
A GRAPH-ORIENTED
OBJECT DATABASE MODEL

Marc Gyssens, University of Limburg (LUC), 3610 Diepenbeek, Belgium
Jan Paredaens, University of Antwerp (UIA), 2610 Antwerpen, Belgium
Dish Van Gucht, Indiana University, Bloomington, IN 47405-4101, USA

A simple, graph-oriented database model, supporting object-identity, is presented. For this model, a
transformation language based on elementary graph operations is defined. This transformation language
is suitable for both querying and updates. It is shown that the transformation language supports both
set-operations (except for the powerset operator) and recursive functions.

1. Introduction

Graphs have been an integral part of the database
design process ever since the introduction of seman-
tic and, more recently, object-oriented data models
[6,10,14,15]. Typically, the structure (or scheme) of a
database is represented as a graph. For example, the
figure below displays the scheme of a vehicle-database
in the Functional Data Model (FDM) [16].

PERSON NAME

Nodes in this graph represent entity classes, single
(double)-arrowed edges correspond to mono (multi)-
valued functions between classes, and double-sided ed-
ges indicate subclass relationships. So, whereas the
scheme of the vehicle-database is specified as a graph,
the instance is not, but is rather specified as a set of
entity classes and functions between these classes.

Another important feature of a data model is its asso-
ciated data language [19]. It is safe to say that many
semantic and object-oriented data models do not fully
specify or offer this feature. This is not surprising,
since most of these models were primarily introduced
to aid in the database design process. To deal with
the language component, typically schemes in seman-
tic and object-oriented data models are transformed
into a conceptual data model such as the relational
model [19]. The required database language features
then become those of the conceptSual model. Ccr-
tain semantic and object-oriented dat,a models, how-
ever, are equipped with their own datalanguage [7,10].

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Assockion for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specifz permission.

0 1990 ACM 089791-352-3/90/0004/0417 $1.50 417

DAPLEX [16], f or example, is a data language for
FDM. The query “List the models ofgreen CUTS owned
by New Yorkeps”, in DAPLEX is:

FOR EACH CAR

SUCH THAT

COLOR(CAR) = “Green” AND
EXIST PERSON IN IS.RWN~BY(CAR)

ADDRFSSGERSON) = “New York”
LIST MODEL (CAR)

So, unlike the database scheme, queries in DAPLEX
are formulated textually and can become cumbersome.
To summarize, usually very different mathematical
and linguistic tools are used to describe the various
components of semantic and object-oriented data mod-
els. It is our intent to show the possibility of using
a single mathematical tool, namely graphs, for this
purpose.

Besides the desire for a uniform data model, we were
influenced by the current trend in computing which
offers users powerful workstations with graphical in-
terfaices. We believe that this technology is already
playing and will continue to play a dominant role in
the development environment and user interfaces of
databases [17]. In fact, many researchers have al-
ready developed such graphical database tools and
techniques [8,10]. For example, the figure above can
be constructed through a design tool that allows the
drawing of labeled nodes and arrows. A browsing fa-
cility could offer the user the facility to retrieve the
information and objects related to a particular car
without the need for the user to be made aware of the
overall structure of the database or of irrelevant infor-
mation. As a concrete example of a graphical query
one can imagine the above mentioned DAPLEX query
to be graphically represented as:

PERSON

n

AR,
COLOR CAR
- mgreen” = “New York-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F298514.298593&domain=pdf&date_stamp=1990-04-02

Unfortunately, the descriptions of these tools are usu-
ally rather ad hoc and infrequently based on a sound
mathematical foundation. It is our intent to demon-
strate that graph theory is a tool to describe a uniform
data model, which at the same time offers the possi-
bility to take advantage of graphical interfaces. In
this paper, we will mainly deal with the specification
of the data model, called the Graph-Oriented Object
Data model (GOOD).

In Section 2, we present object base schemes and in-
stances. In Section 3, we describe the graphical trans-
formation language of GOOD. In Section 4, we show
that this transformation language is capable of ex-
pressing set operators (except for the powerset opera-
tor) and recursive functions. Finally in Section 5, we
compare our model with some other data models and
give some directions for future research.

2. The Graph-Oriented Object Database Model

It is our purpose to develop a simple and uniform
model, which supports object-identity, but which is
not overloaded with too many different notions. At
the instance level, the data will be represented as a
directed labeled graph. The nodes of this graph repre-
sent the objects of the database. We only distinguish
between non-printable nodes (represented as squares)
and printable nodes (represented as circles). In par-
ticular, we make no distinction between “atomic” ob-
jects, composed objects and set objects. As for the
edges, we make no distinction between set contain-
ment, composition, generalization, specialization, etc.
We only distinguish between functional edges (shown
as “4”) and non-fnnctionul edges (shown as “v”).
For example, the following graph represents an object
base instance for persons with their names (n) and
their children (ch):

Of course, such an object base must obey certain struc-
tural constraints. These are contained in the object
base scheme which can be represented by a set of pro-
ductions. In this example, there are two such produc-
tions which are graphically represented as follows:

[5p m

More generally, we assume there are infinitely enumer-
able sets of nodes, non-printable object labels, pn’nt-
able object labels, functional object labels and non-

functional object labels. We also assume there is a
function ?r which associates to each printable node a
set of constants. A constant can be a character, a
string, . . ., but also a drawing, a graph, a table, etc.
We now define:

Definition 2.1
An object base scheme is a five-tuple S = (NPOL,
POL, FEL, NFEL,P) with NPOL a finite set of non-
printable object labels, POL a finite set of printable
object labels, FEL a finite set of functional edge labels,
NFEL a finite set of non-functional edge labels and
P a set of productions (L, f) with L E NPOL and
f: FEL U NFEL + NPOL U POL a partial mapping
from edge labels to object labels. I

Before we can proceed to the definition of an object
base instance, we need some terminology. A node
which is labeled by a non-printable object label is
called a non-printable node; a node which is labeled
by a printable object label is called a printable node.
If n is a node, then A(n) is its object label. In ad-
dition, printable nodes may be (but do not have to
be) labeled by an appropriate constant (according to
the function 7r). A labeled edge is a triple (m, a,n)
in which m is a non-printable node, a a functional or
non-functional edge label and n an arbitrary labeled
node. An edge labeled with a functional edge label is
called a fnnctional edge; an edge labeled with a non-
functional edge label is called a non-functional edge.
We can now define:

Definition 2.2
Let S = (NPOL, POL, FEL, NFEL,P) be an object
base scheme. An object base instance over S is a pair
Z = (N, E) with:

l N a set of labeled nodes, X(N)‘E NPOLU POL;
a E a set of labeled edges,

EcNx(FELuNFEL)xN;
l if cx E FEL and (m, a,nl), (m,(v,nz) E E,

then nl = n2;
l for each non-printable node m E N there exists a

production (x(m), f) E P such that:
for each edge (m, a, n) E E, f (cx) = A(n). m

Note that some edges in a production need not corre-
spond to edges in the object base instance. This is to
allow for incomplete or unexisting information. E.g.
in our example above, we used this feature of GOOD
to express our knowledge that Brian and Glenda have
two children only one of which we know by name. Note
furthermore that the set P in the object base scheme
can contain more than one production for the same
non-printable object label. In this way, it is possible
to model specialization and generalization.

3. A transformation language for GOOD

In this section, we present the transformation lan-
guage of GOOD. The language contains five basic op-

’ Functions are extended to sets in the canonical way.

418

erations, four of which are elementary manipulations
on graphs: addition of nodes, addition of edges, dele-
tion of edges and deletion of nodes. The specification
of all these operations relies on the notion of pattern.
A pattern is a graph used to describe subgraphs in
an object base instance. Syntactically, there is no dif-
ference between a finite object base instance and a
pattern. Consider e.g. the pattern:

Given the object base instance in Section 2, this pat-
tern describes all pairs of named persons, one of which
is the child of the other. More formally we have:

Definition 3.1

Let S be an object base scheme and let Z = (N, E) be
an

0

l

object base instance over S.
A pattern 3 = (M,F) over S is a finite object
base instance over S.
LetJ=(M,F) b e a pattern over S. An embed-
ding of 3 in Z is a total mapping i: M -+ N pre-
serving all labels (node labels, edge labels as well
as constants). I

For the pattern above, there are three embeddings into
the object base instance in Section 2. They correspond
to the parent-child pairs (Brian, Jim), (Glenda, Jim)
and (Jim, Cindy), respectively.

Before we can formally define the basic operations of
the transformation language, we need the notions of
subscheme and subinstance.

We say that an object base scheme S = (NPOL,
POL, FEL, NFEL, P) is a subscheme of a scheme S’ =
(NPOL’, POL’, FEL’, NFEL’, P’) if NPOL C NPOL’,
POL C POL’, FEL c FEL’, NFEL C_ NFEL’ and
P C P’. Similarly, an object base instance Z over S
is a subinstance of an object base instance 1’ over S’
if S is a subscheme of S’ and Z is a subinstance of Z’.

In the sequel, the terms “minimal” and “maximal”
will always refer to these notions of subscheme and
subinstance. We are now ready to define the trans-
formation language of GOOD. We start with the first
operation:

Definition 3.2 (node addition)

Let S be an object base scheme. Let Z = (N,E) be an
object base instance and 5r = (M,F) a pattern over
S. Let K be an arbitrary non-printable object label
for which K 6 X(M). Let ml,. . . , m, E M be labeled
nodes and let (~1,. . . , (Y,, be junctional edge labels. The
node addition

NW,SJ,K, ((~1, ml), . . . , (an7 %>)I
= (3’, s’, Z’)

results in a new pattern J’, a new scheme S’, and a
new instance 2’ defined as follows:

a Let m be a an arbitrary printable node with A(m) =
K. Then 3’ = (M’, F’) with M’ = M U {m} and

F’=FU{(m,(~1,ml),...,(m,a,,m,)};
l S’ is the minimal scheme of which S is a sub-

scheme and over which 3’ is a pattern;
l T’ is the minimal instance over S’ for which:

1. Z is a subinstance of I’,
2. for each embedding i of .7 in Z there exists a

node n in 2’ such that

(n, (~1, i(m)), . . . , (n,s, i(m,)>

are labeled edges of Z’,
3. an edge leaving a node of Z is an edge of Z. ,

The last condition makes sure that the node addition
is properly defined if K E J(N) and makes sense if
interpreted as an update. Observe that the node ad-
dition is always well defined if ~1,. . . , (Y, are all dif-
ferent .

A node addition will be represented in a way well un-
derlining the graphical nature of the model. We sim-
ply draw the pattern 3’ and mark in bold the nodes
and edges not in J. Suppose for example we want to
effectively create nodes representing the named parent-
child pairs occurring in the object base instance of
Section 2. Using the pattern described above, this
node-addition is represented as:

The resulting object base has for scheme:

and for instance:

Brian Cindy

It is readily seen that node addition can be used for
both querying and for creating new objects. In this
paper, however, we will not elaborate on the creation
of objects for update purposes.

To the node addition also corresponds a node deletion,
which in the object base instance removes nodes in all
subgraphs described by a pattern:

419

Definition 3.3 (node deletion)

Let S be an object base scheme. Let Z = (N, E) be an
object base instance and 3 = (M,F) a pattern over
S. Let m be a non-printable node in M. The node
deletion

ND[J’,S,Z,m] = (3’,S’,Z’)

results in a new pattern J’, a new scheme S’, and a
new instance Z’ defined as follows:

l 3’ = (M’,F’) with M’ = M - {m} and
F’ is the set of all edges in F not involving m;

l S’=S;

l 1’ is the maximal subinstance ojZ such that for
each embedding i of3 in 1, i(m) is not in Z’. s

Obviously, a node deletion is always well defined.

Observe that a node deletion does not affect the
scheme. Indeed, it is in general impossible to tell in
advance whether a given node deletion will result in
the removal of all nodes with a certain label. A node
deletion will be denoted by drawing the pattern .7 and
marking in outline the node to be deleted.

Also note that we only allowed the addition and dele-
tion of non-printable nodes. This is because we conve-
niently assume that all necessary printable nodes are
already present in the object base. However, only mi-
nor modifications are required to allow the addition or
deletion of printable nodes in case one does not wish
to adopt our philosophy.

The two following operations deal with edges rather
than nodes:

l? #inition 3.4 (edge addition)

iet S be an object base scheme. Let Z = (N,E) be an
o6ject base instance and .7 = (M,F) a pattern over
S. Letml,..., m,,m: ,..., rnk E M be labeled nodes
and let crl,...,~~,, be arbitrary edge labels. The edge
addition

EA[3, SJ, {(ml, ~1, d), . . . , (m, an, d))]
= (31, S’, I’)

results in a new pattern J’, a new scheme S’, and a
new instance 2’ defined as jollo~s:

l 3’ = (M’, F’) with M’ = M and

F’=FU{(ml,w,m~) ,..., (m,,%d)};
l S is the minimal scheme of which S is a subin-

stance and over which 3’ is a pattern;
b 1’ is the minimal instance over S’ of which Z is

a subinstance, and such that for each embedding i
of3 in I’,

(i(m), 01, i(4), . . . , (i(m),h, ib4)

are labeled edges in Z’. I

Edge addition is not always defined. Indeed, it is POS

sible that 3’ contains two edges with the same label
leaving the same node and arriving in nodes with dif-
ferent object labels. In that case, there does not exist
a scheme over which 3’ is a pattern. Furthermore, Z’

does not have to be defined, even if S’ is defined, since
adding edges according to the last condition of the
above definition may result in two different functional
edges leaving the same node, which is not allowed by
Definition 2.2.

As for node addition, we will denote an edge addition
by drawing the graph 3’ and marking in bold the
edges of 3’ not in 3. As an example, reconsider the
person-children database of Section 2. Suppose we
want to know all descendants of a person. This query
can be solved by two successive edge additions. The
first one is:

After this edge addition, des shows for each persons
all of its children. The following edge addition
generates the transitive closure of this relation:

then

If we only want to retain the descendant information
of persons, we can do the node deletion:

811 SP

The resulting instance then becomes:

Brian Glenda des Jim Cindy

Opposed to the edge addition we have the edge dele-
tion:

Definition 3.5 (edge deletion)
Let S be an object base scheme. Let Z = (N,E) be an
object base instance and 3 = (M, F) a pattern over S.
Let (ml, cq,m{), . . . , (m,, (Y,,, rnk) be labeled edges in
F. The edge deletion

ED[3,S,2,{(ml,cwl,m:),...,(m,,cr,,m~)}l

= (3’, s’, Z’)

results in a new pattern J’, a new scheme S’, and a
new instance Z’ defined as follows:

l .‘j” = (M’, F’) with M’ = M and
F’=F-{(ml,al,m:) ,..., (m,,w,m~)};

l S’=S;

l T’ is the maximal subinstance ojT such that for
each embedding i of3 in Z,

(i(mr), (~1, i(m:)), . . . , (i(m,),o,, +4))
are not in Z’. I

As for node deletion, the edges to be removed are
marked in outline. Also, an edge deletion is always
well defined and does not affect the object base scheme.

420

There is still a fifth operation that remained undis-
cussed: the so-called abstraction. In GOOD, different
nodes represent different objects, even if they cannot
be distinguished by their properties actually repre-
sented in the object base. Therefore, we have intro-
duced an abstraction that allows to define new nodes
in terms of junctional or non-junctional properties rep-
resented in the object base, hence the name of the op-
eration.

Definition 3.6 (abstraction)
Let S be an object base scheme. Let Z = (N,E) be
an object base instance and 3 = (M,F) a pattern
over S. Let n be a non-printable node in M. Let
K be an arbitrary non-printable object label for which

K @ A(M), let 01~ , . . , cy, be edge labels, and let /!I be
a non-junctional edge label not occurring in S. The
abstraction

AB[J’,SJ,n,K,{w ,..., a,)]
results in a new pattern ,?I, a new scheme S’, and a
new instance 2’ defined as follows:

l Let m be a an arbitrary printable node with A(m) =
K. Then ,7’ = (M’, F’) with M’ = M U {m} and
F’ = F U {(m,An));

l S is the minimal scheme of which S is a subin-
stance and over which 9’ is a pattern;

l Z’ is the minimal instance over S’ for which:
Z is a subinstance ojT’,
for each embedding i of 3 in Z there exists a
node p in Z’ such that (p, p, i(n)) is a labeled
edge ojZ’,
ij(p,p, 41) and (p,p,qa) are both in Z’, then
for each i = 1,. . . ,n and for each node r ojZ:

(ql,ai,r) inx * (q2,a,r) inI

an edge leaving a node ojZ is an edge ojZ. n

Intuitively, the abstraction creates K-labeled sets, each
of which contains all the objects labeled n match-
ing the pattern 3 and having the same or,. . . , a,,-
properties. The operation is always well defined.

Abstraction is especially useful to reduce redundancy
in the database. In the following section, we will give
an example of a typical application of abstraction. As
for node addition, we will denote an abstraction by
drawing the graph .7’ and marking in bold the node
and edge not in J. The edge labels crl, . . . , Q, will
be marked as dashed arrows which do not arrive in a
node.

4. The expressive power of the language

We now investigate the expressive power of the trans-
formation language described above. First, we show
that the language can simulate the (binary) set op-
erations used in the relational algebra. (The unary
operations are equally simple to express.) Then we
show that, in addition, GOOD can compute all recur-
sive functions on natural numbers. In Section 5, we
mention some other expressiveness results.

To show that GOOD can simulate set operations, we
consider an object base with productions:

15,, p-y-+

representing a set of sets of objects. A possible
stance could be:

-

in-

Using node addition, we can easily represent all or-
dered pairs of SO-objects:

To express union, a U-object is associated to each PS-
object using the node addition:

The two edge-additions:

then compute for each PS-object the union of the two
SO-objects it represents. For the difference, we pro-
ceed in a similar way, except that the second edge
addition is replaced by an edge deletion.

The above operation applied to the above instance
yields 16 U-objects, because there are 16 pairs of SO-
objects. However, interpreted as sets, only 7 different
results occur. In order to “reduce” the 16 U-objects
to only 7 objects, we can use the abstraction:

--3IFEl
Applied to the above instance, this abstraction yields 7
(X-objects, each of which contains all U-objects that
represent a same set. In other words, the CU objects
represent equivalence classes of U-objects with respect
to the equivalence relation of “representing the same
set”. The 7 CU-objects can take over the roles of the
16 U-objects if we perform the two node additions:

Qzm
followed by the deletion of all U-objects.

In order to construct the Cartesian product, we first
need to create all ordered pairs of O-objects:

421

As for the union, we associate to each PS-object a C-
object by the appropriate node addition. The carte-
Sian product is then computed by a simple edge addi-
tion:

We now turn to recursive functions on natural num-
bers. We will represent the set of natural numbers by
an object base the scheme of which has productions:

w @+Tp-+J

and the (infinite) instance of which is:

ISNl

0 I 2

Obviously, s represents the successor function and n
associates to each number its name.

For defining recursive (partial) functions, we adopt the
following definition(e.g. [21]):

Definition 4.1
Let N denote the set of natural numbers.

The following junctions are recursive (primitives):
1. 6: No 4 N, a() = 0,
2. 2: N + N, Z(x) = 0,
3. S: N + N, S(z

2
= x + 1,

4. I$: N” + N, ri (x1, . . . , xk) = zi (1 < i 5 k).
Let j: Nk -+ N and gi: N’ ----) N (1 < ~~5 k) be
recursive junctions. Then h: N’ -+ N defined by:

h(zl, . . ,x1) = f (!?l(W . . ., a), * * *, !7k(Zl, *. * I a))

is recursive. (substitution)
Let j: Nk + N and g:Nk+2 -+ N be recursive
junctions. Then h: Nk+’ + N defined by:

h(xl,. - . , rk,o)= f(%.-,xk)

and:

h(a, . , xk, zk+l + 1)

= C-/(x1,. . .,2k+lrh(21,. . ., xkr xk+l))

is recursive. (recursion)
Let j:Nk+’ A N be total recursive. Then the

junction g: Nk -+ N, defined by g(zl, -. . , Zk) is

the smallest number i for which j(~l, . . . I ~kr i) =
0, is recursive. (g(z1,. . . , zk) is undefined if such
a number does not exist.) (p-operator) I

In the object base scheme for natural numbers de-
scribed above, we will represent a function with k ar-
guments as a set of ordered pairs of arity k + 1, the
last component being the result. The arrows for the
components representing the arguments of the func-
tion will be numbered consecutively; the arrow indi-
cation the result will be labeled r. We now show that,
in the transformation language of GOOD, we can ex-
press each recursive function using the above represen-
tation of the natural numbers, and this without using
the “names” of the numbers.

We start with the primitives in Definition 4.1. The 6-
function can be expressed by a node addition followed
by a node deletion:

M p+y+,

The other primitives can be constructed by one node
addition. E.g. for the projection rz this is:

5%;
3

A

2 r

N N N

Since functions derived from the primitives can be par-
tial, the r-arrows can no longer be created simultane-
ously with the component-arrows. Consider e.g. re-
cursion. Then we first do a node addition, followed by
an initial edge addition:

The correct result is then obtained by the recursive
edge addition:

In a similar way, it can be shown that GOOD can
handle substitution. The p-operator, however, is a
little bit more complicated to express. We give a
sketch of the construction. First, we associate a new

422

g-object to each Ic-tuple of numbers, say (~1,. . . , zk).
By a construction similar to the one above for recur-
sion, we associate to g all natural numbers i for which
f(Cl,. * *, zk, i) = 0. Then, we associate to each num-
ber c a new object GR which contains all numbers
present in the object base instance strictly greater
than z. (For this construction, we have to apply a
recursive edge addition with the successor function as
a basis.) Using GR, we can remove from g by edge
deletion all numbers i with j(zl, . . . , th, i) = 0, ex-
cept for the smallest.

Of course, it is not realistic to assume an infinite set
of natural numbers in practical situations. In general,
we will only have a finite initial segment of natural
numbers, looking like:

0 I 2 nn

To this finite segment, we can apply the same con-
structions as for the infinite segment. However, if dur-
ing this construction, to find j(nl, . . . , nk), we need
intermediate results outside this finite segment, our
construction does not establish the associated value
or the undefinedness of this function call. This situa-
tion can be compared to some extent with program-
ming languages. In principle, complete programming
languages can compute all recursive functions, but, in
practice, the result of such a computation can be un-
defined, because an intermediate result may be out of
range.

We may thus conclude that our transformation lan-
guage is rather powerful. It offers the facility for gen-
eral computation yet at the same time naturally em-
ulates a large class of query languages. We would like
to mention that although the transformation language
allows for the expression of recursive queries such as
found in Datalog [19], it is not powerful enough to
express the powerset operator found in languages for
complex objects [1,9,13].

5. Discussion and Research Directions

In this paper we introduced the Graph-Oriented Ob-
ject Database model. We view as its strengths, its
reliance on a small number of simple mathematical
constructs, its object-orientation and its graphical na-
ture. Since we mainly stressed the mathematical foun-
dations of the model, we will now compare GOOD to
other models and point out ongoing and future re-
search directions.

The simplicity of the constructs used in GOOD is not

an indicator of its “expressiveness” (see Section 4).
GOOD can also describe designs and queries specified
in other semantic and object-oriented data models.
For example, it is easily seen that the vehicle database
in the introduction and the corresponding DAPLEX
query can be modeled in GOOD. In a forthcoming
paper we will show how designs specified in other rep-
resentative data models can be translated into cor-
responding GOOD model schemes. In addition, we
could show that one can also express queries in datalog
[19], stratified datalog [5,20] and datalog+functions
[2,19] as well as queries specified with respect to com-
plex objects [1,7,18] not involving the powerset oper-
ator [1,9,13].

GOOD has also some strongly object-oriented fea-
tures. Object-identity is a key concept in the descrip-
tion of database instances. As a consequence GOOD
allows for the natural definition of recursively specified
data objects (e.g., consider the above person-children
example). This feature is usually not offered in se-
mantic models, yet is commonly available in object-
oriented data models. At the data manipulation lan-
guage level, GOOD allows the creation and destruc-
tion of objects through the node addition and deletion
operations. Similar constructs were introduced in re-
cent object-oriented query languages [3,4,11].

With respect to the use of graphs as a tool to ob-
tain uniformity in the GOOD model, we want to ob-
serve that others have used different mathematical for-
malisms to’achieve this goal. For example, recently [3]
and [12] have proposed logics as their basis for the
data definition and manipulation of object-oriented
database models. Our choice of graphs was motivated
by the observation that graphs are already heavily
used in database environments and, in our opinion,
will become increasingly more important as the avail-
ability of powerful workstations equipped with graph-
ical interfaces and CASE tools increases. It is clear
however that GOOD in its current specification has
to be extended with additional graphical constructs.
This is not to increase its expressiveness, but rather to
make it a more user and development-oriented model.
For example, it is quite easy to develop on top of
GOOD, interfaces which give it the flavor of systems
such as QBE. We believe that graph theory (because
of its inherent two-dimensionality) rather than logic
(which inherently one-dimensional), is a better under-
lying formalism to deal with such questions effectively
and flexibly.

Other issues we are currently investigating are: how
to express constraints (obviously in a graph-oriented
fashion), how to model non-conventional applications
such as CAD/CAM and hypertext, how to use GOOD
as a meta data model, how to extend GOOD to be-
come a complete object-oriented model (in particular
the introduction of methods) and, finally, the imple-
mentation.

423

Acknowledgment

The authors wish to thank the program committee,
and in particular Richard Hull, for drawing our at-
tention to a flaw in the statement of the recursiveness
result in an earlier version of this paper.

References

[l] S. Abiteboul, C. Beeri, “On the Power of Lan-
guages for the Manipulation of Complex Objects”,
INRIA Internal Report, 1988.

[2] S. Abiteboul, S. Grumbach, “COL: a Logic-based
Language for Complex Objects”, Proc. EDBT,
1988, pp. 271-293.

[3] S. Abiteboul, P.C. Kanellakis, “Object Identity
as a Query Language Primitive”, Proc. SIGMOD
Conf., Portland, OR, 1989, pp. 159-173.

[4] S. Abiteboul, V. Vianu, “Procedural and Declar-
ative Database Update Language”, Proc. PODS,
Austin, TX, 1988, pp. 240-250.

[5] K. Apt, H. Blair, A. Walker, “Towards a Theory
of Declarative Knowledge”, Proc. Worksh. Found.
of Deductive Databases and Logic Programming,
Washington, DC, 1986, pp. 546-629.

[6] F. Bancilhon, “Object-Oriented Database Sys-
tems”, Proc. PODS, Austin, 1988, pp. 152-162.

[7] F. Bancilhon, S. Cluet, C. Delobel, “A Query Lan-
guage for the 02 Object-Oriented Database Sys-
tem”, Proc. 2nd Int. Worksh. Database Program-
ming Languages, Gleneden Beach, OR, June 1989,
pp. 93-111.

[8] K.F. Cruz, A.O. Mendelzon, P.T. Wood, “A Graph-
ical Query Language Supporting Recursion”, Proc.
SIGMOD Conf., San Francisco, CA, 1987, pp. 323-
330.

[9] M. Gyssens, D. Van Gucht, “The Powerset Al-
gebra as a Result of Adding Programming Con-
structs to the Nested Relational Algebra”, Proc.
SIGMOD Conf., Chicago, 1988, pp. 225-232.

[lo] R. Hull, R. King, “Semantic Database Modeling:
Survey, Applications, and Research Issues”, ACM
Computing Surveys 19, 3, September 1987, pp.
201-260.

[ll] R. Hull, J.Su, “On -4ccessing Object-Oriented Da-
tabases: Expressive Power, Complexity, and Re-
strictions”, Proc. SIGMOD Conf., Portland, OR,
1989, pp. 147-158.

[12] M. Kifer, G. Lausen, “F-Logic, A Higher-Order
Language for Reasoning About Objects, Inheri-
tance, and Scheme”, Proc. SIGMOD Conf., Port-
land, OR, 1989, pp. 134-146.

[13] G.M. Kuper, M.Y. Vardi, “A New Approach to
Database Logic”, Proc. PODS, Waterloo, Ont.,
1984, pp. 86-96.

[14] W. Kim, F.H. Lochovsky, Object-Oriented Con-
cepts, Databases, and Applications, ACM Press
(Frontier Series), New York, NY, 1989.

[15] J. Peckham, F. Maryanski, “Semantic Data Mod-
els”, ACM Computing Surveys 20, 3. Septenlbel

[161

PI

P81

PI

PO1

Pll

1988, pp. 153-190.
D. Shipman, “The Functional Data Model and the
Data Language DAPLEX”, ACM Trans. Database
Syst. 6, 1, March, pp. 140-173.
M. Stonebraker, Readings in Database Systems,
Morgan Kaufmann, S. Mateo, CA, 1988.
S.J. Thomas, P.C. Fischer, “Nested Relational
Structures”, The Theory of Databases, P.C. Kanel-
lakis, ed., JAI Press, 1986, pp. 269-307.
J.D. Ullman, Principles of Database and Know-
ledge-Base Systems, Vol. 1 and 2, Computer Sci-
ence Press, Rockville, MD, 1989.
A. Van Gelder, Negation as Failure Using Tight
Derivations for General Logic Programs”, Proc.
3rd IEEE Symp. on Logic Programming”, 1986,
pp. 127-139.
K. Weihrauch, “Computability”, EATCS Mono-
graphs on Computer Science 9, W. Brauer, G.
Rozenberg, A. Salomaa (eds.), Springer-Verlag,
1987.

424

