
Applying the SCR Requirements Method to a
Weapons Control Panel: An Experience Report

Constance Heitmeyer, James Kirby, and Bruce Labaw’
Naval Research Laboratory

Code 5546, Washington, DC 20375 USA
{heitmeyer, kirby, labaw}@itd.nrl.navy.mil

ABSTRACT
A major barrier to the use of formal methods in software
practice is the difllculty software developers have under-
standing and applying the methods. To overcome this
barrier, a requirements method called SCR (Software
Cost Reduction) offers a user-friendly tabular notation
to specify software requirements and a collection of easy-
touse tools that automatically detect many classes of
errors in requirements specifications. This paper de-
scribes our experience in applying the SCR method and
tools to a safety-critical military application-the prob-
lems encountered in translating the original contractor-
produced software requirements specification into SCR
and the lessons learned in applying the SCR technol-
ogy to a practical system. The short time required
to apply the SCR method, the serious safety violation
detected, and the working system prototype produced
demonstrate the utility and potential cost-effectiveness
of SCR for developing safety-critical systems.

Keywords
requirements, specification, formal methods, formal
specification, consistency checking, verification, valida-
tion, software tools, simulation, model checking

INTRODUCTION
During the last decade, numerous formal methods for
developing computer systems have been proposed. One
area in which formal methods are having a major im-
pact is hardware design. Not only are companies such
as Intel beginning to use model checking (along with
simulation) as a standard technique for detecting errors
in hardware designs, in addition, some companies are
developing their own in-house model checkers. Further,
a number of model checkers, customized for hardware
design, are becoming available commercially [23].

l This work was supported by ONR and SPAWAR.
http://www.itd.nrl.navy.mil/ITDf5540/personnei/heitmeyer.html

FMSP 98 Clemvaur Beach. FL USA
o-8979 1-954-8/98/ooo3

Although some limited progress has been made in apply-
ing formal methods to software (see, e.g., [14,15, 13, 8]),
the use of the methods in practical software develop
ment is still rare. A significant barrier to the use
of formal methods among software developers is the
widespread perception that the formal notations and
formal analysis techniques provided by the methods are
difficult to understand and apply. Moreover, software
developers express serious doubts about the scalability
and cost-effectiveness of formal methods.

A promising approach to overcoming these problems is
to hide the logic-based languages associated with most
formal methods and to adopt a notation, such as graph-
ics or tables, that developers find easier to use. Specifi-
cations in the more user-friendly notation can be trans-
lated automatically to a form more amenable to formal
analysis. To scale effectively, a formal method must be
supported by powerful, easy-to-use tools. To the ex-
tent feasible, the tools should detect errors automati-
cally and provide easy-to-understand feedback useful in
tracing the cause of an error.

By providing a user-friendly tabular notation with
demonstrated scalability, a method called SCR (Soft-
ware Cost Reduction) for specifying software require-
ments has already achieved some success in practice.
SCR was originally formulated to document the require-
ments of the Operational Flight Program (OFP) of the
U.S. Navy’s A-7 aircraft [20, 11. Subsequently, a num-
ber of industrial organizations, such as Grumman, Bell
Laboratories, and Ontario Hydro, have used SCR to
specify the requirements of practical systems, including
avionics systems (see, e.g., [24]), a telephone switching
network [21], and the shutdown software for a nuclear
power plant [27]. More recently, the requirements of
the OFP of Lockheed’s C-130J aircraft were specified in
SCR [12]. The OFP consists of more than 23OK lines of
Ada, thus demonstrating SCR’s scalability.

To support the SCR method, we have developed a com-
plete formal semantics for the SCR notation [18] and
a collection of software tools for specifying and ana-
lyzing software requirements [19, 161. The SCR tools
include a specification editor for creating and modifying

92

http://crossmark.crossref.org/dialog/?doi=10.1145%2F298595.298863&domain=pdf&date_stamp=1998-03-04

a requirements specification in the SCR tabular nota-
tion, an automated consistency checker for checking the
specification for well-formedness errors (e.g., syntax and
type errors, missing cases, circular definitions, and un-
wanted nondeterminism), a simulator for symbolically
executing the specification to ensure that it captures
the customer’s intent, and a model checker for analyz-
ing the specification for critical application properties.

Our overall goal in designing the SCR tools is to make
them useful and cost-effective in practical software de-
velopment. To achieve this goal, we have established
the following objectives:

l The tools should be tightly integrated, and each
should be based on the same formal semantics [18].

l The tools should automatically detect many classes
of errors and, upon detecting an error, should pro-
vide detailed, user-oriented feedback about the lo-
cation and cause of the error.

l To validate the specifications, a simulator must be
supported. To facilitate testing of the specifica-
tion by domain experts, the construction of cus-
tomized front-ends for the simulator must also be
supported.

l Because analysis of a complete requirements spec-
ifications is often infeasible (e.g., the specification
may be incomplete), extracting and analyzing indi-
vidual parts of the specification must be supported.

Recently, the SCR technology has been evaluated in
three pilot projects. In the first project, researchers
at NASA’s IV&V Facility used the SCR consistency
checker to detect a number of missing cases and sev-
eral instances of nondeterminism in the prose require-
ments specification of the software for the NASA space
station [lo, 111. In the second project, engineers at
Rockwell-Collins used the specification editor, the con-
sistency checker, and the simulator to detect 24 errors,
many of them serious, in the requirements specification
of an example flight guidance system [25].

This paper describes a third pilot project in which the
SCR tools, including a newly integrated. model checker
[5, 41, were applied to a safety-critical military system.
After introducing the system of interest, the Weapons
Control Panel (WCP), this paper describes how we
translated a draft software requirements specification
(SRS) prepared by a military contractor into the SCR
notation, the problems encountered in the translation,
and the major lessons learned in applying the SCR
method to the WCP.

OVERVIEW OF THE WCP AND THE SRS
Operators of a U.S. military system use the WCP to
monitor the status and set up the launch of one or more

weapons. The WCP is linked to numerous subsystems
and I/O devices in support of the launch operation; in
particular, it interacts with the Launch Control Sys-
tem (LCS), which oversees launch preparation and de-
termines when one or more weapons are to be launched.
Operators use the control panel to open and close valves
and doors and to monitor the doors, valves, and other
system devices for faults. The panel consists of lights,
numeric displays, and switches. The lights display infor-
mation from sensors (e.g., a door is open, a subsystem
has failed) and commands from the LCS (e.g., Make
Launcher Ready). Numeric displays present numeric
information, such as hydraulic pressure, read from sen-
sors. Switches energize and de-energize solenoids, elec-
tromechanical devices that open and close doors and
valves.

The contractor-developed SRS of the required behavior
of the WCP is a combination of prose, diagrams, and
formal descriptions. In the SRS, the names, types, and
source or destination (device or subsystem) of all system
inputs and outputs are presented in tables. These tables
describe a total of 198 input and output variables. Of
these, 99 are Boolean inputs, nine are analog inputs, 83
are Boolean outputs, and seven are real-valued outputs.
In addition to the 198 input and output variables, the
SRS includes 60 internal variables. Although most of
the internal variables are Boolean, a few are real-valued.

We have reviewed SRSs for many military systems. The
SRS for the WCP is the highest quality requirements
specification we have encountered. Whereas most SRSs
for military systems consist largely of prose, the SRS for
WCP formally specifies the values of most WCP outputs
and internal variables, using a set of “logic equations”.
A logic equation describes each internal variable as a
function of inputs and other internal variables and each
output as a function of system inputs, the WCP internal
variables, and other system outputs.

Although logic equations describe most outputs and in-
ternal variables, the SRS describes other variables more
informally. For example, it uses informal prose to de-
scribe all numeric outputs and the ten Boolean vari-
ables (both outputs and internal variables) not defined
by logic equations. It also provides prose descriptions
of four modes of operation (Initialization, Monitor, Op-
erate, and Test) and how the values of various outputs
and internal variables depend upon the mode (e.g., re-
lays are disabled in Monitor mode). With only a few
exceptions, the logic equations do not refer to modes.

The WCP is safety-critical. That is, incorrect system
behavior can cause serious accidents, such as prepar-
ing the launch of a weapon under hazardous condi-
tions. To prevent behavior that could lead to se-
rious accidents, the SRS contains precise prose de-

93

scriptions of six properties that the WCP must sat-
isfy to operate safely. For example, the first safety
property in the SRS states, “For cVEBTSOLEBOID to
open, the diflerential pressure must fall within the inter-
val [KMinTFlAKSDK, KMaxTKABSDK] .” (In this expression,
kHinTRAlSDK and kMaxTRdBSDK are constants.) Our
interpretation of this property is that the vent valve of
the weapon launcher shall open only if the differential
pressure indicated by at least one of the two transducers
is within safe limits. This property is referred to below
as property q.

SCR OVERVIEW
Presented below is a brief introduction to the SCR
model and a summary of the characteristics that dis-
tinguish the SCR method from other formal methods.
For more information about SCR, see [18, 19, 3, 161.

SCR Requirements Model
The SCR requirements model includes a set RF =
{rl,r2,---, rn} containing the names of all variables in a
given specification and a function TY which maps each
variable to the set of its legal values. In the model, a
state s is a function that maps each variable in RF to
its value.

Two important constructs in SCR specifications are con-
ditions and events. A condition is a predicate defined
on a system state, and an event is a predicate defined on
two consecutive system states that indicates a change in
system state. We say that “an event occurs” when the
value of any variable changes. The notation “@T(c)”
denotes an event and is defined by

@T(c) d= ~,cAd,

where the unprimed condition c is evaluated in the cur-
rent state and the primed condition c’ is evaluated in
the new state. Informally, “@T(c)” means that condi-
tion c becomes true and “@F(c)” means that c becomes
false.

The SCR model describes a system C as a state machine
C = (E”, S, Sa,T), where E” is the set of possible
input events, S is the set of possible system states, SO
is the set of initial states, and T is the transform (i.e.,
next-state) function. The condition tables and event
tables in an SCR specification define a set of functions
FI, F2, ---7 F,,, each of which computes the updated
value of a state variable. When the system receives
a new input event e E Em, the next-state function T
composes the Fi to map the current state s E S and the
new input event e to the new state s’ E S.

SCR Method: Distinguishing Characteristics
The SCR method differs from other methods in a num-
ber of ways:

The SCR technology provides a relatively seam-
less integration of analysis tools (e.g., consistency
checking, simulation, model checking), all based on
the same formal semantics.

Unlike the model used in [8], the SCR model may be
applied to an entire system (or system component)
rather than to individual functions.

Because SCR specifications are executable and be
cause the SCR toolset provides facilities for build-
ing a customized interface, a developer can derive
a working system prototype from an SCR require-
ments specification.

The SCR tools provide a variety of visual represen-
tations. In particular, most functions are defined
by tables; the dependencies among the monitored,
controlled, and internal variables in the specifica-
tion are represented as a graph; and the user inter-
face used to drive the simulator (e.g., the operation
interface in the case of the WCP) is a set of ani-
mated pictures that simulate the behavior of the
actual system.

SCR uses terms understandable to most developers
rather than terminology (e.g., signatures of func-
tions) that is more oriented to users who are math-
ematically sophisticated.

APPLYING SCR TO THE SRS
Described below is the process used to translate the SRS
into SCR, the way in which the SCR tools were used to
analyze the specification and to produce a working pro
totype, and the effort required to develop and analyze
the SCR specification of the WCP.

Translation into SCR
The inclusion of input, internal, and output variables
and of logic equations makes the WCP SRS highly com-
patible with the SCR requirements method. In SCR re-
quirements specifications, system inputs are represented
by monitored variables, system outputs by controlled
variables, and internal variables by terms and modes.
We translated each logic equation to either an SCR con-
dition table or an SCR event table.

To obtain an online specification of the SRS, we scanned
the variable tables and the logic equations from the SRS
into a computer file and used optical character recogni-
tion to convert the scanned images to ASCII. To ob-
tain an SCR specification, we edited the variable names
slightly (the SRS contains variable names with embed-
ded blanks) and translated the results (including trace-
ability links to the SRS) into SCR tables. This trans-
lation process was easy because the system model that
underlies the WCP SRS closely matches the state ma-
chine model that underlies SCR specifications.

94

Applying the SCR Tools
We then used our software tools to display and ana-
lyze the SCR specification of the WCP. Analysis with
our consistency checker exposed a few missing cases and
numerous inconsistencies in the definitions and uses of
variable names. To the extent feasible, we corrected the
variable name discrepancies and other minor problems
in the SCR specification.

As part of this study, we also developed a simulator
front-end, customized for the WCP. To build the front-
end, we scanned in diagrams of the operator control
panel that were included in the WCP system require-
ments specification. We then used an interface builder
to create widgets for the switches, lights, dials, and
other displayed objects and superimposed them on the
control panel diagrams. Each object was displayed in
the colors indicated in the WCP documentation.

Once the customized interface was connected to the
SCR requirements specification, we had a working pro-
totype of the WCP. Unlike most prototypes, which are
constructed in an ad hoc manner, this prototype has
both a realistic operator interface and a complete for-
mal specification of the required system behavior. Such
a prototype has many uses. For example, operators can
validate the specification, and the interface design as
well, by using the prototype to execute key scenarios.
Detected problems can be corrected by changing either
the user interface or the underlying SCR specification.

Finally, we used our tools to analyze the SCR specifica-
tion for the safety property q. Interestingly, property q
and the five other safety properties contained in the SRS
are transition or two-state invariants, that is, each is a
property of every pair of reachable states (s, s’), where
s, s’ E S and there exists an enabled input event e E p
such that T(e,s) = s’.

To analyze property q, we translated q, which the SRS
describes in prose, into propositional logic and then used
our abstraction methods to generate a reduced model
of the WCP [5, 41. I nvoking the explicit state model
checker Spin [22] on the reduced model exposed a vio-
lation of the property and a counterexample, i.e., a se-
quence of input events that leads to two states in which
the violation occurs.

To demonstrate the violation and to ensure that the
detected error was not spurious, we manually trans-
lated the sequence of input events leading to the vio-
lation back into the original specification and then ran
the scenario through the SCR simulator. Executing the
scenario detected a violation of property q, thus show-
ing that the violation detected by model checking was
not spurious. Recently, a safety engineer, familiar with
WCP, confirmed that our methods appear to have un-
covered a true safety violation.

Time Required to Apply SCR
One of the most significant aspects of this project was
the short time required to develop the SCR specifi-
cation and to apply the SCR tools. Translating the
contractor-produced specification into an SCR specifica-
tion required only one person-week. Given that the con-
tractor developed the original SRS without any knowl-
edge of SCR, the small investment in time and effort
required to produce an SCR specification from the SRS
is noteworthy and, in our view, clearly demonstrates
the cost-effectiveness of SCR. Building a customized in-
terface for the SCR simulator required approximately
three weeks, and use of the consistency checker and the
model checker less than a day. Hence, the total time
required to develop and analyze the SCR specification
and to build a working prototype was approximately
one person-month.

This small investment in time and effort is significant,
especially when compared to the time and effort ex-
pended in two other recent projects. Both projects ap-
plied a formal method based on the mechanical prover
PVS [26] to a practical system. In the first project,
Dutertre and Stavridou used PVS to specify and analyze
the requirements. of an Air Data Computer (ADC). The
specification and analysis of the ADC required approxi-
mately 18 person-months [9] and detected a single error
(a case in which a minimum exceeded a maximum). In
a second project, Crow and Di Vito used PVS to specify
and analyze the requirements of the Global Positioning
System (GPS). This project required two staff-months
spread over a four-month period [8] and detected many
of the same kinds of errors (e.g., ambiguity, inconsis-
tency, and incompleteness) that the SCR tools detect.

Light-weight techniques such as SCR, e.g., techniques
that apply consistency checking or model checking, can
expose many of the same errors detected by more heavy-
duty techniques, such as PVS. However, applying the
SCR tools does not require the mathematical sophisti-
cation and theorem proving skills needed to apply many
heavy-duty techniques. Applying the SCR technology
also requires significantly less human effort. Further,
in contrast to PVS, the SCR tools can produce both a
working system prototype and a build-to specification
that can be used by software developers to design and
implement the software.

Using the SCR notation and tools does not preclude
the application of more heavy-duty techniques to SCR
specifications. For example, in a few cases (e.g., prov-
ing that an abstraction of a given variable is valid), we
have found that light-weight tools are insufficent and
that deductive reasoning and mechanical provers such
as PVS are useful. Recently, we used TAME [2], a sys-
tem designed to analyze automata models using PVS,
to check properties of an SCR specification of a simple

Bomb Release system. We found that the SCR analy-
sis tools performed many of the checks (e.g., checking
for nonoverlapping conditions) needed for the TAME
results to be valid.

PROBLEMS IN THE TRANSLATION
This section discusses five major issues that arose in de-
veloping the SCR specification from the original SRS-
how to provide missing requirements information with-
out access to domain experts, how to interpret the prose
and some of the logic equations in the original SRS, how
to handle the SRS modes, when to deviate from the orig-
inal SRS, and how to locate information in the SRS.
Although others applying formal techniques to spec-
ifications of practical systems have encountered simi-
lar problems (e.g., lack of domain expertise, questions
about the interpretation of the specifications, and diffi-
culty locating information in the SRS), the considerable
progress we made despite the problems is encouraging.

Lack of Domain Expertise
Developing and analyzing the SCR specification with
our tools raised numerous questions about the WCP
requirements. Our questions fell into two categories:
questions about the WCP environment and questions
about the required behavior of the WCP. We were un-
able to answer many of these questions because either
the information was missing from the SRS or the in-
formation was included in the SRS but, despite consid-
erable effort, we couldn’t locate it. Although a WCP
project officer and the safety engineers answered a few
of our questions, we had no direct access to the WCP
contractor, who could answer detailed questions about
the WCP and the original SRS.

Largely missing from the specification was information
about the WCP environment. For example, a safety
property may be violated if two sensors fail. If the si-
multaneous failure of two sensors has very low probabil-
ity, then such a violation could be spurious. Because the
SRS fails to make such assumptions explicit, we cannot
tell. Further, in specifying the required behavior of the
WCP in SCR, we described the behavior of each moni-
tored variable as a state machine. Because the SRS pro-
vides little information about the system inputs, which
state transitions are legal for a particular input is un-
known. To avoid erroneous decisions about how the
system inputs change, we allowed each state machine
representing an input to transition from one state to
any other state even though, in many cases, a transition
is impossible. For example, if a sensor measuring hy-
draulic pressure is functioning normally, a reading close
to the minimum pressure in one state and another read-
ing close to the maximum pressure in the next state is
probably infeasible.

Other questions arose about the required system oper-
ation. For example, our consistency checker detected
some missing cases. When the consistency checker de-
tected missing cases, how to fill in the missing informa-
tion was sometimes obvious; in other cases, supplying
the missing information required domain expertise.

Uncertainty about the Interpretation
As described above, the SRS combines both prose and
logic equations in describing the required behavior of
the WCP. Like other researchers who have applied for-
mal methods to practical systems (see, e.g., [lo, ll]),
we found considerable ambiguity in the prose sections
of the SRS. In the SCR specification, we used what we
believed to be a reasonable interpretation of the SRS
prose. In some cases, we have informal feedback from
the program manager and the safety engineers that our
interpretation of the prose is accurate. However, a for-
mal review of the SCR specification by the developers
of the original SRS is highly desirable.

Another question that arose was how to interpret the
logic equations. Because the logic equations are formal,
we expected to have little difficulty interpreting them.
This was a good assumption for most of the equations,
i.e., those which represent the value of an output or in-
ternal variable as a function of other variables in the
same state. Such logic equations can be directly trans-
lated into SCR condition tables. For example, consider
the logic equation

cHYDBAULICPBESSUBELO~~IDICATOB:= mLAIIPJ3f%K=apor
not(mHYDrlAuLICOILPRESSurtE).

Table 1 shows how this equation can be translated
into an SCR condition table. The table states that
the output cHMRAULICPRESSURELOUIM)ICATOR is
tme if the input mLAMPXHECK is up or if the input
mHYDRAULICDILSRESSURE is false, andfalseotherwise.

Less obvious was how to translate the remaining logic
equations, which define variables called latches, into
SCR. Latches are functions of variables in both the cur-
rent state and the new state. In SCR, such functions
are defined by event tables. A logic equation for a latch
x has the form

2 := (yVx)Az,

where y and z are other variables. We translate all
logic equations of the above form into the event table
shown below. This table states that z becomes true
when both y and z are true and that x becomes false
when z becomes false. All latches have this pattern.

<[

96

Table 1: Condition Table Defining cHYDEAULICPFlESSUKELOWXiIDICATOR.

An example of a latch is the internal variable
tPKESSUK.ELATCH. The logic equation for this variable
is given by

tPItESSURELATCH:= (tPBESSURELATCHormPBESSUREHOLD) and

In Table 2, the function defined by this logic equa-
tion is represented as an event table. The table states
that tPRESSUKELATCH becomes true if mPEESSDKEHOLD
and tPEESSUFtEXrT0 become true and becomes false
if tPRESSUEEAUT0 becomes false (and is otherwise un-
changed).

How to Deal with Modes
In SCR, each controlled variable is defined as a func-
tion of monitored variables, terms, and modes. As
noted above, modes were not used systematically in
the SRS: while the prose sections of the SRS describe
mode-dependent behavior, only a handful of logic equa-
tions express a variable as a function of a mode and
other variables. Most logic equations simply ignore the
modes. Because the SRS does not handle modes sys-
tematically, we decided to follow the lead of the SRS
and represent the WCP modes as Boolean terms rather
than as SCR modes.

Deviating from the SRS
The decision not to use SCR modes to model the WCP
modes was motivated by our strong desire to maintain
close compatibility between the original SRS and the
SCR specification that we derived from it. We consider
compatibility to be important in demonstrating to both
the project officer and the contractor that the problems
exposed were bona fide problems rather than problems
introduced by our translation.

Another case in which we needed to decide whether
to deviate from the SRS involved implementation bias,
An SCR requirements specification is designed to de-
scribe the required system behavior without making de
sign and implementation decisions. In certain cases, the
original SRS includes implementation bias. Whether to
remove this implementation bias was an issue.

In this case, our decision was to remove imple-
mentation bias and thus to deviate slightly from
the SRS. For example, the SRS defines the output
cTESTJ!ODElKDICATOR, which represents a light on the
operator control panel, with a logic equation that de-
pends on a flasher circuit. We decided that the required
behavior was clearer if the SCR specification omitted
the flasher circuit. Table 3 shows a condition table,
which defines cTESTJ!ODEIKDICATOR as a function of
the monitored variable mLAHP-CHECK and the internal
variable tTESTJtODE. The table represents this output
with three values, rather than two. In particular, it
states that the light is on when the switch mLAKP-CHECK
is up, off when the mLAHP_CHECK switch is down and
the system is not in tTESTJ!ODE, and flashing when
the mLAMP_CHECK switch is down and the system is in
tTEST_MODE.

How to Find Information in the SRS
Using the SRS to answer questions about the WCP re-
quirements often proved difficult because finding infor-
mation quickly in the SRS depends on knowing how
the WCP is organized. For example, the SRS orga-
nizes the inputs, outputs, and logic equations by sub-
system rather than alphabetically. Moreover, the SRS
defines some variable values only in the prose and, as

97

Table 2: Event Table Defining tPRESSURELATCH.

noted above, defines the modes of operation sometimes
in prose and in a few cases in the logic equations.

Now that it is complete, we use the SCR specification,
which has traceability links to the SRS, to find informa-
tion in the SRS. For example, when we want to find a
logic equation for some variable in the SRS, we go first
to the table function in the SCR specification. Then,
we use the traceability links in the SCR specification to
determine the page of the SRS that contains the logic
equation.

NEEDED ADDITIONS TO SCR
Analysis of the contractor-produced SRS for the WCP
required us to add two new features to the SCR model
checking capability, a new abstraction method and the
use of simulation to validate suspected violations of
properties exposed by model checking. Below, we briefly
summarize the two new features as well as a minor fea-
ture that improves the readability of the safety proper-
ties. For more information about the two new features,
see [17].

Using Abstraction in Model Checking
The number of reachable states in a state machine
model of a practical system is usually very large, some-
times infinite. Hence, for realistic software specifica-
tions, most model checkers fail to terminate because
they run out of memory. One promising approach pro-
posed by Clarke et al. to combat state explosion in
model checking is abstraction [7], which can theoreti-
cally reduce a huge (and even infinite) state space to a
much smaller state space.

We have developed methods for deriving abstractions
from SCR requirements specifications, each based on
the formula to be analyzed. The methods are practical:
none requires ingenuity on the user’s part, and each de-
rives a smaller, more abstract model automatically. Fur-
ther, each method systematizes techniques that current
users of model checkers routinely apply but in ad hoc
ways.

To analyze the SCR specification of the WCP for the
safety property q, we needed to build a more abstract
model. To do so, we used abstraction to extract from the
original SCR specification only those variables (and the
tables that define them) which could affect the validity
of q. By applying this abstraction method, we reduced
the number of variables in the specification from 258 to
55, a reduction of almost 80%.

Because the reduced specification still contains several
variables with infinitely many values, we also developed
a new abstraction method which replaces a detailed
variable in the original specification with a more ab-
stract variable. The WCP has seven variables which are
real-valued, two input variables and five internal vari-
ables. The two input variables record the values read
by the two transducers referred to in the statement of
property q (see above). The other five variables are
functions of one or both of the two inputs. This ab-
straction method uses the next-state function T as well
as the property q to compute a discrete (and therefore
more abstract) version of each of these variables. In
each case, we reduced the set of values a variable can
assume from an infinite set of real numbers belonging to

Table 3: Condition Table Defining cTESTJ!ODEIIiDICATOR.

some interval I to a discrete set of three to seven values,
each of which represents a subinterval of the original in-
terval I. By applying this new abstraction method, we
reduced the size of the state space of the WCP specifi-
cation from infinite to finite.

Using Simulation for Validation
In analyzing the WCP specification for violations of the
first safety property, we needed to combine model check-
ing and simulation. Simulation was used not only to
demonstrate the violation but also for validation. Be-
cauSe one of the abstraction methods was applied man-
ually and because the translation of the counterexample
produced by model checking into a scenario in the orig-
inal SCR specification was manual, errors could have
been introduced. Moreover, the abstract specification
that we developed was not complete, that is, in some
cases, a counterexample in the reduced specification had
no counterpart in the complete specification. Hence, the
violation detected by model checking could be spurious.
Running the scenario through our simulator validated
that the violation detected by model checking exposed
a true safety violation in the complete specification.

Improving the Readability of the Properties
Originally, we expressed the safety property Q as a log-
ical expresssion containing unprimed and primed vari-
ables. (Recall that an unprimed variable represents the
value of the variable in the old state, whereas a primed
variable represents the value in the new state.) Because
the variable names chosen by the contractor were very
long, we found that the formal statement of the safety
properties in the SCR specification was difficult to un-
derstand. To make the statement of the safety prop-
erties more concise, we substituted the SCR notation
for events, “@T(c)," for expressions of the form “HOT
c ABD c"'. This more concise formal statement of the
safety properties makes them easier to understand.

REACTIONS TO THE SCR RESULTS
Our long-term goal is to transfer the SCR technology
into industrial software development. The difficulty of
achieving this goal was illustrated by our experience in
translating the contractor-developed SRS into SCR and
in discussing our SCR specification and the defects that
our tools uncovered with a WCP project officer, two
safety engineers, and a representative of the contractor
who developed the SRS.

Reactions to the Tools
The project officer and the safety engineers were quite
positive about the need for software tools to aid in de-
veloping an SRS. They were particularly interested in
using our tools to construct system prototypes (see be-
low). The WCP contractor was indifferent. Some pos-
sible reasons for this indifference are suggested below.

Reactions to the Defects
As described above, the SCR methods and tools iden-
tified many defects in the SRS: some were detected in
creating the SCR specification, others by running the
consistency checker, and still others by applying model
checking. Neither the military personnel nor the con-
tractor were surprised to learn that our tools uncovered
many defects. All expected vagueness, inconsistency,
and incorrectness in the SRS. Prior to learning about
our technology, they believed that no alternative to a
vague, incorrect, inconsistent SRS was feasible.

Both the project officer and the safety engineers sup-
port the integration of technology like the SCR tech-
nology into the military’s software development pro-
cess. Clearly, detecting errors early in software devel-
opment can significantly reduce the cost of software de-
velopment and improve software quality. Moreover, the
safety engineers view our method for detecting safety
violations in the SRS as quite promising. They are cur-

99

rently evaluating the utility of the SCR tools for speci-
fying and analyzing safety-critical military systems.

Unlike the military personnel, the contractor represen-
tative was polite but quite disinterested in the SCR
technology. Several possible reasons for this apathy ex-
ist. First, because many vendors have made exaggerated
claims about varied tools and techniques which have
not materialized in practice, many developers are highly
skeptical of the effectiveness of new software technology.
Second, the SCR tools are prototypes and hence do not
provide the industrial-quality support (e.g., training, in-
stallation, bug fixes, etc.) that the contractor requires.

Finally, the contractor already has a very different, more
traditional software development process in place which
has produced acceptable military systems. In this pro-
cess, the SRS is a deliverable that is produced at low
cost. Underlying the contractor’s process is the assump-
tion that most software errors will be detected by sys-
tem testing after the code has been generated. Little
incentive exists for the contractor to uncover errors dur-
ing the requirements phase. As noted recently in IEEE
Software [6], “Current government contracts typically
pay contractors by the staff-hour, which provides little
incentive to reduce expensive rework.”

Reaction to the Customized Simulator
Both the project officer and the safety engineers were
very positive about the working system prototype that
the SCR technology produced. They view symbolic ex-
ecution as an effective means of validating the SRS. As
a result, we have plans for system operators, knowl-
edgeable about weapons preparation and launch, to use
the customized simulator to execute scenarios of inter-
est and thus to validate that the SCR specification cap-
tures the correct system behavior. Once confidence in
the specification and the interface design is high, this
“prototype” can be used to train operators and to de-
velop initial operational procedures.

Our experience is that audiences prefer examples from
their problem domain. For example, military audi-
ences dislike typical academic examples (e.g., automo-
bile cruise control). Military personnel and contrac-
tors also want examples presented in a way that is eas-
ily comprehensible, i.e., with application interfaces and
models with which they are already familiar. They USU-
ally dislike the abstract models presented by computer
scientists.

SOME OBSERVATIONS
Listed below are some observations about our experi-
ence applying the SCR method and tools to the WCP
SRS:

l Given a high-quality SRS, one can use the SCR
tools to do considerable analysis without signifi-

cant interaction with system experts and at very
low cost. Clearly, applying the SCR technology re-
quires precise, unambiguous information about the
required behavior. If the SRS had been written in
prose, the technology could not have uncovered so
many defects nor could it have produced a working
system prototype.

Interaction with system experts is needed to vali-
date that the interpretation of the SRS is correct
and to confirm that the detected errors are real
errors. As suggested above, some detected errors
(e.g., the simultaneous failure of three sensors) have
very low probability. The SRS should document
such assumptions. Further, detailed descriptions of
the system environment-the constraints imposed
by physical laws and the environment in which the
system operates-can rule out certain errors.

Executable specifications are extremely valuable.
The customized simulation of the WCP convinced
military personnel that our specification captured
the essential system behavior and thus gave our
research group and our technology increased cred-
ibility.

The only properties of interest for the WCP were
invariants, in particular, two-state invariants. The
many other properties that can be expressed in,
e.g., temporal logic were not needed.

SUMMARY AND CONCLUSIONS
We were able to use the SCR tools to capture, ana-
lyze, and manipulate a contractor-produced specifica-
tion that was not developed with the SCR method in
mind. In the process of applying the SCR method, we
uncovered a number of problems with the SRS, some se-
rious. Many of these problems have been fixed, but do
main expertise is needed to correct the remaining prob-
lems.

Applying the SCR method and tools to the WCP SRS
and to the two other pilot projects described above
demonstrated several advantages of SCR:

l Applying the SCR technology had high payoff with
only a small investment in human time and ef-
fort. The primary reason for the high payoff is that
the SCR technology is very well suited to control-
intensive systems, such as the WCP.

l The SCR methods and tools are usable by people
other than the SCR developers. In the case of both
the NASA space system application and Rockwell’s
flight guidance system, people outside our group
were able to use the SCR technology to do produc-
tive work.

100

l Use of the SCR notation and tools can facilitate the
use of more heavy-duty techniques. Deductive rea-
soning, and mechanical provers that support such
reasoning, can be easily applied to SCR specifica-
tions. As noted above, we recently used a system
called TAME to analyze an SCR specification using
deductive reasoning and the PVS prover.

l Unlike many other formal methods, the SCR tools
provide feedback in terms understandable to users.

Listed below are several planned follow-on tasks involv-
ing the WCP and its software requirements:

l Translate the remaining five safety properties into
logical formulas and apply our abstraction coupled
with model checking and simulation to determine
whether the SCR specification of the WCP satisfies
the other five properties.

l Study the desirability and feasibility of using the
logic equations as a notation supported by the SCR
tools. Translating the logic equations into the SCR
semantics should be easy. The difficulty lies in pro-
viding user feedback in terms of logic equations,
rather than tables, when the tool detects an error.

l Study the feasibility of developing a more standard
SCR specification from the SRS for the WCP. This
SCR specification would represent the requirements
in terms of SCR mode classes and eliminate some
remaining redundancy in the current SRS. It would
also provide a good example of an SRS that was
developed directly using our tools.

l Organize the SCR specification of the WCP for
ease of change. Due to the large number of vari-
ables it contains, the current SCR specification of
the WCP is quite dif%cult to understand. A care-
fully thought-out reorganization of the specification
should make the specification not only more under-
standable but also easier to modify.

An important remaining question is how to transfer for-
mal methods technology, such as the SCR technology,
into industry. Currently, contractors have little eco-
nomic incentive to apply formal methods during the
requirements phase. Hence, government program man-
agers must provide that incentive. They can do so by
writing contracts that require developers

l to demonstrate before the software is designed that
the behavior specified by the SRS is complete and
consistent and that the SRS does not require nor
allow the software to violate specified safety condi-
tions, and

101

l to provide a means for the government to validate
the SRS before the software is designed.

Towards this end, we are working on language that gov-
ernment program managers can include in contracts.
We are also seeking influence in organizations that pro
gram managers look to for guidance (e.g., “Project
Breathalyzer” sponsored by the Software Program Man-
agers Network).

ACKNOWLEDGMENTS
We gratefully acknowledge Cheryl Sarteschi’s develop
ment of the customized front-end for the simulator. We
also acknowledge Myla Archer and Ralph Jeffords for
their detailed comments on a draft of this paper. We
also appreciate the constructive comments of the anony-
mous referees.

REFERENCES

PJ

PI

[31

PI

[51

PI

[71

PI

PI

T. A. Alspaugh, S. R. Faulk, K. H. Britton, R. A.
Parker, D. L. Parnas, and J. E. Shore. Software re-
quirements for the A-7E aircraft. Technical Report
NRL-9194, Naval Research Lab., Wash., DC, 1992.

M. Archer and C. Heitmeyer. TAME: A specialized
specification and verification system for timed au-
tomata. In Proc., Real-Time Systems Symposium
Work-in-Progress Session, 1996.

R. Bharadwaj and C. Heitmeyer. Applying the
SCR requirements method to a simple autopilot.
In PTOC., Fourth NASA Langley Formal Methods
Workshop (Lj?n97), 1997.

R. Bharadwaj and C. Heitmeyer. Model checking
complete requirements specifications using abstrac-
tion. Technical Report 97-7999, Naval Research
Lab., Wash., DC, 1997.

R. Bharadwaj and C. Heitmeyer. Verifying SCR
requirements specifications using state exploration.
In Proc., First ACM SIGPLAN Workshop on Au-
tomatic Analysis of Software, 1997.

N. Brown. Industrial-strength management strate
gies. IEEE Software, pages 94-103, July 1996.

E. Clarke, 0. Grumberg, and D. Long. Model
checking and abstraction. In Proc., Principles of
Programming Languages (POPL), 1994.

J. Crow and B. L. Di Vito. Formalizing space shut-
tle requirements. In Proc. of FMSP’96, The 1st
Workshop on Formal Methods in Software Prac-
tice, 1996.

B. Dutertre and V. Stavridou. Formal require
ments analysis of an avionics control system. IEEE
Transactions on Soflware Engineering, 23(5):267-
278, May 1997.

PO1

WI

P21

P31

WI

P51

WI

WI

P31

WI

S. Easterbrook and J. Callahan. Formal methods
for V & V of partial specifications. In PTOC. 3rd
Intern. Symposium on Requirements Engineering
(RE ‘97), Annapolis, MD, Jan. 1997.

S. Easterbrook and J. Callahan. Formal methods
for verification and validation of partial specifica-
tions: A case study. Journal of Systems and Soft-
ware, 1997.

S. R. Faulk, L. Finneran, J. Kirby, Jr., S. Shah, and
J. Sutton. Experience applying the CORE method
to the Lockheed G130J. In PTOC. 9th Annual Conf.
on Computer Assurance (COMPASS ‘94), pages 3-
8, Gaithersburg, MD, June 1994.

A. Flora-Holmquist and M. Staskauskas. Moving
formal methods into practice: The VFSM experi-
ence. In Proc. of FMSP’96, The 1st Workshop on
Formal Methods in Software Practice, 1996.

A. Hall. Using formal methods to develop an ATC
information system. IEEE Software, pages 66-76,
Mar. 1996.

M. P. E. Heimdahl and N. Leveson. Complete-
ness and consistency analysis of state-based re-
quirements. In PTOC. of 17th Bat’1 Conf. on Softw.
Eng. (ICSE ‘95), pages 3-14, Seattle, WA, Apr.
1995. ACM.

C. Heitmeyer, J. Kirby, and B. Labaw. Tools for
formal specification, verification, and validation of
requirements. In Proc. 12th Annual Conf. on Com-
puter Assurance (COMPASS ‘97), Gaithersburg,
MD, June 1997.

C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and
R. Bharadwaj. Using model checking and simula-
tion to detect a safety violation in a control system
specification. Submitted for publication.

C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw.
Tools for analyzing SCR-style requirements speci-
fications: A formal foundation. Technical Report
NRL-7499, Naval Research Lab., Wash., DC. In
preparation.

C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw.
Automated consistency checking of requirements
specifications. ACM Transactions on Software En-
gineering and Methodology, 5(3):231-261, April-
June 1996.

[20] K. L. Heninger. Specifying software requirements
for complex systems: New techniques and their ap-
plication. IEEE Trans. Softw. Eng., SE-6(1):2-13,
Jan. 1980.

w

P21

1231

P4

P51

P31

P71

S. D. Hester, D. L. Parnas, and D. F. Utter. Using
documentation as a software design medium. Bell
System Tech. J., 60(8):1941-1977, Oct. 1981.

G. J. Holzmann. The model checker SPIN. IEEE
Trans. on Softw. Eng., 23(5):279-295, May 1997.

R. Kurshan. Formal verification in a commercial
setting. In Proc., Design Automation Conference,
1997.

S. Meyer and S. White. Software requirements
methodology and tool study for A6-E technology
transfer. Technical report, Grumman Aerospace
Corp., Bethpage, NY, July 1983.

S. Miller. Specifying the mode logic of a flight
guidance system in CORE and SCR. In PTOC. of
FMSP’98, The 2nd Workshop on Formal Methods
in Software Practice, 1998.

S. Owre, J. Rushby, N. Shankar, and F. von Henke.
Formal verification for fault-tolerant architectures:
Prolegomena to the design of PVS. IEEE nansac-
tions on Software Engineering, 21(2):107-125, Feb.
1995.

A. J. van Schouwen, D. L. Parnas, and J. Madey.
Documentation of requirements for computer sys-
tems. In PTOC. RE’99 Requirements Symp., pages
198-207, San Diego, CA, Jan. 1993.

102

