
Minimum Latency Submodular Cover∗

Sungjin Im † Viswanath Nagarajan ‡ Ruben van der Zwaan §

October 24, 2018

Abstract

We study the Minimum Latency Submodular Cover problem (MLSC), which consists of a metric (V, d)
with source r ∈ V and m monotone submodular functions f1, f2, ..., fm : 2V → [0, 1]. The goal is to find
a path originating at r that minimizes the total cover time of all functions. This generalizes well-studied
problems, such as Submodular Ranking [1] and Group Steiner Tree [16]. We give a polynomial time
O(log 1

ε
· log2+δ |V |)-approximation algorithm for MLSC, where ε > 0 is the smallest non-zero marginal

increase of any {fi}mi=1 and δ > 0 is any constant.
We also consider the Latency Covering Steiner Tree problem (LCST), which is the special case of

MLSC where the fis are multi-coverage functions. This is a common generalization of the Latency Group
Steiner Tree [20, 8] and Generalized Min-sum Set Cover [2, 3] problems. We obtain an O(log2 |V |)-
approximation algorithm for LCST.

Finally we study a natural stochastic extension of the Submodular Ranking problem, and obtain
an adaptive algorithm with an O(log 1/ε) approximation ratio, which is best possible. This result also
generalizes some previously studied stochastic optimization problems, such as Stochastic Set Cover [17]
and Shared Filter Evaluation [27, 26].

1 Introduction

Ordering a set of elements so as to be simultaneously good for several valuations is an important issue in
web-search ranking and broadcast scheduling. A formal model for this was introduced by Azar, Gamzu
and Yin [2] where they studied the Multiple Intents Re-ranking problem (a.k.a. Generalized Min Sum Set
Cover [3]). In this problem, a set of elements is to be displayed to m different users, each of whom wants to
see some threshold number of elements from its subset of interest. The objective is to compute an ordering
that minimizes the average (or total) overhead of the users, where the overhead corresponds to the position
in the ordering when the user is satisfied.

Subsequently, Azar and Gamzu [1] studied a generalization, the Submodular Ranking problem, where
the interests of users are represented by arbitrary (monotone) submodular functions. Again, the objective is
to order the elements so as to minimize the total overhead, where now the overhead of a user is the position
when its utility function is “covered”. An interesting feature of this problem is that it generalizes both the
minimum set cover [23] and min-sum set cover [4, 15] problems.

In this paper, we extend both of these models to the setting of metric switching costs between elements.
This allows us to handle additional issues such as:
• Data locality: it takes d(i, j) time to read or transmit data j after data i.
• Context switching: it takes d(i, j) time for a user to parse data j when scheduled after data i.

∗A preliminary version appeared in the proceedings of ICALP 2012.
†Department of Computer Science, Duke University, USA. sungjin@cs.duke.edu. This work was partially supported by

NSF grant CCF-1016684.
‡IBM T. J. Watson Research Center, USA. viswanath@us.ibm.com
§Maastricht University, The Netherlands r.vanderzwaan@maastrichtuniversity.nl

1

ar
X

iv
:1

11
0.

22
07

v3
 [

cs
.D

S]
 1

 M
ar

 2
01

3

From a theoretical point of view, these problems generalize a number of previously studied problems and
our results unify/extend techniques used in different settings.

We introduce and study the Minimum Latency Submodular Cover problem (MLSC), which is the metric
version of Submodular Ranking [1], and its interesting special case, the Latency Covering Steiner Tree
problem (LCST), which extends Generalized Min-Sum Set Cover [2, 3]. The formal definitions follow shortly,
in the next subsection. We obtain poly-logarithmic approximation guarantees for both problems. We remark
that due to a relation to the well-known Group Steiner Tree [16] problem, any significant improvement on
our results would lead to a similar improvement for Group Steiner Tree. The MLSC problem is a common
generalization of several previously studied problems [16, 25, 15, 20, 8, 2, 1]; see also Figure 1.

In a somewhat different direction, we also study the Weighted Stochastic Submodular Ranking problem,
where elements are stochastic and the goal is to adaptively schedule elements so as to minimize the expected
total cover time. We obtain an O(log 1

ε)-approximation algorithm for this problem, which is known to be best
possible even in the deterministic setting [1]. This result also generalizes many previously studied stochastic
optimization problems [17, 27, 26].

1.1 Problem Definitions

We now give formal definitions of the problems considered in this paper. The problems followed by ∗ are
those for which we obtain the first non-trivial results. Several other problems are also discussed since those
are important special cases of our main problems. The relationships between these problems are shown
pictorially in Figure 1.

A function f : 2V → R+ is submodular if, for any A,B ⊆ V , f(A) + f(B) ≥ f(A∪B) + f(A∩B); and it
is monotone if for any A ⊆ B, f(A) ≤ f(B). We assume some familiarity with submodular functions [29].

SR GST

MLSC

SC

MLSC: minimum latency submodular cover

LCST : latency covering Steiner tree

GST : group Steiner tree

SR : submodular ranking

LGST : latency group Steiner tree

GMSSC : generalized min-sum set cover

SC : set cover

MSSC : min sum set cover

(multiple intents re-ranking)

MSSC

LCST

GMSSC LGST

CST
CST : covering Steiner tree

Figure 1: An arrow from X to Y means X is a special case of Y .

Minimum Latency Submodular Cover∗ (MLSC): There is a ground set V of elements/vertices and
d :
(
V
2

)
→ R+ is a distance function. We assume that d is symmetric and satisfies the triangle inequality.

In addition there is a specified root vertex r ∈ V . There are m monotone submodular functions f1, . . . , fm :
2V → R+ representing the valuations of different users. We assume, without loss of generality by truncation,
that fi(V) = 1 for all i ∈ [m].1 Function fi is said to be covered (or satisfied) by set S ⊆ V if fi(S) = 1 =
fi(V). The cover time of function fi in a path π is the length of the shortest prefix of π that has fi value

1Throughout the paper, for any integer ` ≥ 1, we denote [`] := {1, 2, . . . , `}.

2

one, i.e.

min

{
t : fi ({v ∈ V : v appears within distance t on π}) = 1

}
.

The objective in the Minimum Latency Submodular Cover problem is to compute a path originating at
r that minimizes the sum of cover times of all functions. A technical parameter that we use to measure
performance (which also appears in [1, 31]) is ε which is defined to be the smallest non-zero marginal increase
of any function {fi}mi=1.

Generalized Min-Sum Set Cover (GMSSC): Given a ground set V and m subsets {gi ⊆ V }mi=1 with
respective requirements {ki}mi=1, the goal is to find a linear ordering of V that minimizes the sum of cover
times. A subset gi is said to be covered when at least ki elements from gi have appeared. Min-Sum Set
Cover (MSSC) is the special case when maxi ki = 1.

Submodular Ranking (SR): Given a ground set V and m monotone submodular functions f1, . . . , fm :
2V → R+, the goal is compute a linear ordering of V that minimizes the sum of cover times of all functions.
The cover time of a function is the minimum number of elements in a prefix that has function value at least
one. This is a special case of MLSC when metric d is uniform. The set cover problem is a special case of SR
when there is a single submodular function (which is also a coverage function). GMSSC is another special
case of SR, where each subset gi corresponds to the submodular function fi(S) = min{|gi ∩ S|/ki, 1}.

Group Steiner Tree (GST): Given a metric (V, d) with root r ∈ V and N groups of vertices {gi ⊆ V }Ni=1,
the goal is to find a minimum length tree containing r and at least one vertex from each of the N groups.
Observe that an r-rooted tree can be converted into a path starting from r with at most a factor two loss in
the total length, and vice versa. Thus GST is a special case of MLSC when there is only a single submodular
function

f1(S) =
1

N

N∑
i=1

min{|gi ∩ S|, 1}.

Note that f1(S′) = 1 if and only if S′
⋂
gi is nonempty for all i ∈ [N].

Covering Steiner Tree (CST): This is a generalization of GST with the same input as above, where each
group gi is also associated with a requirement ki. The goal here is to find a minimum length tree that
contains r and at least ki vertices from group gi, for all i ∈ [N]. We recover CST as a special case of MLSC
by setting

f1(S) =
1

N

N∑
i=1

min

{
|gi ∩ S|
ki

, 1

}
.

Note that now f1(S′) = 1 if and only if |S′
⋂
gi| ≥ ki for all i ∈ [N].

Latency Group Steiner Tree (LGST): This is a variant of the group Steiner tree problem. Given a
metric (V, d) with root r and N groups of vertices {gi ⊆ V }Ni=1, the goal is to find a path π originating from
r that minimizes the sum of cover times of the groups. (A group gi is covered at the shortest prefix of π
that contains at least one vertex from gi.) Note that MSSC is the special case when the metric is uniform.

Latency Covering Steiner Tree∗ (LCST): The input to this problem is the same as for LGST with
additional requirements {ki}Ni=1 corresponding to each group. The objective is again a path π originating
from r that minimizes the sum of cover times, where group gi is covered at the shortest prefix of π that
contains at least ki vertices from gi. Clearly, LGST is the special case of LCST where all requirements ki = 1.
GMSSC is also a special case when the metric is uniform. We obtain LCST as a special case of MLSC with
m = N functions and fi(S) = min{|gi ∩ S|/ki, 1} for all i ∈ [N].

Weighted Stochastic Submodular Ranking∗ (WSSR): This is a stochastic generalization of the sub-
modular ranking problem. We are given a set V of stochastic elements (random variables), each having
an independent distribution over a certain domain ∆. The submodular functions are also defined on the
ground set ∆, i.e. f1, ..., fm : 2∆ → [0, 1]. In addition, each element i ∈ V has a deterministic time `i to be

3

scheduled. The realization (from ∆) of any element is known immediately after scheduling it. The goal is to
find an adaptive ordering of V that minimizes the total expected cover time. Since elements are stochastic,
it is possible that a function is never covered: in such cases we just fix the cover time to be

∑
i∈V `i (which

is the total duration of any schedule).
We will be concerned with adaptive algorithms. Such an algorithm is allowed to decide the next element

to schedule based on the instantiations of the previously scheduled elements. This models the setting where
the algorithm can benefit from user feedback.

WSSR generalizes the Stochastic Set Cover studied in [17]. Interestingly, it also captures some variants
of Stochastic Set Cover that have applications in processing multiple queries with probabilistic information
[27, 26]. Various applications of WSSR are discussed in more detail in Section 5.

1.2 Our Results and Techniques

Our first result is on the Minimum Latency Submodular Cover problem (MLSC) problem.

Theorem 1.1. For any constant δ > 0, there is an O(log 1
ε · log2+δ |V |)-approximation algorithm for the

Minimum Latency Submodular Cover problem.

Note that in the special case of Group Steiner Tree, this result is larger only by a factor of O(logδ |V |)
than its best known approximation ratio of O(logN log2 |V |), due to Garg, Konjevod and Ravi [16]. Our
algorithm uses the framework of [1] and the Submodular Orienteering problem (SOP) [12] as a sub-routine.
The input to SOP consists of metric (V, d), root r, monotone submodular function f : 2V → R+ and length
bound B. The goal is to find a path originating at r having length at most B that maximizes f(S), where
S ⊆ V is the set of vertices visited in the path. Specifically, we show that a (ρ, σ)-bicriteria approximation
algorithm2 for SOP can be used to obtain an O(ρ σ · log 1

ε)-approximation algorithm for MLSC. To obtain

Theorem 1.1 we use an (O(1), O(log2+δ |V |))-bicriteria approximation for SOP that follows from [6, 11].
Our algorithm for MLSC is an extension of the elegant “adaptive residual updates scheme” of Azar and

Gamzu [1] for Submodular Ranking (i.e. uniform metric MLSC). As shown in [1], an interesting aspect of
this problem is that the natural greedy algorithm, based on absolute contribution of elements, performs very
poorly. Instead they used a modified greedy algorithm that selects one element at a time according to residual
coverage. In the MLSC setting of general metrics, our algorithm uses a similar residual coverage function to
repeatedly augment the solution. However our augmentations are paths of geometrically increasing lengths,
instead of just one element. A crucial point in our algorithm is that the residual coverage functions are
always submodular, and hence we can use Submodular Orienteering (SOP) in the augmentation step.

We remark that the approach of covering the maximum number of functions within geometrically in-
creasing lengths fails because the residual coverage function here is non-submodular; in fact as noted in [3]
this subproblem contains the difficult dense-k-subgraph problem (even for the special case of Generalized
Min-Sum Set Cover with requirement two). We also note that the choice of our (submodular) residual
coverage function ultimately draws on the submodular ranking algorithm [1].

The analysis in [1] was based on viewing the optimal and approximate solutions as histograms. This
approach was first used in this line of work by Feige, Lov’asz and Tetali [15] for the Min-Sum Set Cover
problem (see also [4]). This was also the main framework of analysis in [2] for Generalized Min-Sum Set
Cover and then for Submodular Ranking [1]. However, these proofs have been increasingly difficult as the
problem in consideration adds more generality. Instead we follow a different and more direct approach that
is similar to the analysis of Minimum Latency Travelling Salesman problem, see eg. [10, 13]. In fact, the
proof of Theorem 1.1 is enabled by a new simpler analysis of the Submodular Ranking algorithm [1].

Our second result is a better approximation ratio for the Latency Covering Steiner tree (LCST) problem.
Note that Theorem 1.1 implies directly an O(log kmax · log2+δ |V |)-approximation algorithm for LCST, where
kmax = maxNi=1 ki.

Theorem 1.2. There is an O(log2 |V |)-approximation algorithm for Latency Covering Steiner Tree.

2Given any instance of SOP, such an algorithm returns a path of length at most σ ·B and function value at least OPT/ρ.

4

The main idea in this result is a new LP relaxation for Covering Steiner Tree (using Knapsack Cover type
inequalities [7]) having a poly-logarithmic integrality gap. This new LP might also be of some independent
interest. The previous algorithms [25, 21] for covering Steiner tree were based on iteratively solving an LP
with large integrality gap. However, this approach does not seem suitable to the latency version we consider.
Our new LP relaxation for Covering Steiner Tree (CST) is crucial for obtaining the approximation stated in
Theorem 1.2. As shown in [28], any improvement over Theorem 1.2 even in the kmax = 1 special case (i.e.
Latency Group Steiner Tree) would yield an improved approximation ratio for Group Steiner Tree, which is
a long-standing open question.

Our final result is for the Weighted Stochastic Submodular Ranking problem. As shown in [17, 18], even
special cases of this problem have polynomially large adaptivity gap (ratio between the optimal non-adaptive
and adaptive solutions)3. This motivates adaptive algorithms, and we obtain the following result in Section 5.

Theorem 1.3. There is an adaptive O(log 1
ε)-approximation algorithm for the Weighted Stochastic Submod-

ular Ranking problem.

In particular, we show that the natural stochastic extension of the algorithm from [1] achieves this
approximation factor. We remark that the analysis in [1] of deterministic submodular ranking required unit
costs, whereas Theorem 1.3 holds for the stochastic setting even with non-uniform costs {`i}.

As mentioned before, our results generalize the results in [17, 27, 26] which study (some variants of)
Stochastic Set Cover. Our analysis is arguably simpler and more transparent than [26], which gave the first
tight analysis of these problems. We note that [26] used an intricate charging scheme with “dual prices” and
it does not seem directly applicable to general submodular functions.

We note that our techniques do not extend directly to the stochastic MLSC problem (on general metrics),
and obtaining a poly-logarithmic approximation here seems to require additional ideas.

1.3 Previous Work

The first poly-logarithmic approximation for Group Steiner Tree was O(logN log2 |V |), obtained by Garg et
al. [16]. This is still the best known bound. Chekuri, Even and Kortsarz [11] gave a combinatorial algorithm
that achieved a slightly weaker approximation ratio (the algorithm in [16] was LP-based). This combinatorial
approach was extended in Calinescu and Zelikovsky [6] to the problem of covering any submodular function in
a metric space. We use this algorithm in the submodular orienteering (SOP) subroutine for our MLSC result.
For SOP an O(log |V |)-approximation is known due to Chekuri and Pal [12], but with a quasi-polynomial
running time. We note that an Ω(log2−δ |V |) hardness of approximation is known for Group Steiner Tree
(even on tree metrics) due to Halperin and Krauthgamer [22].

The Covering Steiner Tree problem was introduced by Konjevod, Ravi and Srinivasan [25], which can be
viewed as the multicover version of Group Steiner Tree. They gave an O(log(Nkmax) log2 |V |)-approximation
using an LP-relaxation. However the LP used in [25] has a large Ω(kmax) integrality gap; they got around
this issue by iteratively solving a suitable sequence of LPs. They also extended the randomized rounding
analysis from [16] to this context. Later, Gupta and Srinivasan [21] improved the approximation bound to
O(logN log2 |V |), removing the dependence on the covering requirements. This algorithm was also based
on solving a similar sequence of LPs; the improvement was due to a combination of threshold rounding
and randomized rounding. In this paper, we give a stronger LP relaxation for Covering Steiner Tree based
on so-called Knapsack-Covering-inequalities (abbreviated to KC-inequalities), that has an O(logN log2 |V |)
integrality gap.

The Stochastic Set Cover problem (which is a special case of Weighted Stochastic Submodular Ranking)
was introduced by Goemans and Vondrák [17]. Here each set covers a random subset of items, and the goal
is to minimize the expected cost of a set cover. [17] showed a large adaptivity gap for Stochastic Set Cover,
and gave a logarithmic approximation for a relaxed version where each stochastic set can be added multiple

3A non-adaptive solution is just a fixed linear ordering of the elements, whereas an adaptive solution can select the next
element based on previous instantiations.

5

times. A related problem in context of fast query evaluation was studied in [27], where the authors gave a
triple logarithmic approximation. This bound was improved to the best-possible logarithmic ratio by Liu,
Parthasarathy, Ranganathan and Yang [26]; this result was also applicable to stochastic set cover (where
each set can be added at most once). Another related paper is by Golovin and Krause [18], where they
defined a general property “adaptive submodularity” and showed nearly optimal approximation guarantees
for several objectives (max coverage, min-cost cover and min sum cover). The most relevant result in [18] to
WSSR is the 4-approximation for Stochastic Min Sum Set Cover. This approach required a fixed submodular

function f such that the objective is to minimize E
[∑

t≥0 f(V)− f(πt)
]

where πt is the realization of

elements scheduled within time t and V denotes the realization of all elements. However, this is not the case
even for the special case of Generalized Min-Sum Set Cover with requirements two. Recently, Guillory and
Bilmes [19] studied the Submodular Ranking problem in an online regret setting, which is different from the
adaptive model we consider.

1.4 Organization

In Section 2 we revisit the Submodular Ranking problem and give an easier and perhaps more intuitive
analysis of the algorithm from [1]. This simpler analysis is then used in the algorithms for Minimum
Latency Submodular Cover (Theorem 1.1) and Weighted Stochastic Submodular Ranking (Theorem 1.3),
that appear in Sections 3 and 5 respectively. Section 4 contains the improved approximation algorithm for
Latency Covering Steiner Tree (Theorem 1.2) which makes use of a new linear programming relaxation for
Covering Steiner Tree. The section on LCST can be read independently of the other three sections.

2 Simpler Analysis of the Submodular Ranking Algorithm

In this section, we revisit the Submodular Ranking problem [1]. Recall that the input consists of a ground set
V := [n] of elements and monotone submodular functions f1, f2, ...fm : 2[n] → [0, 1] with fi(V) = 1, ∀i ∈ [m].
The goal is to find a complete linear ordering of the elements that minimizes the total cover time of all
functions. The cover time cov(fi) of fi is defined as the smallest index t such that the function fi has value
1 for the first t elements in the ordering. We also say that an element e is scheduled at time t if it is the
t-th element in the ordering. It is assumed that each function fi satisfies the following property: for any
S ⊇ S′, if fi(S)− fi(S′) > 0 then it must be the case that fi(S)− fi(S′) ≥ ε, where ε > 0 is a constant that
is uniform for all functions fi. This is a useful parameter in describing the performance guarantee.

Azar and Gamzu [1] gave a modified greedy-style algorithm with an approximation factor of O(log 1
ε) for

Submodular Ranking. Their analysis was histogram-based and fairly involved. In this section, we give an
alternate shorter proof of their result. Our analysis also extends to the more general MLSC problem which
we study in the next section. The algorithm ALG-AG from [1] is given below. In the output, π(t) denotes
the element that appears in the t-th time slot.

Algorithm 1 ALG-AG

INPUT: Ground set [n]; monotone submodular functions fi : 2[n] → [0, 1], i ∈ [m]

1: S ← ∅
2: for t = 1 to n do
3: Let fS(e) :=

∑
i∈[m],fi(S)<1

fi(S∪{e})−fi(S)
1−fi(S)

4: e = arg maxe∈[n]\S fS(e)
5: S ← S

⋃
{e}

6: π(t)← e
7: end for

OUTPUT: A linear ordering 〈π(1), π(2), . . . , π(n)〉 of [n].

6

Theorem 2.1 ([1]). ALG-AG is an O(ln(1
ε))-approximation algorithm for Submodular Ranking.

Let α := 1 + ln(1
ε). To simplify notation, without loss of generality, we assume that α is an integer.

Let R(t) denote the set of functions that are not satisfied by ALG-AG earlier than time t; R(t) includes the
functions that are satisfied exactly at time t. For notational convenience, we use i ∈ R(t) interchangeably
with fi ∈ R(t). Analogously, R∗(t) is the set of functions that are not satisfied in the optimal solution before
time t. Note that algorithm’s objective ALG =

∑
t≥1 |R(t)| and the optimal value OPT =

∑
t≥1 |R∗(t)|.

We will be interested in the number of unsatisfied functions at times {8α2j : j ∈ Z+} by ALG-AG and the
number of unsatisfied functions at times {2j : j ∈ Z+} by the optimal solution. Let Rj := R(8α2j) and
R∗j = R∗(2j) for all integer j ≥ 0. It is important to note that Rj and R∗j are concerned with different times.
For notational simplicity, we let R−1 := ∅.

We show the following key lemma. Roughly speaking, it says that the number of unsatisfied functions
by ALG-AG diminishes quickly unless it is comparable to the number of unsatisfied functions in OPT.

Lemma 2.2. For any j ≥ 0, we have |Rj | ≤ 1
4 |Rj−1|+ |R∗j |.

Proof. When j = 0 the lemma holds trivially. Now consider any integer j ≥ 1 and time step t ∈
[8α2j−1, 8α2j). Let St−1 denote the set of elements that ALG-AG schedules before time t and let et de-
note the element that ALG-AG schedules exactly at time t. Let Ej denote the set of elements that ALG-AG
schedules until time 8α2j . Let E∗j denote the set of elements that OPT schedules until time 2j . Recall that
ALG-AG picks et as an element e that maximizes

fSt−1(e) :=
∑

i∈[m]:fi(St−1)<1

fi(St−1 ∪ {e})− fi(St−1)

1− fi(St−1)

This leads us to the following proposition.

Proposition 2.3. For any j ≥ 1, time step t ∈ [8α2j−1, 8α2j) and e ∈ E∗j , we have fSt−1(et) ≥ fSt−1(e).

Proof. Since ALG-AG has chosen to schedule element et over all elements e ∈ E∗j \ St−1, we know that the
claimed inequality holds for any e ∈ E∗j \St−1. Further, the inequality holds for any element e in St−1, since

fSt−1(e) = 0 for such an element e.

By taking an average over all elements in E∗j , we derive

fSt−1(et) ≥
1

|E∗j |
∑
e∈E∗j

fSt−1(e)

≥ 1

|E∗j |
∑
e∈E∗j

∑
i∈Rj\R∗j

fi(St−1 ∪ {e})− fi(St−1)

1− fi(St−1)
(1)

Observe that in (1), the inner summation only involves functions fi for which fi(St−1) < 1. This is
because for any i ∈ Rj , function fi is not covered before time 8α2j and t < 8α2j . Due to submodularity of
each function fi, we have that

(1) ≥ 1

|E∗j |
∑

i∈Rj\R∗j

fi(St−1 ∪ E∗j)− fi(St−1)

1− fi(St−1)
=

1

|E∗j |
∑

i∈Rj\R∗j

1 ≥
|Rj | − |R∗j |
|E∗j |

The equality is due to the fact that for any i /∈ R∗j , fi(E∗j) = 1 and each function fi is monotone. Hence:∑
8α·2j−1≤t<8α·2j

fSt−1(et) ≥ 8α(2j − 2j−1)

|E∗j |
(|Rj | − |R∗j |) = 4α(|Rj | − |R∗j |), (2)

where we used |E∗j | = 2j . We now upper bound the left-hand-side of (2). To this end, we need the following
claim from [1].

7

Claim 2.4 (Claim 2.3 in [1]). Given a monotone function f : 2[n] → [0, 1] with f([n]) = 1 and sets
∅ = S0 ⊆ S1 ⊆ · · · ⊆ S` ⊆ [n], we have (using the convention 0/0 = 0)∑̀

k=1

f(Sk)− f(Sk−1)

1− f(Sk−1)
≤ 1 + ln

1

δ
.

Here δ > 0 is such that for any A ⊆ B, if f(B)− f(A) > 0 then f(B)− f(A) ≥ δ.

Proof. We give a proof for completeness. We can assume, without loss of generality, that S` = [n]. Order
the values in the set {f(Sk) | 0 ≤ k ≤ `} \ {1} in increasing order to obtain β0 < β1 < . . . < βH . By the
assumption, we have β0 ≥ 0 and βH ≤ 1− δ (moreover, βh − βh−1 ≥ δ, ∀h ∈ [H]). We will show that

H∑
h=1

βh − βh−1

1− βh−1
≤ ln

1

δ

Since f(S`) = 1, the summation we want to bound has an additional term of 1−βH

1−βH
= 1.

Knowing that the function u(x) = 1
1−x is increasing for x ∈ [0, 1), we derive

H∑
h=1

βh − βh−1

1− βh−1
=

H∑
h=1

∫ βh

x=βh−1

1

1− βh−1
dx ≤

H∑
h=1

∫ βh

x=βh−1

1

1− x
dx =

∫ βH

x=0

1

1− x
dx

= ln

(
1− β0

1− βH

)
≤ ln

1

δ

This proves the claim.

Note that any function fi not in Rj−1 does not contribute to the left-hand-side of (2) since any such
function fi was already covered before time 8α 2j−1 ≤ t. Further, knowing by Claim 2.4 that each function
fi ∈ Rj−1 can add at most α := 1+ln 1

ε , we can upper bound the left-hand-side of (2) by α|Rj−1|. Formally,∑
8α·2j−1<t≤8α·2j

fSt−1(et) =
∑

8α·2j−1<t≤8α·2j

∑
i∈Rj−1:fi(St−1)<1

fi(St−1 ∪ {et})− fi(St−1)

1− fi(St−1)

≤
∑

i∈Rj−1

∑
t≥1:fi(St−1)<1

fi(St−1 ∪ {et})− fi(St−1)

1− fi(St−1)

≤ α|Rj−1| (3)

From (2) and (3) we obtain 4α(|Rj | − |R∗j |) ≤ α|Rj−1| which completes the proof of Lemma 2.2.

Now we can prove Theorem 2.1 using Lemma 2.2.

Proof of Theorem 2.1.

ALG =
∑
j≥0

∑
8α2j≤t<8α2j+1

|R(t)| +
∑

1≤t<8α

|R(t)|

≤
∑
j≥0

8α(2j+1 − 2j)|Rj | + 8αOPT [Since |R(t)| is non-increasing, and |R(1)| ≤ m ≤ OPT]

= 8α
∑
j≥0

2j+1

(
|Rj | −

1

4
|Rj−1|

)
+ 8αOPT

≤ 8α
∑
j≥0

2j+1|R∗j | + 8αOPT [By Lemma 2.2]

≤ 8α
∑
j≥1

4
∑

2j−1≤t<2j

|R∗(t)| + 16α|R∗0| + 8αOPT [Since |R∗(t)| is non-increasing]

≤ 32αOPT + 24αOPT.

8

Thus we obtain ALG ≤ 56αOPT, which proves Theorem 2.1.

3 Minimum Latency Submodular Cover

Recall that in the Minimum Latency Submodular Cover problem (MLSC), we are given a metric (V, d) with
root r ∈ V and m monotone submodular functions f1, f2, ..., fm : 2V → [0, 1]. Without loss of generality, by
scaling, we assume that all distances d(·, ·) are integers. The objective in MLSC is to find a path starting at
r that minimizes the total cover time of all functions.

As mentioned earlier, our algorithm for MLSC uses as a subroutine an algorithm for the Submodular
Orienteering problem (SOP). In this problem, given metric (V, d), root r, monotone submodular function
g : 2V → R+ and bound B, the goal is to compute a path P originating at r that has length at most
B and maximizes g(V (P)) where V (P) is the set of vertices covered by P . We assume a (ρ, σ)-bicriteria
approximation algorithm ALG-SOP for SOP. That is, on any SOP instance, ALG-SOP returns a path P of
length at most σ ·B and g(V (P)) ≥ OPT/ρ, where OPT is the optimal value obtained by any length B path.
We recall the following known results on SOP.

Theorem 3.1 ([6]). For any constant δ > 0 there is a polynomial time (O(1), O(log2+δ |V |)) bicriteria
approximation algorithm for the Submodular Orienteering problem.

Theorem 3.2 ([12]). There is a quasi-polynomial time O(log |V |) approximation algorithm for the Submod-
ular Orienteering problem.

We now describe our algorithm ALG-MLSC for MLSC that uses the (ρ, σ) bicriteria approximation algo-
rithm ALG-SOP. Here α = 1 + ln 1

ε . Note the difference from the submodular ranking algorithm [1]: here
each augmentation is a path possibly covering several vertices. Despite the similarity of ALG-MLSC to the
min-latency TSP type algorithms [10, 13] an important difference is that we do not try to directly maximize
the number of covered functions in each augmentation: as noted before this subproblem is at least as hard
as dense-k-subgraph, for which the best approximation ratio known is only polynomial [5]. Instead we max-
imize in each step some proxy residual coverage function fS that suffices to eventually cover all functions
quickly. This function is a natural extension of the single-element coverage values used in ALG-AG [1]. It is
important to note that in Line (4), fS(·) is defined adaptively based on the current set S of visited vertices
in each iteration. Moreover, since each function fi is monotone and submodular, so is fS for any S ⊆ V . In
Step 6, π · P denotes the concatenation of paths π and P .

Algorithm 2 ALG-MLSC

INPUT: (V, d), r ∈ V ; {fi : 2V → [0, 1]}mi=1.

1: S ← ∅, π ← ∅.
2: for k = 0, 1, 2, ... do
3: for u = 1, 2, . . . , 4αρ do
4: Define submodular function

fS(T) :=
∑

i∈[m],fi(S)<1

fi(S ∪ T)− fi(S)

1− fi(S)
, for all T ⊆ V.

5: Use ALG-SOP to find a path P of length at most σ · 2k starting from r that ρ-approximately
maximizes fS(V (P)) where V (P) is the set of nodes visited by P .

6: S ← S ∪ V (P) and π ← π · P .
7: end for
8: end for

OUTPUT: Output solution π.

We prove the following theorem, which implies Theorem 1.1.

9

Theorem 3.3. ALG-MLSC is an O(αρσ)-approximation algorithm for Minimum Latency Submodular Cover.

We now analyze ALG-MLSC. We say that the algorithm is in the j-th phase, when the variable k of the
for loop in Step 2 has value j. Note that there are 4αρ iterations of Steps 4-5 in each phase.

Proposition 3.4. Any vertex v added to S in the j-th phase is visited by π within 16αρσ · 2j.

Proof. The final solution is a concatenation of the paths that were found in Step 6. Since all these paths are
stitched at the root r, the length of π at the end of phase j is at most

∑j
k=1 2 · 4αρ · σ2k ≤ 16αρσ · 2j .

Let R(t) denote the set of (indices of) the functions that are not covered by ALG-MLSC earlier than time
t; R(t) includes the functions that are covered exactly at time t as well. We interchangeably use i ∈ R(t) and
fi ∈ R(t). Let Rj := Rj(16αρσ 2j). Similarly, we let R∗(t) denote the set of functions that are not covered
by OPT earlier than time t and let R∗j = R∗(2j). Let R−1 := ∅.

We show the following key lemma. It shows that the number of uncovered functions by ALG-MLSC must
decrease fast as j grows, unless the corresponding number in the optimal solution is comparable.

Lemma 3.5. For any j ≥ 0, we have |Rj | ≤ 1
4 |Rj−1|+ |R∗j |.

Proof. The lemma trivially holds when j = 0. Now consider any fixed phase j ≥ 1. Let S0 denote the set of
vertices that were added to S up to the end of phase j − 1. Let H = 4αρ and T1, T2, ..., TH be the sets of
vertices that were added in Line (6) in the j-th phase. Let Sh = S0 ∪ T1 ∪ T2 ∪ ... ∪ Th, ∀1 ≤ h ≤ H. We
prove Lemma 3.5 by lower and upper bounding the quantity

∆j :=

H∑
h=1

fSh−1(Th) =

H∑
h=1

∑
i∈[m]:fi(Sh−1)<1

fi(Sh)− fi(Sh−1)

1− fi(Sh−1)
,

which is intuitively the total amount of “residual requirement” that is covered by the algorithm in phase j.
We first lower bound ∆j . Let T ∗ denote the set of vertices that OPT visited within time 2j . Observe

that in Line (5), ALG-MLSC could have visited all nodes in T ∗ by choosing P as OPT’s prefix of length 2j .
Via the approximation guarantee of ALG-SOP, we obtain

Proposition 3.6. For any h ∈ [H], we have fSh−1(Th) ≥ 1
ρ · f

Sh−1(T ∗).

We restrict our concern to the functions in Rj\R∗j . Observe that for any i ∈ Rj and h ∈ [H], fi(Sh−1) < 1
and that for any i /∈ R∗j , fi(T ∗) = 1. Hence by summing the inequality in the above proposition over all
functions fi in Rj \R∗j , we have

∆j ≥ 1

ρ

H∑
h=1

fSh−1(T ∗) ≥ 1

ρ

H∑
h=1

∑
i∈Rj\R∗j

fi(T
∗ ∪ Sh−1)− fi(Sh−1)

1− fi(Sh−1)
≥ 1

ρ

H∑
h=1

∑
i∈Rj\R∗j

1

≥ H

ρ
(|Rj | − |R∗j |) = 4α(|Rj | − |R∗j |) (4)

We now upper bound ∆j . Note that for any i /∈ Rj−1, fi(S0) = 1 and therefore fi does not contribute
to ∆j . For any i ∈ Rj−1, the total contribution of fi to ∆j is at most α by Claim 2.4. Hence,

∆j ≤ α|Rj−1| (5)

Combining (4) and (5) completes the proof of Lemma 3.5.

Finally, we can use Lemma 3.5 to prove Theorem 3.3 exactly as we proved Theorem 2.1 in the previous
section using Lemma 2.2. We omit repeating the calculations here.

10

4 Latency Covering Steiner Tree

In this section, we give consider the Latency Covering Steiner Tree problem (LCST), which is an interesting
special case of MLSC. Recall that the input to LCST consists of a symmetric metric (V, d), root r ∈ V and a
collection G of groups, where each group g ∈ G is a subset of vertices with an associated requirement kg.The
goal is find a path staring from r that minimizes the total cover time of all groups. We say that group g
is covered at the earliest time t when the path within distance t visits at least kg vertices in g. We give an
O(log gmax · log |V |)-approximation algorithm for this problem where gmax := maxg∈G |g| is the maximum
group size. This would prove Theorem 1.2.

Simplifying assumptions. Following [25, 21], without loss of generality, we assume that:

1. The metric is induced by a tree T = (V,E) with root r and weight we on each edge e ∈ E.

2. Every vertex in a group is a leaf, i.e. has degree one in T .

3. The groups in G are disjoint.

4. Every vertex of degree one lies in some group.

The only non-trivial assumption is the first one, which uses tree embedding [14] to reduce general metrics
to trees, at the loss of an O(log |V |) approximation factor. In the rest of this section, we work with such
instances of LCST and obtain an O(log gmax)-approximation algorithm.

We first discuss a new LP relaxation for the covering Steiner tree problem in Subsection 4.1, which can
be shown to have a poly-logarithmic integrality gap. Next, in Subsection 4.2 extend this idea to obtain an
LP relaxation for latency covering Steiner tree. In Subsection 4.3 we present our rounding algorithm for
LCST, and finally Subsection 4.4 contains the analysis of the algorithm.

4.1 New LP Relaxation for CST

Recall that the input to Covering Steiner Tree consists of a metric (V, d) with root r and a collection of groups
G ⊆ 2V where each group g ∈ G is associated with a requirement kg. The goal is to find a minimum cost
r-rooted tree that includes r and at least kg vertices from each group g. Although an O(logm·log gmax ·log n)-
approximation is known for CST [21], there was no (single) linear program known to have a poly-logarithmic
integrality gap. Previous results on CST relied on an LP with large Ω(kmax) integrality gap [25].

We introduce stronger constraints, that yield an LP for CST with integrality gap O(logm·log gmax ·log n).
This new LP is an important ingredient in our algorithm for LCST, and might also be useful in other contexts.

Let L denote the set of leaves in V . Because of the above simplifying assumptions, we can label each
vertex v in a group with a unique leaf-edge incident on it, and vice versa. We abuse notation by allowing
j ∈ L to denote both the leaf-vertex and its unique incident edge. For any subset of leaves L′ ⊆ L, let
cut(r, L′) denote the family of all edge-subsets whose removal separates the root r from all vertices in L′.

We formulate the following linear programming relaxation for CST on tree instances.

min
∑
e∈E

wexe (LPCST)

s.t. xpe(e) ≥ xe ∀e ∈ E (6)

(kg − |A|)
∑

j∈B\L

xj +
∑

j∈B∩(L\A)

xj ≥ kg − |A| ∀g ∈ G,∀A ⊆ g,∀B ∈ cut(r, g \A) (7)

xe ∈ [0, 1] ∀e ∈ E

11

Validity of LPCST. We first argue that this is a valid relaxation. Consider any instance of CST on trees
and a fixed feasible solution (tree) τ∗, which gives a natural integral solution: xe = 1 if and only if e ∈ τ∗.
We focus on constraints (7), since the other constraints are obviously satisfied. Consider any g ∈ G, A ⊆ g
and B ∈ cut(r, g \ A). Let τ∗(E \ A) denote the subtree induced by the edges in both τ∗ and (E \ A), i.e.
τ∗
⋂

(E \A). Note that τ∗(E \A) is connected, since A consists only of leaf edges. Since τ∗ has at least kg
edges from g (it is a feasible CST solution), we have |τ∗(E \A)

⋂
(g \A)| ≥ kg − |A|.

• Suppose that there exists j ∈ τ∗(E \ A) ∩ B such that j /∈ L. Then since j ∈ B \ L, it follows that
(kg − |A|)

∑
j∈B\L xj ≥ kg − |A|, hence the constraint is satisfied.

• The remaining case has τ∗(E \ A) ∩ B ⊆ L. In words, B cuts g \ A from r using only leaf edges; so
B ⊇ τ∗(E \A)

⋂
(g \A). Thus

∑
j∈B∩(L\A) xj ≥ |τ∗(E \A)

⋂
(g \A)| ≥ kg − |A|.

In both the above cases, constraint (7) is satisfied.

Solving LPCST. Since LPCST has exponentially many constraints, in order to solve it in polynomial time,
we need a separation oracle. Again we focus on constraints (7), since other constraints are only polynomially
many. We observe that this separation oracle reduces to the following problem.

Problem MinCutWithExceptions: Given as input a tree T rooted at r with leaves L and cost `(e) on each
edge e and an integer D ≥ 0, the goal is to find a minimum cost cut that separates r from any D leaves.

To see how this suffices to separate constraints (7), consider any fixed g ∈ G and all A ⊆ g with |A| = η
(finally we iterate over all g ∈ G and 0 ≤ η ≤ n). Then kg−|A| (the right-hand-side of the constraints) is also
fixed. Given xj values, we would like to find A ⊆ g with |A| = η and B ∈ cut(r, g \ A) that minimizes the
left-hand-side, and test if this is smaller than kg−η. Formally, we can recast this into MinCutWithExceptions
as follows: Remove all edges from E that are not on any path from the root r to a vertex in g, and let T ′

be the resulting tree and this is the input tree to the problem. Note that leaves of T ′ are precisely g. For
all leaf-edges j ∈ g, let `(j) := xj ; and for all non-leaf e ∈ T ′ \ g, `(e) := (kg − η) · xe. Also set bound
D := |g| − η.

We next show that MinCutWithExceptions can be solved via a dynamic programming.

Lemma 4.1. The problem MinCutWithExceptions can be solved in polynomial time.

Proof. To formally describe our dynamic program, we make some simplifying assumptions. By introducing
dummy edges of infinite cost, we assume without loss of generality, that the tree T is binary and the root r
is incident to exactly one edge er. Hence every non-leaf edge e has exactly two child-edges e1 and e2. For
any edge e ∈ T , let Te denote the subtree of T rooted at e, i.e. Te contains edge e and all its descendants.

We define a recurrence for C[e, k] which denotes the minimum cost cut that separates the root of Te from
exactly k leaves in Te. Note that C[er, D] gives the optimal value.

For any leaf-edge f set:

C[f, k] =

 0 if k = 0,
`(f) if k = 1, and
∞ otherwise.

For any non-leaf edge e with children e1 and e2, set:

C[e, k] =



0 if k = 0;
min

k1+k2=k
{C[e1, k1] + C[e2, k2]} if 1 ≤ k < |L ∩ Te|;

min

{
`(e),

min
k1+k2=k

{C[e1, k1] + C[e2, k2]} if k = |L ∩ Te|;

∞ otherwise.

It can be checked directly that this recurrence computes the desired values in polynomial time.

12

4.2 LP Relaxation for LCST

We formulate the following linear relaxation for tree instances of latency covering Steiner tree.

min
1

2
·
∑
`≥0

2`
∑
g∈G

(1− y`g) (LPLCST)

s.t. x`pe(e) ≥ x
`
e ∀` ≥ 0, e ∈ E (8)∑

j∈E
wex

`
e ≤ 2` ∀` ≥ 0 (9)

(kg − |A|)
∑

j∈B\L

x`j +
∑

j∈B∩L\A

x`j ≥ (kg − |A|) · y`g ∀` ≥ 0, g ∈ G, A ⊆ g,B ∈ cut(r, g \A) (10)

y`+1
g ≥ y`g ∀` ≥ 0, g ∈ G (11)

x`e ∈ [0, 1] ∀` ≥ 0, e ∈ E
y`g ∈ [0, 1] ∀` ≥ 0, g ∈ G

To see that this is a valid relaxation, let OPT denote the optimal path. For any ` ≥ 0 let OPT(2`) denote
the prefix of length 2` in OPT. We construct a feasible integral solution to LPLCST as follows. The variable
x`e indicates if edge e lies in OPT(2`). The indicator variable y`g has value one if and only if group g is covered

by OPT(2`), i.e. at least kg vertices of g are contained in OPT(2`). Constraints (8) follow from the fact that
OPT(2`) is a path starting at r. Constraints (9) say that the edges in OPT(2`) have a total weight of at most
2`, which is clearly true. Note that for each ` ≥ 0, there is a set of constraints (10) that is similar to the
constraints (7) in LPCST; the validity of these constraints (10) can be shown exactly as for (7). Constraints
(11) enforce the fact that if group g is covered by OPT(2`) then it must be covered by OPT(2`+1) as well,
which is trivially true. Now consider the objective value: the total contribution of a group g that is covered
by OPT at some time t ∈ (2k, 2k+1] is 1

2 ·
∑k
`=0 2` ≤ 2k. Thus the objective value of this integral solution is

at most OPT.
We can ensure by standard scaling arguments, at the loss of a 1 + o(1) factor in the objective, that all

distances are polynomially bounded. This implies that the length of any optimal path is also polynomial, and
so it suffices to consider O(log n) many values of `. Thus the number of variables in LPLCST is polynomial.
Note that constraints (10) are exponentially many. However, for each fixed ` and g, we can use the same
separation oracle that we used for the constraints (7) of LPCST.

4.3 Rounding Algorithm for LCST

Before presenting our algorithm for LCST, we discuss the basic rounding scheme from [25] (which is an
extension of [16]) and some of its useful properties.

Algorithm 3 ALG-KRS [25]

INPUT: Undirected tree T = (V,E) rooted at r; ze ∈ [0, 1], such that for all e ∈ E, zpe(e) ≥ ze.
1: S ← ∅.
2: For each e ∈ E incident to the root r, add e to S with probability ze.
3: For each e ∈ E such that pe(e) ∈ S, add e to S with probability ze

zpe(e)
.

OUTPUT: The connected component (tree) S.

Proposition 4.2 ([25]). Each edge e is included in the final solution of ALG-KRS with probability ze.

Proof. We prove this by induction on the depth of edge e from r. The base case involves edges incident to
the root r, where this property is clearly true. For the inductive step, assume that the parent edge pe(e) of

13

e is included with probability zpe(e); then by the algorithm description, edge e is included with probability
zpe(e) · ze

zpe(e)
= ze.

Definition 4.3 (KRS properties). Consider any z ∈ [0, 1]E, g ∈ G, R(g) ⊆ g and 0 ≤ rg ≤ |R(g)|. We say
that (z,R(g), rg) satisfies the KRS properties if it satisfies the following:

zpe(e) ≥ ze ∀e ∈ E (12)∑
j∈T (e)∩R(g)

zj ≤ rg · ze ∀e ∈ E (13)

where T (e) is the subtree below (and including) edge e.

The first property (12) is the same as the constraints (8). The second property (13) is a Lipschitz-type
condition which implies that conditional on any edge e being chosen, its subtree T (e) can contribute at most
rg to the requirement of R(g).

Lemma 4.4 ([25]). Suppose that (z,R(g), rg) satisfies the KRS properties. Let Lkrs denote the set of leaves
that are covered by ALG-KRS with input {ze : e ∈ E}. Consider any constant δ ∈ [0, 1]. Then for any g ∈ G,

Pr
[
|Lkrs ∩R(g)| ≤ (1− δ)µg

]
≤ exp

(
− δ2 · µg

2 + rg(1 + ln |R(g)|)

)
where µg := E

[
|Lkrs ∩R(g)|

]
=
∑
j∈R(g) zj.

Proof. We only give a sketch of the proof, since this is implicit in [25]. For any j, j′ ∈ R(g), we say that
j ∼ j′ if and only if (1) j 6= j′ and (2) the least common ancestor lca(j, j′) of j and j′ is not r. Define

∆g :=
∑

j,j′∈R(g):j∼j′,zlca(j,j′)>0

zj · zj′
zlca(j,j′)

In Theorem 3.2 in [25], Konjevod et al. showed using the KRS properties that

∆g ≤ µg(rg − 1 + rg ln |R(g)|)

We note that the proof of Theorem 3.2 implies this, although it is stated only for µg = rg. Further, they
used this bound in Jansen’s inequality to obtain for any δ ∈ [0, 1],

Pr
[
|Lkrs ∩R(g)| ≤ (1− δ)µg

]
≤ exp

(
− δ2µg

2 + ∆g/µg

)
Above µg = E

[
|Lkrs ∩ R(g)|

]
=
∑
j∈R(g) Pr[j ∈ Lkrs] =

∑
j∈R(g) zj , by Proposition 4.2. Combining the

above two inequalities yields the lemma.

We are now ready to present our algorithm to round LPLCST, described formally as ALG-LCST below.
Let (x, y) denote a fixed optimal solution to LPLCST. The algorithm proceeds in phases ` = 0, 1, 2, · · · where

the `th phase rounding uses variables with superscript ` in LPLCST. Let E
`

:= {e ∈ E | x`e ≥ 1/4}. Observe

that E
`

forms a tree rooted at r due to the constraints (8). The edges in E
`

are added to our solution with

probability one by the `-th phase of our algorithm. Tree T̃ ` is obtained from T by contracting edges E
`
. Let

R`(g) := g \ E` and r`g = kg − |g ∩ E
`| denote the residual vertices of group g and its residual requirement,

in phase `. In the subsequent analysis, we will show that the algorithm satisfies a group with constant
probability in every phase when it is substantially covered (say to extent 1

2) by the fractional solution (x, y).

In each phase ` ≥ 0 we preprocess (in Line 6) x` to obtain x̃` as described in the next lemma.

14

Algorithm 4 ALG-LCST

INPUT: Tree T with edge lengths, root r, groups G and requirements {kg}g∈G .

1: π ← ∅.
2: Let (x, y) be an optimal solution to LPLCST.
3: for ` = 0, 1, 2, ... do

4: E
` ← {e ∈ E | x`e ≥ 1/4}, R`(g)← g \ E` and r`g ← kg − |g ∩ E

`|.
5: Shrink all edges in E

`
in T and let T̃ ` be the resulting tree with the edge set Ẽ` := E \ E`.

6: Obtain solution x̃` from x` using Lemma 4.5.
7: For each e ∈ Ẽ`, z`e ← 4x̃`e; note that z`e ∈ [0, 1].
8: S` ← ∅.
9: repeat the following 6(3 + log gmax) times:

10: τ ` ← the tree produced by ALG-KRS with z = z` on tree T̃ `

11: Add τ ` to S`
12: Combine all trees in S` with E

`
and take an Euler tour P ` of the resulting tree.

13: if P ` has weight at most 192(3 + log gmax) · 2` then
14: π ← π · P `.
15: end for

OUTPUT: Path π originating from r.

Lemma 4.5. For any ` ≥ 0, we can find in polynomial time x̃`e ∈ [0, x`e], ∀e ∈ E \ E
`

such that ∀g ∈ G:

1. (x̃`, R`(g), r`g) satisfies the KRS-properties in tree T̃ `.

2.
∑
j∈R`(g) x̃

`
j ≥ r`g · y`g (coverage property).

Proof. Fix any ` ≥ 0. To reduce notation, we drop the superscript ` from T̃ , E, x, y, x̃, R(g) and rg
throughout this proof. Consider constraints (10) of LPLCST. Fix a group g ∈ G and let A := g ∩E. Consider
tree T̃ as a flow network with each leaf edge f having capacity xf and each non-leaf edge e having capacity
rg · xe. The root r is the source and leaves R(g) = g \ A are the sinks. Then constraints (10) imply that
the min cut separating r from R(g) has value at least rg · yg: note that although these constraints are for

the original tree T , they imply similar constraints for T̃ since T̃ is obtained from T by edge-contraction.4

Hence there must exist a max-flow of volume at least rg · yg from r to R(g) in the above network. Let x̃f
denote the volume of this flow into each leaf edge f ∈ R(g); clearly we have that x̃f ≤ xf (due to capacity
on leaves) and: ∑

j∈R(g)

x̃j ≥ rg · yg. (14)

Moreover, by the capacities on non-leaves,∑
j∈T (e)∩R(g)

x̃j ≤ rg · xe, ∀e ∈ E \ E (15)

We can use the above procedure on each group g ∈ G separately, to compute x̃f for all leaf edges f ∈ E\E;
this is well-defined since groups are disjoint. For each non-leaf edge e ∈ E \ E set x̃e := xe. Thus we have
0 ≤ x̃e ≤ xe for all e ∈ E \ E. Observe that this computation can easily be done in polynomial time.

Now, (15) implies the second KRS property (13). Property (12) follows, since for each e ∈ E \ E, we
have x̃pe(e) = xpe(e) ≥ xe ≥ x̃e; the first inequality is due to constraint (8) of LPLCST. Finally, (14) implies
the coverage property claimed in the lemma.

4In particular every cut B′ separating r from g \A in T̃ is also a cut separating r from g \A in T .

15

4.4 Analysis

For any group g, define `(g) to be the smallest ` ≥ 0 such that y`g ≥ 1/2. Then it follows that for any ` ≥ `(g),

y`g ≥ 1/2 due to constraints (11) of LPLCST. In words, the optimal fractional solution covers group g to an

extent of at least half within time 2`(g). Consider any group g ∈ G, ` ≥ `(g) and a tree τ ` in Line (10) of

ALG-LCST. Since all edges in E
`

are included in P ` with probability 1, group g is covered by P ` if and only
if at least r`g vertices in its residual set R`(g) are covered by τ `. This motivates us to derive the following.

Lemma 4.6. For any g ∈ G and ` ≥ `(g),

Pr[|τ ` ∩R(g)| < rg] ≤ exp

(
− 1

2(3 + ln gmax)

)
.

Proof. From Lemma 4.5 it follows that (x̃`, R`(g), r`g) satisfies the KRS properties on tree T̃ `. Since z` = 4·x̃`,
(z`, R`(g), r`g) also satisfies the KRS properties. Furthermore, using y`g ≥ 1

2 and the coverage property in
Lemma 4.5,

µ`g := E[|τ ` ∩R`(g)|] =
∑

j∈R`(g)

z`j = 4 ·
∑

j∈R`(g)

x̃`j ≥ 4 · r`g · y`g ≥ 2r`g.

Here we also used Proposition 4.2 that Pr[j ∈ τ `] = z`j . By applying Lemma 4.4 with δ = 1/2, we have

Pr
[
|τ ` ∩R(g)| < rg

]
≤ exp

(
−

r`g
2(2 + r`g(1 + ln |R`(g)|))

)
≤ exp

(
− 1

2(3 + ln gmax)

)
.

This proves Lemma 4.6.

Lemma 4.7. Consider any group g ∈ G and ` ≥ `(g). The probability that P ` has a total weight of at most
192(3 + log gmax) · 2` and covers g is at least 3/4.

Proof. By Proposition 4.2, we know that each edge e ∈ Ẽ` is included in τ ` with probability z`e = 4x̃`e ≤ 4x`e.

Since for all e ∈ E`, xe ≥ 1/4, the expected total weight of the edges in E
`

and τ ` is upper bounded by∑
e∈E`

we +
∑
e∈Ẽ`

we · 4x̃` ≤ 4
∑
e∈E

we · x`e ≤ 4 · 2`

The last inequality is due to the constraints (9). Hence the expected cost of P ` is at most 24(3+log gmax) ·2`.
Markov’s inequality immediately gives that the total weight of P ` is greater than 192(3 + log gmax) · 2` with
probability at most 1/8. Since τ` is sampled 6(3 + log gmax) times independently, from Lemma 4.6, we know
that group g is not covered by P ` with probability at most 1/e3 ≤ 1/8. Hence the lemma follows.

Fix any group g ∈ G, and ` ≥ `(g). Among P `(g), P `(g)+1, ... , P `, consider the paths that are added to
π. Clearly the total weight of such paths is at most O(log gmax · 2`). By Lemma 4.7, the probability that
none of these paths covers g is at most 1

4`−`(g)+1 . Hence the expected cover time of g is at most∑
`≥`(g)

O(log gmax) · 2` · 1

4`−`(g)+1
= O(log gmax · 2`(g)).

Thus the expected total cover time is at most O(log gmax) ·
∑
g∈G 2`(g).

By definition of 2`(g) being the “half completion time” in the LP, we know

OPT ≥ 1

2
·
∑
`≥0

2`
∑
g∈G

(1− y`g) ≥
1

2

∑
g∈G

2`(g)−1
(

1− y`(g)−1
g

)
≥ 1

8
·
∑
g∈G

2`(g).

Thus we obtain that ALG-LCST is an O(log gmax)-approximation for LCST on tree instances. Using
probabilistic tree embedding [14], we conclude that ALG-LCST yields an O(log gmax · log |V |)-approximation
for general metrics, thereby proving Theorem 1.2.

16

5 Weighted Stochastic Submodular Ranking

In this section, we study the Weighted Stochastic Submodular Ranking problem (WSSR). The input consists
of a set A = {X1, ..., Xn} of n independent random variables (stochastic elements), each over domain ∆, with
integer lengths {`j}nj=1 (deterministic), and m monotone submodular functions f1, ..., fm : 2∆ → [0, 1] on
groundset ∆. We are also given the distribution (over ∆) of each stochastic element {Xj}nj=1. (We assume
explicit probability distributions, i.e. for each Xj and b ∈ ∆ we are given Pr[Xj = b].) The realization xj ∈ ∆
of the random variable Xj is known immediately after scheduling it. Here, Xj requires `j units of time to
be scheduled; if Xj is started at time t then it completes at time t+ `j at which point its realization xj ∈ ∆
is also known. A feasible solution/policy is an adaptive ordering of A, represented naturally by a decision
tree with branches corresponding to the realization of the stochastic elements. We use 〈π(1), . . . , π(n)〉 to
denote this ordering, where each π(l) is a random variable denoting the index of the l-th scheduled element.

The cover time cov(fi) of any function fi is defined as the earliest time t such that fi has value one for
the realization of the elements completely scheduled within time t. More formally, cov(fi) is the earliest
time t such that fi({xπ(1), ..., xπ(kt)}) is equal to 1 where kt is the maximum index such that `π(1) + `π(2) +
... + `π(kt) ≤ t. If the function value never reaches one (due to the stochastic nature of elements) then
cov(fi) = `1 + `2 + ... + `n which is the maximum time of any schedule. Note that the cover time is a
random value. The goal is to find a policy that (approximately) minimizes the expected total cover time

E
[∑

i∈[m] cov(fi)
]
.

5.1 Applications

Our stochastic extension of submodular ranking captures many interesting applications.

Stochastic Set Cover. We are given as input a ground set ∆, and a collection S ⊆ 2∆ of (non-stochastic)
subsets. There are stochastic elements {Xj : j ∈ [n]}, each defined over ∆ and having respective costs
{`j : j ∈ [n]}. The goal is to give an adaptive policy that hits all sets in S at the minimum expected cost.
This problem was studied in [17, 27, 26]. The problem can be shown as an instance of WSSR with a single
monotone submodular function f1(A) := 1

|S|
∑
S∈S min{1, |A ∩ S|} and parameter ε = 1/|S|.

Shared Filter Evaluation. This problem was introduced by [27], and the result was improved to an essen-
tially optimal solution in [26]. In this problem, there is a collection of independent “filters” X1, X2,, Xn,
each of which gets evaluated either to True or False. For each filter j ∈ [n], we are given the “selectivity”
pj = Pr[Xi is true] and the cost `j of running the filter. We are also given a collection Q of queries, where
each query Qi is a conjunction of a subset of queries. We would like to determine each query in Q to be
True or False by (adaptively) testing filters of the minimum expected cost. In order to cast this problem
as WSSR, we use ∆ =

⋃n
j=1{Yj , Nj}; for each j ∈ [n], Xj = Yj with probability pj , and Xj = Nj with the

remaining probability 1− pj . We create one monotone submodular function:

f1(A) :=

∑
Qi∈Q

min

{
1, |A ∩ {Nj : j ∈ Qi}| +

1

|Qi|
· |A ∩ {Yj : j ∈ Qi}|

}
|Q|

(Note that a query Qi gets evaluated to: False if any one of its filters is False, and True if all its filters are
True.) Here the parameter ε = 1/ (|Q|maxi |Qi|).

We note that the Shared Filter Evaluation problem can be studied for a latency type of objective also.
In this case, for each query Qi ∈ Q, we create a separate submodular function:

fi(A) := min

{
1, |A ∩ {Nj : j ∈ Qi}| +

1

|Qi|
· |A ∩ {Yj : j ∈ Qi}|

}
In this case, the WSSR problem corresponds precisely to filter evaluation that minimizes the average time
to answer queries in Q. The parameter ε = 1/ (maxi |Qi|).

17

Stochastic Generalized Min Sum Set Cover. We are given as input a ground set ∆, and a collection
S ⊆ 2∆ of (non-stochastic) subsets with requirement k(S) for each S ∈ S. There are stochastic elements
{Xj : j ∈ [n]}, each defined over ∆. Set S ∈ S is said to be completed when at least k(S) elements from
S have been scheduled. The goal is to find an adaptive ordering of [n] so as to minimize the expected total
completion time. This can be reduced to WSSR by defining function fS(A) := min{1, |A∩S|/k(S)} for each
S ∈ S; here ε = 1/kmax where kmax denotes the maximum requirement.

For this problem, our result implies an O(log kmax)-approximation to adaptive policies. However, for
non-adaptive policies (where the ordering of elements is fixed a priori), one can obtain a better O(1)-
approximation algorithm by combining the Sample Average Approximation (SAA) method [24, 9] with
O(1)-approximations known for the non-stochastic version [3, 30].

We also note that the analysis in [1] for the deterministic submodular ranking was only for elements
having unit sizes. Our analysis also holds under non-uniform sizes.

5.2 Algorithm and Analysis

We consider adaptive policies: this chooses at each time `π(1) + `π(2) + ...+ `π(k−1), the element

Xπ(k) ∈ A \ {Xπ(1), Xπ(2), Xπ(3), ..., Xπ(k−1)}

after observing the realizations xπ(1), ..., xπ(k−1). So it can be described as a decision tree. Our main result

is an O(log 1
ε)-approximate adaptive policy, which proves Theorem 1.3. This result is again inspired by our

simpler analysis of the algorithm from [1].
To formally describe our algorithm, we quickly define the probability spaces we are concerned with. We

use Ω = ∆n to denote the outcome space of A. We use the same notation Ω to denote the probability space
induced by this outcome space. For any S ⊆ A and its realization s, let Ω(s) denote the outcome subspace
that conforms to s. We can naturally define the probability space defined by Ω(s) as follows: The probability
that w ∈ Ω(s) occurs is PrΩ[w]/PrΩ[Ω(s)]; we also use Ω(s) to denote this probability space.

The main algorithm is given below and is a natural extension of the deterministic algorithm [1]. Let
α := 1 + ln(1

ε). In the output, π(l) denotes the lth element in A that is scheduled.

Algorithm 5 ALG-AG-STO

1: INPUT: A = {X1, ..., Xn} with {`1, ..., `n}; fi : 2∆ → [0, 1], i ∈ [m].
2: S ← ∅. (S are the elements completely scheduled so far, and s their instantiation.)
3: while there exists function fi with fi(s) < 1 do
4: Choose element Xe as follows,

Xe = arg max
Xe∈A\S

E Ω(s)

[∑
i∈[m],fi(s)<1

fi(s∪{Xe})−fi(s)
1−fi(s)

]
`e

5: S ← S
⋃
{Xe}.

6: π(|S|)← Xe. Schedule Xe and observe its realization.
7: end while
8: OUTPUT: An adaptive ordering π of A.

Observe that taking expectation over Ω(s) in Step 4 is the same as expectation over the distribution of
Xe since Xe 6∈ S and the elements are independent. This value can be computed exactly since we have an
explicit probability distribution of Xe. Also note that this algorithm implicitly defines a decision tree. We
will show that ALG-AG-STO is an O(ln(1

ε))-approximation algorithm for WSSR.
To simplify notation, without loss of generality, we assume that α is an integer. Let R(t) denote the

(random) set of functions that are not satisfied by ALG-AG-STO before time t. Note that the set R(t) includes
the functions that are satisfied exactly at time t. Analogously, the set R∗(t) is defined for the optimal policy.

18

For notational convenience, we use i ∈ R(t) interchangeably with fi ∈ R(t). Let C(t) := {f1, ..., fm} \ R(t)
and C∗(t) := {f1, ..., fm} \R∗(t). Note that all the sets C(·), C∗(·), R(·), R∗(·) are stochastic. We have that
ALG =

∑
t∈[n] |R(t)| and OPT =

∑
t∈[n] |R∗(t)| and hence ALG and OPT are stochastic quantities. We show

that E[ALG] = O(α) · E[OPT] which suffices to prove the desired approximation ratio.
We are interested in the number of unsatisfied functions at times {8α2j : j ∈ Z+} by ALG-AG-STO

and the number of unsatisfied functions at times {2j : j ∈ Z+} by the optimal policy. Let Rj := R(8α2j)
and R∗j = R∗(2j). It is important to note that Rj and R∗j are concerned with different times, and they are
stochastic. For notational simplicity, we let R−1 := ∅.

We show the following key lemma. Once we get this lemma, we can complete the proof similar to the
proof of Theorem 2.1 via Lemma 2.2.

Lemma 5.1. For any j ≥ 0, we have E[|Rj |] ≤ 1
4E[|Rj−1|] + E[|R∗j |].

Proof. The lemma trivially holds for j = 0, so we consider any j ≥ 1. For any t ≥ 1, we use st−1 to denote
the set of elements completely scheduled by ALG-AG-STO by time t−1 along with their instantiations; clearly
this is a random variable. Also, for t ≥ 1 let σ(t) ∈ [n] denote the (random) index of the element being
scheduled during time slot (t− 1, t]. Since elements have different sizes, note that σ(t) is different from π(t)
which is the t-th element scheduled by ALG-AG-STO. Observe that st−1 determines σ(t) precisely, but not
the instantiation of Xσ(t).

Let E∗j ⊆ A be the (stochastic) set of elements that is completely scheduled by the optimal policy within

time 2j . For a certain stochastic set (or elements) S, we denote its realization under an outcome w as S(w).
For example, Xi(w) ∈ ∆ is the realization of element Xi for outcome w; and E∗j (w) is the set of first 2j

elements completely scheduled by OPT (under w) along with their realizations.
For any time t and corresponding outcome st−1, define a set function:

fst−1(D) :=
∑

i∈[m],fi(st−1)<1

fi(st−1 ∪D)− fi(st−1)

1− fi(st−1)
, ∀D ⊆ ∆.

We also use f
st−1

i (D) to denote the term inside the above summation.
The function fst−1 : 2∆ → R+ is monotone and submodular since it is a summation of monotone and

submodular functions. We also define

F st−1(Xe) := E w←Ω(st−1) [fst−1(Xe(w))] , ∀Xe ∈ A. (16)

Observe that this is zero for elements Xe ∈ st−1.

Proposition 5.2. Consider any time t and outcome st−1. Note that st−1 determines σ(t). Then:

1

`σ(t)
· F st−1(Xσ(t)) ≥

1

`i
· F st−1(Xi), ∀Xi ∈ A

Proof. At some time t′ ≤ t (right after st−1 is observed) ALG-AG-STO chose to schedule element Xσ(t)

over all elements Xi ∈ A \ st−1. By the greedy rule we know that the claimed inequality holds for any
Xi ∈ A \ st−1. Furthermore, the inequality holds for any element Xi ∈ st−1, since here F st−1(Xi) = 0.

We now define the expected gain by ALG-AG-STO in step t as:

Gt := Est−1

[
1

`σ(t)
F st−1(Xσ(t))

]
. (17)

And the expected total gain:

∆j :=

8α2j∑
t=8α2j−1

Gt (18)

We complete the proof of Lemma 5.1 by upper and lower bounding ∆j .

19

Upper bound for ∆j. Fix any outcome w ∈ Ω. Below, all variables are conditioned on w and hence they
are all deterministic. (For ease of notation we do not write w in front of the variables).

∆j :=

8α2j∑
t=8α2j−1

1

`σ(t)
fst−1(xσ(t)) =

8α2j∑
t=8α2j−1

1

`σ(t)

∑
i∈[m]:fi(st−1)<1

f
st−1

i (xσ(t))

≤
8α2j∑

t=8α2j−1

1

`σ(t)

∑
i∈Rj−1

f
st−1

i (xσ(t)) ≤
∑
t≥1

1

`σ(t)

∑
i∈Rj−1

f
st−1

i (xσ(t))

=
∑

i∈Rj−1

n∑
k=1

fi(Tk)− fi(Tk−1)

1− fi(Tk−1)

The first inequality uses the fact that any i 6∈ Rj−1 has fi already covered before time 8α 2j−1, and so it
never contributes to ∆j . In the last expression, Tk := {xπ(1), ..., xπ(k)} ⊆ ∆, the first k instantiations seen

under w. The equality uses the fact that for each
∑k−1
j=1 `π(j) < t ≤

∑k
j=1 `π(j) we have st−1 = Tk−1 and

σ(t) = k. Finally, by Claim 2.4, the contribution of each function fi ∈ Rj−1 is at most α := 1 + ln 1
ε . Thus

we obtain ∆j(w) ≤ α|Rj−1(w)|, and taking expectations,

∆j ≤ αE[|Rj−1|] (19)

Lower bound for ∆j. Consider any 8α2j−1 ≤ t ≤ 8α2j . We lower bound Gt. Condition on st−1; this
determines σ(t) (but not xσ(t)). Note that

∑n
i=1 `i · Pr[Xi ∈ E∗j |st−1] ≤ 2j by definition of E∗j being the

elements that are completely scheduled by time 2j in OPT. Hence we have∑
Xi∈A

`i
2j
· Pr[Xi ∈ E∗j |st−1] ≤ 1.

By applying Proposition 5.2 with the convex multipliers (over i) given above,

1

`σ(t)
F st−1(Xσ(t)) ≥

∑
Xi∈A

`i
2j

Pr[Xi ∈ E∗j |st−1] · 1

`i
F st−1(Xi)

=
1

2j

∑
Xi∈A

Pr[Xi ∈ E∗j |st−1]
∑
xi∈∆

Pr[Xi = xi|st−1] · fst−1(xi)

=
1

2j

∑
Xi∈A

∑
xi∈∆

Pr[Xi ∈ E∗j ∧Xi = xi|st−1] · fst−1(xi)

=
1

2j

∑
w∈Ω(st−1)

Pr[w|st−1]
∑

Xi∈E∗j (w)

fst−1(Xi(w)) (20)

The first equality is by definition of F st−1(·) from (16). The second equality holds since the optimal
policy must decide whether to schedule Xi (by time 2j) without knowing the realization of Xi. Now for each
w ∈ Ω(st−1), due to submodularity of the function fst−1(·), we get∑

Xi∈E∗j (w)

fst−1(Xi(w)) ≥ fst−1(E∗j (w)) =
∑

i∈[m],fi(st−1)<1

fi(E
∗
j (w))− fi(st−1)

1− fi(st−1)
≥ |C∗j (w)| − |C(t, w)|. (21)

Recall that E∗j (w) denotes the set of elements scheduled by time 2j in OPT (conditional on w), as well
as the realizations of these elements. The equality comes from the definition of fst−1 . The last inequality

20

holds because C(t, w) = {i ∈ [m] : fi(st−1) = 1} and set E∗j (w) covers functions C∗j (w). Combining (20)
and (21) gives:

1

`σ(t)
F st−1(Xσ(t)) ≥

(
E
[
|C∗j | | st−1

]
− E [|C(t)| | st−1]

)
2j

.

By deconditioning the above inequality (taking expectation over st−1) and using (17), we derive:

Gt ≥
1

2j
·
(
E[|C∗j |]− E[|C(t)|]

)
≥ 1

2j
·
(
E[|C∗j |]− E[|Cj |]

)
,

where the last inequality uses E[C(t)] is non-decreasing and t ≤ 8α2j .
Now summing over all t ∈ [8α2j−1, 8α2j) yields:

∆j =

8α2j∑
t=8α2j−1

Gt ≥ 4α
(
E[|C∗j |]− E[|Cj |]

)
= 4α

(
E[|Rj |]− E[|R∗j |]

)
. (22)

Combining (22) and (19), we obtain:

4α(E[|Rj |]− E[|R∗j |]) ≤ αE[|Rj−1|]

which simplifies to the desired inequality in Lemma 5.1.

Using exactly the same calculations as in the proof of Theorem 2.1 from Lemma 2.2, Lemma 5.1 implies
an O(α)-approximation ratio for ALG-AG-STO. This completes the proof of Theorem 1.3.

6 Conclusion

In this paper we considered the minimum latency submodular cover problem in general metrics, which is a
common generalization of many well-studied problems. We also studied the stochastic submodular ranking
problem, which generalizes a number of stochastic optimization problems. Both results were based on a
new analysis of the algorithm for submodular ranking [1]. Our result for stochastic submodular ranking
is tight, and any significant improvement (more than a logδ |V | factor) of the result for minimum latency
submodular cover would also improve the approximation ratio for Group Steiner Tree, which is a long-
standing open problem. An interesting open question is to obtain a poly-logarithmic approximation for
stochastic minimum latency submodular cover (on general metrics).

References

[1] Y. Azar and I. Gamzu. Ranking with submodular valuations. In 22nd Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1070–1079, 2011.

[2] Y. Azar, I. Gamzu, and X. Yin. Multiple intents re-ranking. In 41st Annual ACM Symposium on
Theory of Computing (STOC), pages 669–678, 2009.

[3] N. Bansal, A. Gupta, and R. Krishnaswamy. A constant factor approximation algorithm for generalized
min-sum set cover. In 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1539–1545, 2010.

[4] A. Bar-Noy, M. Bellare, M.M. Halldórsson, H. Shachnai, and T. Tamir. On chromatic sums and
distributed resource allocation. Information and Computation, 140(2):183–202, 1998.

[5] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan. Detecting high log-densities:
an n1/4 approximation for densest k-subgraph. In 42nd ACM Symposium on Theory of Computing
(STOC), pages 201–210, 2010.

21

[6] G. Calinescu and A. Zelikovsky. The polymatroid steiner problems. Journal of Combinatorial Opti-
mization, 9(3):281–294, 2005.

[7] R.D. Carr, L. Fleischer, V.J. Leung, and C.A. Phillips. Strengthening integrality gaps for capacitated
network design and covering problems. In 11th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 106–115, 2000.

[8] D. Chakrabarty and C. Swamy. Facility location with client latencies: Linear programming based
techniques for minimum latency problems. In 15th International Conference on Integer Programming
and Combinatoral Optimization (IPCO), pages 92–103, 2011.

[9] M. Charikar, C. Chekuri, and M. Pál. Sampling bounds for stochastic optimization. In 9th International
Workshop on Randomization and Computation (RANDOM), pages 257–269, 2005.

[10] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and minimum latency tours. In 44th
Symposium on Foundations of Computer Science (FOCS), pages 36–45, 2003.

[11] C. Chekuri, G. Even, and G. Kortsarz. A greedy approximation algorithm for the group steiner problem.
Discrete Applied Mathematics, 154(1):15–34, 2006.

[12] C. Chekuri and M. Pál. A recursive greedy algorithm for walks in directed graphs. In 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 245–253, 2005.

[13] J. Fakcharoenphol, C. Harrelson, and S. Rao. The k-traveling repairmen problem. ACM Transactions
on Algorithms, 3(4), 2007.

[14] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics by tree
metrics. Journal of Computer and System Sciences, 69(3):485–497, 2004.

[15] U. Feige, L. Lovász, and P. Tetali. Approximating min sum set cover. Algorithmica, 40(4):219–234,
2004.

[16] N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for the group steiner
tree problem. Journal of Algorithms, 37(1):66–84, 2000.

[17] M.X. Goemans and J. Vondrák. Stochastic covering and adaptivity. In 7th Latin American Symposium
on Theoretical Informatics (LATIN), pages 532–543, 2006.

[18] D. Golovin and A. Krause. Adaptive submodularity: A new approach to active learning and stochastic
optimization. In 23rd Conference on Learning Theory (COLT), pages 333–345, 2010.

[19] A. Guillory and J.A. Bilmes. Online submodular set cover, ranking, and repeated active learning. In
25th Annual Conference on Neural Information Processing Systems (NIPS), pages 333–345, 2011.

[20] A. Gupta, V. Nagarajan, and R. Ravi. Approximation Algorithms for Optimal Decision Trees and
Adaptive TSP Problems. In 37th International Colloquium on Automata, Languages and Programming
(ICALP), pages 690–701, 2010.

[21] A. Gupta and A. Srinivasan. An improved approximation ratio for the covering steiner problem. Theory
of Computing, 2(1):53–64, 2006.

[22] E. Halperin and R. Krauthgamer. Polylogarithmic inapproximability. In 35th Annual ACM Symposium
on Theory of Computing (STOC), pages 585–594, 2003.

[23] David S. Johnson. Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci.,
9(3):256–278, 1974.

22

[24] A.J. Kleywegt, A. Shapiro, and T. Homem de Mello. The sample average approximation method for
stochastic discrete optimization. SIAM Journal on Optimization, 12(2):479–502, 2002.

[25] G. Konjevod, R. Ravi, and A. Srinivasan. Approximation algorithms for the covering steiner problem.
Random Structures and Algorithms, 20(3):465–482, 2002.

[26] Z. Liu, S. Parthasarathy, A. Ranganathan, and H. Yang. Near-optimal algorithms for shared filter
evaluation in data stream systems. In ACM SIGMOD International Conference on Management of
Data (SIGMOD), pages 133–146, 2008.

[27] K. Munagala, U. Srivastava, and J. Widom. Optimization of continuous queries with shared expen-
sive filters. In 27th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
(PODS), pages 215–224, 2007.

[28] V. Nagarajan. Approximation Algorithms for Sequencing Problems. PhD thesis, Tepper School of
Business, Carnegie Mellon University, 2009.

[29] A. Schrijver. Combinatorial optimization: polyhedra and efficiency. Springer-Verlag, Berlin, 2003.

[30] M. Skutella and D.P. Williamson. A note on the generalized min-sum set cover problem. Operations
Research Letters, 39(6):433–436, 2011.

[31] L.A. Wolsey. An analysis of the greedy algorithm for the submodular set covering problem. Combina-
torica, 2(4):385–393, 1982.

23

	1 Introduction
	1.1 Problem Definitions
	1.2 Our Results and Techniques
	1.3 Previous Work
	1.4 Organization

	2 Simpler Analysis of the Submodular Ranking Algorithm
	3 Minimum Latency Submodular Cover
	4 Latency Covering Steiner Tree
	4.1 New LP Relaxation for CST
	4.2 LP Relaxation for LCST
	4.3 Rounding Algorithm for LCST
	4.4 Analysis

	5 Weighted Stochastic Submodular Ranking
	5.1 Applications
	5.2 Algorithm and Analysis

	6 Conclusion

