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Abstract

Direction fields and vector fields play an increasingly important role in computer graphics and geometry processing. The
synthesis of directional fields on surfaces, or other spatial domains, is a fundamental step in numerous applications, such as mesh
generation, deformation, texture mapping, and many more. The wide range of applications resulted in definitions for many types
of directional fields: from vector and tensor fields, over line and cross fields, to frame and vector-set fields. Depending on the
application at hand, researchers have used various notions of objectives and constraints to synthesize such fields. These notions
are defined in terms of fairness, feature alignment, symmetry, or field topology, to mention just a few. To facilitate these objectives,
various representations, discretizations, and optimization strategies have been developed. These choices come with varying
strengths and weaknesses. This report provides a systematic overview of directional field synthesis for graphics applications, the
challenges it poses, and the methods developed in recent years to address these challenges.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry and Object

Modeling—

1. Introduction

An increasing number of computer graphics and geometry process-
ing methods rely on, or are guided by, spatially-varying directional
information, assigned to each point on a given domain. These di-
rectional fields exist in many flavors: some specify a magnitude in
addition to a direction, while others consider multiple directions per
point, often with some notion of symmetry among them. Directional
fields appear in the literature under several names, such as vector
fields, direction fields, line fields, cross fields, frame fields, RoSy
fields, N-symmetry fields, PolyVector fields, or tensor fields. We pro-
vide a taxonomy of the different variants, discuss, and compare their
properties. We use the term “directional field” to refer to the general
class of such fields, and use more specific definitions in the context
of the respective literature.

A directional field can be the result of a (real-world or virtual)
measurement of the geometric or physical properties of an object, or
its surface. Notable examples are the principal directions of a shape,
stress or strain tensors, the gradient of a scalar field, the advection
field of a flow, and diffusion data from MRI. There exists a large
body of literature exploring ways to analyze (and visualize) such
fields, including comprehensive surveys [LHZP07, BCP*12]. We
are instead interested in surveying the body of work that focuses
on the active creation and processing of such fields, in the context
of geometry processing and computer graphics. Directional fields
can be synthesized (also: designed) by a computational model that
considers user constraints, alignment conditions, fairness objectives,
or physical realizations.
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There have been significant developments in directional field
synthesis over the past decade. These developments have been driven
by the increasing demand for applications that require directional
fields, in their diverse variants. Prominent examples include: surface
parametrization, mesh generation, texture synthesis, flow simulation,
fabrication, architectural geometry, and illustration.

Different applications have different requirements. To name a few
examples, some applications require the prescription of a specific
field topology, whereas other applications infer it automatically;
some require that the field is integrable to a scalar function, whereas
others require that the flow of the vector does not generate distortion;

Figure 1: Visualization of a directional field that was synthesized
based on fairness and alignment objectives. Its singularities are
depicted by little dots, colored according to their index.
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some require a soft alignment with curvature directions, whereas
others require hard alignment with certain user constraints.

While there exists a plethora of algorithms for synthesizing di-
rectional fields, there is no “one-size-fits-all” method which is ap-
plicable in all cases. With a given set of objectives and constraints,
the main design choices are for the most appropriate representation
and discretization scheme for directional quantities, and for an opfi-
mization strategy to achieve the design goals. The intricate interplay
between these various choices makes it challenging to find the best
approach, given specific application requirements. The goal of this
report is to clarify the implications of these choices, guide practi-
tioners to the right choice, and encourage researchers to address the
(multitude of) remaining open questions.

A recent course on vector field processing [dGDT15] provides an
additional introduction to the topic, with a focus on the aspects of
discretization (vertex vs. edge vs. face based) of vector fields.

1.1. Reading Guide

This report covers a wide range of material, and treats a large number
of independent aspects. It has been structured to enable a linear
reading order, which we recommend for readers interested in a
comprehensive in-depth understanding of the topic. A selective,
non-linear reading is possible as well, as the text is well-equipped
with forward and backward pointers between sections. We offer
the following suggestions for readers that are interested in specific
areas.

Computer graphics and shape modeling Section 9 serves as a
dictionary to specific applications. Especially relevant for com-
puter graphics is the usage of directional fields in deformation (Sec-
tion 9.2) and texture mapping (Section 9.3). For shape modeling,
relevant applications are mesh generation (Section 9.1), deforma-
tion (Section 9.2) and architectural geometry (Section 9.4). Reading
Section 2 allows to understand the typical types of directional fields
in use. To go more in depth, read Section 8 for a description of
“fair” directional field design. To learn more about the nature and
limitations of discrete fields on meshes, read Section 6.

Geometry processing and discrete differential geometry Proficient
researchers can typically read this report in linear progression. Nev-
ertheless, we refer those who are specifically interested in discrete
vector calculus to Section 7, and those who are interested in topo-
logical analysis to section 6. Sections 4 and 5 provide a necessary
background to the “who” and the “where” of directional fields,
whereas Section 8, and subsequent Section 11, provide a more prac-
tical account of the “how”.

Physical simulation  You should find an interest in discrete vector
calculus and discrete differential operators, described in Section 7,
where Sections 4 and 5 provide the necessary background. Important
representations of directional fields for simulations are tensors (Sec-
tion 5.3), 1-forms (Section 5.5) and linear operators (Section 5.7).
Mesh generation (Section 9.1) is a particularly relevant application
that might be of interest. Take note of Section 8.3 for details on
setting differential constraints, such as the divergence or the curl of
a field, and of Section 10 for the visualization of the results.

Signal processing To get acquainted with directional field repre-
sentation and sampling, read Section 3 for the continuous notions,

and then follow through the sections up to and including Section 7.
Of particular interest are Sections 4.4 and 6 that explain the effects
of a discrete representation on the topology of the field.

Big data and visualization Section 10 details the existing methods
to visualize directional fields on surfaces. The comparative analysis
in 11.4, and the paragraph about scalability within, discuss aspects
of directional field synthesis on increasingly complex meshes.

1.2. Overview

In addition to providing a comprehensive overview of the recent con-
tributions that have been made to this topic, we establish a structured
categorization of directional fields. Furthermore, we analyze impor-
tant and interesting aspects that have not been explicitly discussed
before. In particular, we cover the following topics:

Types of Directional Fields = We classify the distinct types of
directional fields used in the literature in Section 2. They differ by
a number of parameters, such as the number of directional entities
per point of the domain, symmetries between them, and whether
they encode magnitude in addition to direction. A precise notation
is introduced, in order to avoid confusion between many terms that
are used ambiguously.

Differential Geometry = The mathematical formalism of direc-
tional fields in the continuous setting provides the theoretical foun-
dation for computational synthesis in the discrete setting. This is
covered in Section 3.

Discretization  One can think of “discretization” as where direc-
tional fields are represented. For instance, the directional information
can “live” on the supporting planes of the faces of a triangulation,
on discrete tangent planes defined on vertices, or as scalar integrated
1-forms on edges. A choice of discretization can retain some proper-
ties of directional fields from the continuous setting, such as their
differential or their topological structure, but usually not all of them.
Furthermore, discrete representations can be viewed as a sampling
of a continuous field, and are thus liable to effects such as aliasing.
We treat these aspects in Section 4.

Representation ~ We define “representation” as how directional
fields are encoded. In R?, an explicit representation using Euclidean
coordinates is straightforward. However, the situation is more com-
plicated on curved surfaces. To handle this, a large variety of rep-
resentations for directional fields has been explored. This variety
ranges from representations based on local Cartesian or polar co-
ordinates, through discrete 1-forms and complex number-based
representations, to more indirect encoding, e.g. as the roots of poly-
nomials, or the maxima of scalar functions. These are described in
Section 5.

Topology and Operators Given where and how directional
fields are encoded, we proceed to describe how their topological
and differential properties are formulated in the discrete setting. We
discuss the discrete definitions of directional-field singularities in
Section 6. We show how operators from vector calculus can be in
defined in the discrete setting in Section 7.
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Objectives and Constraints = We describe common measures of
quality for directional fields, and means to prescribe required prop-
erties. A popular measure of quality is fairness, though other types
of objectives and constraints also appear in the literature. These
include: alignment with a sparse or dense set of directional con-
straints, symmetry, or adherence to a specific topology. We present
the various types of synthesis objectives, and discuss the amenability
of the different representations to these goals in Section 8.

Applications ~ While our main focus is the general problem of
directional field synthesis, we outline specific application scenarios
in Section 9. The wide range of applications reveals the variety of
different requirements posed on directional field synthesis, which
led to the multitude of diverse treatments of directional data.

Field Visualization A visual understanding of the synthesized
fields is often helpful, or even a necessity. Various effective visual-
ization techniques have been developed for directional fields. We
briefly present them in Section 10.

Algorithms and Comparison  We provide a desiderata-based
guide to choosing the right method for various purposes, and empiri-
cally compare some of the properties of the state-of-the-art methods,
in Section 11.

Open Questions ~ We conclude in Section 12 with an outlook on
future research, by presenting open problems, shortcomings, and
remaining questions.

2. Types of Directional Fields

Directional fields come in many different flavors. Unfortunately,
the available terminology in the literature suffers from many
inconsistencies—some terms are synonymous, some are homony-
mous, and others are simply ambiguous and context-dependent. In
light of this, we introduce a notation that allows us to unambigu-
ously refer to specific types of fields. For the purpose of familiarity,
we indicate common names used in the literature for these fields.

We refer to a directional object (in short: a directional) as a
“direction” if the magnitude is irrelevant, and as a “vector” if it plays
arole. A field on a domain is the assignment of a directional to each
point in the domain.

A directional field can be multi-valued, describing a set of di-
rections or vectors at every point. Our only assumption is that the
size of the set, denoted as N, is constant throughout the field. We
assume this since a setting with varying N has found no application
so far. The cases of N = 1,2,4,6 are the most common in practice.
Of particular interest are rotationally-symmetric direction fields,
or in short: RoSy fields. Common variants are two directions with
n-radians RoSy, four directions with /2 RoSy, or two independent
pairs of directions with © RoSy within each pair. These symme-
try properties are very natural in many applications, for instance
when dealing with principal curvature directions [HZ00], principal
directions of stress or strain tensors [PTP*15], conjugate direc-
tions [LXW* 11, DVPSH14], or Langer’s lines [MPP* 13, BLP*13],
to name a few.
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We encode the type of the field using a set of integers
{ri,...,rx} € NK, whose sum is the size of the N-set &;ri=N).
These r; indicate that the N-set is partitioned into k subsets with
cardinalities r;, and within each subset the directions or vectors obey
rotational symmetry, i.e. there are angles 21/r; between them. Fur-
thermore, in the case of vectors, the elements of each such subset are
equal in magnitude. We contract multiple equal values for brevity:
ifri=riy1=-=rim_1,we write (r;)".

Common examples include:

1-vector field One vector, classical “vector field”

Two directions with T symmetry,

Z-direction field . geld”, “2-RoSy field”

Three independent vectors, “3-

3
! polyvector field”

-vector field

Four vectors with m/2 symmetry,

4-vector field « . 2
non-unit cross field

Four directions with /2 symmetry,

4-direction field “unit cross field”, “4-RoSy field”

Two pairs of vectors with T symme-

2
2"-vector field try each, “frame field”

Two pairs of directions with T sym-

2%-direction field
metry each, “non-ortho. cross field”

Six directions with /3 symmetry,

6-direction field “6-RoSy”

Three pairs of vectors with T sym-

23-vector field
metry each

KPR APA Y|

3. Differential Geometry of Directional Fields

In order to perform a systematic study of directional fields in discrete
settings, we give a concise introduction to the theory of continuous
directional fields on manifolds, covering definitions of basic con-
cepts. It is considerably out of the scope of this report to include
a full description. Therefore, every section includes references to
textbooks for a comprehensive account.

Note that most theoretical concepts only pertain to 1-vector fields.
The relevant properties of general directional fields are covered in
more detail in the subsequent sections.

3.1. Differential and Riemannian Structure

In this section, we review basic notions concerning the geometry of
surfaces. For a comprehensive introduction to Riemannian geometry,
we refer the reader to [dC92, Kue05, JosO8].

Tangent Bundle and Vector Fields We consider a smooth, com-
pact and oriented 2-dimensional man-
ifold M embedded in R>. For any
point p € M, the tangent space 7pM
of M at p is a two-dimensional vec-
tor space. Any tangent vector at p is
orthogonal to the surface normal of M
at p. Hence, we can identify T, M with
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the subspace of R that is orthogonal to the surface normal of M at
p (see inset). The union

TM =U,pe Ty M

of all tangent spaces forms a 4-dimensional manifold, called the
tangent bundle of M. Locally it is trivial, which means that around
every point p € M there is an open neighborhood U C M such that
UpeuTpM is diffeomorphic to U x R?. Every vector v € TM lies
in one of the tangent spaces 7p.M, and we call the corresponding
point p the foot point of v. The projection « : T M — M maps every
vector in the tangent bundle to its foot point. A tangent vector field
on M is a section of the tangent bundle: a smooth map v : M +—
T M such that tov : M +— M is the identity. For further reading,
we refer to [AF02, Chapter 3.2] and [Jos08, Chapter 2].

Cotangent Bundle and 1-forms The dual space of a vector space
consists of the linear maps from that space to R. The dual space is
again a vector space of the same dimension as the primal space. We
denote the dual spaces of the tangent spaces by T, M ™. The union of
all cotangent spaces, TM* = U e pTp M, forms the cotangent
bundle. A section in the cotangent bundle is called a 1-form. For
example, we can apply a 1-form ® to a vector field v. The result
(V) is a function on M.

Connections and Parallel Transport An affine connection (or co-
variant derivative) associates with two tangential vector fields v and
w a new tangential vector field Vwv. This map is linear in w

Vfw] +W2V :f VWI V+VW2V
and a derivation in v
Vw(fvi+v2) = (Vwf)vi+ [ VwVi + Vwva,

where v, v{, vy, w,w; and w, are smooth vector fields, f is a smooth
function and Vi f is the derivative of f in direction w. We can think
of Vwv as the derivative of v in direction w.

Using an affine connection, we can define the parallel transport
of a vector along a curve on the manifold.
/*\ \ Consider a curve ¢ : [0, 1] — M and a vector
‘ Vo € T.yM. Then, there is a unique vector
‘ field v : [0,1] — TM along ¢ (which means
n(v(t)) = c(¢) for all r) that solves the linear
differential equation V4 (,yv(t) = 0 with the
initial condition v(0) = vo. The vector field
v(¢) is called the parallel transport of v along
c¢. The inset figure shows an example of a vector that is parallel
transported along a curve on the unit sphere. The parallel transport
of vectors is linear: This means if a vector in T;(;,)M is a linear
combination of other vectors in T;(,)M, it will be the same linear
combination (same weighted sum) after the parallel transport of the
vectors. For proofs, we refer to [dC92, Section 2.2].

Riemannian Metric A scalar product on a vector space provides
a measure of vector norm (or length) and the angles between vec-
tors. A Riemannian metric g on M assigns a scalar product (-,-)p
to any tangent space Tp M. This assignment is smooth, i.e., the
map p — (-,-)p is smooth. A Riemannian metric allows for defin-
ing various geometric concepts on a differentiable manifold, such
as the distance of points in the manifold, geodesic curves, angles

between pairs of vectors, intersection angles between curves, the
volume of domains in the manifold, intrinsic curvatures (like the
Gaussian curvature) and differential operators (including gradient,
divergence, curl, Laplace operators). A manifold that is equipped
with a Riemannian metric is called a Riemannian manifold.

We can construct a Riemannian metric on surfaces in R using
the scalar product of R3. Every tangent plane of the surface is a
subspace of R3. Hence, we obtain a scalar product on every tangent
space by restricting the scalar product of R3 to the tangent plane.
Note that since the surface normal is changing along the surface, the
resulting Riemannian metric on the surface is not flat.

Levi-Civita Connection On a Riemannian manifold, we are inter-
ested in affine connections that satisfy

Vug(v,w)=g(Vuv,w)+g(v, Vuw), )

which means that the affine connection is compatible with the Rie-
mannian metric g. For the parallel transport of vectors, this means
that the scalar product between any pair of vectors does not change
when the vectors are parallel-transported along a curve. Hence, for
an affine connection that is compatible with g, the maps between
two tangent spaces, obtained by parallel transporting vectors along
any curve, are isometries. Then, the parallel transport of a vector
along a curve can be described by the oriented angle that the vector
forms with the tangent of the curve. The derivative of the oriented
angle along the curve is the same for every vector that is parallel
transported along the curve.

Among the affine connections that are compatible with a Rie-
mannian metric g, there is a unique one that is torsion-free, i.e.,
satisfies

Vwv—Vyw+[v,w] =0.

Here [v, w] denotes the Lie bracket of v and w. This connection is
called the Levi-Civita connection (or Riemannian connection). For
the Levi-Civita connection, the parallel transport of vectors is linked
to the geodesic curvature of the curve in the surface. The derivative
of the oriented angle between the transported vector and the tangent
of the curve equals the geodesic curvature of the curve. For proofs,
we refer to [dC92, Section 2.3] and [O’N66, Section VII.3].

Holonomy Consider a closed curve ¢ on a surface M. Parallel
transporting a vector vp, along ¢ from a point p to itself does not in
general yield the same vector v) again. In the inset figure, the red
vector is parallel transported along a circle of
latitude on the sphere, yielding the blue vector.
In this case, the vector rotates with constant
speed relative to the tangent of the curve (in
other words: the derivative of the angle be-
tween the vector and the tangent of the curve
is constant). The oriented angular difference
between v,, and its transport v), is called the
holonomy angle of the curve, and is independent of p and v,. The
holonomy angle of the Levi-Civita connection is closely related
to the Gaussian curvature of the surface: the holonomy angle of a
smooth curve that bounds a simply-connected domain equals the in-
tegral of the Gaussian curvature over the domain that is enclosed by
the curve, modulo 27. For proofs, we refer to [O’N66, Section 7.3].
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3.2. Vector Field Topology

In this section, we consider topological properties of vector fields:
singularities, indices, and the Poincaré—Hopf theorem. Proofs of
the concepts and theorems presented in this section can be found in
chapters 7 and 8 of [Ful95], which provides a good introduction to
algebraic topology (including vector field topology).

A vector field has a singularity at a point p if it vanishes or is not
defined at this point. We assume that the field has a finite number of
singularities. Let us first consider a singular point p of a vector field
v on a domain in R?, as shown in the inset figure.

We consider a small, simple (not
self-intersecting), closed curve around
p, parametrized (in counterclockwise
direction) by a function ¢ : [0, 1] — R
By “small”, we mean that the (topologi-
cal) disc enclosed by the circle does not
contain a second singularity in the field.
We inspect the vector field along the
curve. Since none of the vectors v(c(¢))
vanishes, we can represent the vector
field along the curve in polar form. This means there is a smooth
angle function o.: [0,1] — R, going counterclockwise around the
curve, such that

v(c(t)) = [v(c()|l (zi)r?((g((tt))))) '

The function o is not unique, since we can add multiples of 2w to
o and get the same vectors v(c(t)). However, since o is smooth,
the difference ou(1) — t(0) is unique, it is a multiple of 27, and it
depends neither on the curve c(¢) (as long as it is simply-connected
and does not contain a second singularity), nor on the starting point
¢(0). We define the index of the singularity of v at p to be the integer

indexpv = 1

index,v = — (0u(1) — a(0))..
21
The index measures the number of times the vectors along the curve
¢ rotate counterclockwise, while traversing the curve once. In the
context of direction fields, it is common to consider only points p
with index,v # 0 as singular. We adopt this herein.

The definition does not directly extend to surfaces, because there
is no global coordinate system (the tangent bundle is not trivial).
However, we can calculate the index at a singular point p of a vector
field v on a surface M by using an arbitrary chart around p. The
chart maps the vector field on a local neighborhood of p on the
surface to a vector field on an open set of the plane. Following that,
we can use the definition discussed above to compute the index, and
this computation would be invariant to the specific choice of the
chart.

A vector field cannot have an arbitrary set of singularities. For
a surface without boundary, the sum of all indices is related to the
genus g of the surface. Explicitly, the Poincaré—Hopf theorem states
that the sum of all the indices of a vector field equals 2-2g.

The concept of indices of singularities can be generalized to other
types of direction fields (Figure 2). In these cases, the index is not
an integer anymore. For example, for N-vector fields, the index is a
multiple of % [RVLLOS]. Similar to 1-vector fields, direction fields

(© 2016 The Author(s)
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Figure 2: Singularities of index %, %, 0 (non-singular), — %, f% ina
4-vector field. The black curves are the so-called separatrices — inte-
gral curves (cf. Section 10.3) of the field intersecting the singularity.

obey the Poincaré—Hopf theorem: they cannot have an arbitrary
set of singularities, as the sum is the topological constant 2-2g.
This has been described in [RVLLOS] for N-direction fields, and
in [DVPSH14] for 1"-direction fields.

3.3. Vector Calculus

Vector calculus is concerned with the differentiation and integration
of vector fields. This includes differential operators like gradient,
divergence, curl and the Laplace operator. Most papers dealing with
the processing of vector fields are, at least implicitly, using vector
calculus. Our focus is on vector calculus on surfaces. It is closely
related to exterior calculus, and all presented concepts could alter-
natively be formulated in terms of differential forms and operators
on the exterior algebra. For brevity, we restrict the presentation to
vector calculus. For an in-depth treatment of vector analysis and
exterior calculus, and proofs of the concepts presented in this sec-
tion, we refer to [War83, AF02]. A recommended undergraduate text
is [Jael3].

Gradient The differential of a smooth function f is a 1-form.
In many cases, it is more convenient to work
with a vector field describing the derivative
instead. This vector field is called the gradient
of f. We can think of the gradient of a function
as the vector field that points to the direction
of the steepest ascent of the function, as shown

0 in the inset figure. Formally, the gradient of
f is defined as the unique tangential vector field that satisfies

(grad f,v) = Vvf

for all tangential vector fields v. We emphasize that for the construc-
tion of the gradient of a function a metric is needed.

Divergence The divergence is a linear operator mapping vector
fields to functions. At any point p € M, the divergence of a smooth
vector field v is defined by

M=~

divv(p) =Y (Vev(p),e;) 2

i=1

where {e;} is an arbitrary orthonormal basis of 7, M. Let U be a
compact subset of M and v be the outer-pointing normal at the
boundary ol4, then

/fdiVVdA:—/(gradf,v)dA—o—/ fv,vyds. (3
u u ou

If we think of the vector field as a velocity field (e.g. of a fluid),



550 Vaxman et al. / Directional Field Synthesis, Design, and Processing

then the divergence
of the vector field

N - & \\ D. provides information
F e = Xw o N \l N about the sources and
y A Y | * N\ % sinks of the flow. If
S ! i % y ~ we set f to be the

a \ \ constant unit function

v /

o T () = 19p) in B3,
the first term vanishes, and the equation shows that the integral of
the divergence of a vector field measures the flow into and out of ¢/.
Here, U can be any domain in the manifold. If the boundary integral
is positive, there is more flowing out of than into the domain, which
means that the domain is a source. Similarly, if the boundary inte-
gral is negative, the domain is a sink. The inset figure shows two
examples of vector fields with non-vanishing divergence. In both
cases the shown domain ¢/ is a source.

Curl For surfaces, the curl is closely related to the divergence.
It measures the amount by which the field locally circulates
around each point. Intuitively, it measures the amount by which
a wheel placed at each point of the domain would spin, if
forces were applied to it according to the vector field at that
point. In the inset figure, both fields have non-vanishing curl.
To reveal the connec-

- ; A tion to the divergence,

4 R Y ~ we consider the oper-

f O, ., - \\
7 A nNEe . ator J that rotates any
e .« .~ Vvectorofavector field
B in its tangent plane
A R AN o ¥, ~ ~ \ p g ; p
- = X, by 5 (following the
=% s Y orientation of the sur-

face). For a surface embedded in R, we can represent this operator
using the cross product and the surface normal field: J: v — N X v.
The curl operator maps vector fields to functions and is defined by

curlv=—div]v. 4)

This means it measures the divergence of the field after a rotation of
% of all vectors in their respective tangent planes. Analogous to (3),
the curl satisfies the equation

/fcurlvdAz/(gradf,Jv)dA+/ f{dv,vyds. (5
u u ou

In the same manner as the divergence, by setting f =1 in (5), we can
see that the curl of a vector field measures how much the vector field
circulates around the domain. Analogous to sources and sinks, the
curl in the field is generated by vortices. The divergence measures
the flow in and out of the domain, while the curl measures the flow
along the boundary. The inset figure shows two vector fields with
non-vanishing curl. In both cases, the flow circulates around the
domain /.

Hodge Decomposition and Harmonic Fields The space X of
square-integrable tangential vector fields on a surface with vanishing
boundary can be decomposed into three orthogonal subspaces

X = Image(grad) ® Image(J grad) ® H,

where the domain of the gradient is the Sobolev space wi?
of functions whose differential is square-integrable. The gradi-
ent fields have the property that their curl vanishes, and the ro-

tated gradient fields have vanishing divergence. The remaining
space H consists of the harmonic vector fields. These fields are
both divergence and curl-free. Consequently, they are gradients
of scalar functions in simply-connected subdomains (locally), but
not otherwise (globally). An example is shown in the inset figure.
For surfaces without boundary, the space of har-

monic vector fields H equals the first singular 1
cohomology of the surface. This is an important

relation between vector calculus and algebraic

topology. The dimension of the space of har-

monic tangential vector fields on a surface of 0
genus g and without boundary is 2g. For a com-

prehensive treatment of the Hodge decomposition and proofs of the
statements made above, we refer to [War83, Chapter 6].

For manifolds with boundary, analogous decompositions of
spaces of vector fields for different types of boundary conditions are
possible. For an in-depth treatment of the topic, we refer the reader
to [Sch95].

Exterior Calculus Vector calculus is closely related to exterior
calculus, and all presented concepts could alternatively be formu-
lated in terms of differential forms and operators on the exterior
algebra. We briefly discuss this relation. We denote the space of
smooth differential i-forms on M by Al, the exterior derivative by
di: A — A and the Hodge star operator by *; : Al A" The
O-forms are functions on the manifold and 1-forms are discussed
above. In the case of differential forms on a surface, all 2-forms
can be represented as products of a function and the volume form.
Using the Riemannian metric, we can additionally get a one-to-one
correspondence between vector fields and 1-forms: to any vector
field v, we associate the 1-form (v, -). With these identifications of
functions and vector fields with the 0, 1 and 2-forms on a surface, the
operators on spaces of functions and vector fields can be expressed
in terms of the exterior derivative and the Hodge star:

Fields | J grad curl div
Forms | *1 do *p 0d;

*p0djox*]

In the same spirit, the Hodge decomposition, which is discussed for
vector fields above, can alternatively be formulated for 1-forms.

4. Discretization

In most applications, directional fields are computed by solving
an optimization problem, where the optimization variables depend
on how the fields are represented and discretized. The choice of
representation and discretization directly affects the properties of the
optimization problem, such as linearity or convexity. Hence, these
choices heavily influence the range of objectives and constraints
that one can pose, and, as a result, determine which applications are
computationally feasible and which are not.

In this section, we discuss various discretizations of tangent
spaces and spaces of vector fields on triangle meshes. In addition,
we present geometric and topological discretization challenges: the
need to define a discrete connection between tangent spaces, and
the ambiguities that arise due to the sampling process. The issues
addressed here are the foundation for the directional field represen-
tations described in Section 5.
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4.1. Tangent Spaces

The tangent spaces of the a triangle mesh can be located on the faces,
edges, or vertices of a triangle mesh.

One way to construct a tangent space at a point is to assign
a surface normal vector to the point. The tangent space is then
the linear subspace of R3 orthogonal to the normal vector. For
points inside the faces, the surface normal is obviously the normal
of the triangle. Different schemes for computing surface normal
vectors at the edges and vertices of a mesh have been proposed.
Among those are weighted averages of the adjacent triangle normal
vectors [Max99], and techniques based on principal component
analysis [GH97].

As an alternative to this extrinsic construction, tangent vectors at
a point on a mesh can be considered as the set of vectors pointing
from the point along the surface. For example, the tangent vectors at
a vertex point from the vertex into one of the neighboring triangles.
This construction is typically used for working intrinsically on a
surface, e.g., when shooting curves on a surface [PS98]. In this
case, the tangent space at a vertex is the set of all possible vectors
which are the tangent to all possible curves passing through this
vertex. Intrinsic notions of tangent vectors have also been used
in [ZMTO06,KCPS13,MPZ14], where a smooth atlas is defined on
the mesh using a local parametrization of the 1-ring of each vertex.

Note that the choice between these options is not just a matter of
personal taste; it has consequences that can influence the suitability
for specific use cases. A prominent example is the positioning of the
singularities of a directional field. In most discrete field representa-
tions, they lie in between the tangent spaces, i.e. in the vertex-based
scenario within the triangles, in the triangle-based scenario on the
vertices. This implies that it may or may not be possible to position
singularities onto sharp features of non-smooth surfaces.

4.2. Spaces of Vector Fields

Given a choice of discrete tangent spaces, we still need to fix the
space of discrete tangent vector fields. While this choice is less
discussed in the literature than the choice of representation, it is
similarly important. Furthermore, for applications such as surface
parametrization, where the main goal is to compute scalar functions,
the choice of space for vector fields is closely tied to the choice of
space for scalar functions.

A large portion of the literature in geometry processing uses
scalar functions whose values are given at vertices and interpolated
linearly to the faces. This space of functions is known as the linear
Lagrange elements, and we denote it by S; [PP03, War06] (see
Figure 3). The gradients of such functions are vector fields which
are constant at each face, and tangent to the faces. We denote this
space by AX},. Hence, if f € Sy, then grad f € A},. In this sense, these
two spaces fit together, and this combination is indeed common in
the literature. In order to define discrete operators of vector calculus
which are consistent with the smooth case (e.g. allow for a discrete
Hodge decomposition as discussed in Section 7.1), it is useful to
define another space of scalar functions that is linear across faces,
albeit only continuous at edge midpoints. This space is known as
the Crouzeix-Raviart elements [INBH*07], and denoted by S}, (see
Figure 3). Gradients of functions in S}, are also piecewise constant
vector fields on the faces.
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Figure 3: Graphs of functions in S}, (top row) and SZ (bottom row)
and their gradients are shown. Image courtesy of Matthias Nieser.

Piecewise constant vector fields are discontinuous along edges.
This can be problematic, depending on the application. Alternatively,
higher order representations [ZMT06, KCPS13] can be used for con-
structing spaces of vector fields. Using a higher order interpolation
scheme, for instance, allows to represent fields in such a way that
integral lines do not intersect [RS14, MPZ14], properly preserving
this property from the continuous setting, though recent results show
that this is possible to certain extents with piecewise constant fields
as well [CSZ16].

Spaces of vector fields are closely related to spaces of differen-
tial forms. For the construction of spaces of differential forms in
Discrete Exterior Calculus and the duality of spaces of forms and
vector fields, we refer the reader to [DHLMO5].

4.3. Discrete Connections

Given two adjacent tangent spaces i and j, we need a notion of
connection between them in order to compare two directional ob-
jects that are defined on them. In Section 3.1, it is explained that
connections are tightly linked to the parallel transport of vectors. In
the discrete setting, we describe a connection by specifying bijective
linear maps between each pair
of adjacent tangent spaces. We
can think of the linear maps as
the maps we obtain by paral-
lel transport between the adja-
cent tangent spaces. In the case
that the connection respects the
metric of the surface (see Sec-
tion 3.1), all maps between ad-
jacent tangent spaces would be
isometries. For a background on
discrete connections, we refer to [KP15].

A straightforward discretization of the Levi-Civita connection is
made by “flattening” the two adjacent tangent planes. Specifically,
this is done by rotating them around the axis which is perpendicu-
lar to both their normals (the orange line in the inset) so that they
coincide. The directionals in the rotated tangent spaces can then be
compared directly, as they lie in the same Euclidean space. As a
consequence, this process yields a three-dimensional rotation op-
erator which allows to parallel-transport a vector from one tangent
space to another. It is important to note that this definition of discrete
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connection depends only on the normals. It is invariant to any local
coordinate system, or to the specific representation of the direc-
tionals. Such a connection is required regardless of the choice of
vector space: see e.g. [CDS10] for piecewise constant vector fields,
and [KCPS13] for piecewise linear ones.

4.4. Discrete Field Topology

Moving from a continuous tangent bundle to a discrete set of tangent
spaces, and from a continuous directional field to directionals per
tangent space, can be considered a form of sampling. This sampling
can lead to a loss of information, and introduce ambiguity. This, in
particular, concerns the field topology (cf. Section 3.2), and is best
exemplified as follows:

Consider a piecewise constant face-based 1-direction field that is
discontinuous across the edges. As a consequence, the notions of
smooth holonomy and index do not immediately apply in this case,
e.g. the differential is not defined on the discontinuous edges. In
order to extend these notions to the discrete case, the behavior of the
field across the edges, where the field is discontinuous, needs to be
clarified. The example in the inset shows such a

piecewise constant field in two triangles i and j. In 7
this example, it is intuitive to assume that the field /
undergoes a rotation §;; = m/4 clockwise when 7 /

crossing the common edge from top (i) to bottom
(7). However, every other rotation 8;; = ©t/4 + 2mk, with k € Z,
would be a valid assumption as well.

Rotation If no additional information is given, the reasonable as-
sumption is that the field undergoes a principal rotation across a
discontinuity. That means that the rotation §;; between two vectors
Vi, Vj, in respective adjacent tangent planes i, j, is assumed to be in
the range [—m, ™), measured following a parallel transport i — j.
In this case, the topology of the field is implicit, induced by the
underlying assumption. If we indeed sample a continuous field, this
implicit topology might of course differ from the original topology.
This is an aliasing problem, analogous to similar problems in signal
processing, where the sampling density is too sparse to capture the
bandwidth of the signal. We discuss this in more detail in Section 6.

It is important to note that this problem is not limited to piecewise-
constant vector fields, but that it exists in other forms of field sam-
pling and interpolation as well. For instance, there are no disconti-
nuities across edges in piecewise linear fields. However, the field is
interpolated within each triangle, and this interpolation is subject to
such aliasing artifacts as well.

It is, nevertheless, possible to achieve a higher power of expres-
sion for directional field interpolation and topology in the discrete
setting; it is done by explicitly specifying the topology, or rather the
rotations across discontinuities, as detailed in the following.

Period Jumps By specifying a value
k € Z (for each pair of adjacent tangent
spaces), we can explicitly prescribe a
non-principal rotation, which differs by
k full period rotations (i.e., rotations by
271k radians) from the principal rotation.
This is shown in the inset for k = 0 and

k = 1). This concept was introduced by Li et al. [LVRL06], where
these values were denoted as period jumps. This way, the topology
of the field can be controlled explicitly, and any field topology can
be faithfully sampled, if the mesh resolution permits.

Explicit control over the period jumps can also be achieved by
directly controlling the rotations 8. Note, however, that these rota-
tions need to meet certain conditions to actually be consistent with
a directional field [CDS10], as we detail in 5.1.

Matching If the field is multi-valued, with N > 1 directionals per
tangent space, an additional degree of freedom needs to be taken into
account: the correspondence between the individual directionals in
tangent space i to those in the adjacent tangent space j. A matching
between two N-sets of directionals: {uy,...,uy} in tangent space i,
and resp. directionals v in tangent space j, is a bijective map f be-
tween them (or their indices). Assuming an indexing of directionals
within each tangent space in a counterclockwise order, the matching
preserves order if and only if f(u,) = vy < f(u,11) = vgyq for
all 0 < r,s < N, where the indices are taken modulo N. The term
matching is generally meant to refer to a matching that preserves
order, unless it is explicitly stated that it is non-order-preserving.

Effort Based on a matching f, the notions of rotation and principal
rotation can be generalized to multi-valued fields. The rotation &} |
of an individual directional u, to
its matched adjacent directional
Vi (r) 1s defined just like the rota-
tion of a 1-directional field. The
sumY;; =YV, &7 is called the
effort of the matching f. The
value §;; = Y;;/N is the aver-
age rotation, or simply rotation
of the matching. Note that for
a symmetric N-directional field
8;j = & for every r.

The efforts of different (order-preserving) matchings differ by 27
(regardless of N and of symmetries); the one matching for which
Y;j € [-m,®) or, equivalently, §;; € [-n/N,®/N), is called the prin-
cipal matching, and the corresponding rotation §;;, as in the 1-
directional case, is called the principal rotation.

5. Representation

Unlike scalar functions, which can be unambiguously represented
using a single number per point, directional data poses some chal-
lenges. The need to utilize different types of directional information
has motivated many different representations. In the following, we
describe the representations of directional fields that have been
proposed in the literature.

5.1. Angle-Based

1-Direction Fields By defining an arbitrary reference base or-
thonormal frame {e},e,} on each tangent space, 1-direction (unit
vector) fields can be concisely described within each tangent space
by a signed angle ¢ that is relative to e; [LVRL06,RVLLOS]. Follow-
ing the Levi-Civita connection (flattening rotation; see Section 4.3),
an extra angle X;;, identified with the change of bases e between the
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flattened tangent spaces i and j, is required. Finally, an integer k;;
describes a possible period jump between the directions. Having all
these, the rotation angle between two adjacent 1-directionals ¢; and
0 is expressed as follows:

8ij = d; — (i + Xij + 27k;;). (6)

The two directions ¢;,(; are parallel if §;; is zero.

Remark: in this representation, a principal rotation §;; € [—T, )
is not generally associated with a vanishing period jump k;; = 0
(cf. Section 4.4). That is because ¢ and X are not necessarily prin-
cipal by definition. Period jumps between adjacent local frames
are unavoidable, as they are vector fields that are subjected to the
Poincaré-Hopf theorem as well.

N-Direction Fields Another advantage of the angle-based repre-
sentation is the straightforward extension to N-direction. This is
done in [LVRLO6, RVLLOS] by using a single direction ¢ rep-
resenting the set of N directions, and allowing the period jump
to be an integer multiple of 1/N, thereby also enumerating the
efforts of (order-preserving) matchings. The set of N directions
{0+1-2n/N |l € {0...N —1}} is trivially deduced by the N-
symmetry from ¢. The rotation angle formula becomes:

S[j:¢j*(¢i+Xij+%tk;j) @)
Rotation Angles Instead of constructing local bases and expressing
relative angles within each tangent space, it is possible to describe a
field explicitly by the rotation angles ;; of the field between tangent
spaces i and j. This is the representation used in [CDS10]. Note that
this representation does not require the choice of local bases—the
field is represented explicitly only in a single tangent space; the
rest of the field is deduced by propagating the explicit rotations
d;j. Note, however, that this representation is not inherently valid:
the rotations must meet a consistency condition for every cycle of
tangent spaces; otherwise, they are not consistently “integrable” to
actual directionals per tangent space (cf. Section 11.2.1).

22-Direction Fields A particular angle-based representation was
devised for frame-fields in [LXW*11]. For two independent 2-
direction fields, represented by angles ¢,y per face, the matching
is represented by an extra binary switch variable: ¢ € {0,1} that
encodes the two potential matchings between neighboring frames
(¢,v); and (¢,y) ;. We obtain two different rotation angles:

(0= [(1—q)i+qyi +Xij + Tk ]
30 Wiss 7( W,I/'_[(l —q)\vi+q¢i+xi]j+ﬂk2,ijj} ) ®)

An alternative angle-based representation for 22-direction fields
is offered in [IBB15], which requires only a single period jump and
can be seen as a direct generalization of [RVLLO08,BZK09]. The key
idea is to locally decompose a 22_direction (0, ) into a 4-direction
represented by o € R, and an additional skew angle B € (—%, ).
The explicit relation w.r.t. the previous approach is given by ¢ =
o+ P and y = o+ Z — B, and an ordering of [¢,y, ¢+, ¥+ 7] is
assumed. Consequently, the rotation angles are fully determined by
a single period jump as in the N-direction field case:

(B — (o (1) B+ ki 5)
8(¢7“|”)l—>] ( (aj_Bj)_((xi_(_l)k,jBi+kij%) ) (9)
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The major advantage of the angle-based representation is that di-
rections, as well as possible period jumps, are represented explicitly.
This leads to a linear expression of the rotation angle as well. This is
beneficial for optimization purposes (cf. Section 8). Moreover, this
representation provides control over the topological properties of
the field. The major disadvantage is the use of integer (and possibly
binary [LXW™*11]) variables, which leads to discrete optimization
problems, as we discuss in Section 11.

5.2. Cartesian and Complex

A vector v in a two-dimensional tangent space can be represented
using Cartesian coordinates (from RR?) in the local coordinate system
{e1,e2}, or equivalently as complex numbers (from C) [KCPS13].
This representation is related to the angle-based representation via
trigonometric functions, or the complex exponential, as follows:

=(we )= a

The change of bases from one tangent space to another, by angle X;;
as before, is performed via multiplication with a rotation matrix:

(cos (Xij) —sin (Xi‘)) (1)

sin (Xij)  cos (X;5)

or, in complex notation, i Note, however, that due to the period-
icity of the trigonometric functions or the complex exponential, the
Cartesian representation is invariant to rotations by multiples of 27,
and thus the rotation is inferred implicitly. When comparing adjacent
vectors in this representation, the inferred rotation is then inherently
principal (cf. Section 4.4). The lack of explicit period jumps can be
an advantage, as such discrete jumps typically make optimization
problems non-convex. However, it can be a disadvantage as well, as
it is not possible to exert full control over the topology of the field
(cf. Section 6).

By multiplying the argument of the trigonometric functions, or
taking the complex exponential to the power of N, i.e. using

Y-S )= w

we achieve invariance to rotations by multiples of 21t/N instead of
2. In this way, the principal matching for N-directional fields is
implicitly assumed. This idea was introduced several times for the
representation of N-direction fields under varying names [HZ00,
RLL*06,PZ07,ZHT07,KLF13,KCPS13]. Parallel transport of these
vectors is performed using the rotation matrix

cos (NXij) —sin(NX;;) (13)
sin (NX;;)  cos (NX;j)

or the complex number eNXis respectively. The inferred principal

rotation of this representative is exactly the principal matching of

the represented N-direction field.

The Cartesian representation, unless explicitly constrained to
unit vectors, can also represent N-vector (non-unit) fields with the
magnitude component. This can be an advantage or disadvantage,
depending on the use case and the optimizations to be performed
(cf. Section 11).
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5.3. Tensors

Tensors of rank 2 naturally show up in various contexts. Notable
examples are curvature, metric, strain and stress. Tensors on a 2-
manifold can be simply represented by real-valued 2x2 matrices in

local coordinates:
hw T
T =
<T21 T

Tensor fields are an intensively studied topic; a comprehensive
overview of the latest developments can be found in [LV12]. Sym-
metric tensors with 71o = 7> are the most commonly used [ZHT07],
due to their straightforward relation to directional information, as
outlined in the following.

Symmetric Tensors A symmetric matrix 7 € R%*2 has an eigen-
decomposition T = UAUT by definition, where A = diag(A;,A;)
contains the two real eigenvalues, and U = [uy,u;] contains the
two (orthogonal) eigenvectors with ||u;|| = 1 . A rank-2 tensor field
encodes two eigenvector fields u#; and u; accordingly. Since eigen-
vectors are only determined up to sign, a rank-2 tensor field can in
fact be interpreted as two orthogonal 2-direction fields +u;.

It is important to note that the eigendecomposition is unique only
in case if A # A,. Thus, the directional information is solely con-
tained in the traceless deviatoric part D =T — @I . Consequently,
the eigenvalues A} of D encode a 2-vector field £A/u; [dGDT15]
with singularities at points where D vanishes. A common approach
to 2-tensor fields is to choose local coordinate systems (e.g. per face
or per vertex), and to handle the connection discretely by transfor-
mations between such local coordinate systems. A well-founded
alternative, using a coordinate-free representation, has been recently
proposed in [dGLB™ 14], using discrete differential forms. The idea
is to decompose a symmetric 2-tensor field in such a way that it can
be stored as one scalar per vertex, edge and face of a triangulation,
i.e., three discrete forms of orders 0, 1 and 2, respectively. This rep-
resentation is consistent with discrete exterior calculus, as it allows
the definition of discrete notions, among which are divergence-free
tensors, covariant derivatives, and the Lie bracket.

Symmetric tensor fields should not be confused with orthogonal
cross-fields (4-vector or direction fields). Although seemingly sim-
ilar, they differ significantly in the class of possible singularities.
While cross-fields may have singularities of type & - %, k € Z, tensor
fields are limited to singularities of type k - % Intuitively, this means
that a symmetric tensor field can be unambiguously decomposed
into two independent 2-direction fields, which is not possible for a
general 4-direction field. This observation uncovers the limitations
of tensor fields: while such fields are commonly used to estimate
a sparse set of constraints (e.g. salient principal curvature direc-
tions), 4-direction fields are interpolated in the rest of the domain
(cf. [BZKO09]). For example, the smoothest 4-direction field on a
cube, having eight singularities of index % at its corners, does not
correspond to a smooth symmetric tensor field.

Structure Tensors A special case of symmetric tensors are struc-
ture tensors, which are frequently used to represent 2-direction fields
in arbitrary dimensions [GK95]. The key idea is to represent a line /
in R” as the eigenspace of the largest eigenvector of an n X n matrix

T
vy
0= ;
[Iv[I?
where v is a vector parallel to /. It is easy to see that the construction

is invariant to flips or changes in magnitude in v or Oy, and that it
uniquely identifies a given line /.

General Tensors General (not necessarily symmetric) tensors are
not guaranteed to have real eigenvalues. Nevertheless, it is possible
to deduce consistent directional information using the concept of
dual eigenvectors [ZP05, ZYLL09] that applies to operators with
complex eigenvalues. As a result, the directional field is partitioned
into real and complex parts that smoothly join along separation
curves. The field is defined by eigenvectors in the real parts, while
dual-eigenvectors are chosen in the complex parts.

5.4. Composite

A 22-vector field can be represented as a composition of a 4-
direction field and an additional auxiliary field that encode scale
and skewness, i.e. the difference of the 22_vector field from the
4-direction field. [PPTSH14] proposes a unique decomposition into
a 4-direction field and a 2 x 2 semi-positive definite tensor field W.
This representation completely decouples the scale and skewness of
a 22-vector from the direction component, allowing to interpolate
them independently. In particular, since the tensor is semi-positive
definite, it can be efficiently interpolated coefficient-wise by sim-
ply solving a sparse linear system. In [JFH*15], a new Rieman-
nian metric is computed on the surface. This metric serves as the
semi-positive definite tensor that defines the skewness and scale.
Following this, the 4-direction field is computed in this new metric.

5.5. 1-Forms

Instead of directly representing vector fields, it is possible to take
the dual perspective, and represent 1-forms. A discrete 1-form
is encoded using the integral of a continuous 1-form over the
edges. Hence, for every oriented edge e;; we encode a scalar
cij = fe,'j w,,(éi j)ds, where é;; is the corresponding unit vector, and
p is a point along the edge [Hir03, FSDHO7].

The advantage of this approach is that we are encoding scalar
values (the integrated projection of the vector field along the edges),
and therefore the approach is coordinate free (i.e. no local frame is
required). In addition, there are discrete versions for the curl and
the divergence of a vector field represented as a 1-form, which are
simple to represent and manipulate (using the corresponding exterior
calculus operators d and x). Moreover, the space of discrete 1-forms
admits a discrete Hodge decomposition [FSDHO7]. See also Sec-
tion 7.1. Discrete 1-forms, encoded on edges, can be extended into
the adjacent triangles using Whitney forms [WTD*06]. This allows
for finite element discretizations of exterior calculus [AFWO06].

Discrete 1-forms have been successfully used in applications
such as vector field design [WTD*06, FSDH07, BCBSG10], quad
meshing [TACSDO06], point cloud meshing [TGGO06] and surface
parametrization [GY02,GGTO06]. In addition, there is a large body of
work specifically addressing harmonic 1-forms and discrete analytic
functions (see e.g. [Mer01]).
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5.6. Complex Polynomials

Complex Cartesian representations have been extended to general
1V -vector fields in [DVPSH14]. The main insight is that the Carte-
sian representation u? is in fact equivalent to the root-set of the com-
plex polynomial p (z) = N —uV. Analogously, every N-vector set
{uy,...uy}, in the complex form u; € C, can be uniquely identified
as the roots of a complex polynomial p(z) = (z—wuy)...(z—uy).
Writing p in monomial form, p(z) = ¥;cnz”, the coefficient set
{cn} is thus an order-invariant representative of a 1V-vector, and
was denoted as an N-PolyVector. Comparing between Poly Vectors
on adjacent tangent spaces amounts to comparing polynomial coef-
ficients. As every coefficient cp contains multiplications of N —n
roots, the coefficients are compared accordingly: assume two coeffi-
cients sets cnp and dn on neighbouring tangent spaces, then

dp = /Ny, (14)

Where ¢/(N =3/ i the rotation between the coefficients cp and
dn (including the change of basis X;;).

The advantages (continuous optimization) and disadvantages
(coupling of magnitude and direction) of complex Cartesian repre-
sentations are inherited by the PolyVector representation, though
it represents the general case of 1V -vector fields. Moreover, an N-
vector is represented by an N-Poly Vector in which all the coefficients
but the free coefficient, ¢¢, are zero. This constitutes a simple linear
subspace. In this manner, the rest of the coefficients represent the
skewness of the 1V -vector—in an implicit manner with no obvious
way to control it. Furthermore, it was shown in [DVPSH14] that
the effort of any matching between Poly Vectors in adjacent tangent
spaces is equal to the effort of a respective matching between their
free coefficients ¢g and dgy, when considered as the higher-order
complex representatives of an underlying N-direction, as in Sec-
tion 5.2. Thus, the concept of principal effort and matching readily
applies to PolyVectors as well.

5.7. Linear Operators

In the continuous case, given a vector field v, we can construct a
linear operator from functions on M to functions on M given by:
S+ {(grad f,v). In fact, the opposite is also true: given a linear
operator on functions which fulfills the product rule, it is possible
to construct the unique corresponding vector field [MorO1]. There-
fore, one possible representation of vector fields is through their
correponding linear operators on functions.

By choosing a discrete function space, for example Sy, this linear
operator can be represented as a sparse matrix in the discrete setting.
Alternatively, one can choose a set of k lowest eigenfunctions of the
Laplace-Beltrami operator as the function space, leading to a small
k x k matrix representation.

This point of view allows to design vector fields under various
global constraints (such as commutativity with a symmetry map), as
well as combining such constraints with point-wise constraints on
the value of the vector field [ABCCO13]. In addition, this approach
allows to compute the flow of a vector field using the exponential
of the matrix representing the operator, which is useful for numer-
ical fluid simulation [AWO™14], and for generating smooth maps
between surfaces [COC15].

(© 2016 The Author(s)
Computer Graphics Forum (© 2016 The Eurographics Association and John Wiley & Sons Ltd.

An important disadvantage of this approach is that the product
rule Dy(fg) = fDvg + gDvf does not hold in the discrete case.
Hence, given a linear operator it is challenging to check whether it
corresponds to a vector field without projecting on the chosen basis.
This projection could potentially be a costly operation.

5.8. Spherical Harmonics

The Cartesian or complex coordinates (cf. Section 5.2) can be in-
terpreted as coefficients of a certain class of 2D spherical harmon-
ics [RS15]. The directions of an N-direction field then correspond
to the maxima of the function described by these coefficients. This
interpretation is useful because it can be gen-
eralized to 3D [HTWB11]. The inset shows a
visualization of a function from the employed
class of spherical harmonics. Note that there are
six maxima (blue), representing six directions
forming an orthogonal 3D cross. Comparison
and interpolation of 3D crosses can then be
reduced to interpolation of coefficients.

_—

It is important to note that the space of functions that represent
rotated crosses is a proper submanifold of the full coefficient space.
While for 2D crosses the projection on the 1D submanifold of rota-
tions turns out to be a simple re-normalization, the corresponding
operation for 3D crosses is considerably more involved. The pro-
jection from the 9D space of free SPH coefficients onto the 3D
submanifold of functions, associated with rotated crosses, is highly
nonlinear, and globally-optimal schemes [KCPS13] do not general-
ize to 3D.

5.9. Scalar Fields

Gradient vector fields of scalar fields are inherently curl-free, and
co-gradient vector fields are inherently divergence-free. Hence, a
convenient option to represent and synthesize such fields without the
need for respective constraints is to deal with scalar fields instead,
and derive the vector field in the end. For instance, in [VFTS06],
a divergence-free 2D vector field is represented as the co-gradient
field of a scalar field. Similarly, a divergence-free 3D vector field can
be defined as the cross-product of the gradients of two volumetric
scalar functions [VFTS06]. This representation has also been used to
encode a 2-vector field in [YCLJ12], where the field is represented
as the set of directions perpendicular to the gradient of a scalar
function.

6. Topology

The discrete Levi-Civita connection, the principal rotations, the pe-
riod jumps, and the matchings that are part of the various directional
field representations bring about discrete counterparts of curvature
and singularity indices. We describe how these are acquired in the
different representations.

6.1. Direction Fields and Trivial Connections

Given a direction in one of the tangent spaces, one might try to create
a complete direction field by propagating the direction, through
parallel transport, into all other tangent spaces. This is inconsistent
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in the presence of curvature, as then the Levi-Civita connection
along a cycle does not transport a direction back to itself due to
holonomy, cf. Section 3.1.

By using an alternative transport with zero holonomy, however,
a direction field is well-defined in the above manner. A connection
with this property is called trivial [CDS10]. We can thus look at
a given direction field (with matchings between adjacent tangent
spaces) as an “altered connection”, where the rotation angles 8;; of
the field (cf. Section 4.4) describe the deviation from the Levi-Civita
connection. The connection implied by an N-direction field is trivial
in the sense that a directional is always transported back to itself up
to a rotation by k%“,k € Z.

6.2. Singularities and Indices

The singularities of a directional field (cf. Section 3.2) are a topo-
logical property that is derived, in the discrete setting, from the
sums of rotations §;; around elementary cycles of tangent spaces.
For instance, in the case of a face-based field representation, the
cycles are 1-rings around vertices. In the case of a vertex-based
representation, the cycles comprise the edges bounding a face. The
sum D¢ = }; 8; ;41 along such a cycle C is the difference between
the curvature K/, induced from the trivial connection defined by
the field, and the original Gaussian curvature K¢, induced by the
Levi-Civita connection: K(': = K¢ + D¢. Note that in a face-based
field representation, K¢ is simply the angle-defect from 2t [CDS10]
at the vertex enclosed by C.

Wherever Ké # 0, the field has a singularity, and its index is
Ké /21 [RVAL09,CDS10]. There are several, yet equivalent, expres-
sions for the calculation of singularity indices [LVRL06, RVLLOS,
DVPSH14].

Surfaces that are not simply-connected admit non-contractible
(and boundary) cycles, forming a homology basis [RVLL08,CDS10].
In addition to the rotation sums around elementary (e.g., 1-ring)
cycles, the rotation sums around these non-elementary cycles are
additional topological degrees of freedom of the field.

6.3. Sampling Problem

We discussed the ambiguities that a discrete field representation
introduces in Section 4.4. Such ambiguities can be settled using
explicit period jumps and matchings (e.g. in an angle-based repre-
sentation, cf. Section 5.1). In representations that do not natively
carry this extra information (e.g. the Cartesian or complex repre-
sentation), one can only implicitly assume principal matchings and
rotations (cf. Section 4.4)—unless some other prior information
about the singularities is available. For the case of an 1V _direction
field, this means that the rotation between two adjacent tangent
spaces is always only within [-t/N,nt/N). Consequently, the rota-
tion sum around a cycle of m tangent spaces cannot exceed mm/N.
Therefore, higher-order singularities cannot be represented by low-
valence cycles. For instance, in a vertex-based representation on a
triangle mesh (as in [KCPS13]), no other indices besides :I:% are
likely to arise. If the geometry or the constraints promote higher
index, clusters of :I:% singularities arise instead. Figure 4 shows
examples of fields with a high-order singularity, sampled in a face
based setting.

4

: 9
index -7

index —7 index -5
Figure 4: Using the principal period jumps and matchings in a
sampling of a 4-direction field splits higher-order singularities into
lower-order ones. The colored dots correspond to singularities of
index f% (light blue), f% (blue), % (red) and % (gold).

7. Operators
7.1. Discrete Vector Calculus

We discuss discrete differential operators acting on spaces of piece-
wise constant vector fields and piecewise linear functions on tri-
angular surface meshes, which were discussed in Section 4.2. We
introduce conforming and nonconforming discrete divergence and
curl operators and show how these operators can be combined to get
a discrete Hodge decomposition of vector fields. The presented con-
cepts have been introduced in [PP03, War06] and our presentation
loosely follows theirs.

Alternatively to this construction, a structure-preserving discrete
Hodge decomposition can be formulated in terms of discrete differ-
ential forms and discrete operators between them. For a general treat-
ment of Discrete Exterior Calculus, we refer to [Hir03, DHLMOS]
and to [FSDHO7] for the discrete Hodge decomposition of discrete
one-forms. For an introduction to DEC, we refer to [CdGDS13].

Discrete Divergence and Curl For simplicity, we consider only a
triangular surface mesh M, without boundaries. The vector fields in
A}, are not differentiable, hence the definition (2) of the divergence
cannot be directly applied. However, the right-hand side of (3) is
well-defined for pairs of a function f in Sj, or S, and a vector field v
in Xj,. Hence, we can evaluate integrals over f divv and use this for
defining a conforming and nonconforming discrete divergence. For
any v € A}, the conforming discrete divergence of v is the linear
functional

divyv: S, — R
o= [ teragna,
M,

and the nonconforming discrete divergence is the linear functional

divyv: S, =R
g— —/ (gradg, v)dA.
M,

Following the definition of the curl in the continuous case, see (3),
the conforming and nonconforming discrete curl operators are de-
fined as

curl,v = —div,Jv and curljv = —div;Jv.

The discrete divergence and curl of a vector field are functionals and
not functions. This means they cannot be evaluated at a point of the
surface, but they can only be tested with a function. In this sense,
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they are integrated and not pointwise quantities. Since the space Sy,
and Sj, are finite-dimensional, the functionals can be transposed to
get functions representing the divergence and curl of a piecewise
constant vector field. This transposition means multiplication with
the inverse mass matrix. For a discussion of integrated and pointwise
quantities and their relation, we refer to [WBH*07].

Discrete Harmonic Vector Fields For the construction of the dis-
crete harmonic vector fields, we consider the kernels of the discrete
divergence and curl operators. By Kernel(div;) we denote the sub-
space of X, containing the vector fields v for that div,v is the trivial
functional (i.e., div,v(f) = 0 Vf € Sj,). The kernels of divj, curly,
and curl}, are defined analogously.

To get spaces of harmonic fields whose dimension equals twice
the genus of the surface, we need to combine the conforming and
nonconforming discrete operators. There are two combinations: We
define the conforming discrete harmonic vector fields as

H;, = Kernel(div;,) N Kernel(curl},)
and the nonconforming discrete harmonic vector fields as
H; = Kernel(div}, ) N Kernel(curl,).

We would like to remark that using only the conforming discrete
divergence and curl yields a space of harmonic vector fields whose
dimension is not twice the genus but depends explicitly on the
number of vertices, edges and faces of the mesh.

Discrete Hodge Decomposition Similar to the definition of the dis-
crete hamonic vector fields, the discrete Hodge decompositions com-
bine the conforming and nonconforming discrete function spaces
and operators. There are two possible combinations:

Xj, = Image(grad g, ) & Image(J gradls;;) D Hy

and Xy = Image(grad‘slf) @®Image(J gradg, ) & H.

As in the continuous case, the subspaces are mutally orthogonal
with respect to the L*-scalar product. The fact that there are two
isomorphic decompositions is specific to the discrete setting and
does not appear in the continuous case. In [War(06], convergence of
the decompositions under refinement has been established. In this
sense, the two decompositions are similar as they converge to the
same limit under refinement.

Discrete Killing Vector Fields Beyond scalar-valued derivative
constraints such as the divergence and the curl, one can also pose
more complex constraints, which can be expressed in terms of the
covariant derivative tensor of the vector field. For example, one can
consider the amount of stretch that a vector field generates: if we
place two particles near each other on the surface and let them flow
with the vector field, this stretch measures how much the distance
between them changes while flowing. Vector fields that generate
no stretch are called Killing vector fields, and are the generators of
self-isometries (distance preserving maps from the surface to itself).

In terms of the covariant derivative, a vector field v is Killing if
and only if its covariant derivative tensor is anti-symmetric, namely:

(Vuv,w) = *<VwV,ll>, (15)
for any two vector fields u, v (see [dC92], Chapter 3, Exercise 5). For
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example, it is easy to check that the planar vector field which rotates
around the origin v(x,y) = (—y,x) has an anti-symmetric Jacobian
matrix (the planar equivalent of the covariant derivative), and is
therefore a Killing vector field. Exact Killing fields are quite rare, as
their existence implies a 1-parameter family of self-isometries. For
example, surfaces of revolution (and their isometric deformations)
have exact an exact Killing field which generates the rotation around
their axis. Therefore, in the discrete case it is interesting to consider
approximate Killing vector fields (AKVFs), i.e. those whose flow is
an approximate isometry.

Different discretizations have been used to compute approximate
Killing vector fields. In [BCBSG10], the authors reformulate the
Killing equation (15) in terms of exterior calculus, and use discrete
1-forms for the computation. As KVFs are generators of isome-
tries, [GRK12] used Generalized Multi-Dimensional Scaling, a tool
which has been previously used for computing approximate isome-
tries between surfaces, for computing AKVFs. Another property
of KVFs is that their corresponding derivation operator commutes
with the Laplace-Beltrami operator. This property was leveraged
in [ABCCO13], using the operator representation of vector fields,
for computing AKVFs. Finally, [dGLB* 14] used their general ten-
sor decomposition, and [AOCBC15] used equation (15) by directly
discretizing the covariant derivative.

As generators of isometries, AKVFs are useful in any application
where distortion minimization is a goal. For example, AKVFs can
be used for generating intrinsic patterns [BCBSG10], for segmenta-
tion [SBCBG11b] and for planar deformation [SBCBG1 1a].

Discrete Covariant Derivative While some differential quantities
of vector fields have simple operators (for example, the divergence
and the curl), in general, any first order differential operator can be
expressed in terms of the covariant derivative tensor of the vector
field. Thus, given a general discretization of the covariant derivative,
we have more options for the type of objective functions we can
minimize and constraints we can enforce. However, we need to
pay for this flexibility by discretizing a more complicated object
(a tensor instead of an operator from vector fields to functions, for
example).

This direction is relatively new, and therefore only a few dis-
crete constructions have been proposed so far in geometry pro-
cessing. In [dGLB*14], the authors propose a general discretiza-
tion of tensor fields on triangulations, using a decomposition
which represents such tensors using five scalar functions. On the
other hand, [AOCBC15] discretize directly the covariant derivative
through its extrinsic representation as the directional derivative of
the coordinates of the vector field, projected on the surface. Using
both approaches it is possible to find approximate Killing vector
fields by minimizing the norm of the symmetric part of the covariant
derivative, compute the Lie bracket of two vector fields, as well as
other applications.

8. Objectives and Constraints

Depending on the application, various objectives can be used for
vector field optimization (Figure 5). We introduce the fairness objec-
tives that have been proposed in the literature, and give an overview
of the constraints that can be enforced while minimizing these ob-
jective functions.
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8.1. Fairness

In order to optimize for the “best” direction field for a given appli-
cation, the notion of “best” has to be defined and formulated. The
most common way to measure the fairness of a field is by using the
Dirichlet energy, measuring how variable, or rather, non-similar, the
field is between adjacent tangent spaces. This notion poses several
issues, which we show in the following.

Parallelity For many use cases, the ideal field is a parallel field, i.e.
the direction in one tangent space is obtained via parallel transport
from the directions in adjacent tangent spaces. Since globally paral-
lel direction fields are not possible in the presence of curvature, many
methods instead opt for “as-parallel-as-possible”. In angle-based
methods [RVALO09, CDS10] for N-direction fields, this amounts to a
Dirichlet energy on the rotation angle

N
Eniey = 5 ), we- (8)7, (16)
ec&

where the edge weights w, are chosen to account for a certain
metric. Typical choices are unit weights [RVLLO08, BZK09] or (dual)
cotan weights [CDS10]. Following [IBB15], this fairness objective
generalizes to 2%-direction fields:

Egroz = Y, e (8(0,9)e). 17

ec&

Note that this objective can be decomposed into

Etpir-22 = Efair-4 + Efair-skew

(a) [FSDHO7]

() [KCPS13]

Symmetry Anti-symmetry

(d) [ABCCO13]

Figure 5: Various objectives used for vector field optimization - (a)
alignment to constraints, (b) Killing energy for isometric on-surface
deformations, (c) smoothness (Dirichlet energy) (d) commutativity
with the symmetry/antisymmetry self maps.

with a symmetric part that is the Dirichlet energy Efp,j.4 of a 4-
direction field, and a skew part corresponding to Eqn. (9):

. 2
Efpir-skew = Z We;; * ((71)p7Bi - B/) >
¢ €E
that measures the fairness of the specific component that encodes
the deviation from orthogonality. This observation stresses the fact

that a 2-vector field can be interpreted as a 4-direction field in a
different metric [PPTSH14, JFH*15].

In the PolyVector representation [DVPSH14] (as the general case
of the complex Cartesian representation [ZHT07, KCPS13]), the
objective function is the difference between parallel-transported
coefficients of the representing polynomial p(z) =Y, Caz":

. 2
Etair = Z Z ’ij _ez(N—n)Xi/Cn’l. . (18)
(iLj)eg n

In the case of an entirely parallel field, all these (representation-
dependent) objectives are zero; however, they behave differently in
other cases. See Section 11 for a detailed discussion and comparison
of these objective functions.

Note that a parallelity-based fairness objective strongly depends
on the underlying connection for parallel transport. Variants ex-
ist that manipulate the usual Levi-Civita connection intrinsically
[RVALO9] or extrinsically [ECBK14] in order to achieve certain
effects, in particular preventing excessive singularities from arising
in regions of high-frequency geometric detail or noise. This process
can be interpreted as a re-distribution of Gaussian curvature, which
accordingly influences where singularities arise.

Orthogonality Works that target 1*-vector fields that are not nec-
essarily symmetric 4-direction fields often attempt to make the field
as orthogonal as possible (subject to other constraints), to avoid
degenerate and small-angle configurations. In [LXW*11,IBB15],
the relative angle deviation for the 22_direction fields from becom-
ing 4-direction fields is directly encoded. [LXW™11] use it in an
inequality bound to avoid degeneracy, while [[BB15] minimize the
orthogonality deviation angle directly. In [DVPSH14], the angle is
not directly encoded. Instead, 4-direction fields are represented by
polynomials of the form p(z) = z* —u*, and thus minimizing the
magnitude of all the coefficients of the polynomial, save for the free
coefficient, provides control over orthogonality as well. Note that
this trivially extends to controlling how much 1V-vector fields are
far from being N-direction fields.

Coons Interpolation As-parallel-as-

possible objective functions promote
straight streamlines. This might not
always be a desired goal: in the con-
text of surface reconstruction from
sketches, [IBB15] estimate 3D normal
fields from 2D concept sketches. The
corresponding mathematical task is to
find a 2%-vector field in the image plane
that is the projection of the (regular-
ized) principal-curvature field of the
corresponding (unknown) 3D shape. It
turns out that an as-parallel-as-possible
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optimization inappropriately flattens the sketched shape (inset, top)
due to the metric distortion of the projection. In order to more
naturally extrapolate the bending of sketched curves (boundary
in the inset) to the shape, the theory of regularized curvature
fields [IBB15] devises another optimization objective, called bend
field energy that is based on the covariant derivative:

Eponaon = / |[V.v] 2+ [V ou] P dA. (19)

The corresponding 22-vector field is locally parametrized by vectors
u and v. Essentially, the objective function measures how smooth
one vector field is in the direction of the other, and vice versa, in-
stead of the isotropic smoothness of the parallelity measure. The
result is an interpolation (inset, bottom) similar to Coons interpola-
tion [FH99].

Soft Feature Alignment In certain applications, it is desirable to
compute directional fields aligned with surface features. While this
is achievable using constraints (Section 8.2), it can be accounted for
directly in the fairness energy by measuring parallelity on the ambi-
ent space [JTPSH15]. This approach does not require any parameter
tuning and it also does not require the explicit estimation of curva-
ture directions. However, the generated fields are not guaranteed to
follow all surface features.

Other Objective Functions A decomposition of the Dirichlet en-
ergy Ep into its holomorphic part Ey and its anti-holomorphic
part E4 is proposed in [KCPS13]. This enables a new parameter
s € [—1,1] to balance between both parts, i.e. E(s) = (1+s)Ey +
(1 —s)E,. The authors observed that varying s can be useful for
finding a good compromise between straightness of the field and
number of singularities. Note that both parts of the Dirichlet energy
have been used before: the holomorphic one in the context of Killing
vector fields [BCBSG10], that are both holomorphic and divergence
free, and the anti-holomorphic one for vector field design [FSDHO7].

Some methods seek to minimize the curl of an existing (com-
puted) direction field by scaling, in order to achieve better integrabil-
ity. In [RLL*06], the curl is minimized isotropically on a 4-direction
field, to form a 4-vector field with potentially less curl, leading to a
more conformal than isometric parametrization. This is extended to
different scaling in each axis to get an orthogonal and anisotropic,
22-vector field in [ZHLB10].

8.2. Constraints

Alignment It is often required for a field to be more than just fair or
symmetric, but also to fit certain prescribed directions, or an entire
existing field on a surface. Examples are the principal curvature
22 direction field, strokes given by an artist on the surface, bound-
ary curves, or feature lines. If this information is represented in a
way compatible with the employed field representation, this can be
straightforward: the field can be either compared against the pre-
scribed values, using a data term [KCPS13,DVPSH14], or be hard-
constrained [BZK09]. Similar techniques are applicable when using
differential forms [FSDHO7] and functional operators [ABCCO13].
Difficulties arise when the constraints are partial, i.e., only one
of multiple directions is prescribed at a point. Depending on the
representation, such constraints can be hard to express. [IBB15]
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and [DVPSHI15] recently described how such partial constraints can
be handled for 22-directional fields. In the former case, due to the
variable period jumps, it does not matter which of the four direc-
tions one constrains, i.e. without loss of generality one can simply
constrain ot + 3 (see Section 5.1) to a fixed direction. In [DVPSH15],
partial constraints are encoded by lowering the degree of the com-
plex polynomial. This is possible without loss of generality, since
the order of roots does not matter (commutativity of multiplication).

Symmetry and Maps In addition to specifying exact directions
(either sparse, full, or partial), it is possible to prescribe the behavior
of the values of the vector field in a more global way. For example, if
the surface has bilateral symmetry, it is advantageous if the designed
directional fields adhere to the same symmetry, allowing field-guided
applications to preserve the symmetry as well. Similarly, given
multiple shapes with a correspondence between them, we could
require that the directional fields commute with the correspondence,
effectively designing directional fields jointly on multiple shapes.

In [PLPZ12], symmetric fields are computed by explicitly trans-
porting the directional field using the symmetry map, which can be
any self map of the surface. Using an alternative representation of a
map as a correspondence between functions, [ABCCO13] compute
symmetric (and anti-symmetric) vector fields by computing vector
fields whose functional representation commutes (or anti-commutes)
with the functional map. The latter generates smoother fields (as it
is works in the space of smooth vector fields), while the former can
be applied to more general setups, such as 4-direction fields.

8.3. Differential Constraints

Fields must fulfill certain differential properties in order to best
suit their purpose. Curl-free fields are optimal for the purpose of
integration to scalar fields or parametrization maps. Curl-free V-
vectors fields, with a focus on 22-vector fields, are described and
computed in [DVPSH15]. Curl-free directional fields are defined
by a reduction to a given matching, for which all adjacent matched
vectors are curl free. This algorithm inherits the advantages and
disadvantages of the PolyVector framework, and in addition tends
to introduce many singularities in curved regions.

Divergence-free fields lead to volume preserving maps, and
are therefore used in deformation [vFTS06], shape corre-
spondence [COCI15] and physically based simulation of flu-
ids [AWO*14]. In R?, divergence-free fields can be represented
as the cross product of the gradients of two scalar fields p,q:
u(x,y,z) = Vp(x,y,2) x Vg (x,y,z). On closed genus-0 surfaces,
divergence-free fields are spanned by Tt/2-rotated gradients of scalar
functions, see Section 7.1 and [PPO3].

8.4. Topology

Representations that include explicit period jumps, like the angle-
based methods discussed in Section 5.1, make it possible to control
the topology of the field. This is achieved by prescribing rotation
angle sums around 1-rings to fix singularities (cf. Section 6.2), or,
more generally, by prescribing rotation angle sums around arbitrary
cycles [RVLLO08, BZK09,CDS10]. In Section 11, we discuss which
methods support which types of such topological constraints.
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9. Applications

Directional fields are very popular in computer graphics, scientific
visualization, meshing for finite element simulations, cultural her-
itage and architectural geometry. In this section, we provide an
overview of the most recent works that use direction fields, grouping
them by applications.

9.1. Mesh Generation

Vector fields have been extensively used to provide directional guid-
ance in automatic mesh generation methods [GE88]. For instance,
they guide the mesh generation to the domain boundaries, and de-
scribe the characteristics of the governing equations of physical
problems.

2D Knupp [Knu95] describes a method to generate quadrilateral
meshes from curvilinear grids. These grids are obtained from so-
lutions to a Poisson problem that is formulated with respect to a
given vector field. Essentially, a global parametrization is sought,
whose gradients match given vector fields as much as possible in a
least-squares sense. Such early methods were restricted to planar
domains and entirely regular quad grids.

Surfaces  The same principle has been introduced to the field
of Computer Graphics in a more general formulation by Ray et
al. [RLL*06]. Parametrization-based mesh generation techniques,
guided by vector fields, became quite popular recently [KNPO7,
BZK09, PTSZ11, LLZ*11, TPP*11, CBK12, NPPZ12, BCE*13,
ECBK14,CK14b,CK14a, LLW15,JTPSH15]. The most significant
difference between the early approaches and the more recent ones
is the transition from vector fields to 4-direction (“cross”) fields.
This enables the handling of arbitrary geometries and topologies,
and allows for the generation of “unstructured” quad meshes with
irregular vertices, permitting higher flexibility and better quality.
On surfaces, the direction fields are often used to promote align-
ment to the principal curvature directions of the underlying sur-
face, through field-guided parametrization [RLL*06, KNP07] or
field-guided mesh structure generation [CBK12, CHK13]. This is
of interest [LRLO6, ACSD*03, CSADO04, CK14b], e.g. to maximize
approximation quality [D’A00O], minimize normal noise and alias-
ing [BKO1], or optimize element planarity [LXW™* 11]. Nevertheless,
the fields serve an additional purpose to directional guidance in
unstructured mesh generation; their role is actually two-fold: the
topology of the fields is exploited to predetermine aspects of the
mesh structure — in particular, the number, type, and position of
irregular vertices are generally derived from the singularities in the
fields — thereby greatly simplifying the parametrization optimization
problems involved in the mesh generation process [KNP07, BZK09].
Anisotropic and adaptive meshing are also possible, if the guid-
ing 4-direction field is replaced with a 22-direction (“frame”) field
[PPTSH14,DVPSHI14,JFH* 15, DVPSH15,CBKI15].

Point Clouds  Directional fields can be discretized and designed
directly on point clouds [PTSZ11,LLZ*11,JTPSH15] and are used
to directly mesh the point cloud with a semi-regular triangular or
quadrilateral mesh, without having to first convert it into an unstruc-
tured triangle mesh.

Volume The use of a field-aligned parametrization for remeshing
purposes naturally extends to higher dimensions, where it has been
applied for the creation of 3D hexahedral meshes [HTWB11,NRP11,
LLX*12,JHW™14,KLF14]. The generation of suitable vector fields,
however, becomes significantly more involved when moving to
higher dimensions, as detailed in Section 12.

9.2. Deformation

In deformation applications, a displacement field describes the dif-
ference between two poses of a shape. Non-linear properties of
a deformation, such as area/volume preservation, or isometry, are
represented as properties of the displacement field. Divergence-free
displacement fields do not change the volume to first-order. Hence,
deformations that are approximately volume preserving can be gen-
erated by successively deforming a shape by small displacement
fields, that are divergence free [VFTS06]. In a similar spirit, deforma-
tions which are as isometric as possible can be generated using ap-
proximate Killing vector fields [SBCBGI 1a]. Recently, [MERT14]
created a generalized formulation that includes these two cases.

In reduced-order methods, the linear span of a set of deforma-
tion fields is used to generate low-dimensional subspaces of the
space of all possible deformations. Restricting the system to be
simulated within the subspace drastically reduces the dimension
of the non-linear problems. Examples of subspace constructions
include vibration modes and modal derivatives [BJO5, HSvTP11],
subsampling [HSL*06, AWO* 10, WWH* 14] and linear blend skin-
ning [KJ11,JBK*12]. In combination with a scheme for the efficient
force evaluation, run times that are independent of the resolution of
the mesh to be deformed can be achieved, which allows for real-time
deformation of complex meshes.

Different force approximations schemes have been proposed,
including the precomputation of the coefficients of reduced polyno-
mials [BJOS], optimized cubature [AKJO8,vTSSH13], mesh coarsen-
ing [HSvTP11] and rotation clustering for the as-rigid-as-possible
objective [JBK*12]. Recently, a method for real-time nonlinear
shape interpolation was introduced [VTSSH15]. The proposed sub-
space construction involves the computation of the tangent vectors
to the manifold of interpolating shapes.

9.3. Texture Mapping and Synthesis

Directional-field guided parametrization methods have been mainly
applied for remeshing purposes (cf. Section 9.1). Nevertheless, the
global, seamless parametrization that they produce can be used for
other traditional graphics applications, such as texture mapping and
mip-mapping. The regularity of the parametrization, and the simple
seamlessness conditions, make it simple to define a seamless tex-
ture [RNLL10] that can be sampled at different resolutions without
artefacts.

The stripe patterns occurring on many natural and biological
objects, like plants (i.e. cactus ridges and maize), and animals (fish
scale patterns, zebra stripes), can be synthesized with the guidance
of a 2-direction field [RLL*06, KCPS15], describing smooth stripe
directions. Fields with higher-order symmetries are useful for more
general texture synthesis methods [WLO1].
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To synthesize more complex patterns, a shape grammar [SG71]
can be applied to a surface using a vector field for guid-
ance [LBZ" 11]: the vector field locally defines a reference frame,
that is used by the shape grammar to decide on the orientation of
the pattern. This idea has been further generalized to synthesize
volumetric textures composed of discrete elements [MWT11] (i.e.
wood patterns, piles of stones).

9.4. Architectural Geometry

Polyhedral Meshes Directional fields are used extensively for ar-
chitectural geometry purposes. One common application is remesh-
ing with polyhedral meshes (meshes with flat polygonal faces).
Planar faces are associated with the so-called conjugate direc-
tions [LPW*06], and thus an effort is invested to compute them
on triangular meshes. Two vectors u, v are conjugate at a point p
if I (u,v) = 0, where II is the second fundamental form [dC92].
In [ZSW10], two conjugate 2-direction fields are computed, only
allowing for :t% singularities. In [LXW*11], The computation of
the most general case of conjugate 22_direction fields is made pos-
sible. However, the optimization is nonlinear and nonsmooth (in-
teger and binary variables were employed). In [DVPSH14], conju-
gate 22-vector fields are computed in a local-global manner, where
smooth 2%-drection fields are computed based on the complex poly-
nomial representation (cf. Section 5.6) globally, and then projected
to the closest conjugate directional fields locally. The aforemen-
tioned methods mostly targeted the design of planar quad meshes:
Planar hexagonal meshes are considered in [LLW15, VBCI15].

Self-Supporting Structures Special direction fields are used to
establish surfaces that are in a stable equilibrium. In [VHWP12],
principal directions of a relative surface operator serve as the conju-
gate field for planar quad meshing. In [PBSH13], 4-directional fields
are computed for the meshing of the initial quad mesh, from which
the structure would be built. The fields are computed as a balance
between smoothness and adherence to prominent regions of the
surface, that require the mesh to be built with a certain orientation.
The problem is formulated in the language of DEC in [dGAOD13],
where the new metric of the stress tensor is expressed by the hodge
star. The metric is also altered by a 22-direction field to deform a
mesh in a statics-aware way in [PTP*15].

Strip Surfaces Directional-field synthesis has also been employed
to create architectural surfaces from strips corresponding to the
surface curvature profile. In [PHD*10], a discrete Jacobi field is
computed, and geodesic strips are extracted through it. A Jacobi
field is a special vector field that indicates the density of geodesics at
a point and in the direction it points to. Independently, they sharpen
a 4-direction field to become a geodesic 2-direction field from which
these strips are extracted.

9.5. Cultural Heritage

Parametrizations, which are guided by 4-direction fields, are used
in cultural heritage to analyze and restore artifacts. The interactive
system proposed in [PCCS11] allows a historian to sketch stripes
on a 3D scanned model and use the stripes to guide the design of
a 4-direction-field. This field is then used to flatten the stripe to a
planar rectangle, where high-frequency details are easier to analyze.
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A system to restore damaged historical parchments is presented
in [PSP*14]. Each document is 3D scanned, and an optical character
recognition (OCR) algorithm is used on the texture to extract a
few recognizable characters. These characters provide clues on the
deformation that the parchment underwent. This information is then
propagated by interpolating a pair of 1-vector fields over the other
parts of the document. A parametrization algorithm is then used to
restore the document to its original flat geometry.

9.6. Other applications

Miscellaneous geometry-processing algorithms that use direc-
tional fields include surfacing [IBB15, PLS*15], mesh segmenta-
tion [SBCBG11b,ZZCJ14], parametrization [CSZ16], and shape
analysis [HSvTP12]. Outside of geometry processing, directional
fields have been used in procedural modeling [LBZ*11], crowd
simulations [PvdBC* 11], urban planning [YWVW 3], digital fabri-
cation [CPMS14], hair scanning [PCK*08], object design [FKS14],
non-photorealistic rendering [HZ00, YCLJ12, Zhal3, CYZL14],
shading [MRMH12,RGB*14], and data analysis [FKSS13].

10. Visualization

Visualizing direction fields is a challenging problem that has a wide
literature, especially in the scientific visualization community. In
this Section, we give an overview of the most common rendering
methods for symmetric fields on surfaces, and we refer an interested
reader to [LDM*01,LKJ*05,LHZP07,FCL09,PL09,BCP*12,LV12]
for an overview of 2D and 3D vector fields visualization methods.

10.1. Image-based Advection for Vector Fields

One of the most established techniques for visualizing vector fields is
Line Integral Convolution (LIC) [CL93]. This technique generates
a random image at the desired resolution. Then, for every pixel
of the image, computes a streamline, i.e. a curve passing through
the point whose tangent is aligned with the given vector field. The
random image is then integrated over the streamline and the resulting
value is associated to that pixel. The blur effect can be controlled
by changing the length of the traced streamline. This technique
might seem prohibitively expensive to apply to large images, but
it is actually possible to efficiently map a variant of this method
to modern graphics hardware by splitting the line integral to small
steps that are performed in parallel over the entire domain [vW02].

This image-based approach can be directly extended to surfaces
using a projection of the 3D surface in image-space: the streamlines
can be then traced directly in the view plane, by using a projection of
the vector field. Care has to be taken on the boundary of the domain,
as detailed in [Wij03].

10.2. Image-based Advection for Tensor Fields

LIC is extended to general tensor fields [ZHT07] and N-RoSy
fields [PZ11], by decomposing them into independent LIC-rendered
vector fields, and then blending the resulting images. The blending
should be optimized to increase the local contrast, as it decreases as
more and more layers are blended. This techniques is particularly
appealing for interactive applications, since it can render images in
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real-time by implementing it in a GPU shader. For example, it is used
in many interactive field-design algorithms [ZMT06,ZHT07,PZ11],
where a field is interactively designed using radial basis functions,
and the result is shown instantaneously.

10.3. Streamline Tracing

The previous techniques produce a dense visualization of the direc-
tion field by integrating a scalar field over the streamlines. How-
ever, a sparse set of separatrices can also be directly used to visu-
alize the behavior of the field. This approach is preferred over LIC
in many applications, such as non-
photorealistic rendering using hatches
[HZ00] or to natural phenomena synthe-
sis [KCPS15]. The tracing can be done
directly on the surface [RS14,MPZ14], or
in image space [SLCZ09]. In both cases,
it is important to enforce a uniform and
not too dense sampling of the streamlines
to avoid cluttering [MADOS5, SLCZ09].

After tracing, streamlines can be re-
placed by a more complex geometry
(such as a triangulated brush stroke with
varying width) and then be rendered us-
ing a ray tracer. This method has been introduced in [CDS10], and
then subsequently used in many other works, such as [KCPS13,
KCPS15,JTPSH15].

10.4. Texture-based Streamline Rendering

An alternative approach has been proposed
in [PPTSH14], which replaces the stream-
line tracing with the computation of two
parametrizations. These parametrizations are
used to apply a stochastic texture map that
is aligned with the direction field (see inset).
The advantage of this approach is that it can
naturally represent 22-direction fields, since
it encodes skewness, scale, and anisotropy.
Note that skewness can be represented di-
rectly with LIC, or any other tracing tech-
niques, but scale and anisotropy cannot. As
noted in [PZ11], these attributes might be
mapped over color or line thickness, but the
mapping would then be arbitrary and unintu- | LY | I
itive. [

The approach proposed in [PPTSH14] | '
uses the spacing between the lines in one || I !
direction to indicate the length of the frame /||| |j| [l it
field component in the other direction. This || |'|' X ik '
cross-hatching tends to sketch rectangles,
with the size and shape indicated by the
frame field. A two-layered UV-mapping is propagated over the sur-
face, following the frame field, i.e., the Jacobian of the parametriza-
tion of the vertices of a given triangle is close to the frame. In the
final rendering, each fragment accesses the texture twice at the two
UV locations, creating the two superimposed directions that form
the cross-hatching.

10.5. Glyph Rendering

Glyphs, or collections of
arrows, can be used to ren-
der the field at a subset
of the points of a surface.
While this approach is not *
as effective as the previous methods, due to the clutter introduced
in the visualization, it is the only one that currently supports the
visualization of non-symmetric (e.g. 13-) directional fields.

MR 71111

11. Algorithms & Comparisons

When some form of direction field synthesis is needed in an appli-
cation, the question arises of which synthesis method (using which
representation and which discretization) is suitable, and which is
best suited. In the following we provide a desiderata-based guide to
choosing the right method for various purposes, provide a property
matrix (cf. Table 1), and empirically compare some of the properties
of the state-of-the-art methods.

The first question that should be answered to find the best ap-
proach is whether the desired field topology is known in advance
(cf. Section 11.2), or whether it needs to be optimized (cf. Sec-
tion 11.3), i.e. automatically determined in a way conducive to the
geometric objectives. This aspect has the most significant influence
on the suitability of the various optimization strategies and field
representations.

Since vector fields and direction fields are closely related, many
algorithms for vector field synthesis can also be used to create direc-
tion fields, and direction field synthesis approaches can be employed
to create (unit) vector fields. Certain properties, such as as-Killing-
as-possible, however, fundamentally rely on magnitudal information
and only apply to 1-vector fields. For the sake of clarity, we first
consider algorithms specialized for 1-vector fields (cf. Section 11.1),
and then discuss the more general problems of synthesizing di-
rectional fields (with all kinds of symmetries) in detail. We will
also restrict our discussion to algorithms that can design fields on
2-manifolds or in the plane.

11.1. 1-Vector Fields

Fairness  Fair tangent vector fields have been introduced in graph-
ics for the purpose of decorating implicit surfaces in [Ped95]. The
representation they chose is angle-based and supports directional
constraints. Precise topological control is not supported. Field-
guided texture synthesis on triangulated surface has been proposed
[PFHOO] (using RBF interpolation) and [Tur01] (using a diffusion
equation). In both works, no control of the topology was possible,
since the field is represented using extrinsic coordinates and then
projected on the surface to make it tangential after the interpolation.
A similar system focusing on fast, interactive manipulation is pro-
posed in [ZMTO06], where singularities can be manually introduced
and moved over the surface. In [FSDHO7] the sinks, sources and
vortices of a vector field are controlled by prescribing its divergence
and curl. To allow for additional control of the vector field, e.g. by
prescribing directions, the divergence on curl are prescribed in a
least squares sense. More recent approaches [AOCBC15] allow to
compute the covariant derivative as an operator on vector fields, thus
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Type Method Represent. Topology Constraints Opt.
1-Vector [PFHOO] Extrinsic Partial Dir LS
1-Vector [Ped95] Extrinsic None None LS
1-Vector [Tur01] Extrinsic None Dir LS!
1-Vector [FSDHO07] DEC Partial Dir LS
1-Vector [CML*07] RBF Partial Dir LS
1-Vector [ZMTO06] RBF Partial Dir LS
1-Vector [ABCCO13] Functional  Partial Dir,Kil,Sym LS
1-Vector [CKW*12] RBF Partial Dir LS
1-Vector [VFTS06] Scalar Partial Dir,Div LS
1-Vector [WTD*06] DEC Partial Dir,Harm?®> LS
1-Vector [BCBSG10] DEC None  Kil Eigen
1-Vector [SBCBG11a] Extrinsic None Dir LS
2-Direction [PCK*08] Struct. T. None Dir LS
2-Vector [YCLJ12] Scalar Partial Dir LS
N-Direction [HZ00] Angle Partial Dir NL
N-Direction [WLO1] Angle Partial Dir NL
N-Direction [RLL*06] Complex Partial Dir NL
N-Direction [PZ07] RBF Partial Dir LS
N-Direction [RVLLO0S] Angle Fixed Dir LS
N-Direction [BZK09] Angle Full Dir,Hom MILP
N-Direction [RVALQ9] Complex Partial Dir NL
N-Direction [LJX*10] Complex Fixed Dir NL
N-Direction [CDS10] DEC Fixed Dir LS
N-Direction [ZSW10] DEC Partial® Dir NL
N-Direction [PZ11] RBF Partial Dir LS
N-Direction [PLPZ12] Angle Full Dir MILP
N-Direction [KCPS13] Complex None Dir Eigen
N-Direction [MPP*13] Angle Full Dir MILP
N-Direction [JTPSHI15]  Angle Full  Dir MILP*
22-Vector  [PPTSH14] Composite Full Dir LS
22-Vector  [IBB15] Angle Full  DirPart MILP®
22-Vector  [JFH*15] Composite ~ Full  Dir,Part NL
22-Vector  [LXW*11] Angle Full Dir,Conj NLIP
2-Tensor [dGLB*14] DEC None Dir LS
Tensor [ZHTO07] RBF Partial Dir LS

Directional [DVPSH14] Polynomial Partial Dir,Conj LS’
Directional [DVPSH15] Polynomial Partial Dir,PartInt NL

Table 1: Summary of field synthesis algorithms. For each algorithm,
from left to right: the type of field, the paper describing the
algorithm, the representation used (cf. Section 5), the control
over the singularity placement offered (‘“Partial”: singularities can
be prescribed, but additional ones can arise, “Full” means exact
control is possible, “Fixed” means that the entire topology has to
be specified), a list of supported constraint types (cf. Section 11,
“Dir”: directional constraints, “Part”: partial directional constraints
supported, “Conj”: the resulting field is conjugate, “Int”: the
resulting field is integrable/curl-free, “Kil”: the resulting field is
as-Killing-as-possible, “Sym”: the resulting field respects a given
shape symmetry, “Hom”: homology constrains can be given), the
type of optimization used (“LS” = linear system, “NL” = non-linear,
“MILP” = mixed-integer linear program, “NLIP” = non-linear integer
program).

1) This algorighm uses a multi-resolution hierarchy.

2) The fields are harmonic only in the limit of increasing constraint weights.
3) The singularities are restricted to index 1/2 and —1/2.

) Scales linearly due to a custom MILP solver and a multi-grid hierarchy.
3) Linear in addition to the technique used to interpolate a N-direction field.
6) Two objectives are proposed, one is a MILP and the other is a NLIP.

7) Non-linear if the conjugacy constraint is used.
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allowing to optimize for a Dirichlet type objective to synthesize
smooth fields.

Note that many of the recent algorithms for general directional
fields, as discussed in the remainder of this section, can be used
for 1-vector fields as well. This can be of practical interest because
some of them enable additional objectives and constraints.

Other Objectives  Killing vector fields (and vector fields that
are as-Killing-as-possible) naturally represent continuous intrinsic
symmetries [BCBSG10] and can be used to generate close to isomet-
ric planar deformations [SBCBG11a]. The design of time-varying
vector fields have been studied in [CKW™12]. Recently, a functional
representation of vector fields has been proposed in [ABCCO13],
which allows to naturally encode global constraints such as symme-
try in an efficient way, at the price of losing precise local control
over directional properties and the fields’ topology.

11.2. Fixed Topology
11.2.1. Fairest N-Direction Field

A first algorithm to construct the fairest (in the sense of Section 8)
N-symmetry field for a given field topology has been presented
by Ray et al. [RVLLOS]. It is based on the angle-based direction
field representation (cf. Section 5.1), and only involves solving
a sparse linear system with a size proportional to the size of the
mesh, effectively minimizing the discrete Dirichlet energy. Note
that without any further constraints the solution is not uniquely
determined: any rotation by a globally constant angle applied to a
field yields a field of equal smoothness. A directional constraint in a
single face is sufficient to fix this one degree of freedom.

On a surface of genus g > 0 or with b > 1 boundary loops, there
are 2g + b — 1 topological degrees of freedom besides the singu-
larity indices: the field’s holonomy (or turning number) along the
non-contractible cycles of a homology basis [RVLLOS8]. In some
scenarios [CK14b] it is clear from the context how they shall be
fixed, so this information is readily available. In other scenarios,
like user-guided field design, requiring the manual fixing of these
degrees of freedom can be unintuitive. Ray et al. [RVLLOS8] describe
how they can be left free, i.e. only the singularities are prescribed,
and in the end automatically be fixed in a reasonable way.

The direction field optimization method described by Bommes
et al. [BZKO09] is a generalization to the setting of completely free
topology (neither singularity indices nor homology generator turning
numbers are assumed as input). But, as the topology is explicitly
represented in this method, it is possible to specify topological
constraints. In the extreme the topology can be constrained entirely,
effectively yielding a method equivalent to the algorithm of Ray et
al.

Later Crane et al. [CDS10] presented a method that can be inter-
preted as a dual (or differential) formulation of the above algorithm:
instead of solving for the per-face angles ¢; (cf. Section 5.1), it
solves for the per-edge difference of incident face angles, the rota-
tions &;;. Then choosing a direction ¢y in a single face, all others are
implied through these difference angles (cf. Section 5.1). “Triviality
constraints” on the rotations must be taken into account to ensure
global consistency, i.e. implication of a unique value ¢; per face.
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These constraints fix the topology of the field (the relation between
the rotations §;; and indices and turning numbers is treated in Sec-
tion 6.2). The resulting field then is exactly the same as the one
yielded by the above algorithm, i.e. again the algorithms are equiva-
lent. This dual, connection-based point of view provides interesting
insights, explicitly revealing why the singularities of cross fields
(with topology optimized for smoothness) designate good irregular
vertex configurations for quad meshes [Cam14, Chapter 4].

Optimization strategies for the smoothest field with fixed topol-
ogy based on other forms of representation than the angle-based
representation are harder to formulate. The main issue is measur-
ing differences between vectors or directions across a specified
number of periods, which in the angle-based setting amounts to
a simple addition of multiples of 27 to the direct difference, but,
e.g., with a Euclidean coordinate based representation is more com-
plicated (Section 6.3). One noteworthy exception is the method
described by Fisher et al. [FSDHO7] using a 1-form representation
(cf. Section 5.5). In this method the topology is prescribed using
constraints on curl and divergence. It is, however, inherently limited
to 1-direction/vector fields (N-symmetry fields for N > 1 are not
supported).

Note that for fields with magnitudal component the optimization
for smoothness without further constraints is not useful: the trivial
solution (the zero-field) is a global optimum but obviously not of
any interest.

11.2.2. Fairest N-Direction Field with Directional Constraints

Often one is interested in guiding the field synthesis in a certain way,
influencing the directional behavior in a local or global manner. Of
practical interest is the case of sparse hard constraints, i.e. fixing
the field’s direction in certain places, and the case of dense soft
constraints, namely prescribing a (weighted) target field. Note that
dense hard constraints obviously make no sense, while sparse soft
constraints can be seen as a special case of the dense soft constraints
scenario with low or zero weights in certain areas.

There is one significant obstacle to the consideration of such
constraints in the fixed topology case: the topological configuration
of the constraints needs to be known as well. For instance: how
many turns does the field make between two directional constraints?
Which of the N directions of an N-direction field is supposed to
follow the prescribed direction? If this information is not available
one expects the optimization algorithm to make an optimal (or at
least good) choice. This implies a much harder optimization problem
with discrete degrees of freedom [CK14b].

Dense Soft Constraints In order to take soft constraints into ac-
count, one simply adds a weighted data term to the Dirichlet term in
the above angle-based algorithm [PLPZ12]. The optimization can
then still be performed using a simple sparse linear system solve.
If the constraint topology is unknown, a term +§2n (effectively
representing a free matching and period jump) needs to be added
for each directional constraint, where & is an integer variable to be
optimized per constraint [CK14b].

Sparse Hard Constraints Hard directional constraints can be
taken into account by removing the corresponding angle vari-
ables from the optimization, fixing them to the desired values

[BZK09,CDS10]. If the topological constellation is unknown, again
a term +%27t needs to be added per constraint.

11.2.3. Fairest 2>-Direction Field with Directional Constraints

The algorithm for 22_direction field synthesis described in [IBB15]
is based on the same explicit topology representation as [BZK09]
which we considered in Section 11.2.1 for fairest N-direction fields.
It is thus amenable to the same type of topological constraints,
allowing for a complete prescription of the fields topology. It can
therefore easily be used for the fixed topology use case. Hard and
soft directional constraints can be taken into account in the same
manner as well.

11.2.4. Fairest 22-Vector Field with Directional Constraints

Likewise, the algorithm for 22-vector field synthesis described in
[PPTSH14] is based on the same explicit topology representation
as [BZK09], allowing it to be used for the fixed topology use case.

11.3. Optimized Topology

For the optimization of a direction field’s topology there are two
fundamentally different approaches: the topology can be represented
and optimized explicitly (i.e. there are variables in the optimization
that directly express the topology), or it can be implicit. In the latter
case one derives the field topology from the field geometry in a
certain way. We discussed this in detail in Section 4.4.

The use of an explicit topology representation implies that a form
of mixed optimization (with continuous and discrete degrees of
freedom) is involved, because the topology of a direction field is
not a continuous object (period jumps and matchings are discrete).
This leads in general to optimization problems which are NP-hard.
Nevertheless, it has been shown that quite efficient polynomial
time approximations (based on a series of sparse linear system
solves [BZK12]) can yield good results in practical applications,
with an asymptotic behavior no different from algorithms with a
purely continuous optimization, cf. Section 11.4.

An implicit topology representation is amenable to more efficient
continuous optimization. However, depending on the representation
and the constraints, the problem can become non-convex, and non-
linear optimization, requiring a starting point, can become necessary.
Of particular importance in this context is how easily objectives like
parallelity can be expressed. As these objectives concern multiple
(usually two) adjacent directionals, one needs to be able to compare
these. In the context of fields with multiple directionals, to that
end the matching (cf. Section 4.4) needs to be determined. The
principal matching is inherent to some representations (cf. Sections
5.3, 5.2, and 5.6), and some form of fairness can be expressed in
a linear manner with these representations, allowing for efficient
optimization, even in a global manner [KCPS13].

11.3.1. Fairest N-Direction Field

The angle-based formulation of the Dirichlet energy (16) involves
the period jumps (and matchings). When these are considered vari-
ables, the problem seeks to optimize field geometry and topology
for smoothness. An approximative solution strategy for this setting
was described by Bommes et al. [BZK09]. Exact optimization using,
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e.g., Branch-and-Bound strategies is possible but rarely practical
due to the large number of discrete variables.

Using one of the representations that inherently have a princi-
pal matching and rotation one can avoid this discrete optimization.
However, in contrast to an angle based representation, these represen-
tations have an inherent magnitudal component that has to be dealt
with. In particular, degeneration must be prevented, for instance us-
ing (non-linear) per-vector unity constraints [PZ07], a global unity
constraint (which can be handled more efficiently) [KCPS13], or a
sufficient number of constraints that explicitly fix the field’s mag-
nitude to non-zero values [DVPSH14] (but also affect its direction,
reducing its fairness). Furthermore, the expressivity of this represen-
tation is limited: while the optimization with the above technique
with explicit period jumps can yield and represent singularities of
arbitrary index, only low-index singularities can arise here. The con-
crete limits depend on the valences of the mesh elements carrying
the directionals. If the surface geometry or additional constraints
require higher order singularities, clusters of low order singularities
will arise instead in the respective region (cf. Section 6.3).

11.3.2. Fairest N-Direction Field with Directional Constraints

Directional constraints can be taken into account when using an
angle-based representation, just as described for the fixed topology
case in Section 11.2.2, with terms —0—%211 per constraint.

Cartesian representations [PZ07, KCPS13, DVPSH14] include
magnitude besides direction, such that value constraints fix not only
the direction, but also the magnitude. When these vector constraints
are then interpolated harmonically [DVPSH14], minimizing the
Dirichlet energy (18), the prescribed magnitudes can bias the notion
of fairness (cf. Figure 8) and in extreme cases lead to degenera-
cies (cf. Figure 6 (b)). The interesting question of whether hard
directional constraints can be handled using an efficient Eigenvec-
tor problem formulation, akin to [KCPS13], is yet to be explored.
Straightforward elimination of constrained variables from the sys-
tem, as can be done in other formulations [BZK09], alters the struc-
ture of the system in a non-trivial way. The method of [PZ07] can
handle hard directional constraints, but requires non-linear unity
constraints.

11.3.3. Fairest N-Direction Field with Topological Constraints

Angle based methods can handle topological constraints due to
the fact that the topology is completely described by the period
jumps that are direct variables in the problem formulation. It is thus
possible to prescribe the field’s holonomy for arbitrary cycles on
the surface, using a simple linear equality constraint on the sum
of period jumps along the cycle [BZK09]. Most importantly, the
indices of individual singularities can be fixed in this way (using
the 1-ring cycles), and points and regions can be constrained to be
regular (index 0).

For other representations where the topology is not explicitly
accessible in the optimization, exerting such control is not easily
possible and has in fact not been elaborated yet.

11.3.4. Fairest 22-Direction Field

For certain applications, it is useful to optimize for a 22-direction
field instead of a 4-direction field. The method proposed in [IBB15]
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extends [BZK09] by adding an additional angle that represents the
skewness of the field, i.e. how far it is from a 4-direction field. The
formulation of the two papers is similar, and it gives full control
over the topology, in addition to supporting hard and soft constraints,
both on the directional alignment and on the skewness. Methods for
the synthesis of 22-vector fields, discussed in the following section,
could be used as well, by simply ignoring the magnitude of the
resulting field.

11.3.5. Fairest 2°-Vector Field

[DVPSH14] supports the design of 22-vector fields, and various
field properties (direction, scale and skewness) can be controlled
with soft or hard constraints. However, each constraint must fix all
the properties, i.e. it is not possible to fix only the scale and not
the skewness in a certain point. Topological constraints cannot be
taken into account, due to the implicit topology representation. This
is possible with methods which represent scale and skewness sep-
arately from an angle-based N-direction field with explicit period
jumps [PPTSH14,JFH*15]. The method described by [ECBK14]
is based on the same principle, but scale and skewness are opti-
mized for a specific goal (scale-awareness) and not intended to be
controlled or constrained by the user.

11.3.6. Fairest General Directional Field

A first representation and optimization method that supports general
directional fields (without any symmetries) has recently been intro-
duced [DVPSH14]. Direction and magnitude can be controlled in
sparse and dense, hard and soft manners. Topological control is not
possible.

11.4. Comparative Analysis

In this subsection, we experimentally compare field design algo-
rithms with respect to scalability, quality of the results and singular-
ity placement to provide additional insights on the similarities and
differences between the algorithms.

bR S 5 4 4 (a) [KCPS13]

AN V% %4 ',; “ | (b) [DVPSH14]

(c) [BZK09]

| (d) JTPSHI15]

Figure 6: Interpolation of a 4-direction field on a planar triangle
strip, with the leftmost and rightmost faces constrained.
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Figure 7: Interpolation of a 22-vector field on a planar triangle
strip, with the available methods that support this field type. The
leftmost and rightmost faces are constrained. The vectors are colored
according to their magnitude, to illustrate differences in scale.

Figure 8: 22-vector fields synthesized with [DVPSH14]: the red
crosses are the constraints. If the constraints are very sparse (left),
we observe a reduction in scale caused by the fairness objective.
While this is not a major practical problem (this phenomenon dis-
appears with just a few more constraints), it would be preferable
to have a fairness objective that preserves scale. Image courtesy
of [DVPSH14].

Constrained 4-Direction Fields In Figure 6, we compare different
methods for designing a 4-direction field on a planar strip. The
leftmost and rightmost triangles are fixed, and the interior part is
designed by the algorithms. For fair comparison, we use a face-based
variant of [KCPS13], and employ hard vector constraints on a sparse
set of faces, in a way equivalent to using [DVPSH14] in the subspace
of N-RoSy fields. Note that (a) is thus identical to (b) in this specific
case, up to a normalization of the vectors. It is interesting to note
the different behavior between complex representations (a), (b) and
angle representations (c),(d): the latter naturally interpolates the
rotation in the constraints, while the former mix scale changes in
the interpolation. Interestingly, the scale in (b) rapidly drops in the
middle: this is an undesirable feature in many applications which
can be ameliorated by adding additional constraints (Figure 8). The
normalization in (a) partially conceals the problem, but produces
highly unfair fields, with triangle to triangle differences of up to 45
degrees.

Constrained 2°-Vector Fields We perform the same experiment
for 22-Vector fields (Figure 7) and obtain a similar behavior: the
angle based representation (c) favors interpolating a rotation, while
complex based representations (a), (b) favor the interpolation of
skewness and scale.

Singularities The distribution and number of singularities of a di-
rectional field is one of the main criteria for evaluating its quality
for many applications. We experimented with different methods (an
example for 4-direction fields is shown in Figure 9) and observed
that angle based approaches (a), (b) tend to introduce less singular-
ities than complex-number representations (c), (d). However, the
greedy solution strategies that are used for angle based representa-
tions can get stuck in local minima, while the convex formulation
of [KCPS13] guarantees that the optimal solution (with respect to
a specific fairness objective) can be found. This is particularly no-
ticeable in symmetric shapes (Figure 10), where the non-optimal
solutions might have non symmetric singularity placement.

Integrability When a direction field is used to create a field-aligned
parametrization, its integrability, i.e. how far it is from being a
gradient of a set of scalar functions, plays an important role. While
specialized methods can produce integrable fields [DVPSH15], they
require an expensive optimization. In the literature, many other
methods have been used to design fields to guide parametrizations,
and we compare a few in Figure 11, where we plot and measure
the Poisson error obtained when using the fields as target gradients.
This error is measured as the average L*-norm between the field and
the gradient of the scalar function retrieved after integration.

The complex representation (a), (b) tends to produce results that
are more integrable than angle based. In particular, measuring the
smoothness using the complex representation and then avoiding nor-
malization (b), consistently produces results that are more integrable:
this suggest that the fairness measure in the complex representation
indirectly favors integrability but this property is partially lost in the
normalization. For a more extensive comparison of the two repre-
sentations for the purpose of isotropic quadrangulation, we refer to
the experimental section of [JTPSH15].

Scalability We compare the efficiency of different field design algo-
rithms in a controlled experiment (Figure 12), where all algorithms
are executed on three series of meshes obtained decimating three
high-resolution meshes.

The multi-resolution hierarchy, combined with the embarrass-
ingly parallel nature of the optimization, makes the algorithm pro-
posed in [JTPSH15] noticeably faster than the others, both in ab-
solute running time and in term of asymptotic running time. In-

(a) [BZK09]
48 singularities 42 singularities 62 singularities 56 singularities

(b) [JTPSH15] (c) [KCPS13]  (d) [DVPSHIS5]

Figure 9: Singularities of a 4-direction field. The fields have been
constrained on the same 14 faces (uniformly sampled) for all meth-
ods, where the direction is constrained to be the projection of an
horizontal vector.

(© 2016 The Author(s)
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Figure 10: The global optimality of [KCPS13] (with implicit topol-
ogy) ensures that symmetric singularity placement is obtained on
a symmetric shape, while approaches like [BZK09] (with explicit
topology representation based on period jumps) might fail to find the
optimal solution due to the involved discrete optimization. Image
courtesy of [KCPS13].

terestingly, all other algorithms have similar asymptotic behav-
ior, suggesting that for these field design problems the perfor-
mance advantage of methods that requires to solve a linear sys-
tem [RLL*06,CDS10,KCPS13,DVPSH14] compared with the ones
that require a mixed-integer solver [BZK09, JTPSH15] is only a
constant multiplicative factor that does not depend on the resolution
of the dataset. [DVPSHI15] is considerably slower than all other
methods due to the non-linear optimization used to enforce integra-
bility.

12. Open Questions

We have presented the state-of-the-art in directional field synthesis,
design, and processing. In this section, we discuss possible general-
izations of existing methods, and interesting unsolved problems.

Topology Control Currently, there is no representation that incor-
porates the advantages of the Cartesian representation methods
(namely, representation of non-unit vector fields, and having convex
and continuous objective functions), while providing direct control
over the field topology. This problem is exacerbated by the fact
that methods that advocate fairness optimization as a tool for au-
tomatic singularity placement, empirically tend to introduce many
low-degree singularities, possibly because of the sampling problem
discussed in Section 6.3. Mixed-integer angle-based methods are
highly non-linear, and linear angle-based methods require the man-
ual prescription of singularities. This prescription requires some
expertise, and is not directly associated with the fairness of the vec-
tor field. Hence, there is a demand for a representation which is both
general enough to include non-unit vector fields, is equipped with
an efficient fairness objective, and that allows for more control over
the topology.

(© 2016 The Author(s)
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(¢) [BZK09]
Residual: 0.37

(d) [JTPSH15]
Residual: 0.35

Figure 11: Integration error for the fields shown in Fig. 9: the color
shows how much the field deviates from being the gradient of a
scalar field. We omitted [DVPSH15] from this comparison since it
directly optimizes for integrability.

A promising direction is the exploration of fairness objectives
which are not as-parallel-as-possible, but involve some notion of
influence on singularities. The conformal energy in [KCPS13], as
well as objectives with alternative notions of parallelism [RVALQ9,
ECBK14] show this effect to some extent.

Sampling and Convergence Period jumps, principal matching,
and discrete definitions of singularities all bridge the gap between
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the discrete and the continuous. However, we have gathered the
inconsistencies that arise from these sampling methods. What is
lacking is a consistent sampling theorem for 1V -directional fields
on discrete meshes that would answer the classical question from
discrete signal processing: given a continuous field, what is a proper
sampling, in the sense that it allows for a full reconstruction of the
original field? Evidently, the answer to these question is correlated
with general sampling problems on discrete meshes. The insights
on sampling we presented in Section 6.3 could be a background
to set some ground rules for a future theory on field sampling and
reconstruction.

Geometry of Directional Fields There is a multitude of open ques-
tions related to the discretization of various differential operators
on directional fields. First, there are operators, which map from
vector fields to vector fields, that still do not have a satisfactory dis-
cretization on surfaces. One example is the Lie bracket of two vector
fields, which measures the commutativity of the flow of the vector
fields, and is important for parametrization. Discretizations for the
Lie bracket were suggested in [ABCCO13,dGLB" 14, AOCBC15].
However, the first and last compute an operator on functions, while
the second requires the solution of a sparse linear system, and there-
fore yields an operator which is not local. A systematic study of
the geometric structure of N-vector fields in its different forms (de-
scribed in Section 2), and the properties of operators acting on them,
is still missing. The recent preprint of Knoppel and Pinkall [KP15]
provides a classification of discrete complex line bundles over sim-
plicial complexes.

Suitability for Parametrization and Meshing The application
area that perhaps benefited the most from recent advances in direc-
tional field synthesis is field-guided parametrization; in particular,
for purposes of quadrilateral mesh or layout generation. In this con-
text, not only the directional information of the field is exploited:
its topology, i.e. its singularities and holonomy, is used to define a
suitable parametrization domain, and to decide over number, type,
and position of irregular vertices in high quality semi-regular quad
meshes. It is commonly assumed that the topology of an arbitrarily
synthesized directional field is suitable for that purpose. However,
the topological structure of a seamless parametrization or a quad
mesh is slightly more restricted. For instance, not every singularity
configuration is valid in this context [JT73,IKR*12], and global
holonomy can likewise be an issue [KNP07, MPZ14]. Precise condi-
tions still need to be discerned in detail, before specialized synthesis
methods can be developed. For the time being, only post-processing
adjustments can be made to remedy problematic situations, for in-
stance, by introducing additional singularities [MPZ14].

3D Generalization = The generalization of the discussed concepts
to the three-dimensional setting, for instance based on tetrahedral
meshes, comes with a number of severe complications.

e The angle-based representation (cf. Section 5.1) that allows for
a field definition without ambiguities regarding rotational peri-
ods, does not extend to 3D. A similar problem arises for the
angle-valued period jumps. This precludes any form of precise
topological control in 3D directional field synthesis; best-effort
approaches are available [WTHSO04], but guarantees cannot be
given.

e Directions in 2D can be parameterized by an angle, and vec-
tors by Cartesian coordinates or complex numbers. However,
representations for 3D orientations, such as matrices, quater-
nions [KLF14], tensors [PCK*08], or spherical harmonics coeffi-
cients [HTWB11], require additional constraints (orthogonal and
unit determinant, unit length, or rotation-equivalent, respectively).
Such constraints lead to more complicated and less efficient (non-
linear or non-convex) optimization procedures. For instance, in-
terleaving steps for objective reduction and re-projection onto the
constraint manifold.

o There are some pathological cases of field topologies which do not
lead to valid parametrizations and quad mesh generation. When
moving from 2D to 3D this small gap turns into a very large
gap: in fact, only a small subset of possible 3D directional field
topologies is suitable for these purposes, as discussed in [NRP11]
and tackled partially in [LLX*12,JHW*14]. Reliable solutions
are yet to be found.

13. Available Implementations

There are freely available implementations for a number of the
synthesis and visualization methods discussed in this report. We
have collected them, and list them in the following table. The name
of each paper is a hyperlink to the webpage containing the respective
source code.

1-Vector Fields

As-Killing-As-Possible Vector Fields for Planar Deformation [SBCBG11a]
Design of 2D Time-Varying Vector Fields [CKW ™ 12]

An Operator Approach to Tangent Vector Field Processing [ABCCO13]
N-Directional Fields

Rotational Symmetry Field Design on Surfaces [PZ07]

Mixed-Integer Quadrangulation (+Solver) [BZK09]

Interactive Visualization of Rotational Symmetry Fields on Surfaces [PZ11]

Trivial Connections on Discrete Surfaces [CDS10]

Globally Optimal Direction Fields [KCPS13]

Instant Field-Aligned Meshes [JTPSH15]

22-Directional Fields

Frame Fields: Anisotropic and Non-Orthogonal Cross Fields [PPTSH14]
Regularized Curvature Fields from Rough Concept Sketches [IBB15]
1V -Vector Fields

Designing N-PolyVector Fields with Complex Polynomials [DVPSH14]
Integrable Poly Vector Fields [DVPSH15]
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