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Abstract

Data-driven methods play an increasingly important rolediscovering geometric, structural, and semantic re-
lationships between 3D shapes in collections, and applthirgganalysis to support intelligent modeling, editing,
and visualization of geometric data. In contrast to tralital approaches, a key feature of data-driven approaches
is that they aggregate information from a collection of sespo improve the analysis and processing of individ-
ual shapes. In addition, they are able to learn models thaso® about properties and relationships of shapes
without relying on hard-coded rules or explicitly programdinstructions. We provide an overview of the main
concepts and components of these techniques, and diseirsaghlication to shape classification, segmentation,
matching, reconstruction, modeling and exploration, adl a® scene analysis and synthesis, through reviewing
the literature and relating the existing works with both Gtaive and numerical comparisons. We conclude our
report with ideas that can inspire future research in datasein shape analysis and processing.

Categories and Subject Descriptofsccording to ACM CCS) 1.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction example-based paradigm, thus mostly leveraging only one
. . . . . core concept of data-driven techniquesfermation trans-

As big geometric data_ls becomln_g more available (e_.g., fer. Typically, the input to these problems includes one or
from fast and commadity 3D sensing and crowdsourcing multiple exemplar shapes with prescribed or precomputed

sthe modehllng%, the m?restt In p(;oc(:jestsw(ljg_ of S;D rsgt:_apes information of interest, and a target shape that needs to be
and scenes has been shifting towards data-driven tectsique analyzed or processed. These techniques usually establish

Thgse :ect;mques (Ijevera?hg data ;[0 factllltzgtglglgpf-le:@gsth a correlation between the source and the target shapes and
understanding, and use this analysis 1o bulld electivestoo .o hster the interesting information from the source to the

for modeling, editing, and visualizing geometric data. In target. The applications of such approach include a variety

general, these methods start by discovering patterns in ge- : : )
ometry and structure of shapes, and then relate them to high-gf er;it?g gsﬁg%@a&zggizf 's (e.§¥07) and shape syn

level concepts, semantics, function, and models that expla
those patterns. The learned patterns serve as strong priors ) o
in various geometry processing applications. In contrast t ~ AS the number of available 3D shapes becomes signifi-
traditional approaches, data-driven methods analyzeafset cantly large, geometry processing techniques supported by
shapes jointly to extract and model meaningful mappings these data go through a fundamental change. Several new
and correlations in the data, and learn priors directly from CONcepts emerge in addition to information transfer, open-

the data instead of relying on hard-coded rules or expficitl ing space for developing new techniques for shape analysis
programmed instructions. and content creation. In particular, the rich variabilify3®

content in existing shape repositories makes it possible to
The idea of utilizing data to support geometry process- directly reuse the shapes or parts for constructing new 3D
ing has been exploited and practiced for many years. How- models FKS*04]. Content reusdor 3D modeling is per-
ever, most existing works based on this idea are confined to haps the most straightforward application of big 3D geomet-
ric data, providing a promising approach to address the chal
lenging 3D content creation problem. In addition, highelev
T Corresponding author: kevin.kai.xu@gmail.com understanding of shapes can benefit from co-analyzing col-
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Data collection niques learn representation and parameters from data. Thei

usually do not depend on hard-coded prior knowledge, and

creatio
> I I { consequently do not rely on hand-crafted parameters, mak-

Data //_& ing these techniques more data-adaptive and thus lead to

S5 el 3D content

management  (f= i Manual significantly improved performance in many practical set-

3D

model database | :f:gg;”g‘a”"" tings. The success of data-driven approaches, backed by ma-
. chine learning techniques, heavily relies on the accdigibi

of large data collections. We have witnessed the success of

increasing the training set by orders of magnitude to signifi

Data analysis &

processing hData'dril"e,” e Machine cantly improve the performance of common machine learn-
> a,f;:g:sifgls 0od O learning ing algorithms BBO1]. Thus, the recent developments in 3D

modeling tools and acquisition techniques for 3D geometry,
. ) ) i as well as availability of large repositories of 3D shapeg.(e
Figure 1: Data-driven shape processing and modeling pro-  imp|e 3D Warehouse, Yobi3D , etc.), offer great opportu-

vides a promising solution to the development of "big 3D pjsies for developing data-driven approaches for 3D shape
data”. Two major ways of 3D data generation, 3D sens- analysis and processing.

ing and 3D content creation, populate 3D databases with
fast growing amount of 3D models. The database models pajation to  structure-aware shape processingThis
are sparsely enhanced with manual segmentation and la- report is closely related to the recent survey on
be_Iing, as well as re_asonably organized, to support data- «gircture-aware shape processing” by Mitra and co-
driven shape analysis and processing, based on, e.g., Ma-\yorkers MWZ*14], which concentrates on techniques for
chine learning techniques. The learned knowledge can in giyctyral analysis of 3D shapes, as well as high-leveleshap
turn support eﬁlglent 3D reconstruction and 3D content cre- processing guided by structure-preservation. In thatesurv
ation, during which the knowledge can be transferred to the  ghane structure is defined as the arrangement and relations
newly generated data. Such 3D data with semantic informa- peyeen shape parts, which is analyzed through identifying
tion can be included into the database to enrich it and facil- shape parts, part parameters, and part relations. Each of
itate further data-driven applications. the three can be determined through manual assignment,
predefined model fitting and data-driven learning.

lections of shapes. Several analysis tools demonstrate tha N contrast, our report takes from a very different
shape analysis is more reliable if it is supported by observ- Perspective—how the availability of big geometric data has

ing certain attributes in a set of semantically related ehap ~ changed the field of shape analysis and processing. In par-
instead of a single objecCo-analysisrequires a critical  ticular, we want to highlight several key distinctiorfsrst,
step of finding the correlation between multiple shapes in data-driven shape processing goes beyond structure anal-
the input set, which is substantially different from build- YSiS- For example, leveraging large shape collections may
ing pair-wise correlation. A key concept to co-analysis is Penefit & wider variety of problems in shape understand-
consistencyof the correlations in the entire set, which has N9 @nd processing, such as parametric modeling of shape
both semantic KHS10, SVKK*11, WAVK *12] and mathe- space ACPQQ, hypothesis generation .for objegt and scene
matical HG13 justifications. understanding 2[$SSlSSLHla, and information trans-

fer between multi-modal dataJGW*13, SHM*14]. Data-
driven shape processing may also exploit the data-centered
techniques in machine learning such as sparse represen-
tation [RR13 and feature learningLBF13], which are
not pre-conditioned on any domain-specific or structural
prior beyond raw dataSecond even within the realm of
structure-aware shape processing, data-driven appr®ache
are arguably becoming the dominant branch due to their the-
oretical and practical advantages, availability of largape
repositories, and recent developments in machine learning

Relation to knowledge-driven shape processingPrior to

the emergence of data-driven techniques, high-level shape
understanding and modeling was usually achieved with
knowledge-driven methods. In knowledge-driven paradigm,
geometric and structural patterns are extracted and inter-
preted with the help of explicit rules or hand-crafted pagam
ters. Such examples include heuristics-based shape segmen
tation [Sha08 and procedural shape modelingl\\VH *08].
Although these approaches find certain empirical success,
they exhibit several inherent limitations. First, itisethely

hard to hard-code explicit rules and heuristics that can han
dle the enormous geometric and structural variability of 3D
shapes and scenes in general. As a result, knowledge-driven
techniques are unlikely to generalize successfully toelarg
and diverse shape collections. Another issue is that itus us
ally hard for non-expert users to interact with knowledge-
driven techniques that require as input “low-level” geaoricet
parameters or instructions.

Vision and motivation. With the emergence of “big data”,
many scientific disciplines have shifted their focus to data
driven techniques. Although 3D geometry data is still far
from being as ubiquitous as some other data formats (e.g.,
photographs), rapidly growing number of 3D models, recent
developments in fusing 2D and 3D data, and invention of
commodity depth cameras, have made the era of “big 3D
data” more promising than ever. At the same time, we expect
data-driven approaches to take one of the leading roles-in un
In contrast to knowledge drive methods, data-driven tech- derstanding and reconstruction of acquired 3D data, as well
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Figure 2: The general pipeline of data-driven geometry processingains four major stages: data collection and prepro-
cessing, feature extraction (or feature learning), leagand inference. The inference supports many applicatigrish would
produce new shapes or scenes through reconstruction nmgdeti synthesis. These new data, typically possessingsldbel
shapes or parts, can be used to enrich the input datasets ahdnee the learning tasks in future, forming a data-driven
geometry processing loop.

as synthesis of new shapes. In summary, data-driven geome-Representation, learning and inferenaee critical compo-

try processing will close the loop from acquisition, anays nents of machine learning approaches in gene{&0p).

and processing to generation of 3D shapes (see Fijure In the case of shape and scene processing, each of these
and will be a key tool for manipulating big visual data. components poses several interesting and unique problems
when dealing with 3D geometric data. These problems have
greatly motivated the research on data-driven geometry pro
cessing, and in turn brought new challenges to computer vi-
sion and machine learning communities, as reflected by the
increasing interest in 3D visual data from these fields. Be-
low, we discuss particular characteristics and challemmjes
data-driven 3D shape and scene processing algorithms. Fig-
ure 2 provides a schematic overview of the most common
components of these algorithms.

Recent years have witnessed a rapid development of data-
driven geometry processing algorithms, both in computer
graphics and in computer vision communities. Given the re-
search efforts and wide interests in the subject, we believe
many researchers would benefit from a comprehensive and
systematic survey. We also wish such a survey can simulate
new theories, problems, and applications,

Organization. This survey is organized as follows. Sec-

tion 2 gives a high-level overview of data-driven approaches

and classifies data-driven methods with respect to their ap- 2.1. 3D data collection

plication domains. This section also provides two repre- ] ) ]
sentative examples for the reader to understand the gen-Shape representation.A main component of data-driven
eral work-flow of data-driven geometry processing. The fol- @Pproaches for shape and scene processing is data callectio
lowing sections survey various data-driven shape proegssi  Where the goal is acquire a number of 3D shapes and scenes
problems in detail. Finally, we conclude by listing a set of depending on the application. When shapes and scenes are

key challenges and providing a vision on future directions. ~ ¢aptured with scanners or depth sensors, their initialerepr
sentation is in the form afange dataor unorganized point

Accompanying online resources.n order to assist the clouds Several data-driven methods for reconstruction, seg-
readers in learning and leveraging the basic algorithms, we Mentation and recognition directly work on these represent
provide an online wikipage{KHK14], which collects tools, ~ tions and do not require any further processing. On the other
source codes, together with benchmark data for typicalprob hand, onhne_repqs_ltorles, such as the Trimble 3D Ware-
lems and applications of data-driven shape processing. Thi Nouse, contain millions of shapes and scenes that are rep-
page will also provide links and data mining tools for obtain ~ 'esented apolygon meshesA large number of data-driven

ing large data collections of shapes and scenes. The websitelechniques are designed to handle complete shapes in the
would serve as a starting point for those who are conducting M ©of polygon meshes created by 3D modeling tools or

research in this direction, we also expect it to benefit a wide €-constructed from point clouds. Choosing which represen
spectrum of researchers from related fields. tation to use depends on the application. For example, data-

driven reconstruction techniques aim for generating com-

plete shapes and scenes from noisy point clouds with miss-
2. Overview ing data. The reconstructed shapes can then be processed
with other data-driven methods for categorization, segmen
tation, matching and so on. Developing methods that can
handle any 3D data representation, as well as jointly recon-
struct and analyze shapes is a potential direction for éutur
research we discuss in Sectib@

In this section, we provide a high-level overview of the main
components and steps of data-driven approaches for process
ing 3D shapes and scenes. Although the pipeline of these
methods significantly vary depending on their particular ap
plications and goals, a number of components tend to be
common: the input data collection and processing, data rep- When polygon meshes are used as the input representa-
resentations and feature extraction, learning and inferen  tion, an important aspect to consider is whether and how
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Figure 3: Pipeline of a supervised segmentation algorithftHS1Q. Given a set of shapes with labeled parts, the points of
each shape are embedded in a common feature space basedrdadhlegeometric descriptors (a color is assigned to psint
depending on their given part label). A classifier is learnedplit the feature space into regions corresponding tcheaart
label. Given a test shape, its points (shown in grey) are éinsbedded in the same space. Then part labels are inferreallfor
its points based on the learned classifier and an underlyingcgured probabilistic model (Sectiat).

data-driven methods will deal with possible “defects”,lsuc  sentations of 3D shapes and scenes can have different reso-
as non-manifold and non-orientable sets of polygons, in- lutions (e.g., number of points or faces), scale, orieotati
verted faces, isolated elements, self-intersectiongshahd and structure. In other words, the input shapes and scenes
topological noise. The vast majority of meshes available in do not initially have any type of common parameterization
online repositories have these problems. Although there is or alignment. This is significantly different from other do-

a number of mesh repairing tools (s€&AK12] for a sur- mains, such as natural language processing or vision, where
vey), they may not handle all different types of “defects”, text or image datasets frequently come with a common pa-
and can take a significant amount of time to process each rameterization beforehand (e.g., images with the same num-
shape in large datasets. To avoid the issues caused by theséer of pixels and objects of consistent orientation).

“defects”, some data-driven methods uniformly sample the

input meshes and work on the resulting point-based repre- 10 achieve a common parameterization of the input
sentation instead (e.gCKGK11, KLM*13]). shapes and scenes, one popular approach is to embed them
in acommon geometric feature spa€®r this purpose a va-

riety of shape descriptors have been developed. These de-
scriptors can be classified into two main categorggsbal
shape descriptorshat convert each shape to a feature vec-
tor, andlocal shape descriptorghat convert each point to

a feature vector. Examples of global shape descriptors are
Extended Gaussian Imagelddr84], 3D shape histograms

Datasets. Although it is desirable to develop data-driven
methods that can learn from a handful of training shapes or
scenes, this is generally a challenging problem in machine
learning FFFP0§. Several data-driven methods in computer
vision have been particularly successful due to the use of

very large datasets that can reach the size of several nsllio [AKKS99, CK10d, spherical functions $VO1], lightfield

of images TFFO09. In contrast, data-driven approaches for ) S
3D shape and scene processing approaches have mostly regescrlptors €T5003, shape distributions(FCDO03, sym-

lied on datasets that reach the order of a few thousands soquetr%/ de§(:kr|ptorsI*{FRtoél],Ksopgerlcaé hsrmon;csl{F(l;{O:ﬂ,

far (e.g., Princeton Shape Benchma®iMKF04], or datasets ted er?lcfel mcl)n;en S.Nt SB] Sr(]Sl al?s—ol-wgr S (ére-
collected from the wel{LM *13]). Online repositories con- ated out of local descriptor B 1. Local s \ape de-
tain large amount of shapes, which can lead to the develop- scnptorg include surface curvature, PCA descriptorsalloc
ment of methods that will leverage datasets that are orders igipgl?azefﬁ'?n?g%? agape gggfggﬁ'}lﬁ:& ?_f'esaltgres
of magnitudes larger than the ones currently used. Another ZMTOS]’heF;;\t kern(gel de‘[scriq{ogrs 0G11 and depth fea
possibility is to develop synthetic datasets. A notablexexa [ ], . ptor8BOG11, pth fea-
ple is the pose and part recognition algorithm used in Mi- tures BFC 11]. Global shape descriptors are particularly

crosoft's Kinect that relies on 500K synthesized shapes of useful for shape c_Iassification, retrieval a’?d organizatio
human bodies in different poseéSFC 11]. In general, large _I_ocal shape d(_escrlptors are useful for partial sh_ape _match-
datasets are important to capture the enormous 3D shape an E?é segrrregtr?tltt)n, :ncg p?é%tafoé:elzggrﬂiggf. etzt:mtfat?nt
scene variability, and can significantly increase the predi using any typ 9 Iptor, 1L1S 1

tive performance and usability of learning methods. A more portant .to consider Whe@her the descriptor will be invari-
comprehensive summary of the existing online data collec- ant to different shape orientations, scales, or poses.en th

tions can be found on our wikipag&KHK14] presence of noise and irregular mesh tessellations, it-is im

' portant to robustly estimate local descriptors, sinceamarf
derivatives are particularly susceptible to surface amd-sa
2.2. 3D data processing and feature representation pling noise KSNSO01.

It is common to perform some additional processing on the  Sometimes it is common to use several different descrip-
input representations of shapes and scenes before exgcutin tors, and let the learning step decide which ones are more
the main learning step. The reason is that the input repre- relevant for each class of shap&H{S1Q. A promising fu-
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ture direction is to develop data-driven methods that learn
feature representations from raw 3D geometric data, enligh
ened by the recent hot topic of deep learniBgfi09g. Sim-

ilar direction is already explored in computer vision for 2D
images ¥N1Q]. In 3D, some works attempt feature learning
on the volumetric representation of 3D shapes or essentiall
3D images [[BF13]. A more popular approach is to apply
deep learning directly on the raw RGB-D data captured by a
depth camerajHB*12, BSWR12BRF14.

Instead of embedding shapes in a common geometric
feature space, several methods instead try to directly alig

shapes in Euclidean space. We refer the reader to the survey

on dynamic geometry processing for a tutorial on rigid and
non-rigid registration technique€LM*12]. An interesting
extension of these techniques is to include the alignment
process in the learning step of data-driven methods, since
it is inter-dependent with other shape analysis tasks ssich a
shape segmentation and correspondengceM[*13].

Some data-driven methods require additional processing
steps on the input. For example, learning deformation han-
dles or fully generative models of shapes usually rely on
segmenting the input shapes into parts with automatic algo-
rithms [HKG11,SvKK*11] and representing these parts with
surface abstractionsyK12] or descriptors KCKK12]. To
decrease the amount of computation required during learn-
ing, it is also common to represent the shapes as a set o
patches (super-face)iKG11] inspired by the computation
of super-pixels in image segmentation.

2.3. Learning and Inference

5

can have the form of tags, while in the case of segmen-
tation, the labeled data have the form of segmentation
boundaries or part labels. The labeled data can be pro-
vided by humans or generated synthetically. After learn-
ing, the learned models are applied on different sets of
shapes (test shapes) to produce results relevant to the task
Unsupervisedalgorithms co-analyze the input shapes or
scenes without any additional labeled data i.e., the d&sire
output is unknown beforehand. The goal of these methods
is to discover correlations in the geometry and structure of
the input shape or scene data. For example, unsupervised
shape segmentation methods usually perform some type
of clustering in the feature space of points or patches be-
longing to the input shapes.

Semi-supervised algorithms make use of shapes (or
scenes) with and without any labeled data. Active learn-
ing is a special case of semi-supervised learning in which
a learning algorithm interactively queries the user to ob-
tain desired outputs for more data points related to shapes.

In general, supervised methods tend to output results that
are closer to what a human would expect given the provided
labeled data, however they may fail to produce desirable re-
sults when the training shapes (or scenes) are largely geo-
metrically and structurally dissimilar with the test shayer
scenes). They also tend to require a substantial amount of

flabeled information as input, which can become a signif-

icant burden for the user. Unsupervised methods can deal
with collections of shapes and scenes with larger variabil-
ity and require no human supervision. However, they some-
times require parameter tuning to yield the desired results
Semi-supervised methods represent a trade-off between su-

The processed representations of shapes and scenes are usd¥rvised and unsupervised methods: they provide more di-

to perform learning and inference for a variety of applica-
tions: shape classification, segmentation, matching,nreco
struction, modeling, synthesis, scene analysis and synthe
sis. The learning procedures significantly vary dependimg o
the application, thus we discuss them individually in each
of the following sections on these applications. As a com-
mon theme, learning is viewed as aptimizationproblem

that runs on a set of variables representing geometrig-stru
tural, semantic or functional properties of shapes andescen
There is usually a single or multiple objective (or loss)dun
tions for quantifying preferences for different models at-p
terns governing the 3D data. After learning a model from the
training data, inference procedures are used to predigésal

of variables for new shapes or scenes. Again, the inference
procedures vary depending on the application, and are dis-
cussed separately in the following sections. It is common
that inference itself is an optimization problem, and some-
times is part of the learning process when there are latent
variables or partially observed input shape or scene data.

A general classification of the different types of algo-

rithms used in data-driven approaches for shape and scene,,

processing can be derived from the type of input informa-
tion available during learning:

e Supervised learningalgorithms are trained on a set of

rect control to the user about the desired result compared to
unsupervised methods, and often produce considerable im-
provements in the results by making use of both labeled and
unlabeled shapes or scenes compared to supervised methods.

The data-driven loop. An advantageous feature of data-
driven shape processing is that the output data, produced
by learning and inference, typically come with rich seman-
tic information. For example, data-driven shape segmenta-
tion produces parts with semantic label§HS1(Q; data-
driven reconstruction is commonly coupled with semantic
part or shape recognitiorSFCH12 NXS12); data-driven
shape modeling can generate readily usable shapes inherit-
ing the semantic information from the input daxzz *11].
These processed and generated data can be used to enrich
the existing shape collections with both training labeld an
reusable contents, which in turn benefit subsequent learn-
ing. In a sense, data-driven methatese the loop of data
generation and data analysfer 3D shapes and scenes; see
Figure 2. Such concept has been practiced in several prior
works, such as the data-driven shape reconstruction frame-
ork proposed inPMG*05] (Figure11).

Pipeline example. To help the reader grasp the pipeline of
data-driven methods, a schematic overview of the compo-

shapes or scenes annotated with labeled data. For exam-nents in Figure2. Depending on the particular application,
ple, in the case of shape classification, these labeled datathe pipeline can have several variations, or some compo-
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nents might be skipped. We discuss the main components
and steps of algorithms for each application in more detail i
the following sections. A didactic example of the pipeline i
the case of supervised shape segmentation is shown in FigureHq pdaim 8BS
3.

K. Xu & V. Kim & Q. Huang & E. Kalogerakis / Data-Driven Shapedlysis and Processing

SA@AMIBIAR : . Y
aAaam S+%8888 BABR BR

"= LS ' s
488 23RRTE® HEEsHNR

The input shapes are annotated with labeled part informa- Q,E g ﬁ ‘ . . % ; Q a &

se@man s ABES AR
SAEAIAI AN

tion. A geometric descriptor is extracted for each point on

the training shapes, and the points are embedded in a com-
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mon feature space. The learning step uses a classificationfigureé 4:  Fine-grained classification of 3D models
algorithm that non-linearly separates the input spaceanto [HSG13, where text labels are propagated from brown to
set of regions corresponding to part labels in order to opti- Plue models.

mize classification performance (more details are provided

in Section4). Given a test shape, a probabilistic model is
used to infer part labels for each point on that shape based
on its geometric descriptor in the feature space.

2.4. A comparative overview

Before reviewing the related works in detail under various
applications, we provide a comparative overview of the en-

which can be utilized for further analysis, and/or feature
representations learned from raw data.

e Application. The main applications of data-driven shape
analysis and processing are: classification, segmentation
correspondence, modeling, synthesis, reconstruction, ex
ploration and organization.

3. Shape Classification

tire body of works to be reviewed in this survey (see Ta- Data-driven techniques commonly make assumptions about
ble 4), to correlate these methods under a setriéria for the size and homogeneity of the input data set. In par-

data-driven approach to shape analysis and processing: ticular, existing analysis techniques often assume tHat al

models belong to the same class of obje¢tkNI *13] or
scenesfSH11, and cannot directly scale to entire reposi-
del is | qf h ining d . b d tory such as the Trimble 3D WarehousgilL4]. Similarly,
model Is learned from the tra{nlng ata, it can be use techniques for data-driven reconstruction of indoor envi-
to inference on test data of different modal_lty. For sin-  ronments assume that the input data set only has furni-
gle shapes, th_e mostly adopted representations are mes}‘lure models I[NXS12, while modeling and synthesis inter-
model and point cloud. 3D scenes are typically repre- ;a4 resfrict the input data to particular object or scene
sented as an arrangement of individual objects (mesh classes CKGK11, KCKK12, FRS'12]. Thus, as a first step

model). Pre-processing include pre-segmentation, OVer- yhase methods query a 3D model repository to retrieve a sub-
segmentation, pre-alignment, initial correspondencd, an set of relevant models

labeling.

Feature. Roughly speaking, there are two types of fea- Most public shape repositories such as 3D Ware-
tures involved in data-driven shape processing. The most house Tril4] rely on the users to provide tags and names
commonly used features are low-level ones, such as local of the shapes with little additional quality control meassur
geometric features (e.g., local curvature) and globalshap As aresult, the shapes are sparsely labeled with inconsiste
descriptor (e.g. shape distributio® FCD03). If the in- and noisy tags. This motivates developing automatic algo-
put shapes are pre-segmented into meaningful parts, high- rithms to infer text associated with models. Existing wark f
level structural features (spatial relationship) can be de cuses on establishing class memberships for an entire shape
rived. Generally, working with high-level features enable  (e.g. this shape is a chair), as well as inferring finer-scale
the learning of more powerful models for more advanced attributes (e.g. this chair has a rocking leg).

inference tasks, such as structural analy&ié/fZ* 14], on

more complex data such as man-made objects and scenesClassification methods assign a class membership for unla-
Learning model/approach. The specific choice of learn-  beled shapes. One approach is to retrieve for each unlabeled
ing method is application-dependent. In most cases, ma- shape the most similar shape from a database of 3D mod-
chine learning approaches are adapted to geometric dataels with known shape classes. There has been a large num-
with feature extraction. For some problems, such as shape ber of shape descriptors proposed in recent years that can be
correspondence, the core problem is to extract geometric used in such a retrieval task, and one can refer to the sur-
correlation between different shapes, in an unsupervised vey of Tangelder et alT[V08] for a thorough overview. One
manner, which itself can be seen as a learning problem can further improve classification results by leveraging ma
specific to geometry processing. chine learning techniques to learn classifiers that arecbase
Learning type. As discussed above, there are three ba- on global shape descriptofsHIK* 04, GKF09. Barutcuoglu

sic types of data-driven approaches, depending on the et al. BD06] demonstrate that Bayesian aggregation can be
availability of labeled training data: supervised, semi- used to improve classification of shapes that are a part of a
supervised and unsupervised. hierarchical ontology of objects. Bronstein et 8B0G11]]
Learning outcome. The learning would produce a para- leverage “bag of features” to learn powerful descriptaresp
metric or non-parametric model (classifier, clustering, re  metrics for non-rigid shapes. These technique can be furthe
gressor, etc.) used for inference, a learned distanceanetri improved by using sparse coding techniqueBBC14].

Training data. We concern about the representation, pre-
processing and scale ¢faining data. Note that once a

submitted to COMPUTER GRAPHICBrum(2/2015).
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Tag attributes often capture fine-scale attributes of shapes
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Figure 6: A random forest classifier applied on depth data
representing a human body shape (image fréi@ " 13])

tation and part labeling performance based on established
benchmarks. Tabl2 reports characteristic running times for
the same techniques.

4.1. Supervised shape segmentation

that belong to the same class. These attributes can includeClassification techniques.Supervised shape segmentation
presence or absence of particular parts, object style, or is frequently formulated as a classification problem. Giaen

comparative adjectives. Huang et al§G13 developed a

framework for propagating these attributes in a collection
of partially annotated 3D models. For example, only brown
models in Figurel were labeled, and blue models were an-
notated automatically. To achieve automatic labelingy the
start by co-aligning all models to a canonical domain, and

training set of shapes containing points, faces or patd¢iags t
are labeled according to a part category (see Figuréne
goal of a classifier is to identify which part category other
points, faces, or patches from different shapes belongto. S
pervised shape segmentation is executed in two stepsgdurin
the first step, the parameters of the classifier are learoed fr

generate a voxel grid around the co-aligned models. For eachthe training data. During the second step, the classifigr-is a

voxel they compute local shape features, such as spin im- plied on new shapes. A simple linear classifier has the form:
ages, for each shape. Then, they learn a distance metric that

best discriminates between different tags. All shapes are fi
nally embedded in a weighted feature space where nearest
neighbors are connected in a graph. A graph cut clustering

C:f(gej%j) ()

is used to assign tags to unlabeled shapes.

While above method works well for discrete tags, it does

not capture more continuous relations, such as animal A is

more dangerous than animal B. Chaudhuri et@KG*13]
focus on estimating ranking based on comparative adjec-

tives. They ask people to compare pairs of shape parts with
respect to different adjectives, and use a Support Vector

Machine ranking method to predict attribute strengths from
shape features for novel shapes (Figtire

While the techniques described above are suitable for re-

wherex; is a geometric feature of a point (face, or patch),
such as the ones discussed in SecBoiihe parameters;
serve as weights for each geometric feature. The fundtion
is non-linear and maps to a discrete value (label), which is
a part category, or to probabilities per category. In genera
choosing a good set of geometric features that help predict-
ing part labels, and employing classifiers that can discrim-
inate the input data points correctly are important design
choices. There is no rule of thumb on which is the best clas-
sifier for a problem. This depends on the underlying distribu
tion and characteristics of the input geometric featutesy t

trieving related models, most of the described method are dimensionality, amount of labeled data, existence of nioise

not designed to understand intra-class variations. Uguall

the labeled data or shapes, training and test time contstrain

a more involved structural analysis is necessary to under- - for a related discussion on how to choose a classifier for a
stand higher-level semantic properties of shapes. Even for problem, we refer the reader ttMRS0§. Due to the large

inferring tag attributes existing works relies on shapeamat
ing [HSG13 or shape segmentatio@KG*13]. The follow-
ing two sections will focus on inferring these higher-level
structural properties in collections of shapes.

4. Data-driven Shape Segmentation

The goal of data-driven shape segmentation is to partition

dimensionality and complexity of geometric feature spaces
non-linear classifiers are more commonly used. For exam-
ple, to segment human bodies into parts and recognize poses,
the Microsoft's Kinect uses a random forest classifier gin

on synthetic depth images of humans of many shapes and
sizes in highly varied poses sampled from a large motion
capture databas&FC"11] (Figure6).

the shapes of an input collection into parts, and also esti- Structured models. For computer graphics applications, it
mate part correspondences across these shapes. We orgds important to segment shapes with accurate and smooth

nize the literature on shape segmentation into the follow-
ing three categories: supervised segmentation, unsseelrvi
segmentation, and semi-supervised segmentation folgpwin
the main classification discussed in SectibTable1 sum-
marizes representative techniques and reports their segme
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boundaries. For example, to help the user create a new shape
by re-combining parts from other shap&B*04], irregu-

lar and noisy segmentation boundaries can cause problems
in the part attachment. From this aspect, using a classifier
per point/face independently is usually not enough. THus, i
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Segmentation Learning Type of PSB rand index (# train] L-PSB accuracy (# train| COSEG
method type manual input shapes if applicable) shapes if applicable) accuracy
[KHS10 supervised labeled shapes | 9.4% (19)/14.8% (3) | 95.3% (19) / 89.2% (3) unknown
[BLVD11] supervised segmented shapes 8.8% (19)/9.7% (6) not applicable not applicable
[HKG11]] unsupervised none 10.1% not applicable not applicable
[SVKK*11] unsupervised none unknown unknown 87.7%
[VKTS*11] supervised labeled shapes unknown 88.7% (12), see caption| unknown
[HFL12] unsupervised none unknown 88.5% 91.4%
[LCHB12] semi-supervised labeled shapes unknown 92.3% (3) unknown
[WAVK *12] semi-supervised link constraints unknown unknown ‘close to error-free’
WGW*13] supervised labeled images unknown 88.0% (19), see caption| unknown
KLM *13] semi-/unsupervised  box templates unknown unknown 92.7% (semi-superv.)
HWG14 unsupervised none unknown unknown 90.1%
XSX*14] supervised labeled shapes 10.0% 86.0% unknown
[XXLX14] supervised labeled shapes 10.2% (19) 94.2 (19)/ 88.6 (5) unknown

Table 1: Performance of data-driven methods for segmentation irPtireceton Segmentation Benchmark (PSB) and COSEG
datasets. Left to right: segmentation method, learning tgpending on the nature of data required as input to the odetlype

of manual input if such required, segmentation performagx@ressed by the rand index metr€GF09, labeling accuracy
[KHS1Q based on the PSB and COSEG datasets. We report the rand setgrentation error metric averaged over all
classes of the PSB benchmark. The labeling accuracy is gedraver the Labeled PSB (L-PSB) benchmark excluding the
“Bust”, “Mech”, and “Bearing” classes. The reason is that ére are no clear semantic correspondences between parts in

these classes, or the ground-truth segmentations do rfatisafly capture semantic parts in their shapes. We refaiabeling
accuracy averaged over the categories of the COSEG dataseltin [SVKK'11]. The COSEG classes “iron”, “large chairs”,

"o

“large vases”,

tele-aliens” were added later and are exded here since most papers frequently do not report perfocma

in those. We note that van Kaick et alTS 11] reported the labeling accuracy in ten of the L-PSB classdsje Wang et
al. [WGW13] reported the labeling accuracy in seven of the L-PSB clas3bde method by Kim et alkLM*13] can run
in either semi-supervised or unsupervised mode. In unsigsel mode, the corresponding labeling accuracy is 89.9%én

COSEG dataset on average.

is more common to formulate the shape segmentation prob- tional Random FieldUMPO01] that represents the joint prob-
lem as an energy minimization problem that involves a unary ability distribution over part labels conditioned on theur
term assessing the consistency of each point/face with eachfeatures:

part label, as well as a pairwise term assessing the consis-

tency of neighboring points/faces with pairs of labels. For

P(C|x7y,6) = eXF(—E(C; 9))/Z(x,y7 e) (3)

example, pairs of points that have low curvature (i.e., are wherez(x,y, ) is a normalization factor, also known as par-
on flat surface) are more likely to have the same part la- tition function. Minimizing the energy of Equatid or cor-

bel. This energy minimization formulation has been used

respondingly finding the assignmeatthat maximizes the

in several single-shape and data-driven segmentations (un above probability distribution is known as a Maximum A

supervised or superviseddT03,ATC*05,SSS'ssKHS14.
In the case of supervised segmentatikfi§10, the energy
can be written as:

E(c;8) = z Eunary(Gi; Xi,01) + z Epairwise(Ci, Cj: Yij , 02)
T ]
(2

wherec = {c;} is a vector of random variables representing
the part label per point (or face)x; is its geometric feature
vector, i, j are indices to points (or faces) that are consid-
ered neighborsy;; is a geometric feature vector represent-
ing dihedral angle, angle between normals, or other fegture
and@ = {01,0,} are the energy parameters. The important
difference of supervised data-driven methods with previou
single-shape segmentation methods is that the paranteters
are automatically learned from the training shapes to captu
complex feature space patterns per pAmg*05, KHS10.

We also note that the above energy of Equafionhen writ-

Posteriori inference problem that can be solved in various
manners, such as graph cuts, belief propagation, varation
or linear programming relaxation techniqu&s=p9).

The parameter® can be jointly learned through maxi-
mum likelihood (ML) or maximum a posteriori (MAP) es-
timates KF09]. However, due to high computational com-
plexity of ML or MAP learning and the non-linearity
of classifiers used in shape segmentation, it is common
to train the parameter§; and 6, of the model sepa-
rately i.e., train the classifiers of the unary and pairwise
term separately§MO05. The exact form of the unary and
pairwise terms vary across supervised shape segmentation
methods: the unary term can have the form of a log-
linear model ATC*05], cascade of JointBoost classifiers
[KHS1(, Gentleboost JKTS*11], or feedforward neural
networks XXLX14]. The pairwise term can have the form
of a learned log-linear modelATC*05], label-dependent

ten in an exponentiated form and normalized, can be treated GentleBoost classifieKHS 10, or a smoothness term based

as a probabilistic graphical modeKIF09], called Condi-

on dihedral angles and edge length tuned by experimenta-
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tion [SSS'ss VKTS* 11, XXLX14]. Again the form of the
unary and pairwise terms depend on the amount of training
data, dimensionality and underlying distribution of gebme
ric features used, and computational cost.

Joint labeling. Instead of applying the learned probabilis-

learning should maximize the likelihood function of the pa-
rameters over the labeled shapes, and also minimize the en-
tropy (uncertainty) of the classifier over the unlabeledsisa

(or correspondingly maximize the negative entropy). The
idea is that minimizing the entropy over unlabeled shapes
encourages the algorithm to find putative labelings for the

tic model to a single shape, an alternative approach is to find unlabeled dataJWL"06]. However, it is generally hard to
correspondences between faces of pairs of shapes, and incorstrike a balance between the likelihood and entropy terms.

porate a third “inter-shape” term in the energy of Equation
2 [VKTS*11]. The “inter-shape” term favors pairs of corre-

Metric embedding and active learning. A more gen-

sponding faces on different shapes to have the same label.eral formulation for semi-supervised segmentation was pre

As a result, the energy can be minimized jointly over a set of

sented in WAVK * 12]. Starting from a set of shapes that are

shapes to take into account any additional correspondences co-segmented in an unsupervised mani®rmKK*11], the

Boundary learning. Instead of applying a classifier per
mesh point, face or patch to predict a part label, a different
approach is to predict the probability of each polygon mesh
edge to serve as a segmentation boundary orBIo{[D11].

The problem can be formulated as a binary classifier (e.g.,
Adaboost) that is trained from human segmentation bound-
aries. The input to the classifier are geometric features of

user interactively adds two types of constraints: “musitli
constraints, which specify that two patches (super-faces)
should belong to the same cluster, and “cannot-link” con-
straints which specify that two patches must be in different
clusters. These constraints are used to perform constraine
clustering in an embedded feature space of super-faces com-
ing from all the shapes of the input dataset. The key idea is
to transform the original feature space, such that supasfa

edges, such as dihedral angles, curvature, and shape diamwith “must-link” constraints come closer together to form

eter and the output is a probability for an edge to be a seg-

mentation boundary. Since the predicted probabilities ove

a cluster in the embedded feature space, while super-faces
with “cannot-link” constraints move away from each other.

the mesh does not correspond to closed smooth boundaries,To minimize the effort required from the user, the method

a thinning and an active contour mod&\WT88] are used
as post-processing to produce the final segmentations.

Transductive segmentation. Another way to formulate the

suggests the user pairs of points in feature space that when
constrained are likely to improve the co-segmentation. The
suggestions involve points that are far from their clusesr-c
ters, and have a low confidence of belonging to their clusters

shape segmentation problem is to group patches on a mesh

such that the segment similarity is maximized between the
resulting segments and the provided segments in the tgainin

Template fitting. A different form of partial supervision
can come in the form of part-based templates. Kim et al.'s

database. The segment similarity can be measured as the remethod KLM *13] allows users to specify or refine a few

construction cost of the resulting segment from the trginin

templates made out of boxes representing expected parts in

ones. The grouping of patches can be solved as an integeran input database. The boxes iteratively fit to the shapes of

programming problemX{SX™* 14].

Shape segmentation from labeled imagednstead of us-

ing labeled training shapes for supervised shape segmen-

tation, an alternative source of training data can come in

a collection through simultaneous alignment, surface seg-
mentation and point-to-point correspondences estimated b
tween each template and each input shape. Alternatively, th
templates can be inferred automatically from the shapes of
the input collection without human supervision based on sin

the form of segmented and labeled images, as demonstrateddle shape segmentation heuristics. Optionally, the user ca

by Wang et al. WGW*13]. Given an input 3D shape, this
method first renders 2D binary images of it from differ-
ent viewpoints. Each binary image is used to retrieve mul-
tiple training segmented and labeled images from an input

refine and improve these estimated templates. From this as-
pect, Kim et al.’s method can run in either semi-supervised o

unsupervised method. It was also the first method to handle
segmentation and correspondences in collections with size

database based on a bi-class Hausdorff distance measurein the order of thousands of shapes.

Each retrieved image is used to perform label transfer to
the 2D shape projections. All labeled projections are then
back-projected onto the input 3D model to compute a label-
ing probability map. The energy function for segmentat®on i
formulated by using this probability map in the unary term

expressed per face or point, while dihedral angles and Eu-

clidean distances are used in the pairwise term.

4.2. Semi-supervised shape segmentation

Entropy regularization. The parameter§ of Equation2

4.3. Unsupervised segmentation

Unsupervised data-driven shape segmentation techniques
fall into two categories: clustering based techniques and
matching based techniques. In the following, we highlight
the key idea of each type of approaches.

Clustering based techniques are adapted from supervised
techniques. They compute feature descriptors on points or
faces. Clustering is performed over all points/faces oller a

can be learned not only from the training labeled shapes, but shapes. Each resulting cluster indicates a consistentesggm

also from the unlabeled shapdsJHB12]. The idea is that

submitted to COMPUTER GRAPHICBrum(2/2015).

across the input shapes. The promise of the clustering based
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Segmentation Reported Dataset size for Reported

method running times reported running times processor
[KHS10 8h train. / 5 min test. 6 train. shapes / 1 test shape| Intel Xeon E5355 2.66GHz
[BLVD11] 10 min train. / 1 min test. unknown for train. / 1 test shapg Intel Core 2 Duo 2.99GHz
[HKG11]] 32h 380 shapes unknown, 2.4 GHz
[SVKK*11] 10 min 30 shapes AMD Opteron 2.4GHz
[VKTS*171] 10h train. / few min test. 20-30 train. shapes / 1 test shape AMD Opteron 1GHz
[HFL12] 8 min (excl. feat. extr.) 20 shapes Intel dual-core 2.93GHz
LCHB12] 7h train. / few min test. 20 shapes Intel 17 2600 3.4GHz
WAVK *12] 7 min user interaction 28 shapes unknown
WGW*13] 1.5 min (no train. step) 1 test shape unknown

[KLM *13] 11h 7442 shapes unknown
[HWG14 33h 8401 shapes unknown, 3.2GHZ
[XSX*14] 30 sec (no train. step) 1 test shape Intel I5 CPU
[XXLX14] 15 sec train. (excl. feat. extr. 6 train. shapes Intel Quad-Core 3.2 GHz

Table 2: Running times reported for the data-driven segmentatiothous of Tablel. We note that running times are reported
in different dataset sizes and processors in the referepepérs, while it is frequently not specified whether the etiec uses
one or multiple threads or whether the running times inclatié¢he algorithm steps, such as super-face or feature exva.
Exact processor information is also frequently not prodid€hus, the reported running times of this table are onlydative
and should not serve as a basis for a fair comparison.

approach is that when the number of shapes becomes large

the sampling density in the clustering space becomes dense >\<ﬂ /ﬁﬁ \*w iﬁﬁ

enough, so that certain statistical assumptions are saljsfi ] ’ ——
e.g., diffusion distances between points from differensel fsag_\]? v ey Q\)) v
ters is significantly larger than those between points withi -

each cluster. When these assumptions are satisfied, eluster ~ i

ing based approach can produce results that are comparable

to supervised techniques (c.HFL12]). In addition, clus- @
tering method being employed play an important role in
the segmentation results. IBYKK*11], the authors utilize
spectral clustering to perform clustering. HFL12], the au-
thors employ subspace clustering, a more advanced cluster-
ing method, to obtain improved results.

Another line of unsupervised methods pursues cluster-
ing of parts. In KLZ*10], the authors perform co-analysis o ) ) )
over a set of shapes via factoring out the part scale vari- Figure 7: Comparison of single-shape segmentation (left)
ation by grouping the shapes into different styles, where and joint shape segmentation (right) on models from the
style is defined by the anisotropic part scales of the shapes. PSB benchmarkQGF09. Each segmentation on the left
In [VKXZ*13], the authors introduce unsupervised co- Was produced by the top-performing algorithm in the bench-
hierarchical analysis of a set of shapes. They propose 4 nove Mark for that shape. The segmentations on the right were
cluster-and-select scheme for selecting representative p Produced by HKG11], which jointly optimized segmenta-
hierarchies for all shapes and grouping the shapes accord-tions and correspondences across the entire dataset.
ing to the hierarchies. The method can be used to compute pptimizes shape segmentations and maps between opti-
consistent hierarchical segmentation for the input set. mized segmentations. Since the maps are defined at the

part-level, this technique is suitable for heterogeneous

Matching based methods GF09 HKG11l, WHG13 shape collections. Experimentally, it generates comparab
HWG14 build maps across shapes and utilize these maps results with supervised metho&HS10 on the Princeton
to achieve consistency of segmentations. As shown in segmentation benchmark. Recently, Huang etldW{G14]
Figure7, this strategy allows us to identify meaningful parts formulates the same idea under the framework of functional
despite the lack of strong geometric cues on a particular maps PBCS'12] and gain improved segmentation quality
shape. Likewise, the approach is able to identify coherent and computational efficiency.
single parts even when the geometry of the individual shape
suggests the presence of multiple segments. A challenge
here is to find a suitable shape representation so that
maps across diverse shapes are well-defineddkd11], Another fundamental problem in shape analysis is shape
Huang et al. introduce an optimization strategy that jgintl matching, which finds relations or maps between shapes.

5. Joint Shape Matching
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These maps allow us to transfer information across shapes
and aggregate information from a collection of shapes for
a better understanding of individual shapes (e.g., deigcti
shared structures such as skeletons or shape parts). Boey al
provide a powerful platform for comparing shapes (i.e.hwit
respect to different measures and at difference places). As
we can see from other sections, shape maps are widely ap-
plied in shape classification and shape exploration as well.

Initial maps

So far most existing research in shape matching has fo-
cused on matching pairs of shapes in isolation. We re-
fer to [vKZHCO11 for a survey and to L[HO5, LFQ9, B ——a
VKZHCO11, OMMG10, KLF11, OBCS'12] for recent ad-
vances. Although significant progress has been made, state- == rﬂ
of-the-art techniques are limited to shapes that similar to
each other. On the other hand, they tend to be insufficient for

shapes that undergo large geometric and topological varia- Figure 8: Joint shape matching takes as input maps com-
tions. puted between pairs of shapes in isolation and utilizes the

o ) cycle-consistency constraint to improve shape maps. This
The availability of large shape collections offers oppertu  figure shows the result of Huang et aH\VG14, which per-

nities to address this issue. Intuitively, when matching tw  forms joint shape matching under the functional map setting
dissimilar shapes, we may utilize intermediate shapes to

transfer maps. In other words, we can build maps between
similar shapes, and use the composite maps to obtain map
between less similar shapes. As we will see shortly, this in- maps, i.e., an inconsistent cycle indicates that at least on
twition can be generalized to enforcing a cycle-consistenc the'parti’cipating maps or correspondences is incorfect.
constraint, namely composite maps along cycles should be ., s opservation into algorithms, one has to formulate
|dent|.ty map or the composite map betwgen two §hapes 'S the cycle-consistency constraint properly. Existing veoirk
path-independent. In this section, we discuss joint shape qaia_griven shape matching fall into two categories: cembi
matching techniques that take a shape collection andlinitia natorial techniques and matrix recovery based techniques.

noisy maps computed between pairs of shapes_ as input, andThe reminder of this section provides the details.
output improved maps across the shape collection.

inconsistent cycles. These inconsistent cycles provige us
Stul information for us to detect incorrect correspondenmes

5.1. Model Graph and Cycle-Consistency 5.2. Combinatorial Techniques

Spanning tree optimization. Earlier works in joint match-
ing aim at finding a spanning tree in the model graph.
{Sw,---,S)} consists of the input shapes. The edgeet In [GMBO04, HFG*06], the authors propose to use the max-

characterizes the pairs of shapes that are selected for per-'tm:rgtfar,z:nn'ggntfaesi(lesa-irl)S?rf\égean;;:]d?é ?;ggnézogvdzvee?
forming pair-wise matching. For small-scale datasets, we 9y y 9

. - the MST may break the entire matching result. In the semi-
typically match all pairs of shapes. For large-scale dégase I
the edge set usually connects shapes that are similar accord nal work [HUb03, Huber showed that finding the best span-

: s . ning tree maximizing the number of consistent edges is NP-
ing to a pre-defined shape descriptéLM *12, HSG13, A ) .
thus generating a sparse shape graph. hard. Although finding the best spanning tree is not traetabl

Huber introduced several local operations for improvirg th
The key component of a joint matching algorithm isto uti-  score of spanning trees. However, these approaches are gen-

lize the so-called cycle-consistency constraint. Spetific erally limited to small-scale problems so that the search

speaking, if all the maps ig are correct, then composite  space can be sufficiently explored.

maps along any loops should be identity maps. This is true

for maps that are represented as transformations (e.g., ro " )
tations and rigid/affine transformations), or full poinise pr(:_ache?_ 1KF10, IRSt8811INBCV\/. %1]tapplles _|9r|10ba|
maps that can be described as permutation matrices). We canPPimization to select cycie-consistent maps. These ap-

easily modify the constraint to handle partial maps, namely pro_ac_hes_ are typically formulate(_j as solving_ constrained
each point, when transformed along a loop, either disagpear optimization problems, where objective functions encode

. . . the scores of selected maps, and constraints enforce the
or goes back to the original point (Se#/G14 for details). consistency of selected mF;ps along cycles. The major

The cycle-consistency constraint is useful because the ini advantage of these approaches is that the correct maps are
tial maps, which are computed between pairs of shapes in determined globally. However, as the cycle consistency
isolation, are not expected to satisfy the cycle consistenc constraint needs to apportion blame along many edges
constraint. On the other hand, although we do not know on a cycle, the success of these approaches relies on the
which maps or correspondences are incorrect, we can detectassumption that correct maps are dominant in the model

To formulate the joint matching problem, we consider a
model graphg = (S, €) (c.f. [Hub032). The vertex setS =

_Inconsistent cycle detection. Another line of ap-
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graph so that the small number of bad maps can be identified of X""P!! (with given rank) under the matrix Frobenius norm.
through their participation in many bad cycles. However, as the input maps may contain outliers, employ-
ing the Frobenius norm for matrix recovery is sub-optimal.
Moreover, it is hard to analyze these techniques, even in the
very basic setting where maps are given by permutation ma-

MRF formulation. Joint matching may also be formulated
as solving a second order Markov Random Field (or MRF)
[CAF10h CAF10gCOSH11HZG*12]. The basic idea is to ;
sample the transformation/deformation space of each shapetrIces PKS13.

to obtain a candidate set of transformation/deformation-sa  point-based mapsin a series of works, Huang and cowork-
ples per shape. Joint matching is then formulated as opti- ers HG13 CGH14 HCG14 consider the case of point-
mizing the best sample for each shape. The objective func- hased maps and develop joint matching algorithms that ad-
tion considers initial maps. Specifically, each pair of sam- mijt theoretical guarantees. The work ¢1G13 considers
ples from two different shapes would generate a candidate the basic setting of permutation matrix maps and proves the

map between them. The objective function then formulates equivalence between cycle-consistent maps and the lokv-ran
second-order potentials, where each term characterize theor positive semi-definiteness of the map collection matrix.

alignment score between these candidate maps and thé initia This |eads to a semidefinite programming formulation for

maps HSG13HZG*12).
The key challenge in the MRF formulation is generat-

joint matching. In particular, L1 norm is used to measur-
ing the distance between the recovered maps and the initial

ular strategy is to perform uniform samplin€@@SH11
HSG13, which works well when the transformation space
is low-dimensional. To apply the MRF formulation on high-
dimensional problems, Huang et aHZG*12] introduce a
diffusion-and-sharpening strategy. The idea is to diffilmse
maps among the model graph to obtain rich samples of can-
didate transformations or correspondences and then perfor
clustering to reduce the number of candidate samples.

5.3. Matrix Based Techniques

A recent trend in map computation is to formulate joint
map computation as inferring matriceSW11, KLM *12,
HZG*12,WS13HG13 CGH14 HWG14. The basic idea is
to consider a big map collection matrix

X11 X2 X1n
X21 X22 Xon

X = . . . ,
X21 Xnn

where each blockj; encodes the map from shage to
shapeS;. In this matrix representation, the cycle-consistency
constraint can be equivalently described as simple proper-
ties of X, i.e., depending on the types of mapsjs either
positive semidefinite or low-rank (c.fHG13 HWG14). In
addition, we may view the initial pair-wise maps as noisy
measurements of the entriesXfBased on this perspective,
we can formulate joint matching as matrix recovery from
noisy measurements of its entries.

Spectral techniquesThe initial attempts in matrix recovery
are spectral techniques and their variai@gL1, KLM *12,
WHG13. The basic idea is to consider the map collection
X"PU that encodes initial maps in its blocks. Then the recov-
ered matrix is given bX = usvT, whereU, 2,V are given
singular value decomposition (or SVD) &f"PU. Various
methods have added heuristics on top of this basic proce-
dure. For example, Kim et alKLM *12] use the optimized
maps to recompute initial maps.

This SVD strategy can be viewed as matrix recovery be-
causeX is equivalent to the optimal low-rank approximation

state that the ground-truth maps can be recovered if the per-
centage of incorrect correspondences in the input maps is
below a constant. In a followup work, Chen et &@GH14
extends it to partial maps and provide a better analysisein th
case where incorrect correspondences in the input maps are
random. The computational issue is addressetiiDG14,
which employs alternating direction of multiplier methods
for optimization.

Rotations and functional maps.Maps that are represented
by general matrices (e.g., rotations or functional mapg) ca
also be handled in a similar fashion. WE13, Wang and
Singer consider the case of rotations between objectsr Thei
formulation is similar to HG13 but utilize a L1 Frobenius
norm for measuring the distance between initial rotations
and recovered rotations. Recently, Huang et dW[G14]
extend the idea to functional maps. The major difference be-
tween functional maps and point-based maps or rotations is
that the map collection matrix is no-longer symmetric. Thus
their method is formulated to recover low-rank matrices.

5.4. Discussion and Future Directions

The key to a joint shape matching algorithm is to have a
proper formulation of the cycle-consistency constraine W
have witnessed the evolution from earlier works on com-
binatorial search and detecting inconsistent cycles taemor
recent works on spectral techniques, MRF based methods
and matrix recovery techniques. In particular, matrix keco
ery techniques admit theoretical guarantees. They provide
fundamental understanding of why joint shape matching can
improve from isolated pair-wise matching.

One future direction is to integrate pair-wise matching and
joint matching into one optimization problem. Since the ma-
jor role of joint matching is to remove the noise presented
in pair-wise matching, it makes sense to perform them to-
gether. Such unified approaches have the potential to furthe
improve from decomposed approaches (i.e., from pair-wise
to joint). The technical challenge is to find map representa-
tions so that pair-wise matching and map consistency can be
formulated in the same framework.
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Analyzer ——— can be used to synthesize new individuals or edit existing
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ometry of a face with shape-vect&= (pl,---,pp)") €
Figure 9: Derived from a dataset of prototypical 3D scans R3"), that contains the 3D coordinates ofiitsertices. Sim-

of faces, the morphable face model contributes to two main jlarly, it encodes the texture of a face by a texture-vector
steps in face manipulation: (1) deriving a 3D face model T _ (CLC;"' 7(33) € R3", that contains the RGB color val-
from a novel image, and (2) modifying shape and texture in es of the corresponding vertices. A morphable face model
a natural way BV99. is then constructed using a databaseroéxemplar faces,
each represented by its shape-veoand T;. In [BV99]

the exemplar faces are constructed by matching a template
Reconstructing geometric shapes from physical objects is a to scanned human faces.

fundamental problem in geometry processing. The input to
this problem is usually a point cloud produced by aligned
range scans, which provides an observation of an object. The
goal of a shape reconstruction algorithm is to convert this
point cloud into a high-quality geometric model. In prac- . om-1 . om-1
tice, the input point cloud data is noisy and incompletesthu Smod = S+ Zi ais, Tmod=T+ Z Biti,

the key to a successful shape reconstruction algorithnr4is fo i= i=

mulating appropriate shape priors. Traditional shapereco  \yhereSandT are the mean-shape and mean-texture, respec-
struction algorithms usually utilize generic priors, SB  tjely, ands andt; are eigenvectors of covariance matrices.
surface smoothnes®TB0E], and typically assume thatthe  ; andp; are coefficients. PCA also gives probability distri-

input data captures most of the object's surface. To handle pytions over coefficients. The probability for coefficients
higher degree of noise and partiality of the input data, itis s given by

important to build structural shape priors.

m—1
Data-driven techniques tackle this challenge by leverag- p({aij}) ~ exp(—} Zi (o(i/o'i)2> ,
ing shape collections to learn strong structural priorsnfro 2 &
similar objects, and use them to reconstruct high-quality 3
models. Existing approaches fall into two categories, thase
on how they represent the shape prigggrametricandnon-
parametric The former usually builds a low-dimensional With this morphable face model, reconstruction of tex-
parametric representation of the underlying shape space,tured models can be posed as a small-scale non-linear op-
learning the representation from exemplars and enforcing timization problem. For example, given a 2D image of a
the parameterization when reconstructing new models-Para human facelinput, ONE can reconstruct the underlying tex-
metric methods typically require building correspondence tured 3D model by searching for a similar rendered face
across the exemplar shapes. In contrast, non-parametriC|({gi}7{[3i}7p), parameterized by the shape and texture co-
methods directly operate on the input shapes by copying efficientsa; and f3;, and the rendering parameteps(e.g.,
and deforming existing shapes or shape parts, which are de-camera configuration, lighting parameters). The optimiza-
signed for shapes with large variations, such as man-made tion problem is formulated as minimizing a data term, which
objects. measures the distance between the input image and the ren-
dered image, and regularization terms that are learned from
exemplar faces. The success of the morphable model re-
lies on low-dimensionality of the solution space, thus this
Morphable face. A representative work in parametric  method was applied to several other data sets where this as-
data-driven shape reconstruction is the morphable face sumption holds, such as human bodies and poses.
model BV99], which is designed for reconstructing 3D tex- .
tured faces from photos and scans. The model is learned Morphab:]e tt)tluman db?(tjleshAllent et aI.hLACPOCib gde.nerallz-.
from a dataset of prototypical 3D shapes of faces, and the fg) n(tgoi\r/[;naa seertr]gf gsoos(c::a?\rr?g detrlljriar?nk:ggie: tlﬁz r(ne%rl:g?j
model can then be used to derive a 3D face model from a fi t f -riaid istration to fit a hol f it
novel image and to modify shape and texture in a natural Irst performs non-rigid registration to fit a hole-iree |
way (See Figur@). generated mesh (template) to each of these scans. The result
is a set of mutually consistent parameterized shapes based
In particular, the morphable face model represents the ge- on the corresponding vertex positions originating from the

6. Data-Driven Shape Reconstruction

The morphable face model uses Principal Component
Analysis (PCA) to characterize the shape space. A new
shape and its associated texture are given by

with oiz being the eigenvalues of the shape covariant matrix
Cs (the probabilityp({Bi }) is computed in a similar way).

6.1. Parametric Methods
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template. Similar toBV99], the method employs PCA to
characterize the shape space, which enables applications i
shape exploration, synthesis and reconstruction.

In addition to variations in body shapes, human models
exhibit variations in poses. The SCAPE model (Shape Com-
pletion and Animation for PEopleSK*05] addresses this
challenge by learning separate models of body deformation
— one accounting for variations in poses and one accounting Figure 11: The data-driven shape reconstruction pipeline
differences in body shapes among humans. The pose defor- . *

. . . proposed in PMG*05].
mation component is acquired from a set of dense 3D scans
of a single person in multiple poses. A key aspect of the pose Key idea is to combine a general blendshape PCA model and
model is that it decomposes deformation into a rigid and a a corrective PCA model that is updated on-the-fly. This cor-
non-rigid component. The rigid component is modeled us- rective PCA model captures the details of the specific actor
ing a standard skeleton system. The non-rigid component, and missing deformations from the initial blendshape model
which captures remaining deformations such as flexing of
the muscles, associates each triangle with a local affinetra  6.2. Non-Parametric Methods

;ormanon mlatnx. 'I'_hese_tr_a?sformat!on ma:jn(ile_lslsareolgdrn Parametric methods require canonical domains to character
|_r|om| exe;npl a_rstus(ljng ajoin Fﬁgaess'%” lmfo elHSE : ]'_ . ize the shape space, which have been so far demonstrated
asler €t al. introduce a unified model for parameterizing , qomains of organic shapes, such as body shapes or faces.

bqth shapes and_poses. The basic |(_jea Is to consu_jer th_e rel'In this section, we discuss another category of methods that
ative transformations be@ween aI_I pairs of neighboringriri have shown the potential to handle more diverse shape col-
gles. These transformation matrices allow us to recoristruc lections

the original shape by solving a least square problem. In this

regard, each shape is encoded as a set of edge-wise trans- Generally speaking, a non-parametric data-driven shape
formation matrices, which are fit into the PCA framework to  reconstruction method utilizes a collection of relevaratpss
obtain a statistical model of human shapes. The model is fur- and combines three phases, i.e., a query phase, a transforma
ther used to estimate shapes of dressed humans from rangdion phase and a assembly phase. Existing methods differ
scans HSR*09]. in how the input shape collection is preprocessed and how
these phases are performed.

Recent works on statistical human shape analysis focus
on combing learned shape priors with sparse observations

a?:airr)]etﬂ:tl fgce;ritrlsgt\ﬂrﬁ 1;]1] T;i?u;m(;rségtﬁucgsig%m introduce one of the first non-parametric systems. As shown
P gn-q y P P ) in [PMG*05], the method takes an input point cloud and a
sparse set of markers. The success of this approach relies on

learning meaningful shape priors from a database congists o collection of complete objects as input. The reconstructio
thousag ds of shgpes Ih?\lepl 4], the authors study how to procedure reveals all three phases described above. The firs

understand human breathing from acquired data phase determines a set of similar objects. The retrievalgoha

’ combines both text-based search, PCA signatures and is re-
Data-driven tracking. Another problem in shape recon- fined by rigid alignment. The second step performs non-rigid
struction is object tracking, which aims at creating and an- alignment between the retrieved shapes and the input point
alyzing dynamic shapes and/or poses of physical objects. cloud. This step partitions the input point cloud into a set
Successful tracking techniques (e.§yUlVGP09 WBLP11, of patches, where each patch is associated with one retried
LYYB13, CWLZ13, CHZ14) typically utilize parametric shape (via the corresponding region). The final phase merges
shape spaces. These reduced shape spaces provide shape ptire corresponding regions into a unified shape.
ors that improve both the efficiency and robustness of the
tracking process. The way to utilize and construct shape
spaces vary in different settings, and are typically taifioio
the specific problem setting. Weise et &lI[VGP09 utilize
a linear PCA subspace trained with a very large set of pre-
processed facial expressions. This method requires an ex-
tended training session with a careful choice of facialaacti
units. In addition, the learned face model is actor-specific
These restrictions are partially resolved BWP10, which
introduces an example-based blendshape optimization tech  In contrast to considering entire 3D shapes, Gal et
nique, involving only a limited number of random facial ex-  al. [GSH*07] utilizes a dictionary of local shape priors (de-
pressions. In\VBLP11], the authors combine both blend- fined as patches) for shape reconstruction. The method is
shapes and data-driven animation priors to improve the mainly designed for enhancing shape features, where each
tracking performance. In a recent work, Li et dlYYB13] region of an input point cloud is matched to a shape patch
employs adaptive PCA to further improve the tracking per- in the database. The matched shape patch is then used to en-
formance on nuanced emotions and micro-expression. The hance and rectify the local region. Recently, Mattausch et

Example-based scan completionPauly et al. PMG*05]

Nan et al. NXS12 introduce a similar system for indoor
scene reconstruction. Given an input point cloud of an in-
door scene that consists of a set of objects with known cat-
egories, the method searches in a database of 3D models to
find matched objects and then deforms them in a non-rigid
manner to fit the input point cloud. Note that this method
treats complete 3D objects as building blocks, so the final
reconstruction does not necessarily reflect the origiraiec
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al. [MPM*14] introduce a patch-based reconstruction sys-
tem for indoor scenes. Their method considers recognizing
and fitting planar patches from point cloud data.

Shen and coworkersSFCH12 extends the idea for sin-
gle object reconstruction, by assembling object partsirThe

method utilizes consistently segmented 3D shapes as the

database. Given a scan of an object, it recursively search
parts in the database to assemble the original object. The
retrieval phase considers both the geometric similarity be
tween the input and the retrieved parts and the part compati-
bility learned from the input shapes.

Data-driven SLAM. Non-parametric methods have also
found applications in reconstructing temporal geometric
data (e.g., the output of the Kinect scanner). A notable-tech
nique is simultaneous localization and mapping (or SLAM)
method, which jointly estimates the trajectory of the scan-
ning device and the geometry of the environment. In this
case, shape collections serve us priors for the objects in
the environment, which could be used to train object detec-
tors. For example, the SLAM++ system proposed by Salas-
Moreno et al. BMNS" 13] trained domain specific object de-
tectors from shape collections. The learned detectorshare i
tegrated inside the SLAM framework to recognize and track
those objects. Similarly Kim et alKMYG12] use learned
object models to reconstruct dense 3D models from a single
scan of an indoor scene. More recently, Sun et X144
introduce 3D sliding window object detector with improved
performance and broader range of objects.

Shape-driven reconstruction from imagesRecently, there

is a growing interest in reconstructing 3D objects directly
from images (e.9.XZZ* 11, KSES14AME * 14, SHM* 14]).

This problem introduces fundamental challenges in both
querying similar objects and deforming objects/parts to fit
the input object. In terms of searching similar objects, suc
cessful methods typically render objects in the database fr

a dense of viewpoints and pick objects, where one view is
similar to the input image object. Since the depth informa-
tion is missing from the image object, it is important to prop
erly regularize 3D object transformations. Since othegveis
3D object maybe deformed arbitrarily even though its pro-
jection on the image domain matches the image object. Most
existing techniques consider rigid transformations orr-use
specified deformationsXzZ*11]. In a recent work, Su et
al. [SHM*14] propose to learn meaningful deformations of
each shape from its optimal deformations to similar shapes.

7. Data-driven Shape Modeling and Synthesis

So far, the creation of detailed three-dimensional coneent
mains a tedious task confined with skilled artists. 3D canten
creation has been a major bottleneck hindering the develop-
ment of ubiquitous 3D graphics. Thus, providing easy-te-us
tools for casual and novice users to design and create 3D
models has been a key challenge in computer graphics. To
address this challenge, current literature has been fdarse
two main directions, i.e., intelligent interfaces for irgetive

shape modeling and smart models for automated model syn-

thesis. The former strives to endow modeling interfaceb wit
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Figure 12: Given a library of models, a Bayesian net-
work encoding semantic and geometric relationships among
shape parts is learneddKGK17] (top). The modeling pro-
cess (bottom) performs probabilistic inference in the theat
Bayesian network to generate ranked lists of category la-
bels and components within each category, customized for
the currently assembled model.

higher-level understanding of the structure and semaafics
3D shapes, allowing the interface to reason around the in-
complete shape being modeled. The latter direction focuses
on developing data-driven models to synthesize new shapes
automatically. The core problem is to learn generative shap
models from a set of exemplars (e.g., probability distribu-
tions, fithess functions, functional constraints etc) s the
synthesized shapes are plausible and novel. It can be seen
that both of the two paradigms depend on data-driven mod-
eling of shape structures and semantics. With the avaiabil

of large 3D shape collections, data-driven approach seems a
promising breakthrough to the content creation bottleneck

7.1. Interactive Shape Modeling and Editing

Interactive 3D modeling software (3DS Max, Maya, etc.)
provide the artists with a big set of powerful tools for cre-
ating and editing very detailed 3D models, which are, how-
ever, often onerous to harness for non-professional users.
casual users, more intuitive modeling interfaces withaiert
intelligence are preferred. Below we discuss such methods
for assembly-based modeling and guided shape editing.

Data-driven part assembly. Early works on 3D modeling
based on shape sets are primarily driven by the purpose of
content reusén part-assembly based modeling approaches.
The seminal work of modeling by exampld=HS*04]
presents a pioneering system of shape modeling by search-
ing a shape database for parts to reuse in the construction
of new shapes. Kraevoy et aKJS07 describe a system for
shape creation via interchanging parts between a smalf set o
compatible shapes. Guo et aB1[XJ14] propose assembly-
based creature modeling guided by a shape grammar.

Beyond content reuse through database queries or hand-
crafted rules, Chaudhuri and KolturCK104 propose a
data-driven technique for suggesting the modeler withshap
parts that can potentially augment the current shape being
built. Such part suggestions are generated through retriev
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ing a shape database based on partial shape matching. Al-
though this is a purely geometric method without account-
ing for the semantics about shape parts, it represents e fir
attempt on utilizing shape databasetmment the modeling
interface Later, Chaudhuri et alJKGK11] show that the
incorporation of semantic relationships increases the-rel
vance of presented parts. Given a repository of 3D shapes,
the method learns a probabilistic graphical model encod-
ing semantic and geometric relationships among shape parts Figure 13: Given a hundred training airplanes (in green),
During modeling, inference in the learned Bayesian network the probabilistic model fromCKK12 synthesizes several
is performed to produce a relevance ranking of the parts. hundreds of new airplanes (in blue).

A common limitation of the above techniques is that they These distributions can be used to guide structure-priegerv
do not provide a way to directly express a high-level design editing, where models can be edited while maintaining their
goal (e.g. “create a cute toy”). Chaudhuri et &KG* 13| familial traits. Yumer et al. YK14] extract co-constrained
proposed a method that learns semantic attributes for shapehandles from a set of shapes for shape deformation. The han-
parts that reflect the high-level intent people may have for dles are generated based on co-abstracti#ii ] of the set
creating content in a domain (e.g. adjectives such as “dange of shapes and the deformation co-constraints are learaed st
ous”, “scary” or “strong”) and ranks them according to the tistically from the set.
strength of each learned attribute (FiggyeDuring an inter-

active session, the user explores and modifies the strengths  Based on learned structure from a database of 3D mod-
of semantic attributes to generate new part assemblies. els, Xu et al. KZZ"11] propose photo-inspired 3D object
modeling. Guided by the object in a photograph, the method

3D shape collections can supply other useful informa- creates a 3D model as a geometric variation of a candi-
tion, such as contextual and spatial relationships between date model retrieved from the database. Due to the pre-
shape parts, to enhance a variety of modeling interfaces. analyzed structural information, the method addresses the
Xie et al. [XXM*13] propose a data-driven sketch-based jll-posed problem of 3D modeling from a single 2D im-
3D modeling system. In the off-line learning stage, a shape age via structure-preserving 3D warping. The final result is
database is pre-analyzed to extract the contextual informa structurally plausible and is readily usable for subseguen
tion among parts. During the online stage, the user designs aediting. Moreover, the resulting 3D model, although built
3D model by progressively sketching its parts and retrigvin  from a single view, is structurally coherent from all views.
and assembling shape parts from the database. Both the re-
trieval and assembly are assisted by the precomputed contex
tual information so that more relevant parts can be returned 7-2. Automated Synthesis of Shapes
and selected parts can be automatically placed. Inspired by

M licati has 3D d fil ire |
the ShadowDraw systenl ZC11], Fan et al. FWX*13] any applications such as 3D games and films require large

; . . ) collections of 3D shapes for populating their environments
propose 3D modeling by drawing with data-driven shadow Modeling each shape individually can be tedious even with

guidance. The user’s_ strokes are us_ed to query a 3D Shapethe best interactive tools. The goal of data-driven shape sy
da_tabase for g(?neratlrjg the shadow Image, which in turn can i gjg algorithms is to generate several shapes autothatica
guide the USers drawing. Along the drawing, _3D candidate with no or very little user supervision: user may only pravid
parts are retrieved for assembly-based modeling. some preferences or high-level specifications to contml th
shape synthesis. Existing methods achieve this task by us-
ing probabilistic generative models of shapes, evolutipna
methods, or learned probabilistic grammars.

Data-driven editing and variation. The general idea of
data-driven shape editing is to learn from a collection of
closely related shapes a model that characterize the plausi
variation or deformation of the shapes, and use the learned
model to constrain the user’s edit to maintain plausibility
For organic shapes, such as human fa8a£9p, CWZ*14]

or bodies ACP03, parametric models can be learned from
a shape set characterizing its shape space. Such parametring
models can be used to edit the shapes through exploring the
shape space with the set of parameters.

Statistical models of shapesThe basic idea of these meth-
ods is to define a parametric shape space and then fit a prob-
ability distribution to the data points that represent the i
ut exemplar shapes. Since the input shapes are assumed to
e plausible and desired representatives of the shape,space
high-probability areas of the shape space with tend to be-
come associated with new, plausible shape variants. This
An alternative approach is the analyze-and-edit paradigm idea was first explored in the context of parametric mod-
that is widely adopted to first extract the structure from the els BV99, ACP03, discussed in SectioB. By associat-
input shape and then try to preserve the structure through ing each principal component of the shape space defined
constraining the editing@SMCOO09. Instead of learning by these methods with a Gaussian distribution, this distri-
structure from a single shape, which usually relies on prior bution can be sampled to generate new human faces or bod-
knowledge, Fish et al.HAvK*14] learn it from a set of ies (Figurel0). Since the probability distribution of plausi-
shapes belong to the same family, resulting in a set of ge- ble shapes tend to be highly non-uniform in several shape
ometric distributions characterizing the part arrangesien  classes, Talton et alT[GY*09] use kernel density estima-
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tion with Gaussian kernels to represent plausible shape var (a)
ability. The method is demonstrated to generate new shapes
based on tree and human body parametric spaces. o ——e

Shapes have structure i.e., shapes vary in terms of their
type and style, different shape styles have different num-
ber and type of parts, parts have various sub-parts that can A
be made of patches, and so on. Thus, to generate shape:
in complex domains, it is important to define shape spaces
over structural and geometric parameters, and capture hi- Figure 14: Scene comparisons may yield different similarity
erarchical relationships between these parameters at-diff ~distances (left) depending on the focal poir$/Z*14)].
ent levels. Kalogerakis et alKCKK12] (Figure 13) pro-
posed a probabilistic model that represents variation and r
lationships of geometric descriptors and adjacency featur
for different part styles, as well as variation and relation
ships of part styles and repetitions for different shapkesty
The method learns the model from a set of consistently seg-
mented shapes. Part and shape styles are discovered based
latent variables that capture the underlying modes of shape
variability. Instead of sampling, the method uses a search
procedure to assemble new shapes from parts of the in-
put shapes according to the learned probability distraouti
Users can also set preferences for generating shapes from
particular shape style, with given part styles or specifitgpa Inferring scene semantics is a long-standing problem in

image understanding, with many methods developed for
Set evolution. Xu et al. [XZCOC17 developed a method  object recognitionQT09, classification §W10, inferring
for generating shapes inspired by the theory of evolution in spatial layout CCPS13 and other 3D informationrfGH13
biology. The basic idea of set evolution is to define cross- from a single imagePrevious work demonstrates that one
over and mutation operators on shapes to perform part warp- can leverage collections of 3D models to facilitate scene
ing and part replacement. Starting from an initial generati  understanding in imagesS[H17. In addition, the RGBD
of shapes with part correspondences and built-in structura scans that include depth information can be used as training
information such as inter-part symmetries, these opesator data for establishing the link between 2D and 3D for model-
are applied to create a new generation of shapes. A selecteddriven scene understandinGHF13. Unfortunately, se-
subset from the generation is presented via a gallery to the mantic annotations of images are not immediately useful for
user who provides feedback to the system by rating them. modeling and synthesizing 3D scenes, where priors have to
The ratings are used to define the fitness function for the be learned from 3D data.
evolution. Through the evolution, the set is personalized a
populated with shapes that better fit to the user. At the same
time, the system explicitly maintains the diversity of tiopp
ulation so as to prevent it from converging into an “elitet. se

Growing numbers of 3D scenes in digital repositories pro-
vide new opportunities for data-driven scene analysig; edi
ing, and synthesis. Emerging collections of 3D scenes pose
novel research challenges that cannot be easily addressed
with existing tools. In particular, representations ceedor

0e?.palyzing collections of single models mostly focus on ar-
rangement and relations between shape pata/Z*14],
which usually exhibit less variations than objects in seene
Capturing scene structure poses a greater challenge due to
looser spatial relations and a more diverse mixture of func-
a{ional substructures.

In this section, we cover data-driven techniques that lever
age collections of 3D scenes for modeling, editing, and syn-
thesizing novel scenes.

Context-based retrieval. To address large variance in ar-
rangements and geometries of objects in scenes, Fisher et
al. [FH10FSH1] suggest to take advantage of local context.
One of the key insights of their work is that collections of
a3D scenes provide rich information about context in which
objects appear. They show that capturing these contextual
priors can help in scene retrieval and editing.

Learned Shape Grammars. Talton et al. TYK™*12] lever-

age techniques from natural language processing to learn
probabilistic generative grammars of shapes. The method
takes as input a set of exemplar shapes represented with
scene graph specifying parent/child relationships and rel
ative transformations between labeled shape components.
They use Bayesian inference to learn a probabilistic formal
grammar that can be used to synthesize novel shapes. Their system takes an annotated collection of 3D scenes
as input, where each object in a scene is classified. They rep-
resent each scene as a graph, where nodes represent objects
and edges represent relations between objects, such as sup-
Analyzing and modeling indoor and outdoor environments port and surface contact. In order to compare scenes, they
has important applications in various domains. For example define kernel functions for pairs of nodes measuring similar

in robotics it is essential for an autonomous agent to under- ity in object’s geometry, and for pairs of edges, measuring
stand semantics of 3D environments to be able to interact similarity in relations of two pairs of objects. They furthe

with them. In urban planning and architecture, profesgmona define a graph kernel to compare pairs of scenes. In particu-
build digital models of cities and buildings to validate and lar, they compare all walks of fixed length originating at all
improve their designs. In computer graphics, artists ereat pairs of objects in both scene graphs, which loosely capture
novel 3D scenes for movies and video games. similarities of all contexts in which objects appeRSH11.

8. Data-driven Scene Analysis and Synthesis
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Figure 15: The algorithm processes raw scene graphs with Figure 16: The interaction bisector surface (in blue) of sev-
possible over-segmentation (a) into consistent hier@shi  eral two-object sceneZWK14.

capturing semantic and functional groups (b,tJJdK* 14].
should be placed in the scene, and (2) layout optimiza-

tion, indicating where to place the objects. Next, it takes
an example scene, and then synthesizes similar scenes us-
ing the learned priors. It replaces or adds new objects us-
ing context-based retrieval techniques, and then optenize

) ) o ) for object placement based on learned object-to-object spa
Focal Points. Measuring similarity of complex hybrid g relations. Synthesizing example scenes might be a chal
scenes ;uch as studios composed of bedroom, living room, lenging task, thus Xu et alXICF*13] propose modeling 3D

and dining room poses a challenge to graph kernel tech- j,qoor scenes from 2D sketches, by leveraging a database of

niques since they only measure global scene similaritysThu  3p scenes. Their system jointly optimizes for sketch-gdide
Xu et al. [XMZ *14] advocate analyzing salient sub-scenes, g retrieval and co-placement of all objects.

which they call focal points, to compare hybrid scenes,
i.e., scenes containing multiple salient sub-scenesréigu Hierarchical scene annotation. All aforementioned appli-
shows an example of comparing complex scenes, where the cations take an annotated collection of 3D scenes as an in-
middle scene is a hybrid one encompassing two semanti- n,t. Unfortunately, most scenes in public repositories are
cally salient sub-scenes, i.e., bed-nightstands and Bta ot annotated and thus require additional manual label-
sofa. '_I'he middle scene is closer to the left one when the bed ing [FRS"12]. Liu et al. [LCK*14] address the challenge of
and nightstands are focused on, and otherwise when the TV- annotating novel scenes. The key observation of their work
table-sofa combo is the focal point. Therefore, scene com- js that understanding hierarchical structure of a scene en-
parison may yield different similarity distances depemdin  aples efficient encoding of functional scene substructures
on the focal points. which significantly simplifies detecting objects and repre-
Formally, a focal point is defined as a representative sub- S€Nting their relationships. Thus, they propose a supsivis
structure of a scene which can characterize a semantic scend€@rming approach to estimate hierarchical structuredoeh
category. That means the substructure should re-occur fre- SC€nes. Given a collection of scene graphs with consistent
quently only within that category. Therefore, focal poieed ~ hierarchies and labels, they train a probabilistic hievaval
tection is naturally coupled with the identification of seen ~ 9rammar encoding the distributions of shapes, cardiealiti
categories via scene clustering. This poses coupled pnsble and spatial relationships between obje_cts. Such grammar ca
of detecting focal points based on scene groups and grouping then be used to parse new scenes: find segmentations, ob-
scenes based on focal points. These two problems are solved©ct 1abels, and hierarchical organization of objects &ens
via interleaved optimization which alternates betweerafoc ~ t€nt with the annotated collection (see Figlg.
point detection and focal-based scene clustering. The for- - )
mer is achieved by mining frequent substructures and the Challenges and opportunities. The topic of 3D scene anal-
latter uses subspace clustering, where scene distanags-are  YSIS 1S quite new and there are many open problems and

fined in a focal-centric manner. Inspired by work of Fisher et "€S€arch opportunitiesthe first problem is to efficiently
al. [FSH11 scene distances is computed using focal-centric Characterize spatial relationships between objects and ob

graph kernels which are estimated from walks originating 18Ct 9roups. Most existing methods work with bounding box
from representative focal points. representation which is efficient to process, but not suffi-

ciently informative to characterize object-to-objecaten-

The detected focal points can be used to organize the ships. For example, one cannot reliably determine the bbjec
scene collection and to support efficient exploration of the enclosure relationship based on a bounding box. Recently,
collection (see Sectio8). Focal-based scene similarity can  He et al. PWK14] propose to use biologically-inspired bi-
be used for novel applications such as multi-query scene re- sector surface to characterize the geometric interacten b
trieval where one may issue queries consisting of multiple tween adjacent objects and index 3D scenes (Fig@je
semantically related scenes and wish to retrieve more scene Secongmost existing techniques heavily rely on expert user
“of the same kind". supervision for scene understanding. Unfortunately,nenli

repositories rarely have models with reliable object tags.
Synthesis. Given an annotated scene collection, one can Therefore there is a need for methods that could leverage
also synthesize new scenes that have similar distribution scenes with partial and noisy annotatioRmally, the pop-
of objects. The scene synthesis technique of Fisher et ularity of commodity RGBD cameras has significantly sim-
al. [FRS"12] learns two probabilistic models from the train-  plified the acquisition of indoor scenes. This emerging scan
ing dataset: (1) object occurrence, indicating which disjec  ning technique opens space for new applications such as on-

They show that this similarity metric can be used to retrieve
scenes. By comparing only paths originated at a particular
object, they can retrieve objects for interactive scentgregdi
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line scene analysis with high fidelity scanning and recon-
struction. Availability of image data that come with RGBD
scans also enables enhancing geometric representatitms wi
appearance information.

9. Exploration and Organization

The rapidly growing number and diversity of digital 3D
models in large online collections (e.g., TurboSquid, Frim

ble 3D Warehouse, etc.) have caused an emerging need to

develop algorithms and techniques that effectively orggani
these large collections and allow users to interactively ex
plore them. For example, an architect can furnish a digital
building by searching in databases organized according to
furniture types, regions of interest and design styles,nor a
industrial designer can explore shape variations among ex-
isting products, when creating a new object. Most existing
repositories only support text-based search, relying en-us
entered tags and titles. This approach suffers from inateur
and ambiguous tags, often entered in different languages.
While it is possible to try using shape analysis to infer con-
sistent tags as discussed in SecBpit is sometimes hard to
convey stylistic and geometric variations using only téxt.
alternative approach is to perform shape-, sketch-, orémag
based queries, however, to formulate such search queees th

user needs to have a clear mental model of the shape that

should be retrieved. Thus, some researchers focus on pro-
viding tools forexploringshape collections. Unlike search,
exploration techniques do not assume a-priori knowledge of
the repository content, and help the user to understand geo-
metric, topological, and semantic variations within thé co
lection.

Problem statement and method categorization Data ex-
ploration and organization is a classical problem in data
analysis and visualizatiolPEP'11]. Given a data collec-
tion, the research focuses a@mouping and relating data
points, learning the data variations in the collection, an
organizing the collection into a structured forno facilitate
retrieval, browsing, summarization, and visualizatiorihaf
data, based on some efficienterfaces or metaphor

d

The first step to organizing model collections is to devise
appropriate metrics to relate different data points. \@io
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Method Meta. | Comp.| Var. Org.
[OLGM1]] | temp.| simi. | geom. n/a
[KLM*13] | temp.| part both cluster
[AKZM14] | temp.| part both cluster
[KLM *12] ROI point both n/a
[ROA*13] ROI point | geom. n/a
[HWG14 ROI point both cluster
[XMZ*14] ROI simi. | topo. cluster
[FAVK™14] plot part | geom.| cluster
[HSS13] query | simi. both [ hierarchy

Table 3: A summary of several recent works over four as-
pects. Metphor: tempates, surface painted R€)probabil-

ity distribution plos, or queryshapes. Shape Comison:
shape simarity, part or point correspondence. Vaability:
geonetry, topdogy or both O Organization Form:_clusteior
hierarchy.

shapes. We will discuss techniques that use global shape
similarities, and part or point correspondences.

Variability: shape variations captured by the system.
Most methods we will discuss rely on geometric variabil-
ity of shapes or parts. Some techniques also take advan-
tage of topological variability, that is variance in number
of parts or how they are connected (or variance in num-
bers of objects and their arrangements in scenes).
Organization form: a method to group shapes. We will
discuss methods that group similar shapes to facilitate ex-
ploring intra-group similarities and inter-group varats,
typically including clustering and hierarchical clustegi

Table3 summarizes several representative works in terms of
these aspects. In the remaining part of this section we list
several recent techniques grouped based on the exploration
metaphor.

Template-based exploration. Component-wise variability

in positions and scales of parts reveals useful information
about a model collection. Several techniques use box-like
templates to show variations among models of the same
class. Ovsjanikov et alQLGM11] describe a technique for
learning these part-wise variations without solving thal€eh
lenging problem of consistent segmentation. First, they us

similarity metrics have been proposed in the past to relate a segmentation of a single shape to construct the initial tem
entire shapes as well as local regions on shapes. In partic-plate. This is the only step that needs to be verified and po-
ular, previous sections of this document cover algorithms tentially fixed by the user. The next goal is to automatically

for computing global shape similarities (Secti8) part-
wise correspondences (Sect#®nand point-wise correspon-
dences (SectioB). In this section, we will focus on tech-
niques that take advantage of these correlations to provide
different interfaces for exploring and understanding geem

ric variability in collections of 3D shapes. We categorilae t
existing exploration approaches based on four aspects:

Metaphor: a user interface for exploring shape variations.
We will discuss five basic exploration interfaces, ones that
use proxy shapes (templates), regions of interest, proba-
bility plots, query shapes, or continuous attributes.

Shape comparison:techniques used to relate different
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infer deformations of the template that would capture the
most important geometric variations of the models the col-
lection. They hypothesize that all shapes can be projected
on a low-dimensional manifold based on their global shape
descriptors. Finally, they reveal the manifold structuyele-
forming a template to fit to the sample points. Directions for
interesting variations are depicted by arrows on the tetapla
and the shapes that correspond to current template configu-
ration are presented to the user.

Descriptor-based approach described above assumes that
all shapes share same parts and there exists a low-
dimensional manifold that can be captured by deforming a
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Figure 18: Focal-based scene clustering produces overlap-
ping clusters, which is due to hybrid scenes possessingmult
ple focal points. An exploratory path, from (a) to (e), thgbu

) ) the overlap, smoothly transit between the two scene chister
Figure 17: Shape exploration based on fuzzy correspon- representing bedroom and offices, respectively.

dence. The user paints a region of interest (ROI) on a query

shape (left column), and the method sorts models based on ) ]
their similarity within the region (right). gions of interest. To extend these technique to man-made

) ) objects, Huang et alHWG14 construct consistent func-
single template. These assumptions do not hold for large and 4| hasis for shape collections that exhibit large getime
diverse collections of 3D models. To tackle this challenge, and topological variability. They show that resulting dsas

Kim et al. [KLM"13] proposed an algorithm for leaming  ent maps can capture discrete topological variabilitghsu
several part-based templates capturing multi-modalb#ia 45 variance in number of bars in the back of a chair.
ity in collections of shapes. They start with an initial tem-

plate that includes a super-set of all parts that might oizcur

a dataset, and jointly learn part segmentations, poipeiot
surface correspondence and a compact deformation model.
The output isa set of templatethat groups the input models
into clusters capturing their styles and variations.

ROI-based scene exploration.Recent works on organizing
and exploring 3D visual data mostly focus on object collec-
tions. Exploring 3D scenes poses additional challengesin
they typically exhibit more variance in structure. Unlike
man-made objects that usually contain of a handful of ob-
ject parts, scene usually includes tens to hundreds ofshjec
and most objects do not typically have a prescribed rigid ar-
'rangement. Thus, global scene similarity metrics, such as a
graph kernel based technique I3RS 12] are limited to or-
ganizing datasets based on very high-level features, ssich a
scene type. Xu et alMZ *14] advocate that 3D scenes
should be compared from erspectiveof a particular fo-

cal point which is a representative substructure of a specifi
scene category. Focal points are detected through coatextu
analysis of a collection of scenes, resulting in a clusteoh
She scene collection where each cluster is characterized by
its representative focal points (see SecB8pnConsequently,

the focal points extracted from a scene collection can beé use
to organize collection into an interlinked and well-conteec
cluster formation, which facilitates scene exploratioig-F
ure 18 shows an illustration of such cluster-based organiza-
tion and an exploratory path transiting between two scene
clusters/categories.

ROI-based exploration. Not all interesting variations oc-
cur at the scale of parts: they can occur at sub-part scale
or span multiple sub-regions from multiple parts. In these
cases the user may prefer to select an arbitrary region on a
3D model and look for more models sharing similar regions
of interest. Such detailed and flexible queries require a fine
understanding of correspondences between different shape
Kim et al. [KLM *12] propose fuzzy point correspondences
to encode the inherent ambiguity in relating diverse shapes
Fuzzy point correspondences are represented by real value
specified for all pair of points, indicating how well the ptEn
correspond. They leverage transitivity in correspondeaee
lationships to compute this representation from a spaise se
of pairwise point correspondences. The interface proposed
by Kim et al. allows painting regions of interest directly on
a surface, and the system retrieves similar regions or shows
geometric variations in the selected region (see Figidye

One limitation of correspondence-based techniques is that
they typically do not consider the entire collection when es  Plot-based exploration. All aforementioned exploration
timating shape differences. Rustamov et RIDA*13] focus techniques typically do not visualize the probabilistic na
on a fundamental intrinsic representation for shape differ ture of shape variations. Fish et akFAvK*14] study the
ences. Starting with a functional map between two shapes, configurations of shape parts from a probabilistic perspec-
that is a map that describes change of functional basis, they tive, trying to indicate which shape variations are morelijk
derive a shape difference operator revealing detailed-info to occur. To learn the distributions of part arrangemetits, a
mation about location, type, and magnitude of distortion in  shapes in the family are pre-segmented consistently. Fhe re
duced by a map. This makes shape difference a quantifiable sulting set of probabilistic density functions (PDF) clara
object that can be co-analyzed within a context of the en- terize the variability of relations and arrangements acros
tire collection. They show that this deeper understanding different parts. A peak in a PDF curve represents a configu-
of shape differences can help in exploration. For example, ration of the related parts frequently appeared among akever
one can embed shapes in a low-dimensional space based orshapes in the family. The multiple PDFs can be used as inter-
shape differences, or use shape difference to interpadaite v faces to interactively explore the shape family from vasiou
ations by showing “intermediate” shapes between two re- perspectives. Averkiou et alAKZM14], use part structure
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interface enables exploration of shape parts according to

B i § < . learned strengths of semantic attributes (Figire
PRt SRS NG
JLEN ,L * a
f‘;}‘j'}ﬁ & WH? 10. Conclusion
{Jusse - -
o Jf"f;’!k Y f In this survey, we discussed the state-of-the-art on data-
5 AN\ Pan¥

driven methods for 3D shape analysis and processing. We
also presented the main concepts and methodologies used to
develop such methods. We hope that this survey will act as
a tutorial that will help researchers develop new dataedriv
Figure 19: Given a set of heterogeneous shapes, a reliable algorithms related to shape processing. There are several e
qualitative similarity is derived from quartets composdd o ~ citing research directions that have not been sufficiently e

two pairs of objects (left). Aggregating such qualitative i plored so far in our community that we discuss below:
formation from many quartets computed across the whole set

leads to a categorization tree as a hierarchical organiaati Joint analysis of 2D and 3D data.Generating 3D con-
of the input shape collection (right). tent from images requires building mappings from 2D to

3D space. The problem is largely ill-posed, however, with
the help of the vast amount of 2D images available on the
web, effective priors can be developed to map 2D visual el-
ements or features to 3D shape and scene representations.
Initial attempts to build alignments between 2D and 3D data
are the recent works by Su et @HIM*14] and Aubry et

al. [AME *14], which can further inspire more work on this
topic. Another possibility is to jointly analyze shape aexg-t

ture data. The work of co-segmenting textured 3D shapes by
Yumer et al. YCM14] is one such example. Following this
line, it would be interesting to jointly analyze and process
Query-based exploration. For a heterogeneous shape col- multi-modal visual data, including depth scans and videos.
lection encompassing diverse object classes, it is tygical The key challenges is how to integrate the heterogeneous in-
not possible to capture shape part structure and correspon-formation in a unified learning framework.

dence. Even global shape similarity is not a very reliable

feature, which makes organizing and exploring heteroge- Better and scalable shape analysis techniquesdany
neous collections especially difficult. To address thislcha  data-driven applications rely on high-quality shape asialy
lenge, Huang et alHSS"13] introduce qualitative analysis  results, particularly in segmentations and corresporeenc
from the bioinformatics field. Instead of relying on quanti-  Wwe believe it is important to further advance the research
tative distances, which may be unreliable between dissim- in both directions. This includes designing shape analysis

ilar shapes, the method considers more reliajlalitative techniques for specific data and/or making them scalable to
similarity derived fromquartetscomposed of two pairs of gigantic datasets.
objects. The shapes that are paired in the quartet are close

to each other and far from the shapes in the other pair, From geometry to semantics and vice versaSeveral data-
where distances are estimated from multiple shape descrip- griven methods have tried to map 2D and 3D geometric data
tors. They aggregate this topological information from gan  tg high-level concepts, such as shape categories, semantic
quartets computed across the entire shape collection, andagtriputes, or part labels. Existing methods deal with sase
construct a hierarchicalategorization tre¢see Figurel9). where only a handful of different entities are predictediier
Analogous to the phylogenetic trees of species, the catego- pyt shapes or scenes. Scaling these methods to handle thou-
l’ization tree Of a Shape CO”eCtiOn pI’OVideS an OVerVieW Of sands or more CategorieS, part |abe|s and Other such enti_
the Shapes about their mutual distance and hierarChi@l I’el tiesy as We" as approaching human performance is an Open
tions. Based on such organization, they also define the de- proplem. The opposite direction is also interesting andfins
gree of separation chart for every shape in the collectiah an  ficiently explored: generating or editing shapes and scenes
apply it for interactive shapes exploration. based on high-level specifications, such as shape styles, at
tributes, or even natural language, potentially combinid w
Attribute-based exploration. An alternative approachisto  other input, such as sketches and interactive handles.-Word
allow users interactively explore shapes with continupusl SEye [CS0] was an early attempt to bridge this gap, yet
valued semantic attributes. Blanz and Vet@Y99] provide requires largely manual mappings. The more recent work
an interface to explore faces based on continuous facial at- by [CKG*13] handles only shape part replacements driven
tributes, such as “smile” or “frown”, built upon the face par by linguistic attributes.
metric model (SectioB). Similarly, Allen et al. ACP0J al-
low users explore the range of human bodies with features, Understanding function from geometry. The geometry
such as height, weight, and age. Chaudhuri et &/G*13] of a shape is strongly related to its functionality incluglin

inferred by this method to produce a low-dimensional part-

aware embedding of all models. The user can explore inter-
esting variations in part arrangements simply by moving the
mouse over the 2D embedding. In addition, their technique
allowed to synthesize novel shapes by clicking on empty

spaces in the embedded space. At click the system would
deform parts from neighboring shapes to synthesize a novel
part arrangement.
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its relationship to human activity. Thus, analyzing shapes both MS and BS degrees in Computer Science from Ts-
and scenes requires some understanding of their function. inghua University in 2005 and 2002, respectively. His re-
The recent work by Laga et alLMS13] and Kim et search interests include data-driven geometry processidg
al. [KCGF14 are important examples of data-driven ap- co-analysis of shapes and collections of 3D models using
proaches that take into account functional aspects in shapeconvex optimization techniques. He was a winner of the
analysis. In addition, data-driven methods can guide the sy Best Paper Award from SGP 2013 and the Most Cited Paper
thesis of shapes that can be manufactured or 3D printed Award for the journal Computer-Aided Geometric Design in
based on given functional specifications; an example of such 2011 and 2012. He served on program committees for SGP,
attempt is the work by Schulz et &$$L*14). PG and GMP.

] ) ) ) Evangelos Kalogerakisis an assistant professor in com-
Data-driven shape abstractions.It is relatively easy for  pyter science at the University of Massachusetts Amherst.
humans to communicate the essence of shapes with a fewjs research deals with automated analysis and synthesis
lines, sketches, and abstract forms. Developing methods of 3p visual content, with particular emphasis on machine
that can build such abstractions automatically has signifi- |earning techniques that learn to perform these tasks by com
cant applications in shape and scene visualization, iartist pining data, probabilistic models, and prior knowledge. He
rendering, and shape analysis. There are a few data-drivengptained his PhD from the University of Toronto in 2010 and
approaches to line drawin@[GL"08, KNS*09, KNBH12], BEng from the Technical University of Crete in 2005. He
saliency analysisGSPF12, surface abstractior¥[K12], and was a postdoctoral researcher at Stanford University from
viewpoint preferencesSLF*11] related to this goal. Match- 2010 to 2012. He served on program committees for EG
ing the human performance in these tasks is still a largely 2014 and 2015, SGP 2012, 2014 and 2015. His research is
open question, while synthesizing and editing shapes using supported by NSF (CHS-1422441).
shape abstractions as input remains a significant challenge
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Work Rep. '}I:"rraelgizgdata Scale TpreeatureSEL Learning model/approach Learning type Learning outcome Application
FKMSO0H Point No Thousands | Local No SVM classifier Supervised Object classifier Classification
BBOG1] Mesh No Thousands | Local No Similarity Sensitive Hashing Supervised Distance metric Classification
HSGI13 Mesh Pre-align. Thousands | Local No Max-marginal distance Tearnind ~Semi-supervised Distance metric Classification
KHS1g Mesh No Tens Local Yes Jointboost classifier Supervised Face classifier Segmentation
VKTS™11] Mesh Yes Tens Local Yes Gentleboost classifier Supervised Face classifier Segmentation
BLVD11] Mesh No Tens L.&G. Yes Adaboost classifier Supervised Boundary classifier Segmentation
XXLX14] Mesh No Hundreds Local Yes Feedforward neural networks Supervised Face/patch classifier Segmentation
XSX*14] Mesh Pre-seg. Tens Local No Sparse model selection Supervised Segment similarity Segmentation
LCHB17] Mesh No Tens Local Yes Entropy regularization Semi-supervised Face classifier Segmentation
WAVK ¥ 12] Mesh Pre-seg. Hundreds Local No Active learning Semi-supervised Segment classifier Segmentation
WGW™13] Image | Labeled parts| Hundreds Local No 2D shape matching Supervised 2D shape similarity Segmentation
HFL12] Mesh Over-seg. Tens Local Yes Subspace clustering Unsupervised Patch similarity Seg. / Corr.
SVKK™11] Mesh Pre-seg. Tens Local No Spectral clustering Unsupervised Seg. simi./classifier Seg. / Corr.
XLZ*10] Mesh Part Tens Struct. No Spectral clustering Unsupervised Part proportion simi. Seg. / Corr.
VKXZ*13] Mesh Part Tens Struct. No Multi-instance clustering Unsupervised Seg. hier. simi. Seg. / Corr.
GFO09 Mesh No Tens Global No Global shape alignment Unsupervised Face similarity Seg. /Corr.
HKG11] Mesh Pre-seg. Tens Local No Joint part matching Unsupervised Segment similarity Seg. / Corr.
HWG14 Mesh Init. corr. Tens Global No Consistent func. map networky — Unsupervised Segment similarity Seg. / Corr.
KLM 13 Mesh Template Thousands | Local No Shape alignment Semi-supervised Templates Seg. / Corr.
MPM™14] Mesh Over-seg. Hundreds Local No Density-based clustering Unsupervised Patch similarity Recognition
NBCW™17]] Mesh Init. corr. Tens L.&G. No Inconsistent map detection Unsupervised Point similarity Corr. / Expl.
HZG™12] Mesh Init. corr. Tens L.&G. No MRF joint matching Unsupervised Point similarity Corr. / Expl.
KLM *12] Mesh Pre-align. Tens Global No Spectral matrix recovery Unsupervised Point similarity Corr. / Expl.
HG13 Mesh Init. corr. Tens Global No Low-rank matrix recovery’ Unsupervised Point similarity Corr. TExpl.
OLGM11] Mesh Part Hundreds | Global No Manifold learning Unsupervised Parametric model Exploration
ROA™13] Mesh Map Tens None N/A Functional map analysis Unsupervised Difference operator Exploration
FAVK ™ 14] Mesh Labeled parts | Hundreds | Struct. No Kernel Density Estimation Supervised Prob. distributions Expl. / Synth.
AKZM14] Mesh [KLM *13] Thousands | Struct. No Manifold learning Unsupervised Parametric models Expl. / Synth.
HSS 13 Mesh No Hundreds | Global No Quartet analysis and clusterind ~ Unsupervised Distance measure Organization
BV99] Mesh Pre-align. Hundreds Local No Principal Component Analysis Unsupervised Parametric model Recon. / Expl.
ACP03 Point Pre-align. Hundreds Local No Principal Component Analysis Unsupervised Parametric model Recon. / Expl.
HSS 09| Point Pre-align. Hundreds Local No PCA & linear regression Unsupervised Parametric model Recon. / Expl.
PMG™05] Mesh Pre-align. Hundreds | Global No Global shape alignment Unsupervised Shape similarity Reconstruction
NXS123 Point Labeled parts| Hundreds | Struct. No Random Forest Classifier Supervised Object classifier Reconstruction
SFCH12 Mesh Labeled parts Tens Global No Part matching Unsupervised Part detector Reconstruction
KMYG12] Point Labeled parts Tens Local No Joint part fitting and matching Unsupervised Object detector Reconstruction
SMNS™13] Mesh No Tens L.&G. No Shape matching Unsupervised Object detector Reconstruction
XZZ™11] Mesh Labeled parts Tens Struct. No Structural shape matching Unsupervised Part detector Modeling
AME ™ 14] Mesh Projected Thousands | Visual No Linear Discriminant Analysis Supervised Object detector Recognition
SHM™14] Mesh Projected Tens Visual No Shape matching Unsupervised 2D-3D correlation Reconstruction
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