:

Lemma 3.3: TC = STC-DATALOG

To study the expressive power of GraphLog, we first
relate it to the stratified Datalog sublanguages we have
been considering.

Lelll~lla 3.4: TC = STC-DATALOG s GRAPHLOG c SL-
DATALOG s S-DATALOG

If we denote by MGRAPHLOG the subset of GRAPHLOG
whose graphical queries do not have negated literals in
any edge of the query graphs, we have the following
Corollary.

Corollary 3.1: TC-DATALOG c MGRAPHLOG c L-
DATALOG s DATALOG

Our main contribution in this section is to improve
on the results of Lemma 3.4 and present several con-
sequences. To this end we will give an algorithm that
translates any stratified linear Datalog program into an
equivalent stratified TC Datalog program. The idea be-
hind the translation comes from an informal description
of the evaluation of a single linear rule by a transitive
closure computation given in [UllSS].

We will make use of constants in the translation pro-
cess to represent a “signature” for predicates. Signa-
tures allow the codification of several predicates into a
wider one that carries the information of all the predi-
cates; the signature tells which tuples in the wider pred-
icate are from each of the original predicates.

The reason for introducing constants is that they sim-
plify the signature mechanism. We emphasize that con-
stants are not necessary at all. Signature techniques
that do not make use of constants (but at the expense
of increased complexity) h ave been developed and pre-
sented elsewhere: [CH85] presents a technique using in-
equalities and [Shm87] d evelops a signature mechanism
for Datalog without equalities nor inequalities.

In light of the above discussion, we will present both
the algorithm and the results following it without paying
attention to the presence of constants.

Algorithm 3.1: Translation of SL-DATALOG into STC-
DATALOG.

INPUT: A stratified linear Datalog program ‘PP.

OUTPUT: An equivalent stratified TC Datalog program
PIP 1

METHOD: The first step is to determine the dependence
graph ofPp. Let Si,..., ,$I be the strongly connected
components (SCC’s) of PP. Then choose predicates
el,..., e/l andti,..,, tp that are not in Pp.

The remaining procedure for finding Pip is given in
Figure 7. We make use of n + 1 distinct constants
C,Cl,**.,Cn, where n is the maximum of the arities of
the IDB’s of Pp. The notation ck stands for a sequence
of k constants c. •i

Example 3.1: Figure 8 shows the well-known “same
generation” example. When given as input to Algo-
rithm 3.1 the result is the program in Figure 9.

The algorithm creates an edge from the start node
(c,c,c) to the nodes reachable by the initialization rule
for sg as rule ri in the procedure of Figure 7. Note that
the constant sg is the signature for the predicate sg(X,Y)
both in predicates e and t. Then, the edges correspond-
ing to the linear recursive rule for the sg predicate are
added to the program as rule ri in the procedure of Fig-
ure 7. The rule defining predicate sg in the TC Datalog
program (i.e., the one introduced as as rule ri in the
procedure of Figure 7) as well as the TC rules for predi-
cate t express that whenever there is a path from initial
values for sg to some node (X,Y), then (X,Y) is in sg. CI

The correctness of Algorithm 3.1 can be proved by
showing the equivalence of the input and output logic
programs by an induction on the iterations of the naive
evaluation within each strongly connected component
of the dependency graphs of the programs.

Theorem 3.2: Algorithm 3.1 correctly translates any
SL-DATALOG program into an equivalent STC-DATALOG
program in time polynomial in the size of the input.

Corollary 3.2: Algorithm 3.1 correctly translates any
L-DATALOG expression into an equivalent TC-DATALOG
program.

Theorem 3.3: TC = STC-DATALOG = GRAPHLOG =
SL-DATALOG

Proof: The existence of Algorithm 3.1 sl~ows that SL-
DATALOG C STC-DATALOG. The results of Lemma 3.4
conclude the proof. EI

As a consequence of the above theorem and of
Lemma 3.2, we can bound the data complexity of
GraphLog.

Lemma 3.5: GRAPHLOG C QNLOGSPACE c QNC

The result of Theorem 3.3 can be specialized for
monotone queries.

Corollary 3.3: TC-DATALOG = MGRAPHLOG = L-
DATALOG

411

for each SCC Sl of Pp, 15 15 1’ do
if there are no recursive rules in 5’1 then

for each rule r whose head is a predicate in Si do add r to PI,
else begin

let m be the maximum arity of the predicates ~1,. . . ,p, in St
for each recursive rule rr in PP

rl :24(X1,.. *,X,i) tPj(~,...,Y,j),‘l,...,Sk.
do add the rule ri to P’p

ri : el(Yl, . . . ,Ynj, Cjmsnj+l, X1,. . .,X,,, cy-“‘+l) +-Sl,...,Sk.

for each non-recursive rule r2 in Pp
rz:pi(xl,..., &;)tSl,..., Sk.

do add the rule I-6 to PIP
2-h : el(P,Xl,. . .,Xni,cTsnitl) “sl,...,sk.

add the TC rules for predicate tl to P’, --
tl(X,Y) c el(J?,L).
tl(‘jT,‘5) + e1(5?,Z),t@,Y).

for each predicate p; in Sl, 1 s i < n
do add the rule r$ toz’,

7-i : pi(Z) +- tl(Cm,X,Cr-“i+l).

end

Figure 7: Translation of SL-DATALOG into STC-DATALOG.

11

sg(X,Y) t- parent(sg(Z,W), parent(Y,W).

Figure 8: The “same generation” query, in linear Datalog.

e(Z,W,sg,X,Y,sg) + parent(X,Z),parent(Y,W).

e(c,c,c,X,X,sg) + person(X3).

t(Xl,X2,X3,Yl,Y2,Y3) 4- e(Xl,X2,X3,Yl,Y2,Y3).
t(X1,X2,X3,Yl,Y2,Y3) c t(X1,X2,X3,Z1,Z2,Z3), t(Z1,22,Z3,Y1,Y2,Y3>.

sg(X,Y) + t(c,c,c,W,sg).

Figure 9: The “same generation” query, in TC Datalog.

412

1

L

0
cq

Figure 10: Relative expressive power of the query languages considered.

Proof: The result is a consequence of the property of
Algorithm 3.1, presented in Corollary 3.2, together with
Corollary 3.1. •i

We are finally in a position to improve on the data
complexity result for linear Datalog.

Lemma 3.6: L-DATALOG c QNLOGSPACE

Proof: From Lemma 3.3 we have that L-DATALOG
= TC-DATALOG. By definition TC-DATALOG C STC-
DATALOG and Lemma 3.3 shows that STC-DATALOG =
TC. Considering the result of Lemma 3.2 that proves
that TC C QNLOGSPACE, we conclude that L-DATALOG
c QNLOGSPACE. 0

The results on complexity can be tightened in the
presence of an order relation.

Lemma 3.7: TC< = STC-DATALOG< =
GRAPHLOG< =SL-DATALOG< = QNLOGSPACE

Proof: By Lemma 3.1 we know that QNLOGSPACE =
PTC<. By definition PTC E TC. Together with the result
of Lemma 3.2, we conclude that QNLOGSPACE = TC<.
Theorem 3.3, which is not affected by the presence of
an order relation, completes the proof of the chain of
equa.lities in the hypothesis. o

An interesting consequence from Theorem 3.3
and Theorem 3.1 is that any graphical query in

GRAPHLOG~~< has an equivalent one in which only one
edge has a closure literal label.

We know that there is no algorithm that given any lin-
ear Datalog program will find an equivalent TC Datalog
program with only one application of transitive closure:
there exists a property (having a “one-sided” equiva
lent program) that is undecidable for the former class
but decidable for the latter [Nau87]. On the other hand
stratified linear programs (with constants and an order
relation) collapse into equivalent programs with only
one application of transitive closure, by the same argu-
ment applied in the previous paragraph.

The diagram of Figure 10 summarizes the relation-
ships between the expressive power of the query lan-
guages we have considered. The sets of queries ex-
pressed by relational calculus, fixpoint formulas and
Datalog with inflationary semantics, are denoted FO, FP
and DATALOG~, respectively. The relative height within
the picture represents the expressive power of the query
languages shown (omitting technical details like pres-
ence of an order relation to simplify the diagram), but
the sets of queries at the right hand side of the diagram
are monotone, hence incomparable with the ones at the
left hand side. Our main result has been to prove that
the languages enclosed within each of the two large el-
lipses have equivalent expressive power.

413

4 Aggregation and Sumniarization

To justify our claim of “real life” queries in the title,
we need to include two additional features: aggregation
and path summarization.

For introducing aggregation in Graphlog, we have
defined an extension to Datalog that incorporates ag-
gregate functions. We have proved that our extension
captures the class of first order queries with aggregates
of [Klu82]. We could have defined GraphLog with ag-
gregates by translating it to a query language based on
logic programming with sets, like LDL [TZ8G]. LDL
provides the facilities necessary for defining aggregation
and does so within the logic programming framework.
The problem is that logic programming with sets has
(arbitrary) exponential data complexity (see [Bee88]).
Our proposal instead retains polynomial time data com-
plexity. However, the expressive power results of Section
3 do not apply when aggregate operators are considered.

There are several kinds of applications that require
not only aggregation of sets of values appearing in edge
labels, but also the capability to summarize informa-
tion along paths. For example: “find the length of a
shortest path between two nodes”. Our approach inte-
grates aggregation and path summarization uniformly.
Since space does not allow a complete description, we
illustrate with an example.

Example 4.1: Consider a task scheduling database
storing data about which tasks affect which others, rep-
resented by the predicate affects(Tl,T2), and about the
duration and scheduled start of each task in the predi-
cates duration(T,D) and scheduled-start(T,S). Durations
and scheduled starts are both measured in days since
some initial day 0.

Figure 11 shows how to define in GraphLog a pred-
icate delayed-start(T,DS) that answers the question:
“how a would delay DS in task T affect other tasks?”
The first query graph simply “moves” the duration of a
task T2 to a new edge defined from any task Tl which
affects T2 to T2. The second query graph defines a
predicate earlier-start(E) from Tl to T2, where E is the
longest sum of durations along all paths from Tl to T2.
In the last query graph, the new start time from task
Tl when task T is delayed by DS is defined by a simple
calculation. Cl

5 Prototype Iniplenientation

The original effort consisted in the specialization of
a Smalltalk-80TM graph editor product (NodeGraph-
80 [Ada87]) for editing query graphs and displaying
database graphs. The resulting editor supports graph
“cutting and pasting”, as well as text editing of node
and edge labels, node and edge repositioning and re-
shaping, scrolling over large graphs, storage and re-
trieval of graphs as text files, etc.

Once the graph editor was available, the quer! eval-
uation component was developed to support G edge
queries. These are simple queries containing two nodes

with one edge connecting them; the edge may be la-
belled by an arbitrary regular expression. The algo-
rithms used to search the database for answers are dis-
cussed in [MW89]. The user interface lets the user dis-
play the database graph (or part of it) in a window and
the query graph in another. The answers may be dis-
played by highlighting qualifying paths directly on the
database graph, or viewing them one by one in a sepa-
rate window, or by turning their union into a new graph
which can then itself the queried. The latter possibility
supports iterative filtering of large and complex graphs.

The current prototype handles arbitrary GraphLog
queries, not including aggregation and summarization.
The screendump in Figure 12. shows three queries on a
database of flights, where the nodes are cities and the
edges are flights. There is one binary predicate for each
airline; for example, the edge labelled AA from Buenos
Aires to Lima means there is a flight between those two
cities on Aerolineas Argentinas. The three queries are
in the three small windows at the top of the display.

The large window displays the result of the leftmost
query: define a loop labelled RT-scale going from a city
back to itself if the city is a scale on a sequence of Cana-
dian Pacific flights from Rome to Tokyo. The result is
being displayed by highlighting on the database window
all instances of the new edge.

The G*/GraphLog system graphs are held in main
memory, as Smalltalk-80TM objects. However, the
system has an interface for processing G+/GraphLog
queries on top of the Neptune hypertext front-end to
the Hypertext Abstract Machine (HAM) [DS86]. The
HAM is a general-purpose, transaction-based, multi-
user server for a hypertext storage system. Using this
interface, queries on large graphs may be posed.

6 Conclusions

We have described the GraphLog query language and
characterized its expressive power. In doing so, we
established the equivalence in expressive power of
GraphLog, stratified linear Datalog, non-deterministic
logarithmic space, and transitive closure. Our results
imply that GraphLog is in QNC, hence amenable to ef-
ficient parallel implementations. Furthermore, imple-
mentations can benefit from the existing work on tran-
sitive closure computation and linear Datalog optimiza-
tion (see [U1189] for references).

An interesting research direction is the application
of GraphLog to data models with complex objects and
object identity. Our complexity results suggest that
GraphLog may provide a good trade-off between com-
putational complexity and expressive power. Current
proposals (as in [Bee88]) either require exponential time
or fail to express transitive closures. An exception is the
polynomial time restricted language of [AK89]; however,
this proposal uses inflationary semantics for negation,
while we use the more natural and simpler stratified
semantics.

414

duration-of-next(-)+<D>

earlier-start(MAX(SUM(D)))

Figure 11: How a delay DS in task T would affect other tasks.

Figure 12: Displaying the answer of a GraphLog query.

415

Acknowledgments
This work has been supported by the Information Tech-
nology Research Centre of Ontario and the Natural Sci-
ence and Engineering Research Council of Canada. The
first author was also supported by the PEDECIBA -
United Nations Program for the Development of Basic
Sciences, Uruguay.

References

[Ada871

(AK891

[AU791

[Bee881

[CH82]

[CH85]

[CK86]

[CM891

[Con891

[DSSG]

Sam S. Adams. NodeGraph- Version 1.0.
Knowledge Systems Corporation, 1987.

Serge Abiteboul and Paris C. Kanellakis. Ob-
ject identity as a query language primitive.
Technical Report 1022, INRIA, April 1989.

A.V. Aho and J.D. Ullman. Universality of
data retrieval languages. Proc. 6th ACM
Symp. on Principles of Programming Lan-
guages, pages 110-120, 1979.

Catriel Beeri. Data models and languages for
databases. Proc. 2nd Int. Conf. on Database
Theory, Lecture Notes in Computer Science
336, pages 19-40, 1988.

A.K. Chandra and D. Harel. Structure and
complexity of relational queries. Journal of
Computer and System Sciences, 25(1):99-
128, 1982.

A.K. Chandra and D. Harel. Horn clause
queries and generalizations. J. Logic Pro-
gramming, 2(1):1-15, 1985.

Stavros S. Cosmadakis and Paris C. Kanel-
lakis. Parallel evaluation of recursive rule
queries. In Proceedings of the Fifth ACM
SIGACT-SIGMOD Symposium on Princi-
ples of Database Systems, pages 280-293,
1986.

Mariano Consens and Albert0 Mendelzon.
Expressing structural hypertext queries in
GraphLog. In Proceedings of the Second
ACM Hypertext Conference, pages 269-292,
1989.

I.F. Cruz, A.O. Mendelzon, and P.T. Wood.
Gt: Recursive queries without recursion. In
Larry Kerschberg, editor, Proceedings of the
Second International Conference on Expert
Database Systems, pages 355-368, 1988.

Mariano P. Consens. Graphlog: “real life” re-
cursive queries using graphs. Master’s thesis,
Department of Computer Science, University
of Toronto, 1989.

N. Delisle and M. Schwartz. Neptune: A
hypertext system for cad applications. In
Proceedings of ACM-SIGMOD 1986 Interna-
tional Conference on Management of Data,
pages 132-142. SIGMOD, 1986.

[Imm87]

[Imm88a]

[Imm88b]

[JAN871

[Kan87]

[Klu82]

[MW89]

[Nau87]

[Shm87]

[TZ86]

[UllSS]

[UvG86]

Neil Immerman. Languages that capture
complexity classes. SIAM Journal on Com-
puting, 16(4):760-778, 1987.

Neil Immerman. Descriptive and computa-
tional complexity. Technical report, Depart-
ment of Computer Science, Yale University,
New Haven, 1988.

Neil Immerman. Nondeterministic space is
closed under complementation. In Third
Structure in Complexity Theory Conference,
1988.

H.V. Jagadish, R. Agrawal, and L. Ness.
A study of transitive closure as a recur-
sive mechanism. In Proceedings of ACM-
SIGMOD 1987 Annual Conference on Man-
agement of Data, pages 331-344. SIGMOD,
1987.

P.C. Kanellakis. Logic programming and
parallel complexity. In J. Minker, edi-
tor, Foundations of Deductive Databases and
Logic Programming, pages 547-586. Morgan
Kaufmann Publishers, Inc., 1987.

Anthony Klug. Equivalence of relational al-
gebra and relational calculus query languages
having aggregate functions. Journal of the
ACM, 29(3):699-717, 1982.

A.O. Mendelzon and P.T. Wood. Finding
regular simple paths in graph databases. In
Proc. 15th International Conference on Very
Large Data Bases, pages 185-194, 1989.

J. Naughton. One-sided recursions. In
Proceedings of the Sixth ACM SIGACT-
SIGMOD Symposium on Principles of
Database Systems, pages 340-348, 1987.

0. Shmueli. Decidability and expressive-
ness aspects of logic queries. In Proceedings
of the Sixth ACM SIGACT-SIGMOD Sym-
posium on Principles of Database Systems,
pages 237-249. Assoc. for Comp. Machinery,
1987.

S. Tsur and C. Zaniolo. LDL: a logic-
based data-language. In Proceedings of the
Twelfth International Conference on Very
Large Data Bases, 1986.

J.D. Ullman. Principles of Database and
Knowledge-Base Systems, volume 2. Com-
puter Science Press, Potomac, Md., 1989.

J.D. Ullman and A. van Gelder. Parallel
complexity of logical query programs. Proc.
27th Ann. Symp. on Foundations of Com-
puter Science, pages 438-454, 1986.

416

