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ABSTRACT 
A major barrier to the use of formal methods in software 
practice is the difllculty software developers have under- 
standing and applying the methods. To overcome this 
barrier, a requirements method called SCR (Software 
Cost Reduction) offers a user-friendly tabular notation 
to specify software requirements and a collection of easy- 
touse tools that automatically detect many classes of 
errors in requirements specifications. This paper de- 
scribes our experience in applying the SCR method and 
tools to a safety-critical military application-the prob- 
lems encountered in translating the original contractor- 
produced software requirements specification into SCR 
and the lessons learned in applying the SCR technol- 
ogy to a practical system. The short time required 
to apply the SCR method, the serious safety violation 
detected, and the working system prototype produced 
demonstrate the utility and potential cost-effectiveness 
of SCR for developing safety-critical systems. 
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INTRODUCTION 
During the last decade, numerous formal methods for 
developing computer systems have been proposed. One 
area in which formal methods are having a major im- 
pact is hardware design. Not only are companies such 
as Intel beginning to use model checking (along with 
simulation) as a standard technique for detecting errors 
in hardware designs, in addition, some companies are 
developing their own in-house model checkers. Further, 
a number of model checkers, customized for hardware 
design, are becoming available commercially [23]. 
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Although some limited progress has been made in apply- 
ing formal methods to software (see, e.g., [14,15, 13, 8]), 
the use of the methods in practical software develop 
ment is still rare. A significant barrier to the use 
of formal methods among software developers is the 
widespread perception that the formal notations and 
formal analysis techniques provided by the methods are 
difficult to understand and apply. Moreover, software 
developers express serious doubts about the scalability 
and cost-effectiveness of formal methods. 

A promising approach to overcoming these problems is 
to hide the logic-based languages associated with most 
formal methods and to adopt a notation, such as graph- 
ics or tables, that developers find easier to use. Specifi- 
cations in the more user-friendly notation can be trans- 
lated automatically to a form more amenable to formal 
analysis. To scale effectively, a formal method must be 
supported by powerful, easy-to-use tools. To the ex- 
tent feasible, the tools should detect errors automati- 
cally and provide easy-to-understand feedback useful in 
tracing the cause of an error. 

By providing a user-friendly tabular notation with 
demonstrated scalability, a method called SCR (Soft- 
ware Cost Reduction) for specifying software require- 
ments has already achieved some success in practice. 
SCR was originally formulated to document the require- 
ments of the Operational Flight Program (OFP) of the 
U.S. Navy’s A-7 aircraft [20, 11. Subsequently, a num- 
ber of industrial organizations, such as Grumman, Bell 
Laboratories, and Ontario Hydro, have used SCR to 
specify the requirements of practical systems, including 
avionics systems (see, e.g., [24]), a telephone switching 
network [21], and the shutdown software for a nuclear 
power plant [27]. More recently, the requirements of 
the OFP of Lockheed’s C-130J aircraft were specified in 
SCR [12]. The OFP consists of more than 23OK lines of 
Ada, thus demonstrating SCR’s scalability. 

To support the SCR method, we have developed a com- 
plete formal semantics for the SCR notation [18] and 
a collection of software tools for specifying and ana- 
lyzing software requirements [19, 161. The SCR tools 
include a specification editor for creating and modifying 
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a requirements specification in the SCR tabular nota- 
tion, an automated consistency checker for checking the 
specification for well-formedness errors (e.g., syntax and 
type errors, missing cases, circular definitions, and un- 
wanted nondeterminism), a simulator for symbolically 
executing the specification to ensure that it captures 
the customer’s intent, and a model checker for analyz- 
ing the specification for critical application properties. 

Our overall goal in designing the SCR tools is to make 
them useful and cost-effective in practical software de- 
velopment. To achieve this goal, we have established 
the following objectives: 

l The tools should be tightly integrated, and each 
should be based on the same formal semantics [18]. 

l The tools should automatically detect many classes 
of errors and, upon detecting an error, should pro- 
vide detailed, user-oriented feedback about the lo- 
cation and cause of the error. 

l To validate the specifications, a simulator must be 
supported. To facilitate testing of the specifica- 
tion by domain experts, the construction of cus- 
tomized front-ends for the simulator must also be 
supported. 

l Because analysis of a complete requirements spec- 
ifications is often infeasible (e.g., the specification 
may be incomplete), extracting and analyzing indi- 
vidual parts of the specification must be supported. 

Recently, the SCR technology has been evaluated in 
three pilot projects. In the first project, researchers 
at NASA’s IV&V Facility used the SCR consistency 
checker to detect a number of missing cases and sev- 
eral instances of nondeterminism in the prose require- 
ments specification of the software for the NASA space 
station [lo, 111. In the second project, engineers at 
Rockwell-Collins used the specification editor, the con- 
sistency checker, and the simulator to detect 24 errors, 
many of them serious, in the requirements specification 
of an example flight guidance system [25]. 

This paper describes a third pilot project in which the 
SCR tools, including a newly integrated. model checker 
[5, 41, were applied to a safety-critical military system. 
After introducing the system of interest, the Weapons 
Control Panel (WCP), this paper describes how we 
translated a draft software requirements specification 
(SRS) prepared by a military contractor into the SCR 
notation, the problems encountered in the translation, 
and the major lessons learned in applying the SCR 
method to the WCP. 

OVERVIEW OF THE WCP AND THE SRS 
Operators of a U.S. military system use the WCP to 
monitor the status and set up the launch of one or more 

weapons. The WCP is linked to numerous subsystems 
and I/O devices in support of the launch operation; in 
particular, it interacts with the Launch Control Sys- 
tem (LCS), which oversees launch preparation and de- 
termines when one or more weapons are to be launched. 
Operators use the control panel to open and close valves 
and doors and to monitor the doors, valves, and other 
system devices for faults. The panel consists of lights, 
numeric displays, and switches. The lights display infor- 
mation from sensors (e.g., a door is open, a subsystem 
has failed) and commands from the LCS (e.g., Make 
Launcher Ready). Numeric displays present numeric 
information, such as hydraulic pressure, read from sen- 
sors. Switches energize and de-energize solenoids, elec- 
tromechanical devices that open and close doors and 
valves. 

The contractor-developed SRS of the required behavior 
of the WCP is a combination of prose, diagrams, and 
formal descriptions. In the SRS, the names, types, and 
source or destination (device or subsystem) of all system 
inputs and outputs are presented in tables. These tables 
describe a total of 198 input and output variables. Of 
these, 99 are Boolean inputs, nine are analog inputs, 83 
are Boolean outputs, and seven are real-valued outputs. 
In addition to the 198 input and output variables, the 
SRS includes 60 internal variables. Although most of 
the internal variables are Boolean, a few are real-valued. 

We have reviewed SRSs for many military systems. The 
SRS for the WCP is the highest quality requirements 
specification we have encountered. Whereas most SRSs 
for military systems consist largely of prose, the SRS for 
WCP formally specifies the values of most WCP outputs 
and internal variables, using a set of “logic equations”. 
A logic equation describes each internal variable as a 
function of inputs and other internal variables and each 
output as a function of system inputs, the WCP internal 
variables, and other system outputs. 

Although logic equations describe most outputs and in- 
ternal variables, the SRS describes other variables more 
informally. For example, it uses informal prose to de- 
scribe all numeric outputs and the ten Boolean vari- 
ables (both outputs and internal variables) not defined 
by logic equations. It also provides prose descriptions 
of four modes of operation (Initialization, Monitor, Op- 
erate, and Test) and how the values of various outputs 
and internal variables depend upon the mode (e.g., re- 
lays are disabled in Monitor mode). With only a few 
exceptions, the logic equations do not refer to modes. 

The WCP is safety-critical. That is, incorrect system 
behavior can cause serious accidents, such as prepar- 
ing the launch of a weapon under hazardous condi- 
tions. To prevent behavior that could lead to se- 
rious accidents, the SRS contains precise prose de- 
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scriptions of six properties that the WCP must sat- 
isfy to operate safely. For example, the first safety 
property in the SRS states, “For cVEBTSOLEBOID to 
open, the diflerential pressure must fall within the inter- 
val [KMinTFlAKSDK, KMaxTKABSDK] .” (In this expression, 
kHinTRAlSDK and kMaxTRdBSDK are constants.) Our 
interpretation of this property is that the vent valve of 
the weapon launcher shall open only if the differential 
pressure indicated by at least one of the two transducers 
is within safe limits. This property is referred to below 
as property q. 

SCR OVERVIEW 
Presented below is a brief introduction to the SCR 
model and a summary of the characteristics that dis- 
tinguish the SCR method from other formal methods. 
For more information about SCR, see [18, 19, 3, 161. 

SCR Requirements Model 
The SCR requirements model includes a set RF = 
{rl,r2,---, rn} containing the names of all variables in a 
given specification and a function TY which maps each 
variable to the set of its legal values. In the model, a 
state s is a function that maps each variable in RF to 
its value. 

Two important constructs in SCR specifications are con- 
ditions and events. A condition is a predicate defined 
on a system state, and an event is a predicate defined on 
two consecutive system states that indicates a change in 
system state. We say that “an event occurs” when the 
value of any variable changes. The notation “@T(c)” 
denotes an event and is defined by 

@T(c) d= ~,cAd, 

where the unprimed condition c is evaluated in the cur- 
rent state and the primed condition c’ is evaluated in 
the new state. Informally, “@T(c)” means that condi- 
tion c becomes true and “@F(c)” means that c becomes 
false. 

The SCR model describes a system C as a state machine 
C = (E”, S, Sa,T), where E” is the set of possible 
input events, S is the set of possible system states, SO 
is the set of initial states, and T is the transform (i.e., 
next-state) function. The condition tables and event 
tables in an SCR specification define a set of functions 
FI, F2, ---7 F,,, each of which computes the updated 
value of a state variable. When the system receives 
a new input event e E Em, the next-state function T 
composes the Fi to map the current state s E S and the 
new input event e to the new state s’ E S. 

SCR Method: Distinguishing Characteristics 
The SCR method differs from other methods in a num- 
ber of ways: 

The SCR technology provides a relatively seam- 
less integration of analysis tools (e.g., consistency 
checking, simulation, model checking), all based on 
the same formal semantics. 

Unlike the model used in [8], the SCR model may be 
applied to an entire system (or system component) 
rather than to individual functions. 

Because SCR specifications are executable and be 
cause the SCR toolset provides facilities for build- 
ing a customized interface, a developer can derive 
a working system prototype from an SCR require- 
ments specification. 

The SCR tools provide a variety of visual represen- 
tations. In particular, most functions are defined 
by tables; the dependencies among the monitored, 
controlled, and internal variables in the specifica- 
tion are represented as a graph; and the user inter- 
face used to drive the simulator (e.g., the operation 
interface in the case of the WCP) is a set of ani- 
mated pictures that simulate the behavior of the 
actual system. 

SCR uses terms understandable to most developers 
rather than terminology (e.g., signatures of func- 
tions) that is more oriented to users who are math- 
ematically sophisticated. 

APPLYING SCR TO THE SRS 
Described below is the process used to translate the SRS 
into SCR, the way in which the SCR tools were used to 
analyze the specification and to produce a working pro 
totype, and the effort required to develop and analyze 
the SCR specification of the WCP. 

Translation into SCR 
The inclusion of input, internal, and output variables 
and of logic equations makes the WCP SRS highly com- 
patible with the SCR requirements method. In SCR re- 
quirements specifications, system inputs are represented 
by monitored variables, system outputs by controlled 
variables, and internal variables by terms and modes. 
We translated each logic equation to either an SCR con- 
dition table or an SCR event table. 

To obtain an online specification of the SRS, we scanned 
the variable tables and the logic equations from the SRS 
into a computer file and used optical character recogni- 
tion to convert the scanned images to ASCII. To ob- 
tain an SCR specification, we edited the variable names 
slightly (the SRS contains variable names with embed- 
ded blanks) and translated the results (including trace- 
ability links to the SRS) into SCR tables. This trans- 
lation process was easy because the system model that 
underlies the WCP SRS closely matches the state ma- 
chine model that underlies SCR specifications. 
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Applying the SCR Tools 
We then used our software tools to display and ana- 
lyze the SCR specification of the WCP. Analysis with 
our consistency checker exposed a few missing cases and 
numerous inconsistencies in the definitions and uses of 
variable names. To the extent feasible, we corrected the 
variable name discrepancies and other minor problems 
in the SCR specification. 

As part of this study, we also developed a simulator 
front-end, customized for the WCP. To build the front- 
end, we scanned in diagrams of the operator control 
panel that were included in the WCP system require- 
ments specification. We then used an interface builder 
to create widgets for the switches, lights, dials, and 
other displayed objects and superimposed them on the 
control panel diagrams. Each object was displayed in 
the colors indicated in the WCP documentation. 

Once the customized interface was connected to the 
SCR requirements specification, we had a working pro- 
totype of the WCP. Unlike most prototypes, which are 
constructed in an ad hoc manner, this prototype has 
both a realistic operator interface and a complete for- 
mal specification of the required system behavior. Such 
a prototype has many uses. For example, operators can 
validate the specification, and the interface design as 
well, by using the prototype to execute key scenarios. 
Detected problems can be corrected by changing either 
the user interface or the underlying SCR specification. 

Finally, we used our tools to analyze the SCR specifica- 
tion for the safety property q. Interestingly, property q 
and the five other safety properties contained in the SRS 
are transition or two-state invariants, that is, each is a 
property of every pair of reachable states (s, s’), where 
s, s’ E S and there exists an enabled input event e E p 
such that T(e,s) = s’. 

To analyze property q, we translated q, which the SRS 
describes in prose, into propositional logic and then used 
our abstraction methods to generate a reduced model 
of the WCP [5, 41. I nvoking the explicit state model 
checker Spin [22] on the reduced model exposed a vio- 
lation of the property and a counterexample, i.e., a se- 
quence of input events that leads to two states in which 
the violation occurs. 

To demonstrate the violation and to ensure that the 
detected error was not spurious, we manually trans- 
lated the sequence of input events leading to the vio- 
lation back into the original specification and then ran 
the scenario through the SCR simulator. Executing the 
scenario detected a violation of property q, thus show- 
ing that the violation detected by model checking was 
not spurious. Recently, a safety engineer, familiar with 
WCP, confirmed that our methods appear to have un- 
covered a true safety violation. 

Time Required to Apply SCR 
One of the most significant aspects of this project was 
the short time required to develop the SCR specifi- 
cation and to apply the SCR tools. Translating the 
contractor-produced specification into an SCR specifica- 
tion required only one person-week. Given that the con- 
tractor developed the original SRS without any knowl- 
edge of SCR, the small investment in time and effort 
required to produce an SCR specification from the SRS 
is noteworthy and, in our view, clearly demonstrates 
the cost-effectiveness of SCR. Building a customized in- 
terface for the SCR simulator required approximately 
three weeks, and use of the consistency checker and the 
model checker less than a day. Hence, the total time 
required to develop and analyze the SCR specification 
and to build a working prototype was approximately 
one person-month. 

This small investment in time and effort is significant, 
especially when compared to the time and effort ex- 
pended in two other recent projects. Both projects ap- 
plied a formal method based on the mechanical prover 
PVS [26] to a practical system. In the first project, 
Dutertre and Stavridou used PVS to specify and analyze 
the requirements. of an Air Data Computer (ADC). The 
specification and analysis of the ADC required approxi- 
mately 18 person-months [9] and detected a single error 
(a case in which a minimum exceeded a maximum). In 
a second project, Crow and Di Vito used PVS to specify 
and analyze the requirements of the Global Positioning 
System (GPS). This project required two staff-months 
spread over a four-month period [8] and detected many 
of the same kinds of errors (e.g., ambiguity, inconsis- 
tency, and incompleteness) that the SCR tools detect. 

Light-weight techniques such as SCR, e.g., techniques 
that apply consistency checking or model checking, can 
expose many of the same errors detected by more heavy- 
duty techniques, such as PVS. However, applying the 
SCR tools does not require the mathematical sophisti- 
cation and theorem proving skills needed to apply many 
heavy-duty techniques. Applying the SCR technology 
also requires significantly less human effort. Further, 
in contrast to PVS, the SCR tools can produce both a 
working system prototype and a build-to specification 
that can be used by software developers to design and 
implement the software. 

Using the SCR notation and tools does not preclude 
the application of more heavy-duty techniques to SCR 
specifications. For example, in a few cases (e.g., prov- 
ing that an abstraction of a given variable is valid), we 
have found that light-weight tools are insufficent and 
that deductive reasoning and mechanical provers such 
as PVS are useful. Recently, we used TAME [2], a sys- 
tem designed to analyze automata models using PVS, 
to check properties of an SCR specification of a simple 



Bomb Release system. We found that the SCR analy- 
sis tools performed many of the checks (e.g., checking 
for nonoverlapping conditions) needed for the TAME 
results to be valid. 

PROBLEMS IN THE TRANSLATION 
This section discusses five major issues that arose in de- 
veloping the SCR specification from the original SRS- 
how to provide missing requirements information with- 
out access to domain experts, how to interpret the prose 
and some of the logic equations in the original SRS, how 
to handle the SRS modes, when to deviate from the orig- 
inal SRS, and how to locate information in the SRS. 
Although others applying formal techniques to spec- 
ifications of practical systems have encountered simi- 
lar problems (e.g., lack of domain expertise, questions 
about the interpretation of the specifications, and diffi- 
culty locating information in the SRS), the considerable 
progress we made despite the problems is encouraging. 

Lack of Domain Expertise 
Developing and analyzing the SCR specification with 
our tools raised numerous questions about the WCP 
requirements. Our questions fell into two categories: 
questions about the WCP environment and questions 
about the required behavior of the WCP. We were un- 
able to answer many of these questions because either 
the information was missing from the SRS or the in- 
formation was included in the SRS but, despite consid- 
erable effort, we couldn’t locate it. Although a WCP 
project officer and the safety engineers answered a few 
of our questions, we had no direct access to the WCP 
contractor, who could answer detailed questions about 
the WCP and the original SRS. 

Largely missing from the specification was information 
about the WCP environment. For example, a safety 
property may be violated if two sensors fail. If the si- 
multaneous failure of two sensors has very low probabil- 
ity, then such a violation could be spurious. Because the 
SRS fails to make such assumptions explicit, we cannot 
tell. Further, in specifying the required behavior of the 
WCP in SCR, we described the behavior of each moni- 
tored variable as a state machine. Because the SRS pro- 
vides little information about the system inputs, which 
state transitions are legal for a particular input is un- 
known. To avoid erroneous decisions about how the 
system inputs change, we allowed each state machine 
representing an input to transition from one state to 
any other state even though, in many cases, a transition 
is impossible. For example, if a sensor measuring hy- 
draulic pressure is functioning normally, a reading close 
to the minimum pressure in one state and another read- 
ing close to the maximum pressure in the next state is 
probably infeasible. 

Other questions arose about the required system oper- 
ation. For example, our consistency checker detected 
some missing cases. When the consistency checker de- 
tected missing cases, how to fill in the missing informa- 
tion was sometimes obvious; in other cases, supplying 
the missing information required domain expertise. 

Uncertainty about the Interpretation 
As described above, the SRS combines both prose and 
logic equations in describing the required behavior of 
the WCP. Like other researchers who have applied for- 
mal methods to practical systems (see, e.g., [lo, ll]), 
we found considerable ambiguity in the prose sections 
of the SRS. In the SCR specification, we used what we 
believed to be a reasonable interpretation of the SRS 
prose. In some cases, we have informal feedback from 
the program manager and the safety engineers that our 
interpretation of the prose is accurate. However, a for- 
mal review of the SCR specification by the developers 
of the original SRS is highly desirable. 

Another question that arose was how to interpret the 
logic equations. Because the logic equations are formal, 
we expected to have little difficulty interpreting them. 
This was a good assumption for most of the equations, 
i.e., those which represent the value of an output or in- 
ternal variable as a function of other variables in the 
same state. Such logic equations can be directly trans- 
lated into SCR condition tables. For example, consider 
the logic equation 

cHYDBAULICPBESSUBELO~~IDICATOB:= mLAIIPJ3f%K=apor 
not(mHYDrlAuLICOILPRESSurtE). 

Table 1 shows how this equation can be translated 
into an SCR condition table. The table states that 
the output cHMRAULICPRESSURELOUIM)ICATOR is 
tme if the input mLAMPXHECK is up or if the input 
mHYDRAULICDILSRESSURE is false, andfalseotherwise. 

Less obvious was how to translate the remaining logic 
equations, which define variables called latches, into 
SCR. Latches are functions of variables in both the cur- 
rent state and the new state. In SCR, such functions 
are defined by event tables. A logic equation for a latch 
x has the form 

2 := (yVx)Az, 

where y and z are other variables. We translate all 
logic equations of the above form into the event table 
shown below. This table states that z becomes true 
when both y and z are true and that x becomes false 
when z becomes false. All latches have this pattern. 

<[ 
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Table 1: Condition Table Defining cHYDEAULICPFlESSUKELOWXiIDICATOR. 

An example of a latch is the internal variable 
tPKESSUK.ELATCH. The logic equation for this variable 
is given by 

tPItESSURELATCH:= (tPBESSURELATCHormPBESSUREHOLD) and 

In Table 2, the function defined by this logic equa- 
tion is represented as an event table. The table states 
that tPRESSUKELATCH becomes true if mPEESSDKEHOLD 
and tPEESSUFtEXrT0 become true and becomes false 
if tPRESSUEEAUT0 becomes false (and is otherwise un- 
changed). 

How to Deal with Modes 
In SCR, each controlled variable is defined as a func- 
tion of monitored variables, terms, and modes. As 
noted above, modes were not used systematically in 
the SRS: while the prose sections of the SRS describe 
mode-dependent behavior, only a handful of logic equa- 
tions express a variable as a function of a mode and 
other variables. Most logic equations simply ignore the 
modes. Because the SRS does not handle modes sys- 
tematically, we decided to follow the lead of the SRS 
and represent the WCP modes as Boolean terms rather 
than as SCR modes. 

Deviating from the SRS 
The decision not to use SCR modes to model the WCP 
modes was motivated by our strong desire to maintain 
close compatibility between the original SRS and the 
SCR specification that we derived from it. We consider 
compatibility to be important in demonstrating to both 
the project officer and the contractor that the problems 
exposed were bona fide problems rather than problems 
introduced by our translation. 

Another case in which we needed to decide whether 
to deviate from the SRS involved implementation bias, 
An SCR requirements specification is designed to de- 
scribe the required system behavior without making de 
sign and implementation decisions. In certain cases, the 
original SRS includes implementation bias. Whether to 
remove this implementation bias was an issue. 

In this case, our decision was to remove imple- 
mentation bias and thus to deviate slightly from 
the SRS. For example, the SRS defines the output 
cTESTJ!ODElKDICATOR, which represents a light on the 
operator control panel, with a logic equation that de- 
pends on a flasher circuit. We decided that the required 
behavior was clearer if the SCR specification omitted 
the flasher circuit. Table 3 shows a condition table, 
which defines cTESTJ!ODEIKDICATOR as a function of 
the monitored variable mLAHP-CHECK and the internal 
variable tTESTJtODE. The table represents this output 
with three values, rather than two. In particular, it 
states that the light is on when the switch mLAKP-CHECK 
is up, off when the mLAHP_CHECK switch is down and 
the system is not in tTESTJ!ODE, and flashing when 
the mLAMP_CHECK switch is down and the system is in 
tTEST_MODE. 

How to Find Information in the SRS 
Using the SRS to answer questions about the WCP re- 
quirements often proved difficult because finding infor- 
mation quickly in the SRS depends on knowing how 
the WCP is organized. For example, the SRS orga- 
nizes the inputs, outputs, and logic equations by sub- 
system rather than alphabetically. Moreover, the SRS 
defines some variable values only in the prose and, as 
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Table 2: Event Table Defining tPRESSURELATCH. 

noted above, defines the modes of operation sometimes 
in prose and in a few cases in the logic equations. 

Now that it is complete, we use the SCR specification, 
which has traceability links to the SRS, to find informa- 
tion in the SRS. For example, when we want to find a 
logic equation for some variable in the SRS, we go first 
to the table function in the SCR specification. Then, 
we use the traceability links in the SCR specification to 
determine the page of the SRS that contains the logic 
equation. 

NEEDED ADDITIONS TO SCR 
Analysis of the contractor-produced SRS for the WCP 
required us to add two new features to the SCR model 
checking capability, a new abstraction method and the 
use of simulation to validate suspected violations of 
properties exposed by model checking. Below, we briefly 
summarize the two new features as well as a minor fea- 
ture that improves the readability of the safety proper- 
ties. For more information about the two new features, 
see [17]. 

Using Abstraction in Model Checking 
The number of reachable states in a state machine 
model of a practical system is usually very large, some- 
times infinite. Hence, for realistic software specifica- 
tions, most model checkers fail to terminate because 
they run out of memory. One promising approach pro- 
posed by Clarke et al. to combat state explosion in 
model checking is abstraction [7], which can theoreti- 
cally reduce a huge (and even infinite) state space to a 
much smaller state space. 

We have developed methods for deriving abstractions 
from SCR requirements specifications, each based on 
the formula to be analyzed. The methods are practical: 
none requires ingenuity on the user’s part, and each de- 
rives a smaller, more abstract model automatically. Fur- 
ther, each method systematizes techniques that current 
users of model checkers routinely apply but in ad hoc 
ways. 

To analyze the SCR specification of the WCP for the 
safety property q, we needed to build a more abstract 
model. To do so, we used abstraction to extract from the 
original SCR specification only those variables (and the 
tables that define them) which could affect the validity 
of q. By applying this abstraction method, we reduced 
the number of variables in the specification from 258 to 
55, a reduction of almost 80%. 

Because the reduced specification still contains several 
variables with infinitely many values, we also developed 
a new abstraction method which replaces a detailed 
variable in the original specification with a more ab- 
stract variable. The WCP has seven variables which are 
real-valued, two input variables and five internal vari- 
ables. The two input variables record the values read 
by the two transducers referred to in the statement of 
property q (see above). The other five variables are 
functions of one or both of the two inputs. This ab- 
straction method uses the next-state function T as well 
as the property q to compute a discrete (and therefore 
more abstract) version of each of these variables. In 
each case, we reduced the set of values a variable can 
assume from an infinite set of real numbers belonging to 
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some interval I to a discrete set of three to seven values, 
each of which represents a subinterval of the original in- 
terval I. By applying this new abstraction method, we 
reduced the size of the state space of the WCP specifi- 
cation from infinite to finite. 

Using Simulation for Validation 
In analyzing the WCP specification for violations of the 
first safety property, we needed to combine model check- 
ing and simulation. Simulation was used not only to 
demonstrate the violation but also for validation. Be- 
cauSe one of the abstraction methods was applied man- 
ually and because the translation of the counterexample 
produced by model checking into a scenario in the orig- 
inal SCR specification was manual, errors could have 
been introduced. Moreover, the abstract specification 
that we developed was not complete, that is, in some 
cases, a counterexample in the reduced specification had 
no counterpart in the complete specification. Hence, the 
violation detected by model checking could be spurious. 
Running the scenario through our simulator validated 
that the violation detected by model checking exposed 
a true safety violation in the complete specification. 

Improving the Readability of the Properties 
Originally, we expressed the safety property Q as a log- 
ical expresssion containing unprimed and primed vari- 
ables. (Recall that an unprimed variable represents the 
value of the variable in the old state, whereas a primed 
variable represents the value in the new state.) Because 
the variable names chosen by the contractor were very 
long, we found that the formal statement of the safety 
properties in the SCR specification was difficult to un- 
derstand. To make the statement of the safety prop- 
erties more concise, we substituted the SCR notation 
for events, “@T(c)," for expressions of the form “HOT 
c ABD c"'. This more concise formal statement of the 
safety properties makes them easier to understand. 

REACTIONS TO THE SCR RESULTS 
Our long-term goal is to transfer the SCR technology 
into industrial software development. The difficulty of 
achieving this goal was illustrated by our experience in 
translating the contractor-developed SRS into SCR and 
in discussing our SCR specification and the defects that 
our tools uncovered with a WCP project officer, two 
safety engineers, and a representative of the contractor 
who developed the SRS. 

Reactions to the Tools 
The project officer and the safety engineers were quite 
positive about the need for software tools to aid in de- 
veloping an SRS. They were particularly interested in 
using our tools to construct system prototypes (see be- 
low). The WCP contractor was indifferent. Some pos- 
sible reasons for this indifference are suggested below. 

Reactions to the Defects 
As described above, the SCR methods and tools iden- 
tified many defects in the SRS: some were detected in 
creating the SCR specification, others by running the 
consistency checker, and still others by applying model 
checking. Neither the military personnel nor the con- 
tractor were surprised to learn that our tools uncovered 
many defects. All expected vagueness, inconsistency, 
and incorrectness in the SRS. Prior to learning about 
our technology, they believed that no alternative to a 
vague, incorrect, inconsistent SRS was feasible. 

Both the project officer and the safety engineers sup- 
port the integration of technology like the SCR tech- 
nology into the military’s software development pro- 
cess. Clearly, detecting errors early in software devel- 
opment can significantly reduce the cost of software de- 
velopment and improve software quality. Moreover, the 
safety engineers view our method for detecting safety 
violations in the SRS as quite promising. They are cur- 

99 



rently evaluating the utility of the SCR tools for speci- 
fying and analyzing safety-critical military systems. 

Unlike the military personnel, the contractor represen- 
tative was polite but quite disinterested in the SCR 
technology. Several possible reasons for this apathy ex- 
ist. First, because many vendors have made exaggerated 
claims about varied tools and techniques which have 
not materialized in practice, many developers are highly 
skeptical of the effectiveness of new software technology. 
Second, the SCR tools are prototypes and hence do not 
provide the industrial-quality support (e.g., training, in- 
stallation, bug fixes, etc.) that the contractor requires. 

Finally, the contractor already has a very different, more 
traditional software development process in place which 
has produced acceptable military systems. In this pro- 
cess, the SRS is a deliverable that is produced at low 
cost. Underlying the contractor’s process is the assump- 
tion that most software errors will be detected by sys- 
tem testing after the code has been generated. Little 
incentive exists for the contractor to uncover errors dur- 
ing the requirements phase. As noted recently in IEEE 
Software [6], “Current government contracts typically 
pay contractors by the staff-hour, which provides little 
incentive to reduce expensive rework.” 

Reaction to the Customized Simulator 
Both the project officer and the safety engineers were 
very positive about the working system prototype that 
the SCR technology produced. They view symbolic ex- 
ecution as an effective means of validating the SRS. As 
a result, we have plans for system operators, knowl- 
edgeable about weapons preparation and launch, to use 
the customized simulator to execute scenarios of inter- 
est and thus to validate that the SCR specification cap- 
tures the correct system behavior. Once confidence in 
the specification and the interface design is high, this 
“prototype” can be used to train operators and to de- 
velop initial operational procedures. 

Our experience is that audiences prefer examples from 
their problem domain. For example, military audi- 
ences dislike typical academic examples (e.g., automo- 
bile cruise control). Military personnel and contrac- 
tors also want examples presented in a way that is eas- 
ily comprehensible, i.e., with application interfaces and 
models with which they are already familiar. They USU- 
ally dislike the abstract models presented by computer 
scientists. 

SOME OBSERVATIONS 
Listed below are some observations about our experi- 
ence applying the SCR method and tools to the WCP 
SRS: 

l Given a high-quality SRS, one can use the SCR 
tools to do considerable analysis without signifi- 

cant interaction with system experts and at very 
low cost. Clearly, applying the SCR technology re- 
quires precise, unambiguous information about the 
required behavior. If the SRS had been written in 
prose, the technology could not have uncovered so 
many defects nor could it have produced a working 
system prototype. 

Interaction with system experts is needed to vali- 
date that the interpretation of the SRS is correct 
and to confirm that the detected errors are real 
errors. As suggested above, some detected errors 
(e.g., the simultaneous failure of three sensors) have 
very low probability. The SRS should document 
such assumptions. Further, detailed descriptions of 
the system environment-the constraints imposed 
by physical laws and the environment in which the 
system operates-can rule out certain errors. 

Executable specifications are extremely valuable. 
The customized simulation of the WCP convinced 
military personnel that our specification captured 
the essential system behavior and thus gave our 
research group and our technology increased cred- 
ibility. 

The only properties of interest for the WCP were 
invariants, in particular, two-state invariants. The 
many other properties that can be expressed in, 
e.g., temporal logic were not needed. 

SUMMARY AND CONCLUSIONS 
We were able to use the SCR tools to capture, ana- 
lyze, and manipulate a contractor-produced specifica- 
tion that was not developed with the SCR method in 
mind. In the process of applying the SCR method, we 
uncovered a number of problems with the SRS, some se- 
rious. Many of these problems have been fixed, but do 
main expertise is needed to correct the remaining prob- 
lems. 

Applying the SCR method and tools to the WCP SRS 
and to the two other pilot projects described above 
demonstrated several advantages of SCR: 

l Applying the SCR technology had high payoff with 
only a small investment in human time and ef- 
fort. The primary reason for the high payoff is that 
the SCR technology is very well suited to control- 
intensive systems, such as the WCP. 

l The SCR methods and tools are usable by people 
other than the SCR developers. In the case of both 
the NASA space system application and Rockwell’s 
flight guidance system, people outside our group 
were able to use the SCR technology to do produc- 
tive work. 
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l Use of the SCR notation and tools can facilitate the 
use of more heavy-duty techniques. Deductive rea- 
soning, and mechanical provers that support such 
reasoning, can be easily applied to SCR specifica- 
tions. As noted above, we recently used a system 
called TAME to analyze an SCR specification using 
deductive reasoning and the PVS prover. 

l Unlike many other formal methods, the SCR tools 
provide feedback in terms understandable to users. 

Listed below are several planned follow-on tasks involv- 
ing the WCP and its software requirements: 

l Translate the remaining five safety properties into 
logical formulas and apply our abstraction coupled 
with model checking and simulation to determine 
whether the SCR specification of the WCP satisfies 
the other five properties. 

l Study the desirability and feasibility of using the 
logic equations as a notation supported by the SCR 
tools. Translating the logic equations into the SCR 
semantics should be easy. The difficulty lies in pro- 
viding user feedback in terms of logic equations, 
rather than tables, when the tool detects an error. 

l Study the feasibility of developing a more standard 
SCR specification from the SRS for the WCP. This 
SCR specification would represent the requirements 
in terms of SCR mode classes and eliminate some 
remaining redundancy in the current SRS. It would 
also provide a good example of an SRS that was 
developed directly using our tools. 

l Organize the SCR specification of the WCP for 
ease of change. Due to the large number of vari- 
ables it contains, the current SCR specification of 
the WCP is quite dif%cult to understand. A care- 
fully thought-out reorganization of the specification 
should make the specification not only more under- 
standable but also easier to modify. 

An important remaining question is how to transfer for- 
mal methods technology, such as the SCR technology, 
into industry. Currently, contractors have little eco- 
nomic incentive to apply formal methods during the 
requirements phase. Hence, government program man- 
agers must provide that incentive. They can do so by 
writing contracts that require developers 

l to demonstrate before the software is designed that 
the behavior specified by the SRS is complete and 
consistent and that the SRS does not require nor 
allow the software to violate specified safety condi- 
tions, and 
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l to provide a means for the government to validate 
the SRS before the software is designed. 

Towards this end, we are working on language that gov- 
ernment program managers can include in contracts. 
We are also seeking influence in organizations that pro 
gram managers look to for guidance (e.g., “Project 
Breathalyzer” sponsored by the Software Program Man- 
agers Network). 
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