
Designing Executable Abstractions

Gerard J. Holzmann
Bell Laboratories

600 Mountain Avenue 2C-521
Murray Hill, NJ 07974

gerard 8 research.bell-labs.com

1. ABSTRACT
It is well-known that in general the problem of
deciding whether a program halts (or can dead-
lock) is undecidable. Model checkers, therefore,
cannot be applied to arbitrary programs, but
work with well-defined abstractions of pro-
grams. The feasibility of a verification often
depends on the type of abstraction that is made.
Abstraction is indeed the most powerful tool
that the user of a model checking tool can
apply, yet it is often perceived as a temporary
inconvenience.

1.1 Keywords
Model checking, software verification, distributed systems

‘ ‘Seek simplicity -- and distrust it, ’ ’
Alfred North Whitehead (1861-1947)

2. INTRODUCTION
In the days when C was still just letter in the alphabet, and
C++ a typo, it was already well-established that it would be
folly to search for a computer program that could decide
mechanically if some arbitrary other computer program had
a given property. Turing’s formal proof [6] for the
unsolvability of the ‘halting problem’ was illustrated in 1965
by Strachey with the following simple construction. Suppose
we had a program me(P) that could decide in bounded time
if some other program P would terminate; we could then
define a program Q, that uses input P as follows:

Q(P):
begin

if me(P) == terminates
then

Ii got0 L
else

terminate
Ii

end

Permission to make digital/bard copy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distriboted for profit or commercial advantage, tbe copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
FMSP 98 Clearwater Beach, FL USA
Q 1998 ACM 0-89791-954-8 3.50

Program Q(P) terminates if P does not terminate, and vice
versa, and all is well until we decide to apply Q to itself and
ask if Q(Q) terminates.

Strachey’s construction is eerily similar to Russell’s famous
class paradox [3], which makes it somewhat dubious to use
as a basis for a logical argument. In fairness, this
construction does not really prove the unsolvability of the
halting problem, but it does prove that it is in general
impossible to write a program that can establish arbitrary
properties of itself. This, of course, does not mean that no
programs could be written that can establish specific
properties of themselves. A word-count program, for
instance, can trivially determine its own length, and a C-
compiler can confirm its own syntactic correctness, and even
recompile itself.

So, given this, could we in principle also write a computer
program that can specifically establish its own logical
correctness? It would, for instance, be quite attractive to
have a model checker that could be applied to itself. The
answer is, of course, negative. (Note, for instance, that such
a program could report its own correctness erroneously...)

So what makes us think that we can write a model checker
that can establish the logical correctness of other programs?
The answer is that a model checker does not work with
arbitrary programs, but with well-defined abstractions of
programs. For the model checker Spin [4] these abstractions
are also executable, to provide support for rapid prototyping,
but in general this need not be the case of course. Through
the design of its specification language Promela (a Process
Meta Language), Spin enforces two basic requirements on
the abstractions it can accept as input. The models must:

l have countable many reachable states, and they must be
l closed to their environment (i.e., fully specified).
The reason for the first requirement will be clear. The second
requirement says that the behavior of the model may not
depend on any hidden assumptions or components, i.e., input
sources must be part of the model, at least in abstract form.

Neither property is guaranteed to hold for an arbitrary
program, but it is guaranteed to hold for any model that can
be specified in Promela. A program that reads input from a
file-descriptor or an &stream, for instance, is not closed to
its environment. Similarly, a program that can obtain a priori
unlimited amounts of memory has an uncountable number of
potentially reachable states, and is unanalyzable with a
model checker unless an abstraction is first made.

103

http://crossmark.crossref.org/dialog/?doi=10.1145%2F298595.298864&domain=pdf&date_stamp=1998-03-04

The need for abstraction, or modeling, is by practitioners
often seen as a hurdle in the verification process, instead of
as the model checker’s most powerful feature.

Choosing the right level of abstraction can mean the
difference between obtaining a tractable model with
provable properties, and an intractable model that is only
amenable to simulation and manual reasoning. Sometimes it
also means that we have to make a choice between proving
a (series of) simple properties of a complex model
(corresponding to a low-level abstraction), and proving a
complex property of a simpler model (corresponding to a
higher-level abstraction of the application).

The importance of abstraction also places demands on the
design of the specification language for a model checking
tool. If the input language is too detailed, it discourages the
user from making abstractions, which can initially appear to
simplify the task but in the end will obstruct the verification
process. Most model checkers therefore are careful in
choosing what features will be supported. In the model
checker Spin, for instance, a number of desirable language
features have intentionally been left out of the specification
language, to facilitate the construction of tractable models.
Among them are:

l memory management
l floating point data types
l differential equations, etc., etc.
Some systems are still more restrictive, and exclude also:

l local and global variables, message parameters
l dynamic process creation
l asynchronous message passing
Other systems are more permissive, and, at the price of
increased complexity, include support for:

l real-time (possibly drifting) clocks
l probabilities on transitions
l unrestricted function calls
All other things being equal, we should expect the most
permissive system to be the easiest to build models for, but
also the least efficient to verify them. Like other model
checkers, Spin attempts to find a balance between ease of
use and model checking efficiency.

The preferred way to build a model for any given
verification problem at hand is to follow the following
steps:

l jirst decide which correctness properties are relevant,
and require formal proof

l next study the essence of the solution that is used in the
application to secure the behavior of interest (i.e., that
determines correctness with respect to the properties
selected in the first step)

l lust construct an executable abstraction for the applica-
tion that has enough expressive power to capture the
essence of the solution, and no more.

It is possible, but not really likely, that one could obtain the
proper abstraction by literally transcribing the text of an
implementation, say in Java or in C++. It is not even likely
that the (human) model checker can fully understand the
essence of an application by studying its source code. (It is
as likely as someone understanding the essence of a
Quicksort algorithm from reading C-source code, instead of
the paper introducing the rationale behind the algorithm.)

The purpose of the construction of the model is to attempt to
disprove the correctness of the chosen solution: to find
logical flaws in the reasoning that produced the design,
rather than finding mere coding errors in its implementation
(there are other, perhaps even better, methods to do that).
This means that the model establishes a refutable statement
about a design. As Lakatos phrased it: “the pulpose of
analysis is nor co compel belief bur rarher co suggest a!oubr”
[2]. This means that elements of a model that cannot
contribute to its refutability can and should be deleted in the
interest of enhancing the models tractability (and the
possible refutation of the remainder).

In the last two decades formal verification tools have
evolved from simple reachability analysis tools, run on
machines with often less than 1 Mbyte of main memory,
into powerful symbolic and on-the-fly logic model checking
systems, that can be run on machines with over 1 Gbyte of
memory. Computational complexity (or the familiar ‘state
space explosion’ problem) was considered to be the
dominant issue twenty years ago, when tools could handle
no more than about 10,000 reachable states, and it is still
perceived to be the dominant issue today, now that model
checking tools can handle state-spaces that are many orders
of magnitude larger. Another twenty years from now these
limits will undoubtedly have improved by another few
orders of magnitude (if only because of predictable
increases in memory sizes and CPU speeds), but the
challenge to build tractable models will remain. The
problem in model checking is not computational complexity
but our still limited skill in building abstractions.

Users of verification tools often attempt to build models that
remain relatively close to the implementation level of an
application, making syntactic changes to accommodate the
specification language of a model checker, and they often
only seriously consider abstraction methods when a concept
or feature is encountered that cannot be represented directly
in the language of the model checker. At this point, the user
is often frustrated, which is of course at that point in the
effort makes for a poor motivator in the search for a good
abstraction.

Much of the detail included in verification models,
especially by new users, is often functionally irrelevant to
the verification chore at hand, yet can seriously impede the
chances for its successful completion.

3. AVOIDING REDUNDANCY
Some small examples can illustrate that the success of the
model checking process relies on the skill of the user to
design powerful executable abstractions and to avoid

104

redundancy. The paradigms that are used here are often
borrowed from simulation or regular programming practice,
but they can be counter-productive when used in model
checking.

3.1 counters
In debugging a regular program, or in the construction of a
simulation model, it is often convenient to add counters, for
instance, to keep track of the number of steps performed.

int cm = 1;
do
:: can_proceed == true;

. . . ;err+y a step */

printf(“step:‘%d\n”, cnt)
od

Figure 1. Counter Example

The Counter example in Figure 1 illustrates this in a sample
Promela program. It has two flaws. The first flaw is the
use an unrestricted integer as the default data-type for a new
variable. In model checking our concern is to build tractable
models from strictly bounded components. A variable is just
another component of the model, and it too should have a
bounded range, preferably as small as possible. The variable
is used here as if it were a natural number with infinite range
Note that no check for overflow of the value assigned to
cnt is made, on the implicit assumption that no overflow
condition could practically occur. This assumption is valid
for debugging or simulations, it is false in model checking.

It is not necessarily a problem that the variable cnt can
take up to 32 bits of storage in each reachable state that is
generated during the model checking process. The real
problem is that cnt can store 2”32 (more than 4 billion)
distinct values, and therefore has the potential of
multiplying the size of the reachable state space for the
model by the same amount. The second flaw seals the fate
of this model, whatever its further contents may be: the use
of the integer to count steps without apparent bound. What
otherwise may be a simple iteration that may be verified
exhaustively within a few CPU instructions, is now
unfolded 2”32 times, and becomes intractable. Phrased
differently, removing the counter can reduce the complexity
of a verification run by about nine orders of magnitude...

3.2 Sinks, Sources, and Filters
Another avoidable source of complexity is the addition to an
abstract model of a process that acts solely as a source, a
sink, or a filter, for a sequence of predetermined messages.
The flaw is that such additions have no refutation power,
and do not contribute in an essential way to the behavior
that is being represented. Removing the associated actions
from the abstraction can often be done while preserving all
options for behavior, and options for the satisfaction or
violation of correctness properties elsewhere in the model.

The sink process in Figure 2, for instance, consumes and
discards a stream of messages, without ever changing state.
In this model, the sink is always ready to remove a

message from the channel, and whichever process is
sending to this channel can do so unimpeded. If the sink
process is the only process reading from the channel q, and
no other messages than those of the three listed types can be
send to 9. the abstraction made here is not functionally
changed if one deletes the sink process, together with all
send actions on channel q. In fact, the refutation power of
the model will be increased, by the reduced complexity.

mty-pe = (one, two, three 1;

than q = 181 of I mtype I;

proctypdoe sink0 I

:: q?one /* discard */
:: q?two

Three
I

Figure2 Sink

Note carefully that even though process sink has only one
control state, channel q is considerably more complicated,
and can needlessly increase the complexity of the model
checking problem.

To see how much would be saved by removing process
sink, consider the number of states that channel cl might be
in. The channel can hold between zero and eight distinct
messages, each of which is one of three possible types:

8

C’ 3’ = 9a41

i=o

This means that removing the process and the channel can
decrease the complexity of the model checking problem by
almost four orders of magnitude, without in any way
affecting its outcome. The temptation to include the dummy
process is often that the real application contains a process
or a task that receives these messages and processes them in
a way that need not be modeled. There is an understandable
uneasiness in the user to completely discard the entire
process in this case.

pro&T: source0 {

:: q!one /* generate messages*/
:: q!two

:Pee
I Figure 3. Source

A very similar example can be constructed if we replace the
sink process with a source process, as shown in Figure 3.
As before, if the source process is the only process
sending messages into channel q, and the three message
types listed are the only types expected, the process can
again be removed without affecting the functionality
expressed by the model. All receive statements on this

105

channel are then replaced with a skip, or null, statement,
and the complexity of the model checking problem may
again be reduced by four orders of magnitude.

An alternative to lessen the effect of the redundant process
on the complexity of the verification would in both these
cases be to reduce the channel capacity to one, or to replace
the channel q with a rendezvous port.

The third variant of the dummy process paradigm is the use
of a filter process that merely transfers every message
received on its input channel to an output channel, as
illustrated in Figure 4.

rtycec&;kmiver(chan in out)

do
,$l?msg -> out!msg

1 Figure 4. Filter

In this case, the problem is slightly more subtle, because
there may be relevant behavior that is contributed by the
presence of the filter process. Note that after receiving a
message on the input channel, only the output action can
take place. If it can be shown that this output action can
never be delayed, or that its delay cannot alter the behavior
of other processes in the model, the process can again be
removed from the model.

4. SIMPLE REFUTATION MODELS
Is it realistic to expect that we can build models that are of
practical significance and that remain computationally
tractable? We consider two examples of remarkably simple
models that have this property. The first model, discussed in
Section 4.1 counts just 12 reachable states, and thereby
qualifies as perhaps the simplest model of a realistic
problem yet published. The second model is not ‘much
larger, with 51 reachable states, yet it too has demonstrable
practical value.

A naive model for either of these examples could easily
defeat the capabilities of the most powerful model checking
system. By finding the right abstraction, though, we can
demonstrate that the first model contains a design flaw, and
we can prove the other to be a reliable template for the
implementation of device drivers in an operating systems
kernel. The two abstractions discussed here require less
model checking power than what is available on the
smallest of PCs. To be sure, it is often harder to find a
simple model than it is to build a complex one, but the effort
to find the simplest possible expression of a design idea can
provide considerably greater benefits.

4.1 The Pathfinder Problem
NASA’s Pathfinder landed on the surface of Mars on July
4th 1997, releasing a small rover to roam the surface. The
mechanical and physical problems that had to be solved to
make this mission possible are of course phenomenal.
Designing the software to control the craft may in this
context seem to have been one of the simpler tasks, but

designing any system that involves concurrency is
challenging and requires the best of tools. Specifically, in
this case it was no easier to design the software than the rest
of the space craft. It was indeed only the control software
that noticeably failed during the Pathfinder mission. A
design fault caused the craft to lose contact with earth at
unpredictable moments, causing valuable time to be lost in
the transfer of data. The nature of the bug was traced down,
and fixed within a few days. It was tracked down through
exhaustive system testing with a duplicate of the craft at
JPL, in attempts to reproduce the unknown non-
deterministic sequence of events that caused the real craft to
fail [8].

mtype = (free, busy, idle, waiting, runoing I;

show mt.ype h state = idle;
show mt.vpe 1 state = idle;
show mtype mutex = free;

active proctype highJriority()
I
end do

:: h-state = waiting;
atomic (mutex == free ->

mutex = busy 1;
h-state = running;

/* produce data */

atomic (h-state = idle;
mutex = free 1

od

active proct.ype low priority0
provided (h-state == idle)

1
end: do

:: l-state = waiting;
atomic { mutex == free ->

mutex = busy);
l-state = rmnning;

/* consume data */

atomic { 1 state = idle;
mutex = free)

od
1

Figure 5. Pathfinder Model

The flaw was a conflict between a mutual exclusion rule and
a priority rule used in the real-time task scheduling
algorithm. The essence of the problem can be modeled in an
executable abstraction in Promela in a few lines of code,
as shown in Figure 5. Two priority levels are modeled here
as active proctypes. Both processes need access to a
critical region for transferring data from one process to the
other, which is protected by a mutual exclusion lock. If by
chance the high priority process starts running while the low
priority process temporarily holds the lock, neither process
can proceed: the high priority process is locked out by the
mutex rule, and the low priority process is locked out by the
priority rule, which is modeled by a Promela provided

106

clause.

The model shown here captures the essence of this problem
in as few lines as possible. The resulting state space counts
no more than twelve (12) reachable system states. which
should be compared to the many billions of possible states
of the real memory-module in the Pathfinder controller that
were searched in exhaustive tests of the non-abstracted
system. A complete reachability graph for this system is
readily built, even by a human model checker without
computerized assistance. It is a minor challenge to identify
the two possible deadlock trajectories in that graph.

It should be added here that if an abstraction of the mutual
exclusion and priority scheduling rules had been
constructed before the launch of the Pathfinder mission,
before the design flaw had manifested itself, the model
would likely have contained more detail. In the real system,
for instance, a third intermediate priority level was
responsible for keeping the low priority process from
releasing the lock, which prevented the high priority process
from completing its task. Similarly, there were also other
tasks in the system that manipulated the mutual exclusion
locks. The additional priority levels and tasks would
naturally be made part of the verification models, to either
locate or rule out all suspicious behaviors.

There is little doubt, though, that the flaw in the Pathfinder
software could have been detected prior to launch, with a
relatively modest model checking effort.

4.2 A Disk Scheduling Problem
The next example illustrates how an abstract model can be
constructed, again in just a few lines of high level code, to
prove that a particular implementation method has the
properties that it is intended to have. The problem is a
typical operating system’s design problem: scheduling
access of multiple ‘client’ processes to a single disk IO
server. Only one client request can be served at a time; if
multiple requests arrive, they have to be queued and served
in first-in first-out order.

In the original model for this problem, designed by Pieter
Villiers as part of a study on verifiable micro-kernel designs
[7]. Separate process types were defined for modeling

l the client processes,
l the disk scheduler,
l the disk controller, and
l the disk device driver.
To initiate a disk IO operation, the client process submits a
request to the disk scheduler, where it may get queued.
When it is ready to be serviced, the scheduler will send a
start command to the disk controller, which will initiate the
IO operation with the device driver. Completion of the
operation is signalled by a hardware intermpt, which is
intercepted by the scheduler. The internal details of the
device driver (e.g., mapping disk blocks to cylinders,
sending commands to move the disk heads, etc.) are quite
irrelevant to the problem of verifying that the queueing of

client requests in the disk scheduler is designed correctly. In
the first model, therefore, the abstraction for the device
driver looked like shown in Figure 6.

proctyo; Contr (chsn req, signal)

:: req?IO ->
/* perform IO operation */
signal!interrupt

od
l Figure 6. Device Driver Interface Model

This has the signature, within the model, of ajiZter process,
just like the behavior of the client process (submit a request
and wait for the result.) Similarly, the disk controller and the
client processes behaved like filters in this context, all of
which merely states that the focus of the correctness issue
considered here is on the scheduler. The temptation is to
include the extra processes in the abstract model anyway,
simply because the application contains them. For the
verification itself, however, their presence serves no real
purpose, and an effort should be made to remove them by
applying abstraction rules. Doing so leads to the remarkably
simple, yet complete, model shown in Figure 7.

#define Client(x)cli bmxl == false -> \
client busy[x] = true; \
currentproc = x+l; \
got0 progress

#defineDiskIdle activeproc == 0
#define DiskBusy !(DiskIdle)

#define NCLlENTS 3

active proctyne disk scheduler0
i than request

MXIEXTSl of I bvte 1:
9 I

boo1 Interrupt =-false; - ”
boo1 client busyINCLIENT.Sl = false;
byte activeproc, currentproc;

do
:: Client(O);
:: Client(l);
:: Client(2);

progress: if
:: DiskIdle ->

do-diskio: activeproc = currentproc;
e.ssert(Interrmpt == false);
Interrupt = true

:: DiskBusy ->
request-q!currentproc

fi
:: Interrupt ->

Interrupt = false;
client-busy[activeprocl] = true; 12
Trequest q?currentproc;

goto do diskio
:: len(request q) == 0 ->

activeproc = 0
fi

od
I Figure 7. Disk Scheduler Model

With the client process modeled as a filter, the client is

107

unable to submit a new request until the last one was
completed first. In the simplified model this busy status is
recorded in a boolean array client-busy[NCJJENTS]
instead. Two correctness properties are integrated into the
model: a local assertion states that no new interrupt can be
generated before the last one was handled. It’s validity
follows from the fact that no new disk IO operation can ever
be initiated before the last one was completed.

The second correctness property is expressed in a ‘progress
label’ which appears at the point in the code where a new
client request is submitted. Spin can prove that ‘non-
progress’ cycles are impossible for this design This means
that there cannot be any infinite execution without infinite
progress for at least some client. Note that there are only
finitely many clients, and clients cannot resubmit a request
for service before their previous request was completed.

What is the complexity of this model? With two clients, the
state space contains no more than 51 distinct system states.
With three clients, as shown, this number increases to 211
system states, neither of which is much of a challenge for
any existing model checking tool.

But, are three clients sufficient to prove the required
properties for any number of clients? Note that increasing
the number of clients increases the number of system states
to be inspected due, primarily, to the increased number of
permutations of distinct client requests in the request queue.
All clients behave the same, and it should therefore suffice
to prove each client-specific property for one arbitrarily
chosen client.

The context is comparable to the one encountered in
Wolper’s proof for the &a& independence theorem [9]. In
Wolper’s case one would like to prove that two arbitrary
data items cannot arrive out of order in a data stream. Three
distinct types of data, marked, for instance, a, b, and c,
suffice to prove this property for any number of data items.
Specifically, if it can be proven that the data items b and c
cannot arrive out of order when embedded in the infinite
stream u* b (I* c a*, then it follows that no two data items,
whatever their markings, can ever arrive out of order.

In this case we must show that a client-specific property
holds no matter at what point in the disk scheduler’s
operation the client’s request may arrive. There are three
boolean conditions that together completely determine the
state, and the actions, of the disk scheduler when a new
request arrives. They are:

l len(request-q) ==0
l DiskIdle
l hterrupt
This gives us maximally eight states to consider. One client
process clearly cannot cover all of these, because in that
case the truth assignment to the three conditions is always:
true, true, false when a new request is submitted. With two
clients we reach more combinations, but we still could not
have both titerrupt be true while len(request-q) is

nonzero. Three clients is the minimum number needed to
cover all eight cases. Adding more clients can therefore
increase the complexity of the verification, but not its scope.

The model shown here is, because of its simplicity,
interesting in its own regard, but it is more than just a model
checking toy. Villiers reports that the original model was
successfully used as a guideline for the implementation of
several device driver modules for a commercial operating
system [7].

5. CONCLUSION
The two applications discussed here require the search of
state spaces of, respectively, 12 and 211 reachable system
states to be exhaustively verified. But the need to produce a
simple verification model is not nearly as strict as what is
suggested by these numbers. A model checker like Spin, for
instance, can analyze models at a rate of 10,000 to 100,000
states per second, depending on the size of the state
descriptors, and the speed of the CPU. The power of a
model checker therefore should in most cases suffice to
tackle even the most challenging design problems. If no
tractable model can be found within these bounds, would it
be fair to conclude that the design itself is insufficiently
understood to be verified, let alone be implemented?

6.
HI

r.21

[31

[41

PI

161

171

RI

PI

REFERENCES
Holzmann, G.J. An analysis of bitstate hashing. Proc.
15th Znr. Co@ on Protocol Specijicurion, Testing, and
Verification, PSTV95. Warsaw, Poland. Chapman &
Hall, London (1995), 301-314. Journal version to
appear in: Fonnul Merhods in Systems Design, (1998).
Lakatos, I. Proofs and Refutations: rhe logic ofmurhe-
maricul discovery. Cambridge University Press, 1976.
Russell, B. The Principles of Mathematics. Cambridge
University Press. 1903 Vol. 1, par. 78 and Ch. X, 1903.
The source to the model checker Spin is available from
URL: htto://nethb.bell-labs.com/netlib/snti.
Strachey, C. An impossible program. Cornpurer Jour-
nal, 7,4 (January 1965), p. 313.
Turing, A.M. On computable numbers, with an applica-
tion to the Entscheidungsproblem. Proc. London Marh-
emuricul Soc., Ser. 2-42, (1936), 230-265, see p. 247.
Villiers, P.J.A. Validarion of a micro-kernel: a case
study. Ph.D. Thesis, University of Stellenbosch, S.
Africa, (Draft of December 1997).
Wilner, D. Vx-Files: What really happened on Mars.
(keynote address.) Proc. IEEE Real-Time Sysrems Sym-
posium, Dec. 2-5, 1997, San Francisco, CA.
Wolper, P. Specifying interesting properties of pro-
grams in propositional temporal logic. Proc. 13th ACM
Symposium on Principles of Programming Languages.
St. Petersburg Beach, Fl., January 1986. 148-193.

108

