skip to main content
10.1145/2988458.2988485acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
course

Geometric deep learning

Published:28 November 2016Publication History
First page image

References

  1. 3D Animation Online Services, 3D Characters, and Character Rigging - Mixamo. https://www.mixamo.com/. Accessed: 2015-10-03.Google ScholarGoogle Scholar
  2. Yobi3D - free 3D model search engine. https://www.yobi3d.com. Accessed: 2015-11-03.Google ScholarGoogle Scholar
  3. I. Aizenberg, N. Aizenberg, and J. Vandewalle. Multi-valued and universal binary neurons. Springer, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Andreux, E. Rodolà, M. Aubry, and D. Cremers. Anisotropic Laplace-Beltrami operators for shape analysis. In Proc. NORDIA, 2014.Google ScholarGoogle Scholar
  5. D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and J. Davis. SCAPE: shape completion and animation of people. Trans. Graphics, pages 408--416, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. Aubry, U. Schlickewei, and D. Cremers. The wave kernel signature: A quantum mechanical approach to shape analysis. In Proc. 4DMOD, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  7. P. Baldi and P. Sadowski. The dropout learning algorithm. Artificial Intelligence, 210:78--122, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  8. F. Bogo, M. J. Black, M. Loper, and J. Romero. Detailed full-body reconstructions of moving people from monocular RGB-D sequences. In Proc. ICCV, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. F. Bogo, J. Romero, M. Loper, and M. J. Black. FAUST: Dataset and evaluation for 3D mesh registration. In Proc. CVPR, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. D. Boscaini, J. Masci, S. Melzi, M. M. Bronstein, U. Castellani, and P. Vandergheynst. Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks. Computer Graphics Forum, 34(5):13--23, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  11. D. Boscaini, J. Masci, E. Rodolà, and M. Bronstein. Learning shape correspondence with anisotropic convolutional neural networks. In Proc. NIPS, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. D. Boscaini, J. Masci, E. Rodolà, M. Bronstein, and D. Cremers. Anisotropic diffusion descriptors. Computer Graphics Forum, 35(2):431--441, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  13. L. Breiman. Random forests. In Machine Learning, volume 45, pages 5--32, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Bromley et al. Signature verification using a "Siamese" time delay neural network. In Proc. NIPS. 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally connected networks on graphs. In Proc. ICLR, 2014.Google ScholarGoogle Scholar
  16. Q. Chen and V. Koltun. Robust nonrigid registration by convex optimization. In IEEE ICCV, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun. The loss surfaces of multilayer networks. In Proc. AISTATS, 2015.Google ScholarGoogle Scholar
  18. D. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by exponential linear units (elus). In Proc. ICLR, 2015.Google ScholarGoogle Scholar
  19. L. Cosmo, E. Rodolà, M. M. Bronstein, et al. SHREC'16: Partial matching of deformable shapes. In Proc. 3DOR, 2016.Google ScholarGoogle Scholar
  20. L. Cosmo, E. Rodolà, J. Masci, A. Torsello, and M. Bronstein. Matching deformable objects in clutter. In Proc. 3DV, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  21. A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Foundations and Trends in Computer Graphics and Vision, 7(2-3):81--227, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. R. Dechter. Learning while searching in constraint-satisfaction-problems. In Proc. AAAI, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical image database. In Proc. CVPR, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  24. A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. van der Smagt, D. Cremers, and T. Brox. FlowNet: Learning optical flow with convolutional networks. In Proc. ICCV, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learning to generate chairs with convolutional neural networks. In Proc. CVPR, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  26. M. Dou, J. Taylor, H. Fuchs, A. Fitzgibbon, and S. Izadi. 3d scanning deformable objects with a single rgbd sensor. In IEEE CVPR, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  27. D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio. Why does unsupervised pre-training help deep learning? JMLR, 11, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. K. Fukushima. Neocognitron: A self-organizing neural network for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):193--202, 1980.Google ScholarGoogle ScholarCross RefCross Ref
  29. J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky. Hough forests for object detection, tracking, and action recognition. Trans. PAMI, 33(11):2188--2202, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In Proc. Conf. Artificial Intelligence and Statistics, 2010.Google ScholarGoogle Scholar
  31. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Proc. NIPS. 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra. DRAW: A recurrent neural network for image generation. In Proc. ICML, 2015.Google ScholarGoogle Scholar
  33. X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg. MatchNet: Unifying feature and metric learning for patch-based matching. In Proc. CVPR, 2015.Google ScholarGoogle Scholar
  34. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arXiv:1512.03385, 2015.Google ScholarGoogle Scholar
  35. K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In Proc. ICCV, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8):1771--1800, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527--1554, July 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504--507, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  39. G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580, 2012.Google ScholarGoogle Scholar
  40. S. Hochreiter and J. Schmidhuber. Simplifying neural nets by discovering flat minima. In Proc. NIPS, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735--1780, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Q. Huang, B. Adams, M. Wicke, and L. J. Guibas. Non-rigid registration under isometric deformations. In Proc. SGP, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. S. I. and C. S. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167, 2015.Google ScholarGoogle Scholar
  44. M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial transformer networks. In Proc. NIPS, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. K. Kawaguchi. Deep learning without poor local minima. In Proc. NIPS, 2016.Google ScholarGoogle Scholar
  46. V. G. Kim, Y. Lipman, and T. Funkhouser. Blended Intrinsic Maps. Trans. Graphics, 30(4), 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. D. P. Kingma, T. Salimans, and M. Welling. Variational dropout and the local reparameterization trick. In Proc. NIPS. 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Proc. NIPS. 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Z. Lähner, E. Rodolà, M. M. Bronstein, et al. SHREC'16: Matching of deformable shapes with topological noise. In Proc. 3DOR, 2016.Google ScholarGoogle Scholar
  50. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proc. IEEE, 86(11):2278--2324, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  51. H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proc. ICML, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. H. Li, B. Adams, L. J. Guibas, and M. Pauly. Robust single-view geometry and motion reconstruction. Trans. Graphics, 28(5), 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. H. Li, E. Vouga, A. Gudym, L. Luo, J. T. Barron, and G. Gusev. 3D self-portraits. Trans. Graphics, 32(6), 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Y. Lipman and T. Funkhouser. Möbius voting for surface correspondence. Trans. Graphics, 28(3), 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. O. Litany, E. Rodolà, A. M. Bronstein, M. M. Bronstein, and D. Cremers. Non-rigid puzzles. Computer Graphics Forum, 35(5), 2016.Google ScholarGoogle Scholar
  56. R. Litman and A. M. Bronstein. Learning spectral descriptors for deformable shape correspondence. Trans. PAMI, 36(1):170--180, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. Proc. CVPR, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  58. S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. J. Masci, D. Boscaini, M. M. Bronstein, and P. Vandergheynst. Geodesic convolutional neural networks on riemannian manifolds. In Proc. 3dRR, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber. Stacked convolutional autoencoders for hierarchical feature extraction. In Proc. ICANN, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. D. Maturana and S. Scherer. VoxNet: A 3D convolutional neural network for real-time object recognition. In Conf. Intelligent Robots and Systems, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu. Recurrent models of visual attention. In Proc. NIPS. 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. R. A. Newcombe, D. Fox, and S. M. Seitz. DynamicFusion: Reconstruction and tracking of non-rigid scenes in real-time. In Proc. CVPR, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  64. H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. arXiv:1505.04366, 2015.Google ScholarGoogle Scholar
  65. K. Olszewski, J. J. Lim, S. Saito, and H. Li. High-fidelity facial and speech animation for VR HMDs. Trans. Graphics, 35(6), 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, and L. J. Guibas. Functional maps: a flexible representation of maps between shapes. Trans. Graphics, 31(4), 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. V. Pham, C. Kermorvant, and J. Louradour. Dropout improves recurrent neural networks for handwriting recognition. arXiv:1312.4569, 2013.Google ScholarGoogle Scholar
  68. U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics, 2(1):15--36, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  69. A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In Proc. ICLR. 2016.Google ScholarGoogle Scholar
  70. E. Rodolà, L. Cosmo, M. M. Bronstein, A. Torsello, and D. Cremers. Partial functional correspondence. Computer Graphics Forum, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. E. Rodolà, S. Rota Bulò, T. Windheuser, M. Vestner, and D. Cremers. Dense non-rigid shape correspondence using random forests. In Proc. CVPR, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Nature, 323(6088):533--536, 1986.Google ScholarGoogle ScholarCross RefCross Ref
  73. S. Rusinkiewicz, B. Brown, and M. Kazhdan. 3D scan matching and registration. In Proc. ICCV Courses, 2005.Google ScholarGoogle Scholar
  74. R. M. Rustamov, M. Ovsjanikov, O. Azencot, M. Ben-Chen, F. Chazal, and L. J. Guibas. Map-based exploration of intrinsic shape differences and variability. Trans. Graphics, 32(4):72, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. S. Saito, T. Li, and H. Li. Real-time facial segmentation and performance capture from RGB input. In Proc. ECCV, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  76. F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and clustering. arXiv:1503.03832, 2015.Google ScholarGoogle Scholar
  77. P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. OverFeat: Integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229, 2013.Google ScholarGoogle Scholar
  78. J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman, and A. Blake. Efficient human pose estimation from single depth images. Trans. PAMI, 35(12):2821--2840, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. D. I. Shuman, B. Ricaud, and P. Vandergheynst. Vertex-frequency analysis on graphs. arXiv:1307.5708, 2013.Google ScholarGoogle Scholar
  80. N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference from RGBD images. In Proc. ECCV, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014.Google ScholarGoogle Scholar
  82. S. Song and J. Xiao. Deep sliding shapes for amodal 3D object detection in RGB-D images. arXiv:1511.02300, 2015.Google ScholarGoogle Scholar
  83. R. K. Srivastava, K. Greff, and J. Schmidhuber. Training very deep networks. In Proc. NIPS, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. R. K. Srivastava, J. Masci, F. J. Gomez, and J. Schmidhuber. Understanding locally competitive networks. In Proc. ICLR, 2015.Google ScholarGoogle Scholar
  85. M. Stollenga, J. Masci, F. Gomez, and J. Schmidhuber. Deep networks with internal selective attention through feedback connections. In Proc. NIPS, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller. Multi-view convolutional neural networks for 3D shape recognition. In Proc. ICCV, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. J. Sun, M. Ovsjanikov, and L. J. Guibas. A concise and provably informative multi-scale signature based on heat diffusion. In Proc. SGP, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. J. Süssmuth, M. Winter, and G. Greiner. Reconstructing animated meshes from time-varying point clouds. Computer Graphics Forum, 27(5):1469--1476, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. Technical report, 2014.Google ScholarGoogle Scholar
  90. J. Taylor, J. Shotton, T. Sharp, and A. Fitzgibbon. The vitruvian manifold: Inferring dense correspondences for one-shot human pose estimation. In Proc. CVPR, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. A. Tevs, A. Berner, M. Wand, I. Ihrke, M. Bokeloh, J. Kerber, and H.-P. Seidel. Animation cartography - intrinsic reconstruction of shape and motion. Trans. Graphics, 31(2):12:1--12:15, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. J. Tompson, M. Stein, Y. LeCun, and K. Perlin. Real-time continuous pose recovery of human hands using convolutional networks. Trans. Graphics, 33(5), 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. JMLR, 11:3371--3408, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. D. Vlasic, I. Baran, W. Matusik, and J. Popović. Articulated mesh animation from multi-view silhouettes. Trans. Graphics, 27(3), 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. M. Wand, B. Adams, M. Ovsjanikov, A. Berner, M. Bokeloh, P. Jenke, L. Guibas, H.-P. Seidel, and A. Schilling. Efficient reconstruction of nonrigid shape and motion from real-time 3D scanner data. Trans. Graphics, 28(2), 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. S. Wang and C. Manning. Fast dropout training. In Proc. ICML, 2013.Google ScholarGoogle Scholar
  97. L. Wei, Q. Huang, D. Ceylan, E. Vouga, and H. Li. Dense human body correspondences using convolutional networks. In Proc. CVPR, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  98. X. Wei, P. Zhang, and J. Chai. Accurate realtime full-body motion capture using a single depth camera. Trans. Graphics, 31(6), 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University, 1974.Google ScholarGoogle Scholar
  100. Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3D Shapenets: A deep representation for volumetric shapes. In Proc. CVPR, 2015.Google ScholarGoogle Scholar
  101. K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio. Show, attend and tell: Neural image caption generation with visual attention. In Proc. ICML, 2015.Google ScholarGoogle Scholar
  102. F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. In Proc. ICLR. 2016.Google ScholarGoogle Scholar
  103. M. E. Yumer and N. J. Mitra. Learning semantic deformation flows with 3d convolutional networks. In Proc. ECCV, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  104. S. Zagoruyko and N. Komodakis. Learning to compare image patches via convolutional neural networks. In Proc. CVPR, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  105. S. Zagoruyko, A. Lerer, T.-Y. Lin, P. O. Pinheiro, S. Gross, S. Chintala, and P. Dollár. A multipath network for object detection. In Proc. BMVC, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  106. A. Zeng, S. Song, M. Nießner, M. Fisher, and J. Xiao. 3DMatch: Learning the matching of local 3D geometry in range scans. arXiv:1603.08182, 2016.Google ScholarGoogle Scholar
  107. S. Zhou, J. Wu, Y. Wu, and X. Zhou. Exploiting local structures with the kronecker layer in convolutional networks. arXiv:1512.09194, 2015.Google ScholarGoogle Scholar

Index Terms

  1. Geometric deep learning
              Index terms have been assigned to the content through auto-classification.

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in
              • Published in

                cover image ACM Conferences
                SA '16: SIGGRAPH ASIA 2016 Courses
                November 2016
                1732 pages
                ISBN:9781450345385
                DOI:10.1145/2988458
                • Conference Chair:
                • Niloy J. Mitra

                Copyright © 2016 Owner/Author

                Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 28 November 2016

                Check for updates

                Qualifiers

                • course

                Acceptance Rates

                Overall Acceptance Rate178of869submissions,20%

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader