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A simple, graph-oriented database model, supporting object-identity, is presented. For this model, a 
transformation language based on elementary graph operations is defined. This transformation language 
is suitable for both querying and updates. It is shown that the transformation language supports both 
set-operations (except for the powerset operator) and recursive functions. 

1. Introduction 

Graphs have been an integral part of the database 
design process ever since the introduction of seman- 
tic and, more recently, object-oriented data models 
[6,10,14,15]. Typically, the structure (or scheme) of a 
database is represented as a graph. For example, the 
figure below displays the scheme of a vehicle-database 
in the Functional Data Model (FDM) [16]. 

PERSON NAME 

Nodes in this graph represent entity classes, single 
(double)-arrowed edges correspond to mono (multi)- 
valued functions between classes, and double-sided ed- 
ges indicate subclass relationships. So, whereas the 
scheme of the vehicle-database is specified as a graph, 
the instance is not, but is rather specified as a set of 
entity classes and functions between these classes. 

Another important feature of a data model is its asso- 
ciated data language [19]. It is safe to say that many 
semantic and object-oriented data models do not fully 
specify or offer this feature. This is not surprising, 
since most of these models were primarily introduced 
to aid in the database design process. To deal with 
the language component, typically schemes in seman- 
tic and object-oriented data models are transformed 
into a conceptual data model such as the relational 
model [19]. The required database language features 
then become those of the conceptSual model. Ccr- 
tain semantic and object-oriented dat,a models, how- 
ever, are equipped with their own datalanguage [7,10]. 
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DAPLEX [16], f or example, is a data language for 
FDM. The query “List the models ofgreen CUTS owned 
by New Yorkeps”, in DAPLEX is: 

FOR EACH CAR 

SUCH THAT 

COLOR(CAR) = “Green” AND 
EXIST PERSON IN IS.RWN~BY(CAR) 

ADDRFSSGERSON) = “New York” 
LIST MODEL (CAR) 

So, unlike the database scheme, queries in DAPLEX 
are formulated textually and can become cumbersome. 
To summarize, usually very different mathematical 
and linguistic tools are used to describe the various 
components of semantic and object-oriented data mod- 
els. It is our intent to show the possibility of using 
a single mathematical tool, namely graphs, for this 
purpose. 

Besides the desire for a uniform data model, we were 
influenced by the current trend in computing which 
offers users powerful workstations with graphical in- 
terfaices. We believe that this technology is already 
playing and will continue to play a dominant role in 
the development environment and user interfaces of 
databases [17]. In fact, many researchers have al- 
ready developed such graphical database tools and 
techniques [8,10]. For example, the figure above can 
be constructed through a design tool that allows the 
drawing of labeled nodes and arrows. A browsing fa- 
cility could offer the user the facility to retrieve the 
information and objects related to a particular car 
without the need for the user to be made aware of the 
overall structure of the database or of irrelevant infor- 
mation. As a concrete example of a graphical query 
one can imagine the above mentioned DAPLEX query 
to be graphically represented as: 

PERSON 

n 

AR, 
COLOR CAR 
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Unfortunately, the descriptions of these tools are usu- 
ally rather ad hoc and infrequently based on a sound 
mathematical foundation. It is our intent to demon- 
strate that graph theory is a tool to describe a uniform 
data model, which at the same time offers the possi- 
bility to take advantage of graphical interfaces. In 
this paper, we will mainly deal with the specification 
of the data model, called the Graph-Oriented Object 
Data model (GOOD). 

In Section 2, we present object base schemes and in- 
stances. In Section 3, we describe the graphical trans- 
formation language of GOOD. In Section 4, we show 
that this transformation language is capable of ex- 
pressing set operators (except for the powerset opera- 
tor) and recursive functions. Finally in Section 5, we 
compare our model with some other data models and 
give some directions for future research. 

2. The Graph-Oriented Object Database Model 

It is our purpose to develop a simple and uniform 
model, which supports object-identity, but which is 
not overloaded with too many different notions. At 
the instance level, the data will be represented as a 
directed labeled graph. The nodes of this graph repre- 
sent the objects of the database. We only distinguish 
between non-printable nodes (represented as squares) 
and printable nodes (represented as circles). In par- 
ticular, we make no distinction between “atomic” ob- 
jects, composed objects and set objects. As for the 
edges, we make no distinction between set contain- 
ment, composition, generalization, specialization, etc. 
We only distinguish between functional edges (shown 
as “4”) and non-fnnctionul edges (shown as “v”). 
For example, the following graph represents an object 
base instance for persons with their names (n) and 
their children (ch): 

Of course, such an object base must obey certain struc- 
tural constraints. These are contained in the object 
base scheme which can be represented by a set of pro- 
ductions. In this example, there are two such produc- 
tions which are graphically represented as follows: 

[5p m 

More generally, we assume there are infinitely enumer- 
able sets of nodes, non-printable object labels, pn’nt- 
able object labels, functional object labels and non- 

functional object labels. We also assume there is a 
function ?r which associates to each printable node a 
set of constants. A constant can be a character, a 
string, . . ., but also a drawing, a graph, a table, etc. 
We now define: 

Definition 2.1 
An object base scheme is a five-tuple S = (NPOL, 
POL, FEL, NFEL,P) with NPOL a finite set of non- 
printable object labels, POL a finite set of printable 
object labels, FEL a finite set of functional edge labels, 
NFEL a finite set of non-functional edge labels and 
P a set of productions (L, f) with L E NPOL and 
f: FEL U NFEL + NPOL U POL a partial mapping 
from edge labels to object labels. I 

Before we can proceed to the definition of an object 
base instance, we need some terminology. A node 
which is labeled by a non-printable object label is 
called a non-printable node; a node which is labeled 
by a printable object label is called a printable node. 
If n is a node, then A(n) is its object label. In ad- 
dition, printable nodes may be (but do not have to 
be) labeled by an appropriate constant (according to 
the function 7r). A labeled edge is a triple (m, a,n) 
in which m is a non-printable node, a a functional or 
non-functional edge label and n an arbitrary labeled 
node. An edge labeled with a functional edge label is 
called a fnnctional edge; an edge labeled with a non- 
functional edge label is called a non-functional edge. 
We can now define: 

Definition 2.2 
Let S = (NPOL, POL, FEL, NFEL,P) be an object 
base scheme. An object base instance over S is a pair 
Z = (N, E) with: 

l N a set of labeled nodes, X(N)‘E NPOLU POL; 
a E a set of labeled edges, 

EcNx(FELuNFEL)xN; 
l if cx E FEL and (m, a,nl), (m,(v,nz) E E, 

then nl = n2; 
l for each non-printable node m E N there exists a 

production (x(m), f) E P such that: 
for each edge (m, a, n) E E, f (cx) = A(n). m 

Note that some edges in a production need not corre- 
spond to edges in the object base instance. This is to 
allow for incomplete or unexisting information. E.g. 
in our example above, we used this feature of GOOD 
to express our knowledge that Brian and Glenda have 
two children only one of which we know by name. Note 
furthermore that the set P in the object base scheme 
can contain more than one production for the same 
non-printable object label. In this way, it is possible 
to model specialization and generalization. 

3. A transformation language for GOOD 

In this section, we present the transformation lan- 
guage of GOOD. The language contains five basic op- 

’ Functions are extended to sets in the canonical way. 
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erations, four of which are elementary manipulations 
on graphs: addition of nodes, addition of edges, dele- 
tion of edges and deletion of nodes. The specification 
of all these operations relies on the notion of pattern. 
A pattern is a graph used to describe subgraphs in 
an object base instance. Syntactically, there is no dif- 
ference between a finite object base instance and a 
pattern. Consider e.g. the pattern: 

Given the object base instance in Section 2, this pat- 
tern describes all pairs of named persons, one of which 
is the child of the other. More formally we have: 

Definition 3.1 

Let S be an object base scheme and let Z = (N, E) be 
an 

0 

l 

object base instance over S. 
A pattern 3 = (M,F) over S is a finite object 
base instance over S. 
LetJ=(M,F) b e a pattern over S. An embed- 
ding of 3 in Z is a total mapping i: M -+ N pre- 
serving all labels (node labels, edge labels as well 
as constants). I 

For the pattern above, there are three embeddings into 
the object base instance in Section 2. They correspond 
to the parent-child pairs (Brian, Jim), (Glenda, Jim) 
and (Jim, Cindy), respectively. 

Before we can formally define the basic operations of 
the transformation language, we need the notions of 
subscheme and subinstance. 

We say that an object base scheme S = (NPOL, 
POL, FEL, NFEL, P) is a subscheme of a scheme S’ = 
(NPOL’, POL’, FEL’, NFEL’, P’) if NPOL C NPOL’, 
POL C POL’, FEL c FEL’, NFEL C_ NFEL’ and 
P C P’. Similarly, an object base instance Z over S 
is a subinstance of an object base instance 1’ over S’ 
if S is a subscheme of S’ and Z is a subinstance of Z’. 

In the sequel, the terms “minimal” and “maximal” 
will always refer to these notions of subscheme and 
subinstance. We are now ready to define the trans- 
formation language of GOOD. We start with the first 
operation: 

Definition 3.2 (node addition) 

Let S be an object base scheme. Let Z = (N,E) be an 
object base instance and 5r = (M,F) a pattern over 
S. Let K be an arbitrary non-printable object label 
for which K 6 X(M). Let ml,. . . , m, E M be labeled 
nodes and let (~1,. . . , (Y,, be junctional edge labels. The 
node addition 

NW,SJ,K, ((~1, ml), . . . , (an7 %>)I 
= ( 3’, s’, Z’) 

results in a new pattern J’, a new scheme S’, and a 
new instance 2’ defined as follows: 

a Let m be a an arbitrary printable node with A(m) = 
K. Then 3’ = (M’, F’) with M’ = M U {m} and 

F’=FU{(m,(~1,ml),...,(m,a,,m,)}; 
l S’ is the minimal scheme of which S is a sub- 

scheme and over which 3’ is a pattern; 
l T’ is the minimal instance over S’ for which: 

1. Z is a subinstance of I’, 
2. for each embedding i of .7 in Z there exists a 

node n in 2’ such that 

(n, (~1, i(m)), . . . , (n,s, i(m,)> 

are labeled edges of Z’, 
3. an edge leaving a node of Z is an edge of Z. , 

The last condition makes sure that the node addition 
is properly defined if K E J(N) and makes sense if 
interpreted as an update. Observe that the node ad- 
dition is always well defined if ~1,. . . , (Y, are all dif- 
ferent . 

A node addition will be represented in a way well un- 
derlining the graphical nature of the model. We sim- 
ply draw the pattern 3’ and mark in bold the nodes 
and edges not in J. Suppose for example we want to 
effectively create nodes representing the named parent- 
child pairs occurring in the object base instance of 
Section 2. Using the pattern described above, this 
node-addition is represented as: 

The resulting object base has for scheme: 

and for instance: 

Brian Cindy 

It is readily seen that node addition can be used for 
both querying and for creating new objects. In this 
paper, however, we will not elaborate on the creation 
of objects for update purposes. 

To the node addition also corresponds a node deletion, 
which in the object base instance removes nodes in all 
subgraphs described by a pattern: 
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Definition 3.3 (node deletion) 

Let S be an object base scheme. Let Z = (N, E) be an 
object base instance and 3 = (M,F) a pattern over 
S. Let m be a non-printable node in M. The node 
deletion 

ND[J’,S,Z,m] = (3’,S’,Z’) 

results in a new pattern J’, a new scheme S’, and a 
new instance Z’ defined as follows: 

l 3’ = (M’,F’) with M’ = M - {m} and 
F’ is the set of all edges in F not involving m; 

l S’=S; 

l 1’ is the maximal subinstance ojZ such that for 
each embedding i of3 in 1, i(m) is not in Z’. s 

Obviously, a node deletion is always well defined. 

Observe that a node deletion does not affect the 
scheme. Indeed, it is in general impossible to tell in 
advance whether a given node deletion will result in 
the removal of all nodes with a certain label. A node 
deletion will be denoted by drawing the pattern .7 and 
marking in outline the node to be deleted. 

Also note that we only allowed the addition and dele- 
tion of non-printable nodes. This is because we conve- 
niently assume that all necessary printable nodes are 
already present in the object base. However, only mi- 
nor modifications are required to allow the addition or 
deletion of printable nodes in case one does not wish 
to adopt our philosophy. 

The two following operations deal with edges rather 
than nodes: 

l? #inition 3.4 (edge addition) 

iet S be an object base scheme. Let Z = (N,E) be an 
o6ject base instance and .7 = (M,F) a pattern over 
S. Letml,..., m,,m: ,..., rnk E M be labeled nodes 
and let crl,...,~~,, be arbitrary edge labels. The edge 
addition 

EA[3, SJ, {(ml, ~1, d), . . . , (m, an, d))] 
= (31, S’, I’) 

results in a new pattern J’, a new scheme S’, and a 
new instance 2’ defined as jollo~s: 

l 3’ = (M’, F’) with M’ = M and 

F’=FU{(ml,w,m~) ,..., (m,,%d)}; 
l S is the minimal scheme of which S is a subin- 

stance and over which 3’ is a pattern; 
b 1’ is the minimal instance over S’ of which Z is 

a subinstance, and such that for each embedding i 
of3 in I’, 

(i(m), 01, i(4), . . . , (i(m),h, ib4) 

are labeled edges in Z’. I 

Edge addition is not always defined. Indeed, it is POS 

sible that 3’ contains two edges with the same label 
leaving the same node and arriving in nodes with dif- 
ferent object labels. In that case, there does not exist 
a scheme over which 3’ is a pattern. Furthermore, Z’ 

does not have to be defined, even if S’ is defined, since 
adding edges according to the last condition of the 
above definition may result in two different functional 
edges leaving the same node, which is not allowed by 
Definition 2.2. 

As for node addition, we will denote an edge addition 
by drawing the graph 3’ and marking in bold the 
edges of 3’ not in 3. As an example, reconsider the 
person-children database of Section 2. Suppose we 
want to know all descendants of a person. This query 
can be solved by two successive edge additions. The 
first one is: 

After this edge addition, des shows for each persons 
all of its children. The following edge addition 
generates the transitive closure of this relation: 

then 

If we only want to retain the descendant information 
of persons, we can do the node deletion: 

811 SP 

The resulting instance then becomes: 

Brian Glenda des Jim Cindy 

Opposed to the edge addition we have the edge dele- 
tion: 

Definition 3.5 (edge deletion) 
Let S be an object base scheme. Let Z = (N,E) be an 
object base instance and 3 = (M, F) a pattern over S. 
Let (ml, cq,m{), . . . , (m,, (Y,,, rnk) be labeled edges in 
F. The edge deletion 

ED[3,S,2,{(ml,cwl,m:),...,(m,,cr,,m~)}l 

= (3’, s’, Z’) 

results in a new pattern J’, a new scheme S’, and a 
new instance Z’ defined as follows: 

l .‘j” = (M’, F’) with M’ = M and 
F’=F-{(ml,al,m:) ,..., (m,,w,m~)}; 

l S’=S; 

l T’ is the maximal subinstance ojT such that for 
each embedding i of3 in Z, 

(i(mr), (~1, i(m:)), . . . , (i(m,),o,, +4)) 
are not in Z’. I 

As for node deletion, the edges to be removed are 
marked in outline. Also, an edge deletion is always 
well defined and does not affect the object base scheme. 
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There is still a fifth operation that remained undis- 
cussed: the so-called abstraction. In GOOD, different 
nodes represent different objects, even if they cannot 
be distinguished by their properties actually repre- 
sented in the object base. Therefore, we have intro- 
duced an abstraction that allows to define new nodes 
in terms of junctional or non-junctional properties rep- 
resented in the object base, hence the name of the op- 
eration. 

Definition 3.6 (abstraction) 
Let S be an object base scheme. Let Z = (N,E) be 
an object base instance and 3 = (M,F) a pattern 
over S. Let n be a non-printable node in M. Let 
K be an arbitrary non-printable object label for which 

K @ A(M), let 01~ , . . , cy, be edge labels, and let /!I be 
a non-junctional edge label not occurring in S. The 
abstraction 

AB[J’,SJ,n,K,{w ,..., a,)] 
results in a new pattern ,?I, a new scheme S’, and a 
new instance 2’ defined as follows: 

l Let m be a an arbitrary printable node with A(m) = 
K. Then ,7’ = (M’, F’) with M’ = M U {m} and 
F’ = F U {(m,An)); 

l S is the minimal scheme of which S is a subin- 
stance and over which 9’ is a pattern; 

l Z’ is the minimal instance over S’ for which: 
Z is a subinstance ojT’, 
for each embedding i of 3 in Z there exists a 
node p in Z’ such that (p, p, i(n)) is a labeled 
edge ojZ’, 
ij(p,p, 41) and (p,p,qa) are both in Z’, then 
for each i = 1,. . . ,n and for each node r ojZ: 

(ql,ai,r) inx * (q2,a,r) inI 

an edge leaving a node ojZ is an edge ojZ. n 

Intuitively, the abstraction creates K-labeled sets, each 
of which contains all the objects labeled n match- 
ing the pattern 3 and having the same or,. . . , a,,- 
properties. The operation is always well defined. 

Abstraction is especially useful to reduce redundancy 
in the database. In the following section, we will give 
an example of a typical application of abstraction. As 
for node addition, we will denote an abstraction by 
drawing the graph .7’ and marking in bold the node 
and edge not in J. The edge labels crl, . . . , Q, will 
be marked as dashed arrows which do not arrive in a 
node. 

4. The expressive power of the language 

We now investigate the expressive power of the trans- 
formation language described above. First, we show 
that the language can simulate the (binary) set op- 
erations used in the relational algebra. (The unary 
operations are equally simple to express.) Then we 
show that, in addition, GOOD can compute all recur- 
sive functions on natural numbers. In Section 5, we 
mention some other expressiveness results. 

To show that GOOD can simulate set operations, we 
consider an object base with productions: 

15,, p-y-+ 

representing a set of sets of objects. A possible 
stance could be: 

- 

in- 

Using node addition, we can easily represent all or- 
dered pairs of SO-objects: 

To express union, a U-object is associated to each PS- 
object using the node addition: 

The two edge-additions: 

then compute for each PS-object the union of the two 
SO-objects it represents. For the difference, we pro- 
ceed in a similar way, except that the second edge 
addition is replaced by an edge deletion. 

The above operation applied to the above instance 
yields 16 U-objects, because there are 16 pairs of SO- 
objects. However, interpreted as sets, only 7 different 
results occur. In order to “reduce” the 16 U-objects 
to only 7 objects, we can use the abstraction: 

--3IFEl 
Applied to the above instance, this abstraction yields 7 
(X-objects, each of which contains all U-objects that 
represent a same set. In other words, the CU objects 
represent equivalence classes of U-objects with respect 
to the equivalence relation of “representing the same 
set”. The 7 CU-objects can take over the roles of the 
16 U-objects if we perform the two node additions: 

Qzm 
followed by the deletion of all U-objects. 

In order to construct the Cartesian product, we first 
need to create all ordered pairs of O-objects: 
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As for the union, we associate to each PS-object a C- 
object by the appropriate node addition. The carte- 
Sian product is then computed by a simple edge addi- 
tion: 

We now turn to recursive functions on natural num- 
bers. We will represent the set of natural numbers by 
an object base the scheme of which has productions: 

w @+Tp-+J 

and the (infinite) instance of which is: 

ISNl 

0 I 2 

Obviously, s represents the successor function and n 
associates to each number its name. 

For defining recursive (partial) functions, we adopt the 
following definition(e.g. [21]): 

Definition 4.1 
Let N denote the set of natural numbers. 

The following junctions are recursive (primitives): 
1. 6: No 4 N, a() = 0, 
2. 2: N + N, Z(x) = 0, 
3. S: N + N, S(z 

2 
= x + 1, 

4. I$: N” + N, ri (x1, . . . , xk) = zi (1 < i 5 k). 
Let j: Nk -+ N and gi: N’ ----) N (1 < ~~5 k) be 
recursive junctions. Then h: N’ -+ N defined by: 

h(zl, . . ,x1) = f (!?l(W . . ., a), * * *, !7k(Zl, *. * I a)) 

is recursive. (substitution) 
Let j: Nk + N and g:Nk+2 -+ N be recursive 
junctions. Then h: Nk+’ + N defined by: 

h(xl,. - . , rk,o)= f(%.-,xk) 

and: 

h(a, . , xk, zk+l + 1) 

= C-/(x1,. . .,2k+lrh(21,. . ., xkr xk+l)) 

is recursive. (recursion) 
Let j:Nk+’ A N be total recursive. Then the 

junction g: Nk -+ N, defined by g(zl, -. . , Zk) is 

the smallest number i for which j(~l, . . . I ~kr i) = 
0, is recursive. (g(z1,. . . , zk) is undefined if such 
a number does not exist.) (p-operator) I 

In the object base scheme for natural numbers de- 
scribed above, we will represent a function with k ar- 
guments as a set of ordered pairs of arity k + 1, the 
last component being the result. The arrows for the 
components representing the arguments of the func- 
tion will be numbered consecutively; the arrow indi- 
cation the result will be labeled r. We now show that, 
in the transformation language of GOOD, we can ex- 
press each recursive function using the above represen- 
tation of the natural numbers, and this without using 
the “names” of the numbers. 

We start with the primitives in Definition 4.1. The 6- 
function can be expressed by a node addition followed 
by a node deletion: 

M p+y+, 

The other primitives can be constructed by one node 
addition. E.g. for the projection rz this is: 

5%; 
3 

A 

2 r 

N N N 

Since functions derived from the primitives can be par- 
tial, the r-arrows can no longer be created simultane- 
ously with the component-arrows. Consider e.g. re- 
cursion. Then we first do a node addition, followed by 
an initial edge addition: 

The correct result is then obtained by the recursive 
edge addition: 

In a similar way, it can be shown that GOOD can 
handle substitution. The p-operator, however, is a 
little bit more complicated to express. We give a 
sketch of the construction. First, we associate a new 
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g-object to each Ic-tuple of numbers, say (~1,. . . , zk). 
By a construction similar to the one above for recur- 
sion, we associate to g all natural numbers i for which 
f(Cl,. * *, zk, i) = 0. Then, we associate to each num- 
ber c a new object GR which contains all numbers 
present in the object base instance strictly greater 
than z. (For this construction, we have to apply a 
recursive edge addition with the successor function as 
a basis.) Using GR, we can remove from g by edge 
deletion all numbers i with j(zl, . . . , th, i) = 0, ex- 
cept for the smallest. 

Of course, it is not realistic to assume an infinite set 
of natural numbers in practical situations. In general, 
we will only have a finite initial segment of natural 
numbers, looking like: 

0 I 2 nn 

To this finite segment, we can apply the same con- 
structions as for the infinite segment. However, if dur- 
ing this construction, to find j(nl, . . . , nk), we need 
intermediate results outside this finite segment, our 
construction does not establish the associated value 
or the undefinedness of this function call. This situa- 
tion can be compared to some extent with program- 
ming languages. In principle, complete programming 
languages can compute all recursive functions, but, in 
practice, the result of such a computation can be un- 
defined, because an intermediate result may be out of 
range. 

We may thus conclude that our transformation lan- 
guage is rather powerful. It offers the facility for gen- 
eral computation yet at the same time naturally em- 
ulates a large class of query languages. We would like 
to mention that although the transformation language 
allows for the expression of recursive queries such as 
found in Datalog [19], it is not powerful enough to 
express the powerset operator found in languages for 
complex objects [1,9,13]. 

5. Discussion and Research Directions 

In this paper we introduced the Graph-Oriented Ob- 
ject Database model. We view as its strengths, its 
reliance on a small number of simple mathematical 
constructs, its object-orientation and its graphical na- 
ture. Since we mainly stressed the mathematical foun- 
dations of the model, we will now compare GOOD to 
other models and point out ongoing and future re- 
search directions. 

The simplicity of the constructs used in GOOD is not 

an indicator of its “expressiveness” (see Section 4). 
GOOD can also describe designs and queries specified 
in other semantic and object-oriented data models. 
For example, it is easily seen that the vehicle database 
in the introduction and the corresponding DAPLEX 
query can be modeled in GOOD. In a forthcoming 
paper we will show how designs specified in other rep- 
resentative data models can be translated into cor- 
responding GOOD model schemes. In addition, we 
could show that one can also express queries in datalog 
[19], stratified datalog [5,20] and datalog+functions 
[2,19] as well as queries specified with respect to com- 
plex objects [1,7,18] not involving the powerset oper- 
ator [1,9,13]. 

GOOD has also some strongly object-oriented fea- 
tures. Object-identity is a key concept in the descrip- 
tion of database instances. As a consequence GOOD 
allows for the natural definition of recursively specified 
data objects (e.g., consider the above person-children 
example). This feature is usually not offered in se- 
mantic models, yet is commonly available in object- 
oriented data models. At the data manipulation lan- 
guage level, GOOD allows the creation and destruc- 
tion of objects through the node addition and deletion 
operations. Similar constructs were introduced in re- 
cent object-oriented query languages [3,4,11]. 

With respect to the use of graphs as a tool to ob- 
tain uniformity in the GOOD model, we want to ob- 
serve that others have used different mathematical for- 
malisms to’achieve this goal. For example, recently [3] 
and [12] have proposed logics as their basis for the 
data definition and manipulation of object-oriented 
database models. Our choice of graphs was motivated 
by the observation that graphs are already heavily 
used in database environments and, in our opinion, 
will become increasingly more important as the avail- 
ability of powerful workstations equipped with graph- 
ical interfaces and CASE tools increases. It is clear 
however that GOOD in its current specification has 
to be extended with additional graphical constructs. 
This is not to increase its expressiveness, but rather to 
make it a more user and development-oriented model. 
For example, it is quite easy to develop on top of 
GOOD, interfaces which give it the flavor of systems 
such as QBE. We believe that graph theory (because 
of its inherent two-dimensionality) rather than logic 
(which inherently one-dimensional), is a better under- 
lying formalism to deal with such questions effectively 
and flexibly. 

Other issues we are currently investigating are: how 
to express constraints (obviously in a graph-oriented 
fashion), how to model non-conventional applications 
such as CAD/CAM and hypertext, how to use GOOD 
as a meta data model, how to extend GOOD to be- 
come a complete object-oriented model (in particular 
the introduction of methods) and, finally, the imple- 
mentation. 
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