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1. ABSTRACT 
It is well-known that in general the problem of 
deciding whether a program halts (or can dead- 
lock) is undecidable. Model checkers, therefore, 
cannot be applied to arbitrary programs, but 
work with well-defined abstractions of pro- 
grams. The feasibility of a verification often 
depends on the type of abstraction that is made. 
Abstraction is indeed the most powerful tool 
that the user of a model checking tool can 
apply, yet it is often perceived as a temporary 
inconvenience. 

1.1 Keywords 
Model checking, software verification, distributed systems 

‘ ‘Seek simplicity -- and distrust it, ’ ’ 
Alfred North Whitehead (1861-1947) 

2. INTRODUCTION 
In the days when C was still just letter in the alphabet, and 
C++ a typo, it was already well-established that it would be 
folly to search for a computer program that could decide 
mechanically if some arbitrary other computer program had 
a given property. Turing’s formal proof [6] for the 
unsolvability of the ‘halting problem’ was illustrated in 1965 
by Strachey with the following simple construction. Suppose 
we had a program me(P) that could decide in bounded time 
if some other program P would terminate; we could then 
define a program Q, that uses input P as follows: 

Q(P): 
begin 

if me(P) == terminates 
then 

Ii got0 L 
else 

terminate 
Ii 

end 
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Program Q(P) terminates if P does not terminate, and vice 
versa, and all is well until we decide to apply Q to itself and 
ask if Q(Q) terminates. 

Strachey’s construction is eerily similar to Russell’s famous 
class paradox [3], which makes it somewhat dubious to use 
as a basis for a logical argument. In fairness, this 
construction does not really prove the unsolvability of the 
halting problem, but it does prove that it is in general 
impossible to write a program that can establish arbitrary 
properties of itself. This, of course, does not mean that no 
programs could be written that can establish specific 
properties of themselves. A word-count program, for 
instance, can trivially determine its own length, and a C- 
compiler can confirm its own syntactic correctness, and even 
recompile itself. 

So, given this, could we in principle also write a computer 
program that can specifically establish its own logical 
correctness? It would, for instance, be quite attractive to 
have a model checker that could be applied to itself. The 
answer is, of course, negative. (Note, for instance, that such 
a program could report its own correctness erroneously...) 

So what makes us think that we can write a model checker 
that can establish the logical correctness of other programs? 
The answer is that a model checker does not work with 
arbitrary programs, but with well-defined abstractions of 
programs. For the model checker Spin [4] these abstractions 
are also executable, to provide support for rapid prototyping, 
but in general this need not be the case of course. Through 
the design of its specification language Promela (a Process 
Meta Language), Spin enforces two basic requirements on 
the abstractions it can accept as input. The models must: 

l have countable many reachable states, and they must be 
l closed to their environment (i.e., fully specified). 
The reason for the first requirement will be clear. The second 
requirement says that the behavior of the model may not 
depend on any hidden assumptions or components, i.e., input 
sources must be part of the model, at least in abstract form. 

Neither property is guaranteed to hold for an arbitrary 
program, but it is guaranteed to hold for any model that can 
be specified in Promela. A program that reads input from a 
file-descriptor or an &stream, for instance, is not closed to 
its environment. Similarly, a program that can obtain a priori 
unlimited amounts of memory has an uncountable number of 
potentially reachable states, and is unanalyzable with a 
model checker unless an abstraction is first made. 
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The need for abstraction, or modeling, is by practitioners 
often seen as a hurdle in the verification process, instead of 
as the model checker’s most powerful feature. 

Choosing the right level of abstraction can mean the 
difference between obtaining a tractable model with 
provable properties, and an intractable model that is only 
amenable to simulation and manual reasoning. Sometimes it 
also means that we have to make a choice between proving 
a (series of) simple properties of a complex model 
(corresponding to a low-level abstraction), and proving a 
complex property of a simpler model (corresponding to a 
higher-level abstraction of the application). 

The importance of abstraction also places demands on the 
design of the specification language for a model checking 
tool. If the input language is too detailed, it discourages the 
user from making abstractions, which can initially appear to 
simplify the task but in the end will obstruct the verification 
process. Most model checkers therefore are careful in 
choosing what features will be supported. In the model 
checker Spin, for instance, a number of desirable language 
features have intentionally been left out of the specification 
language, to facilitate the construction of tractable models. 
Among them are: 

l memory management 
l floating point data types 
l differential equations, etc., etc. 
Some systems are still more restrictive, and exclude also: 

l local and global variables, message parameters 
l dynamic process creation 
l asynchronous message passing 
Other systems are more permissive, and, at the price of 
increased complexity, include support for: 

l real-time (possibly drifting) clocks 
l probabilities on transitions 
l unrestricted function calls 
All other things being equal, we should expect the most 
permissive system to be the easiest to build models for, but 
also the least efficient to verify them. Like other model 
checkers, Spin attempts to find a balance between ease of 
use and model checking efficiency. 

The preferred way to build a model for any given 
verification problem at hand is to follow the following 
steps: 

l jirst decide which correctness properties are relevant, 
and require formal proof 

l next study the essence of the solution that is used in the 
application to secure the behavior of interest (i.e., that 
determines correctness with respect to the properties 
selected in the first step) 

l lust construct an executable abstraction for the applica- 
tion that has enough expressive power to capture the 
essence of the solution, and no more. 

It is possible, but not really likely, that one could obtain the 
proper abstraction by literally transcribing the text of an 
implementation, say in Java or in C++. It is not even likely 
that the (human) model checker can fully understand the 
essence of an application by studying its source code. (It is 
as likely as someone understanding the essence of a 
Quicksort algorithm from reading C-source code, instead of 
the paper introducing the rationale behind the algorithm.) 

The purpose of the construction of the model is to attempt to 
disprove the correctness of the chosen solution: to find 
logical flaws in the reasoning that produced the design, 
rather than finding mere coding errors in its implementation 
(there are other, perhaps even better, methods to do that). 
This means that the model establishes a refutable statement 
about a design. As Lakatos phrased it: “the pulpose of 
analysis is nor co compel belief bur rarher co suggest a!oubr” 
[2]. This means that elements of a model that cannot 
contribute to its refutability can and should be deleted in the 
interest of enhancing the models tractability (and the 
possible refutation of the remainder). 

In the last two decades formal verification tools have 
evolved from simple reachability analysis tools, run on 
machines with often less than 1 Mbyte of main memory, 
into powerful symbolic and on-the-fly logic model checking 
systems, that can be run on machines with over 1 Gbyte of 
memory. Computational complexity (or the familiar ‘state 
space explosion’ problem) was considered to be the 
dominant issue twenty years ago, when tools could handle 
no more than about 10,000 reachable states, and it is still 
perceived to be the dominant issue today, now that model 
checking tools can handle state-spaces that are many orders 
of magnitude larger. Another twenty years from now these 
limits will undoubtedly have improved by another few 
orders of magnitude (if only because of predictable 
increases in memory sizes and CPU speeds), but the 
challenge to build tractable models will remain. The 
problem in model checking is not computational complexity 
but our still limited skill in building abstractions. 

Users of verification tools often attempt to build models that 
remain relatively close to the implementation level of an 
application, making syntactic changes to accommodate the 
specification language of a model checker, and they often 
only seriously consider abstraction methods when a concept 
or feature is encountered that cannot be represented directly 
in the language of the model checker. At this point, the user 
is often frustrated, which is of course at that point in the 
effort makes for a poor motivator in the search for a good 
abstraction. 

Much of the detail included in verification models, 
especially by new users, is often functionally irrelevant to 
the verification chore at hand, yet can seriously impede the 
chances for its successful completion. 

3. AVOIDING REDUNDANCY 
Some small examples can illustrate that the success of the 
model checking process relies on the skill of the user to 
design powerful executable abstractions and to avoid 
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redundancy. The paradigms that are used here are often 
borrowed from simulation or regular programming practice, 
but they can be counter-productive when used in model 
checking. 

3.1 counters 
In debugging a regular program, or in the construction of a 
simulation model, it is often convenient to add counters, for 
instance, to keep track of the number of steps performed. 

int cm = 1; 
do 
:: can_proceed == true; 

. . . ;err+y a step */ 

printf(“step:‘%d\n”, cnt) 
od 

Figure 1. Counter Example 

The Counter example in Figure 1 illustrates this in a sample 
Promela program. It has two flaws. The first flaw is the 
use an unrestricted integer as the default data-type for a new 
variable. In model checking our concern is to build tractable 
models from strictly bounded components. A variable is just 
another component of the model, and it too should have a 
bounded range, preferably as small as possible. The variable 
is used here as if it were a natural number with infinite range 
Note that no check for overflow of the value assigned to 
cnt is made, on the implicit assumption that no overflow 
condition could practically occur. This assumption is valid 
for debugging or simulations, it is false in model checking. 

It is not necessarily a problem that the variable cnt can 
take up to 32 bits of storage in each reachable state that is 
generated during the model checking process. The real 
problem is that cnt can store 2”32 (more than 4 billion) 
distinct values, and therefore has the potential of 
multiplying the size of the reachable state space for the 
model by the same amount. The second flaw seals the fate 
of this model, whatever its further contents may be: the use 
of the integer to count steps without apparent bound. What 
otherwise may be a simple iteration that may be verified 
exhaustively within a few CPU instructions, is now 
unfolded 2”32 times, and becomes intractable. Phrased 
differently, removing the counter can reduce the complexity 
of a verification run by about nine orders of magnitude... 

3.2 Sinks, Sources, and Filters 
Another avoidable source of complexity is the addition to an 
abstract model of a process that acts solely as a source, a 
sink, or a filter, for a sequence of predetermined messages. 
The flaw is that such additions have no refutation power, 
and do not contribute in an essential way to the behavior 
that is being represented. Removing the associated actions 
from the abstraction can often be done while preserving all 
options for behavior, and options for the satisfaction or 
violation of correctness properties elsewhere in the model. 

The sink process in Figure 2, for instance, consumes and 
discards a stream of messages, without ever changing state. 
In this model, the sink is always ready to remove a 

message from the channel, and whichever process is 
sending to this channel can do so unimpeded. If the sink 
process is the only process reading from the channel q, and 
no other messages than those of the three listed types can be 
send to 9. the abstraction made here is not functionally 
changed if one deletes the sink process, together with all 
send actions on channel q. In fact, the refutation power of 
the model will be increased, by the reduced complexity. 

mty-pe = ( one, two, three 1; 

than q = 181 of I mtype I; 

proctypdoe sink0 I 

:: q?one /* discard */ 
:: q?two 

Three 
I 

Figure2 Sink 

Note carefully that even though process sink has only one 
control state, channel q is considerably more complicated, 
and can needlessly increase the complexity of the model 
checking problem. 

To see how much would be saved by removing process 
sink, consider the number of states that channel cl might be 
in. The channel can hold between zero and eight distinct 
messages, each of which is one of three possible types: 

8 

C’ 3’ = 9a41 

i=o 

This means that removing the process and the channel can 
decrease the complexity of the model checking problem by 
almost four orders of magnitude, without in any way 
affecting its outcome. The temptation to include the dummy 
process is often that the real application contains a process 
or a task that receives these messages and processes them in 
a way that need not be modeled. There is an understandable 
uneasiness in the user to completely discard the entire 
process in this case. 

pro&T: source0 { 

:: q!one /* generate messages*/ 
:: q!two 

:Pee 
I Figure 3. Source 

A very similar example can be constructed if we replace the 
sink process with a source process, as shown in Figure 3. 
As before, if the source process is the only process 
sending messages into channel q, and the three message 
types listed are the only types expected, the process can 
again be removed without affecting the functionality 
expressed by the model. All receive statements on this 
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channel are then replaced with a skip, or null, statement, 
and the complexity of the model checking problem may 
again be reduced by four orders of magnitude. 

An alternative to lessen the effect of the redundant process 
on the complexity of the verification would in both these 
cases be to reduce the channel capacity to one, or to replace 
the channel q with a rendezvous port. 

The third variant of the dummy process paradigm is the use 
of a filter process that merely transfers every message 
received on its input channel to an output channel, as 
illustrated in Figure 4. 

rtycec&;kmiver(chan in out ) 

do 
,$l?msg -> out!msg 

1 Figure 4. Filter 

In this case, the problem is slightly more subtle, because 
there may be relevant behavior that is contributed by the 
presence of the filter process. Note that after receiving a 
message on the input channel, only the output action can 
take place. If it can be shown that this output action can 
never be delayed, or that its delay cannot alter the behavior 
of other processes in the model, the process can again be 
removed from the model. 

4. SIMPLE REFUTATION MODELS 
Is it realistic to expect that we can build models that are of 
practical significance and that remain computationally 
tractable? We consider two examples of remarkably simple 
models that have this property. The first model, discussed in 
Section 4.1 counts just 12 reachable states, and thereby 
qualifies as perhaps the simplest model of a realistic 
problem yet published. The second model is not ‘much 
larger, with 51 reachable states, yet it too has demonstrable 
practical value. 

A naive model for either of these examples could easily 
defeat the capabilities of the most powerful model checking 
system. By finding the right abstraction, though, we can 
demonstrate that the first model contains a design flaw, and 
we can prove the other to be a reliable template for the 
implementation of device drivers in an operating systems 
kernel. The two abstractions discussed here require less 
model checking power than what is available on the 
smallest of PCs. To be sure, it is often harder to find a 
simple model than it is to build a complex one, but the effort 
to find the simplest possible expression of a design idea can 
provide considerably greater benefits. 

4.1 The Pathfinder Problem 
NASA’s Pathfinder landed on the surface of Mars on July 
4th 1997, releasing a small rover to roam the surface. The 
mechanical and physical problems that had to be solved to 
make this mission possible are of course phenomenal. 
Designing the software to control the craft may in this 
context seem to have been one of the simpler tasks, but 

designing any system that involves concurrency is 
challenging and requires the best of tools. Specifically, in 
this case it was no easier to design the software than the rest 
of the space craft. It was indeed only the control software 
that noticeably failed during the Pathfinder mission. A 
design fault caused the craft to lose contact with earth at 
unpredictable moments, causing valuable time to be lost in 
the transfer of data. The nature of the bug was traced down, 
and fixed within a few days. It was tracked down through 
exhaustive system testing with a duplicate of the craft at 
JPL, in attempts to reproduce the unknown non- 
deterministic sequence of events that caused the real craft to 
fail [8]. 

mtype = ( free, busy, idle, waiting, runoing I; 

show mt.ype h state = idle; 
show mt.vpe 1 state = idle; 
show mtype mutex = free; 

active proctype highJriority() 
I 
end do 

:: h-state = waiting; 
atomic ( mutex == free -> 

mutex = busy 1; 
h-state = running; 

/* produce data */ 

atomic ( h-state = idle; 
mutex = free 1 

od 

active proct.ype low priority0 
provided (h-state == idle) 

1 
end: do 

:: l-state = waiting; 
atomic { mutex == free -> 

mutex = busy); 
l-state = rmnning; 

/* consume data */ 

atomic { 1 state = idle; 
mutex = free ) 

od 
1 

Figure 5. Pathfinder Model 

The flaw was a conflict between a mutual exclusion rule and 
a priority rule used in the real-time task scheduling 
algorithm. The essence of the problem can be modeled in an 
executable abstraction in Promela in a few lines of code, 
as shown in Figure 5. Two priority levels are modeled here 
as active proctypes. Both processes need access to a 
critical region for transferring data from one process to the 
other, which is protected by a mutual exclusion lock. If by 
chance the high priority process starts running while the low 
priority process temporarily holds the lock, neither process 
can proceed: the high priority process is locked out by the 
mutex rule, and the low priority process is locked out by the 
priority rule, which is modeled by a Promela provided 
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clause. 

The model shown here captures the essence of this problem 
in as few lines as possible. The resulting state space counts 
no more than twelve (12) reachable system states. which 
should be compared to the many billions of possible states 
of the real memory-module in the Pathfinder controller that 
were searched in exhaustive tests of the non-abstracted 
system. A complete reachability graph for this system is 
readily built, even by a human model checker without 
computerized assistance. It is a minor challenge to identify 
the two possible deadlock trajectories in that graph. 

It should be added here that if an abstraction of the mutual 
exclusion and priority scheduling rules had been 
constructed before the launch of the Pathfinder mission, 
before the design flaw had manifested itself, the model 
would likely have contained more detail. In the real system, 
for instance, a third intermediate priority level was 
responsible for keeping the low priority process from 
releasing the lock, which prevented the high priority process 
from completing its task. Similarly, there were also other 
tasks in the system that manipulated the mutual exclusion 
locks. The additional priority levels and tasks would 
naturally be made part of the verification models, to either 
locate or rule out all suspicious behaviors. 

There is little doubt, though, that the flaw in the Pathfinder 
software could have been detected prior to launch, with a 
relatively modest model checking effort. 

4.2 A Disk Scheduling Problem 
The next example illustrates how an abstract model can be 
constructed, again in just a few lines of high level code, to 
prove that a particular implementation method has the 
properties that it is intended to have. The problem is a 
typical operating system’s design problem: scheduling 
access of multiple ‘client’ processes to a single disk IO 
server. Only one client request can be served at a time; if 
multiple requests arrive, they have to be queued and served 
in first-in first-out order. 

In the original model for this problem, designed by Pieter 
Villiers as part of a study on verifiable micro-kernel designs 
[7]. Separate process types were defined for modeling 

l the client processes, 
l the disk scheduler, 
l the disk controller, and 
l the disk device driver. 
To initiate a disk IO operation, the client process submits a 
request to the disk scheduler, where it may get queued. 
When it is ready to be serviced, the scheduler will send a 
start command to the disk controller, which will initiate the 
IO operation with the device driver. Completion of the 
operation is signalled by a hardware intermpt, which is 
intercepted by the scheduler. The internal details of the 
device driver (e.g., mapping disk blocks to cylinders, 
sending commands to move the disk heads, etc.) are quite 
irrelevant to the problem of verifying that the queueing of 

client requests in the disk scheduler is designed correctly. In 
the first model, therefore, the abstraction for the device 
driver looked like shown in Figure 6. 

proctyo; Contr (chsn req, signal) 

:: req?IO -> 
/* perform IO operation */ 
signal!interrupt 

od 
l Figure 6. Device Driver Interface Model 

This has the signature, within the model, of ajiZter process, 
just like the behavior of the client process (submit a request 
and wait for the result.) Similarly, the disk controller and the 
client processes behaved like filters in this context, all of 
which merely states that the focus of the correctness issue 
considered here is on the scheduler. The temptation is to 
include the extra processes in the abstract model anyway, 
simply because the application contains them. For the 
verification itself, however, their presence serves no real 
purpose, and an effort should be made to remove them by 
applying abstraction rules. Doing so leads to the remarkably 
simple, yet complete, model shown in Figure 7. 

#define Client(x)cli bmxl == false -> \ 
client busy[x] = true; \ 
currentproc = x+l; \ 
got0 progress 

#defineDiskIdle activeproc == 0 
#define DiskBusy !(DiskIdle) 

#define NCLlENTS 3 

active proctyne disk scheduler0 
i than request 

MXIEXTSl of I bvte 1: 
9 I 

boo1 Interrupt =-false; - ” 
boo1 client busyINCLIENT.Sl = false; 
byte activeproc, currentproc; 

do 
:: Client(O); 
:: Client(l); 
:: Client(2); 

progress: if 
:: DiskIdle -> 

do-diskio: activeproc = currentproc; 
e.ssert(Interrmpt == false); 
Interrupt = true 

:: DiskBusy -> 
request-q!currentproc 

fi 
:: Interrupt -> 

Interrupt = false; 
client-busy[activeprocl] = true; 12 
Trequest q?currentproc; 

goto do diskio 
:: len(request q) == 0 -> 

activeproc = 0 
fi 

od 
I Figure 7. Disk Scheduler Model 

With the client process modeled as a filter, the client is 
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unable to submit a new request until the last one was 
completed first. In the simplified model this busy status is 
recorded in a boolean array client-busy[NCJJENTS] 
instead. Two correctness properties are integrated into the 
model: a local assertion states that no new interrupt can be 
generated before the last one was handled. It’s validity 
follows from the fact that no new disk IO operation can ever 
be initiated before the last one was completed. 

The second correctness property is expressed in a ‘progress 
label’ which appears at the point in the code where a new 
client request is submitted. Spin can prove that ‘non- 
progress’ cycles are impossible for this design This means 
that there cannot be any infinite execution without infinite 
progress for at least some client. Note that there are only 
finitely many clients, and clients cannot resubmit a request 
for service before their previous request was completed. 

What is the complexity of this model? With two clients, the 
state space contains no more than 51 distinct system states. 
With three clients, as shown, this number increases to 211 
system states, neither of which is much of a challenge for 
any existing model checking tool. 

But, are three clients sufficient to prove the required 
properties for any number of clients? Note that increasing 
the number of clients increases the number of system states 
to be inspected due, primarily, to the increased number of 
permutations of distinct client requests in the request queue. 
All clients behave the same, and it should therefore suffice 
to prove each client-specific property for one arbitrarily 
chosen client. 

The context is comparable to the one encountered in 
Wolper’s proof for the &a& independence theorem [9]. In 
Wolper’s case one would like to prove that two arbitrary 
data items cannot arrive out of order in a data stream. Three 
distinct types of data, marked, for instance, a, b, and c, 
suffice to prove this property for any number of data items. 
Specifically, if it can be proven that the data items b and c 
cannot arrive out of order when embedded in the infinite 
stream u* b (I* c a*, then it follows that no two data items, 
whatever their markings, can ever arrive out of order. 

In this case we must show that a client-specific property 
holds no matter at what point in the disk scheduler’s 
operation the client’s request may arrive. There are three 
boolean conditions that together completely determine the 
state, and the actions, of the disk scheduler when a new 
request arrives. They are: 

l len(request-q) ==0 
l DiskIdle 
l hterrupt 
This gives us maximally eight states to consider. One client 
process clearly cannot cover all of these, because in that 
case the truth assignment to the three conditions is always: 
true, true, false when a new request is submitted. With two 
clients we reach more combinations, but we still could not 
have both titerrupt be true while len(request-q) is 

nonzero. Three clients is the minimum number needed to 
cover all eight cases. Adding more clients can therefore 
increase the complexity of the verification, but not its scope. 

The model shown here is, because of its simplicity, 
interesting in its own regard, but it is more than just a model 
checking toy. Villiers reports that the original model was 
successfully used as a guideline for the implementation of 
several device driver modules for a commercial operating 
system [7]. 

5. CONCLUSION 
The two applications discussed here require the search of 
state spaces of, respectively, 12 and 211 reachable system 
states to be exhaustively verified. But the need to produce a 
simple verification model is not nearly as strict as what is 
suggested by these numbers. A model checker like Spin, for 
instance, can analyze models at a rate of 10,000 to 100,000 
states per second, depending on the size of the state 
descriptors, and the speed of the CPU. The power of a 
model checker therefore should in most cases suffice to 
tackle even the most challenging design problems. If no 
tractable model can be found within these bounds, would it 
be fair to conclude that the design itself is insufficiently 
understood to be verified, let alone be implemented? 
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