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CHAPTER 1 

INTRODUCTION 

Mainstream modern microprocessor architectures are constructed with the 

memory systems that consist of multi-level data caches and traditional DDR main 

memory devices. The native hardware concurrency mechanisms present in the 

respective micro-architectural implementations only provide a low degree of hardware 

managed concurrency. Further, these mechanisms are often difficult or entirely not 

visible from the application layer or instruction set architecture. These mechanisms 

often promote efficient utilization or near-optimal performance for applications with 

significant memory reuse or linear memory access patterns. 

Conversely, applications generally considered to be data-intensive access 

memory in irregular and non-deterministic patterns or in strides that exceed the size of 

modern data caches. Executing this class of application on a traditional micro 

architecture has the inability to make use of the on-chip data caches, resulting in 

inefficient use of the memory hierarchy. In response to these data-intensive 

applications, we have developed the GoblinCore-64 (GC64) micro architecture with 

using a large degree of hardware-managed concurrency coupled to a high bandwidth 

memory subsystem. 

We introduce the GC64 machine hierarchy in Figure 1-1. The core machine 

model and instruction set are based on the RISC-V [2] instruction set architecture. We 

utilize the three-dimensional stacked memory devices in the form of Hybrid Memory 

Cube (HMC) devices as the basis for the GC64 main memory. The HMC devices 

provide uniquely high bandwidth over traditional DDR-based memory units alongside 

a packetized memory interface. The GC64 system on chip consists of a series of 

hierarchical hardware modules. Each socket is constructed with one or more GC64 

task groups. These task groups are integrated via a network on chip interface to four 

shared on-chip components. The on-chip software-managed scratchpad unit acts as a 

very high performance, user-mapped storage mechanism for commonly used data. The 
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Atomic Memory Operation (AMO) Unit is responsible for controls queuing, ordering 

and arbitration of atomic memory operations. The HMC Channel Interface handles the 

protocol interaction between multiple HMC devices. Finally, the Off Chip Network 

Interface handles any off chip memory requests that utilize the GC64 memory 

addressing mechanisms.  

 
Figure 1-1 Architecture of GC 64 

In order to make best use of the packetized interface presented by the 

aforementioned main memory HMC devices, we present a concurrent processing 

methodology and associated implementation in order to coalesce memory accesses 

from disparate GC64 cores into the largest potential HMC memory requests. We 

utilize a parallel [1], tree-based methodology in order to optimize the process of 

coalescing disparate read and write requests prior to dispatch HMC requests in a 

dynamic memory coalescing unit or DMC. This concurrent DMC mechanism 
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maintains the same logic in the memory coalescing unit as before, but further 

decreases the number of the requests flushed into the hybrid memory cubes. Further, 

the new approach increases the efficiency of the memory coalescing, especially when 

coupled to multiple HMC devices or when executing applications whose memory 

request patterns are unusually non-deterministic. 

In this research, with a concurrent dynamic memory coalescing unit design, 

two novel coalescing algorithms are designed and implemented. Also, five 

benchmarks and applications are utilized to make the comparison between these two 

algorithms, in order to demonstrate the efficacy of this concurrent model of memory 

coalescing. 

1.1 Contributions 
Our work makes the following contributions: 

 We build the RISC-V cores on the Linux system, which contains the 

full tool-chain and compiler and spike simulator. 

 We build the Yocto environment, which is a Linux distribution of 

RISC-V, and test the Symmetric Multi-Processing (SMP) on Yocto. 

 We setup the Linux kernel and image on RISC-V, boot the system and 

have it running the program with OpenMP. 

 We design the binary tree based dynamic memory coalescing (DMC) 

model, make it able to realize the logic of memory tracing and reduce 

the numbers of requests from RISC-V cores. We make it work as a 

DMC unit in serial version. 

 We design two different parallel algorithms targeting the memory 

coalescing in Goblin-Core 64, which are implemented in C and 

OpenMP. Moreover, we evaluate this two algorithms regarding their 

efficiency compared with the serial DMC unit with all the test cases. 
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1.2 Organizations 
This thesis is divided into six chapters. Following this introductory chapter, 

Chapter II presents background information on GoblinCore 64. Section 2.1 describes 

the background of RISC-V, section 2.2 describes the Hybrid Memory Cube, section 

2.3 explains about the Architecture of GC64 and section 2.4 describes the previous 

work of this research.  

Chapter III discusses the dynamic memory coalescing including the 

components of DMC unit, tree structure and the coalescing tree logic.  

Chapter IV contains five sections. Section 4.1 introduces the concurrent 

dynamic memory coalescing. Sections 4.2 demonstrates the mathematical model of 

the concurrent DMC design. Sections 4.2 to 4.5 briefly introduce the test environment 

and API used to evaluate the algorithm and design. 

Chapter V presents the algorithm design. Section 5.1 describes the Address 

Partitioned Algorithm (PAA), section 5.2 describes the Work Partitioned Algorithm 

(PWA). 

Chapter VI compares the results of the two algorithms and five test cases. 

Chapter VII presents the conclusions we have drawn from our research and future 

work that can be done in this space.
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CHAPTER 2 

BACKGROUND 

2.1 RISC-V 
RISC-V (pronounced "risk-five") is an open source instruction set architecture 

(ISA) based on established reduced instruction set computing (RISC) principles. 

In contrast to most ISAs, RISC-V is freely available for all types of use, 

permitting anyone to design, manufacture and sell RISC-V chips and software. While 

not the first open ISA, it is significant because it is designed to be useful in modern 

computerized devices such as warehouse-scale cloud computers, high-end mobile 

phones and the smallest embedded systems. Such uses demand that the designers 

consider both performance and power efficiency. The instruction set also has a 

substantial body of supporting software, which fixes the usual weakness of new 

instruction sets. The project was originated in 2010 by researchers in the Computer 

Science Division at UC Berkeley, but many contributors are volunteers and industry 

workers that are unaffiliated with the university [2]. 

The RISC-V ISA has been designed with small, fast, and low-power real-world 

implementations in mind [3][4], but without "over-architecting" for a particular 

microarchitecture style [4][5][6][7]. As of 2014 version 2 of the userspace ISA is fixed 

[8]. 

The RISC-V authors aim to provide several freely available CPU designs, 

under a BSD license. This license allows derivative works such as RISC-V chip 

designs to be either open and free like RISC-V itself, or closed and proprietary, 

(unlike the available OpenRISC cores, which under the GPL, requires that all 

derivative works also be open and free). 

By contrast, commercial chip vendors such as ARM Holdings and MIPS 

Technologies charge substantial license fees for the use of their patents [9]. They also 

require non-disclosure agreements before releasing documents that describe their 

designs' advantages and instruction set. Many design advances are completely 

https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Reduced_instruction_set_computing
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Mobile_phone
https://en.wikipedia.org/wiki/Mobile_phone
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/UC_Berkeley
https://en.wikipedia.org/wiki/RISC-V#cite_note-contributors-1
https://en.wikipedia.org/wiki/RISC-V#cite_note-rocketsspeed-2
https://en.wikipedia.org/wiki/RISC-V#cite_note-rocketsspeed-2
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/RISC-V#cite_note-isa-3
https://en.wikipedia.org/wiki/RISC-V#cite_note-isa-3
https://en.wikipedia.org/wiki/RISC-V#cite_note-shakti-5
https://en.wikipedia.org/wiki/RISC-V#cite_note-shakti-5
https://en.wikipedia.org/wiki/RISC-V#cite_note-waterman-7
https://en.wikipedia.org/wiki/BSD_license
https://en.wikipedia.org/wiki/OpenRISC
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/ARM_Holdings
https://en.wikipedia.org/wiki/MIPS_Technologies
https://en.wikipedia.org/wiki/MIPS_Technologies
https://en.wikipedia.org/wiki/RISC-V#cite_note-8
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proprietary, never described even to customers. The secrecy interferes with legitimate 

public educational use, security auditing, and the development of public, inexpensive 

open-source free software compilers and operating systems. 

Developing a CPU requires expertise in several specialties: logic design, 

compiler design and operating system design. It is rare to find this outside of a 

professional engineering team. The result is that modern, high-quality general-purpose 

computer instruction sets have not recently been widely available anywhere or even 

explained except in academic settings. Because of this, many RISC-V contributors see 

it as a unified community effort. This need for a large base of contributors is part of 

the reason why RISC-V was engineered to fit so many uses. 

The RISC-V authors also have substantial research and user-experience 

validating their designs in silicon and simulation. The RISC-V ISA is a direct 

development from a series of academic computer-design projects and was originated 

in part to aid such projects [4] [10] [11]. 

2.2 Hybrid Memory Cube 
Hybrid Memory Cube (HMC) is a high-performance RAM interface for 

through-silicon via (TSV)-based stacked DRAM memory competing with the 

incompatible rival interface High Bandwidth Memory (HBM). 

 

Figure 2-1 HMC architecture [18] 

Hybrid Memory Cube was announced by Micron Technology in 2011[12] and 

promises a 15 times speed improvement over DDR3.[13] The Hybrid Memory Cube 

https://en.wikipedia.org/wiki/Open-source
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/RISC-V#cite_note-isa-3
https://en.wikipedia.org/wiki/RISC-V#cite_note-isasbfree-9
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Through-silicon_via
https://en.wikipedia.org/wiki/High_Bandwidth_Memory
https://en.wikipedia.org/wiki/Micron_Technology
https://en.wikipedia.org/wiki/Hybrid_Memory_Cube#cite_note-linley2011-1
https://en.wikipedia.org/wiki/DDR3_SDRAM
https://en.wikipedia.org/wiki/Hybrid_Memory_Cube#cite_note-computerworld2013-2
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Consortium (HMCC) is backed by several major technology companies including 

Samsung, Micron Technology, Open-Silicon, ARM, HP, Microsoft, Altera, and 

Xilinx.[14] HMC combines through-silicon via  (TSV) and microbumps to connect 

multiple (currently 4 to 8) dies of memory cell arrays on top of each other [15]. The 

memory controller is integrated as a separate die [12]. HMC uses standard DRAM 

cells but it has more data banks than classic DRAM memory of the same size. The 

HMC interface is incompatible with current DDRn (DDR2 or DDR3) implementations 

[16] [17]. 

Within an HMC, as shown in Figure 2-2, memory is organized into vaults. 

Each vault is functionally and operationally independent. Each vault has a memory 

controller (called a vault controller) in the logic base that manages all memory 

reference operations within that vault. Each vault controller determines its own timing 

requirements. Refresh operations are controlled by the vault controller, eliminating 

this function from the host memory controller. 

https://en.wikipedia.org/wiki/Samsung
https://en.wikipedia.org/wiki/Micron_Technology
https://en.wikipedia.org/wiki/Open-Silicon
https://en.wikipedia.org/wiki/ARM_Holdings
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Altera
https://en.wikipedia.org/wiki/Xilinx
https://en.wikipedia.org/wiki/Hybrid_Memory_Cube#cite_note-3
https://en.wikipedia.org/wiki/Through-silicon_via
https://en.wikipedia.org/w/index.php?title=Microbump&action=edit&redlink=1
https://en.wikipedia.org/wiki/Die_(integrated_circuit)
https://en.wikipedia.org/wiki/Hybrid_Memory_Cube#cite_note-hotchips23-4
https://en.wikipedia.org/wiki/Hybrid_Memory_Cube#cite_note-linley2011-1
https://en.wikipedia.org/wiki/DRAM
https://en.wikipedia.org/wiki/DDR2_SDRAM
https://en.wikipedia.org/wiki/DDR3
https://en.wikipedia.org/wiki/Hybrid_Memory_Cube#cite_note-archI2011-hmcintr-5
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Figure 2-2 Example HMC Organization [18] 

Each vault controller may have a queue that is used to buffer references for 

that vault's memory. The vault controller may execute references within that queue 

based on need rather than order of arrival. Therefore, responses from vault operations 

back to the external serial I/O links will be out of order. However, requests from a 

single external serial link to the same vault/bank address are executed in order. 

Requests from different external serial links to the same vault/bank address are not 

guaranteed to be executed in a specific order and must be managed by the host 

controller. [18] 

One big advantage of Hybrid Memory Cube is its high bandwidth, the 

maximum read and write size per request is 128 bytes in HMC specification 1.0 [18] 

and 256 bytes in HMC specification 2.0 [19]. In our research, the specification 1.0 is 
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adopted. With 8 Links, the HMC can reach the bandwidth of 320GB/Cube, which is a 

fairly impressive performance in comparison with other traditional memory devices. 

2.3 GoblinCore 64 Architecture 
The GoblinCore64 (herein referred to as GC64) is originally designed to 

facilitate the construction of a high performance core architecture that was well- suited 

to executing applications traditionally known as “data intensive” These applications 

generally refer to algorithms that operate on sparse data structures such as graphs, 

sparse matrices and/or perform nonlinear combinatorial operations. We consider all of 

the aforementioned target application areas to share the following two general 

characteristics. 

Non-Unit Stride: All of the applications we consider as design targets for 

GC64 perform a disproportionate number of non-unit stride computations. These 

computations may simply be non-unit stride, scatters, gathers or completely random. 

In all cases, the data elements are not generally well-suited to traditional long SIMD or 

data caching architectures. 

Memory Intensive: Given the first characteristic, we also assume a latent 

characteristic with respect to the memory bandwidth requirements. Given the sparsity 

or non-linear access requirements, we assume that the design targets operate with a 

disproportionally high bandwidth to compute ratio. As such, we consider them to be 

memory intensive rather than computation intensive. 

In addition to the core design requirements, we also sought to build a 

completely open source architecture and tool chain suitable for architectural research 

in academia and possible commercial implementations. As such, we sought to build 

BSD-like licensing around the core ISA, simulation infrastructure, tools and toolchain. 

Given this, we found that our implementation goals aligned well with the RISC-V 

project. These include, but are not limited to the following: 

 A completely open ISA that is freely available to academia and industry. 

 An ISA separated into a small base integer ISA. 
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 Support for the revised 2008 IEEE-754 floating-point standard. 

 An ISA with native support for highly-parallel multicore or many core 

implementations. 

In addition to the core RISC-V goals, we also wanted to achieve the following 

architectural goals (as related to our target design requirements): 

 Provide simple architectural structures that are conducive to constructing 

highly (MIMD) parallel and concurrent applications 

 Provide simple ISA extensions conducive to compiler optimization of con- 

current applications 

 Provide a low-level, mutable parallel construct in hardware that can be 

easily mapped to higher level parallel programming models (threads, 

tasks, etc.) 

 Provide hardware mechanisms to minimize context switch latency to a 

very small number of cycles (goal of single cycle context switching 

events) 

 Provide a well-defined mechanism when context switch events occur 

 Provide a well-defined mechanism for user applications to explicitly 

induce context switch events 

The GoblinCore64 project is sponsored by the Data Intensive Scalable 

Computing Laboratory in the Department of Computer Science at Texas Tech 

University [20]. 

http://discl.cs.ttu.edu/doku.php
http://discl.cs.ttu.edu/doku.php
http://www.ttu.edu/
http://www.ttu.edu/
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Figure 2-3 Architecture of GC 64 

2.4 Previous Work 
The following work has been done before this thesis research: 

 Design the whole architecture of the GC-64, which is shown in Figure 2-3, 

to provide a scalable, flexible and open architecture for efficiently 

executing data intensive computing applications and algorithms.    

 One extended simulator of RISC-V has been built to realize the support to 

scattering and gathering memory requests, task concurrency and task 

management. 

 A serial dynamic memory coalescing unit is built as the memory 

management unit working in the GC64 architecture with HMC simulator 

built by our own

 The HMC simulator: HMC-Sim version 2.0 has been released, and it 

supports HMC specification 2.0 device layout and packet format, 256 byte 
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Read/Write packets, atomic operation and also adds the support for users 

to develop their own “Custom Memory Cube” (CMC) operations.  
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CHAPTER 3 

DYNAMIC MEMORY COALESCING 

Memory coalescing is defined as the act of merging two consecutive free 

blocks of memory. When an application frees memory, gaps can fall in the memory 

segment that the application uses. The purpose of dynamic memory coalescing is to 

coalesce the requests from processors to decrease the number of memory accesses. So 

that, the latency between the CPU and memory will be minimized. In this thesis 

research, the DMC structure consists of the following components as shown in the 

Figure 3-1. 

 

Figure 3-1 The component of DMC 

https://en.wikipedia.org/wiki/Memory_segment
https://en.wikipedia.org/wiki/Memory_segment
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First, the applications will be complied with the RISC-V instruction set 

architecture and then running on the modified spike simulator, which has been 

extended to support the memory tracing.  

Second, after the generation of the memory requests are generated, requests 

feeder will feed the requests into the DMC driver with the standard input approach or 

read as a file according to the user's preference. DMC driver are responsible to operate 

the DMC logic, parallelized algorithms described in section 6 and insert the input 

requests by calling the microcode, which contains the initializer, request-tree builder 

and HMC request builder. Initializer provides the function of memory locality and 

variables initializations. After initialization, the request-tree manager will build the 

memory requests tree as required by DMC driver.  Additionally, request-tree manager 

also takes charge of the tree management followed the rule of the tree logic 

demonstrated in section 4: coalescing tree logic. 

Finally, HMC requests manager will build the HMC requests based on the 

memory requests tree and manages the HMC requests in the HMC list. 

The library designed for the memory coalescing in GC-64, which contains the 

data structures including the tree structure of memory requests from the processor, 

application requests and HMC requests etc. In the library, the binary tree structures are 

used to store the requests from the processors. The following three tree structures are 

defined: Local Operation Tree, Global Operation Tree and Atomic Operation Tree. 

Each tree is built based on the following rules: 

 Each tree contains at minimum of one root node that is null. 

 All left nodes of the top-level root are for read operations. 

 All right nodes of the top-level root are for write operations 

 An exception to the rules is the AMO tree. 

The trees are built as the structure shown in the Figure 3-2. 

Each node in the binary tree contains the following data: 
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 Task operation, which could be Read requests or write requests, the 

minimum and maximum read / write bytes per request are 1 byte and 16 

bytes respectively. 

 Task ID, which is utilized to identify each specific requests. 

 Address, the address of the data which is required by this request. 

The requests from the processors were inserted into the tree in a sorting 

manner to make the binary tree structure to be a sorting binary tree, which means the 

left most child will store the smallest request address. 

When the tree reaches the max read or write bytes limitation, which is 128 

bytes per request, according to the HMC specification 1.0 from Micron[18], or the 

time that the request nodes stay in the tree exceeds the timeout predefined, the sorting 

binary tree will be expired, and form the HMC requests.  

 

 

Figure 3-2 The tree structure 

An HMC request is defined as a structure which contains: 
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 Memory operation, which could be a read request or a write request. The 

minimum and maximum read / write bytes per request are 16 bytes and 

128 bytes; 

 Address; the address of the data in the memory which is required by this 

request. 

After one HMC request is built, a unique Traction ID (TID) will be attached to 

the HMC request in order to be used to identify different requests when receive the 

data back from the memory. 

  Eventually, the HMC requests will be converted into the HMC request packet 

[18] which is defined as the structure which consists of request header and request tail, 

and Cube ID, address, and TID. 
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3.1 Tree logic 
In consideration of the fact that, there is no data cache in GC64, directly 

accessing the data from memory can potentially cause a high latency. Thus, the sorting 

binary trees are not just used for storing the request address, but also allows to reduce 

the number of the requests from the cores and build a small amount of HMC requests. 

Because HMC allows the user to read/write 128 bytes at a time, which is 8 times of 

the maximum read/write bytes from RISC-V cores per request. Further, the principle 

of the tree logic design is concluded as: less requests are more efficient. In this 

manner, the time used to access the memory will be reduced. 

  Once the tree reaches the condition that the expiration will be triggered, the 

left most child will be found as the base address first, and then its parent's request 

address and corresponding read/write bytes are evaluated, to determine whether these 

two requests are consecutive. Then the tree will be checked following the same tree 

logic.  

  The address of the read requests in the tree may have the following occasions 

which are shown in Figure 3-3 to 3-6. 

In the case a, two requests address are completely consecutive, as shown in the 

Figure 3-3.  

 

Figure 3-3 Case a 

In the case b, addresses of request 1 and request 2 have an overlap, as shown in 

the Figure 3-4; 
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Figure 3-4 Case b 

In the case c, as shown in the Figure 3-5, the address of request 2 totally 

overlaps with request 1, which means the ending address of request 2 is not greater 

than that of request 1. 

 

Figure 3-5 Case c 

The above case a, b and c are considered as the consecutive occasions, which 

can be reduced as one HMC request if the total read bytes is not greater than 128 

bytes. 

As show in the Figure 3-6, in the case d, the address of two requests are not 

consecutive, if the distance between the starting address of the request 1 and the 

ending address of request 2 is not greater than 128 bytes, then request 1 and request 2 

can still be formed in one HMC request. Otherwise, these two requests will be broke 

into two HMC requests. 
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Figure 3-6 Case d 

For the case of write requests, in the case a, b and c, these two requests can still 

be reduced as one HMC request. However, for the case d, the addresses of two 

requests are not consecutive, if only one HMC request is built, which will change the 

data in the memory that should not be changed. So, in this case, more than one HMC 

requests will be built. 

  This tree logic will run recursively until tracing back to the root node. 

Eventually, the tree will be expired, except the root node, which does not contain any 

data. 
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CHAPTER 4 

CONCURRENT DESIGN 

In this chapter, we introduce the design and methodology of concurrent 

dynamic memory coalescing, including the architecture of concurrent DMC, a 

mathematical modeling and two concurrent approaches to coalesce the memory 

accesses between the RISC-V cores and Hybrid Memory Cube in GC64 highly 

efficiently. It is originated from the current dynamic memory coalescing unit, which 

performs the coalescing logic and converts the requests from processors to the HMC 

requests serially. Additionally, the API and the environment for evaluation are also 

introduced in this chapter.  

4.1 Concurrent tree-based memory tracing 
The previous sections describe the dynamic memory coalescing and the logic 

of the tree. One limitation of this tree based memory coalescing is that when the 

application accesses the data totally randomly, even different hybrid memory cubes, 

the request from the processors could be totally separated, which will lead to the 

consequence that even after the memory coalescing, the number of requests will not be 

effectively reduced as expected. 

For instance, let us suppose the following equation is the instruction in one 

application: 

a[i] = b[i] + c[d[i]]   

let n equal to the value of d[i], then c[d[i]] is equal to c[n], n will be a totally 

random numbers that are not consecutive. In this way, the addresses between different 

requests could be far away from each other, which may not be reduced into one HMC 

request, which means the total number of the HMC requests will increase, and the 

total latency will expand too. In order to solve this problem, tree based algorithm is 

optimized by making the memory coalescing unit work in parallel. 

As widely acknowledged that the task parallelism is closely related to a divide-

and-conquer approach, where a big problem is chopped into many sub-problems. The 
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sub-problems are often independent and parallelizable [21]. Following this manner, 

the tasks of dynamic memory coalescing are assigned to different threads based on 

range of the address of requests, which are independent. Each thread will build its 

local tree, which is shown in Figure 4-1. 

 

Figure 4-1 The architecture of concurrent DMC 

4.2 Mathematical Modeling 
Define r is the total number of requests produced by the processer, Shr and Chr 

are the number of HMC requests generated by the serial DMC and concurrent DMC, 

respectively. N is defined as the total number of different HMC devices, which is also 

the number of threads. Pk stands for the proportion of the requests in the kth HMC 

device among all the requests read into the DMC unit, and follows the equation below: 

∑ Pk =  1, k ∈ [1 , N]

𝑁

𝑘=1

 

Suppose r is much larger than 128 bytes and all the requests accessing one 

HMC devices are consecutive. In this way, two cases are defined for modeling, which 
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are the best case and worst case. The serial DMC and concurrent DMC can be 

demonstrated by the equations in both cases. 

 Best case: for each 128 bytes fed into the DMC unit, there exist both read and 

write requests accessing each HMC devices. In other words, for every 

coalescing tree, and k ⊆ [1 , N], Pk > 0. Due to the fact that the max read/write 

bytes in the memory coalescing tree is 128, the number of HMC requests 

targeting the address in each HMC will be two(One HMC read request and one 

HMC write request). Thus, we can form the following equations: 

Shr =  
𝑟

128
 × ∑ Pk × N × 2 =  

 𝑟 × 𝑁

64

𝑁

𝑘=1

 

Chr = 1 +
𝑟

128
× 2 =

𝑟

64
 

As shown in the equation, Shr = Chr ×N. Therefore, in the best case the 

concurrent DMC is N times as efficient as serial DMC. 

 Worst case: for each 128 bytes fed into the DMC unit, there exist both read and 

write requests targeting the same HMC device. In this way, in every coalescing 

tree, there will be 128 bytes requests targeting the same HMC device. Since the 

max read/write bytes in the memory coalescing tree is 128, the number of 

HMC requests generated by the each coalescing tree will be two (One HMC 

read request and one HMC write request). Thus we can form the following 

equations: 

Shr = 1 +
𝑟

128
× 2 =

𝑟

64
 

Chr = 1 +
𝑟

128
× 2 =

𝑟

64
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As shown in the above equation, Shr = Chr. So, in the worst case the concurrent 

DMC and serial DMC have the same performance in the perspective of the 

efficacy. 

There are two concurrent approaches designed for the memory coalescing in 

this research. 

 The first approach is to partition the addressing space of the memory and 

force each thread to take care of a corresponding partition. In this way, 

each thread will only build a local tree which contains the requests with 

the base address fall into its own partition. Further, this approach may also 

be extended for multiple hybrid memory cubes. For example, thread 1 will 

take care of the requests towards the address in the first HMC device and 

thread 2 will take care of the requests targeting the address in the second 

HMC device etc. In this manner, each process will only insert the request 

that requires the data in its own HMC device and the difference between 

different address of requests will be smaller. In this way, less HMC 

requests will be built based on the tree logic mentioned in the previous 

section. In other words, the efficiency are supposed to be increased with 

this improvement. 

 The second approach is to insert the read requests and write requests 

separately. Some threads are used to insert the read requests and the rest 

threads are responsible for coalescing the write requests. This approach 

will increase the possibility of building larger HMC requests by 

partitioning the read and write requests. Additionally, this concurrent 

methodology may also take advantage of the PAA approach by assigning 

the specific addressing space to each thread. 

4.3 Environment 
An OpenEmbedded RISC-V port: Yocto is first considered as the platform to 

implement the parallelization, which is a Linux distribution generator. The Yocto 
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Project is a Linux Foundation workgroup whose goal is to produce tools and processes 

that will enable the creation of Linux distributions for embedded software that are 

independent of the underlying architecture of the embedded software itself. The 

project was announced by the Linux Foundation in 2010 [22]. In March 2011, the 

project aligned itself with OpenEmbedded, an existing framework with similar goals, 

with the result being The OpenEmbedded-Core Project. 

The Yocto Project is an open source project whose focus is on improving the 

software development process for embedded Linux distributions. The Yocto Project 

provides interoperable tools, metadata, and processes that enable the rapid, repeatable 

development of Linux-based embedded systems. 

The Yocto Project has the aim and objective of attempting to improve the lives 

of developers of customised Linux systems supporting the ARM, MIPS, PowerPC and 

x86/x86 64 architectures. A key part of this is an open source build system, based 

around the OpenEmbedded architecture which enables developers to create their own 

Linux distribution specific to their environment. This reference implementation of 

OpenEmbedded is called Poky. 

There are several other sub-projects under the project umbrella which include 

EGLIBC, pseudo, cross-prelink, Eclipse integration, ADT/SDK, the matchbox suite of 

applications, and many others. One of the central goals of the project is 

interoperability among these tools. 

The project offers different sized targets from "tiny" to fully featured images 

which are configurable and customizable by the end user. The project encourages 

interaction with upstream projects and has contributed heavily to OpenEmbedded-

Core and BitBake as well as to numerous upstream projects, including the Linux 

kernel. The resulting images are typically useful in systems where embedded Linux 

would be used, these being single-use focused systems or systems without the usual 

screens/input devices associated with desktop Linux systems. 

https://en.wikipedia.org/wiki/Linux_Foundation
https://en.wikipedia.org/wiki/Linux_distribution
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https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Embedded_Linux
https://en.wikipedia.org/wiki/Embedded_systems
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/MIPS_architecture
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/X86_64
https://en.wikipedia.org/wiki/OpenEmbedded
https://en.wikipedia.org/wiki/Linux_distribution
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As well as building Linux systems, there is also an ability to generate a 

toolchain for cross compilation and a Software Development Kit (SDK) tailored to 

their own distribution, also referred to as the Application Developer Toolkit (ADT). 

The project tries to be software and vendor agnostic. Thus, for example, you can 

choose which package manager format you intend to use (deb, rpm, or ipk). 

Within builds, there are options for various build-time sanity/regression tests, 

and also the option to boot and test certain images under QEMU to validate the build 

[23]. 

The Yocto for RISC-V developed by RISC-V team from UC Berkeley is fully 

installed and tested [24]. However, this environment was found that it did not support 

running the program with SMP, which is not as expected, even though it is able to 

compile the multithreading program. 

4.4 Linux/RISC-V 
This is a port of Linux kernel for the RISC-V instruction set architecture. 

Development is currently based on the 4.1 long term branch [25]. This Linux system 

built on RISC-V is able to run the program with installed API, like OpenMP, MPI etc. 

Thus, this platform is chosen to run the test cases for the results.  

4.5 API: OpenMP 
OpenMP (Open Multi-Processing) is an application programming interface 

(API) that supports multi-platform shared memory multiprocessing programming in C, 

C++, and Fortran [27], on most platforms, processor architectures and operating 

systems, including Solaris, AIX, HP-UX, Linux, OS X, and Windows. It consists of a 

set of compiler directives, library routines, and environment variables that influence 

run-time behavior [26][28][29]. The structure of multithreading with OpenMP is 

shown in Figure 4-2. 

OpenMP as an implementation of multithreading, a method of parallelizing 

whereby a master thread (a series of instructions executed consecutively) forks a 

specified number of slave threads and the system divides a task among them. The 
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https://en.wikipedia.org/wiki/Thread_(computer_science)
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threads then run concurrently, with the runtime environment allocating threads to 

different processors. 

 

Figure 4-2 An illustration of multithreading with OpenMP [31] 

The section of code running in parallel is marked accordingly, with a 

preprocessor directive that will cause the threads to form before the section is executed 

[27]. Each thread has an id attached to it which can be obtained using a function 

(called omp_get_thread_num()), as shown in the Figure 4-3. The thread id is an 

integer, and the master thread has an id of 0. After the execution of the concurrent 

code, the threads join back into the master thread, which continues onward to the end 

of the program. OpenMP provides several ways to synchronize the threads like: 

critical, barrier, atomic. Specifically, the critical synchronize the threads by forcing 

only one thread is able to run the specific code segment; after that, another thread will 

be allowed to run this code segment. In this way, threads take turns to run this critical 

code segment. Moreover, OpenMP provides the keywords “private, thread private, 

first private, last private, shared, etc.” to distinguish the local variables and global 

variables. Private variables will be created inside of the parallel code segment for each 

threads, other threads cannot access these private variables of other threads. Shared 

variables will be shared for each threads and the variables in the serial codes are 

accessible by each thread. First private and last private variables will be initialized by 

the original assignment and written into the original variables, respectively. Thread 

https://en.wikipedia.org/wiki/Runtime_environment
https://en.wikipedia.org/wiki/Thread_(computer_science)
https://en.wikipedia.org/wiki/Preprocessor_directive
https://en.wikipedia.org/wiki/OpenMP#cite_note-OSConcepts-3
https://en.wikipedia.org/wiki/Function_(computer_science)
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private variables will be private to the same thread through all the parallel code 

segments. It should be noticed that, the master thread’s thread local variables will be 

the variables in the serial code. 

By default, each thread executes the parallelized section of code 

independently. Work-sharing constructs can be used to divide a task among the 

threads so that each thread executes its allocated part of the code. Both task 

parallelism and data parallelism can be achieved using OpenMP in this way [31]. 

 

Figure 4-3 OpenMP constructs [31] 

4.6 Implementation Plan 
The OpenEmbedded RISC-V port Yocto is first considered as the platform to 

implement the concurrent DMC. However, this environment was found that it did not 

support running the program with SMP, even though it is able to compile the 

multithreading program.  

Thus, instead of the Yocto, another port of Linux kernel for the RISC-V 

instruction set architecture which supports the SMP, is used as the environment to 

evaluate the concurrent DMC with multiple threads. After building the kernel and 

https://en.wikipedia.org/wiki/Task_parallelism
https://en.wikipedia.org/wiki/Task_parallelism
https://en.wikipedia.org/wiki/Data_parallelism
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image, the OpenMP programming model and library [30] are adopted in this research 

to parallelize the memory coalescing. 
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CHAPTER 5 

ALGORITHM DESIGN 

We design two different concurrent coalescing algorithms for the concurrent 

DMC methodology, a partitioned address algorithm and a partitioned work algorithm. 

Each algorithm maintains the aforementioned DMC components, memory coalescing 

tree model and coalescing tree logic. In order to ensure correct behavior in the 

concurrent coalescing algorithms of the DMC microcode, we restrict each of the 

global variables utilized by the coalescing functions to remain thread private prior to 

entering the parallel code region. Each of the parallel threads is also forced to maintain 

its own file pointer within the driver infrastructure such that multiple threads may 

make independent and asynchronous forward progress. In addition to the variables 

required for the microcode core, we also create copies of the timing and statistics 

variables for each individual thread. This enables us to record and tune the efficacy of 

individual microcode threads as they coalesce memory requests from different 

application workloads. These two concurrent coalescing algorithms are discussed in 

detail below.  

5.1 Partitioned Address Algorithm 
In the partitioned address algorithm (PAA), as shown in the Figure 5-1, each 

thread begin running in parallel in order to read the input memory trace after all the 

private copies are created. The base address of each request is utilized to determine 

whether the respective thread will insert the request into its tree. The logic utilizes the 

respective thread ID (TID) combined with the following condition to make the 

determination: 

TID × α ≤ address ≤ (TID+1) × α                

As shown above, the addr represents the target address of the respective request and α 

represents the total addressing space divided by the N, the number of threads in the 
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execution context. This implies that the physical address space is separated into N 

contiguous blocks of size α and assigned to an individual thread. 

 

Figure 5-1 Partitioned Address Algorithm 
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Table 6-1 Example of input requests 

Request Operation Address 

1 RD16 0X10009FFF 

2 RD8 0X000F1000 

3 WR16 0X00001008 

4 RD8 0X1000A008 

5 WR8 0X100F0008 

6 WR16 0X0000101F 

7 RD16 0X1000A010 

8 WR8 0X00001000 

 

For example, suppose we utilize N = 16 threads in the execution context, α is 

0x01000000 and there are eight requests to be inserted as shown in the Table 1. The 

OP column represents the respective operation of the requests, where RD is a read 

request and WR is a write request. In this manner, RD8 would represent an 8-byte read 

request and WR16 would represent a 16-byte write request. 

In this example, thread 0 would be responsible for the address space falling 

between 0x00000000 and 0x0FFFFFFF. Similarly, thread 1 would be responsible for 

the address space falling between 0x10000000 and 0x1FFFFFFF. An example of 

inserting these aforementioned requests as listed in Table 1 is shown in Figure 5-2.  
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Figure 5-2 The example of PAA  

During the concurrent coalescing, threads do not block or wait for each other. 

Rather, they continue processing the incoming requests delivered by the driver. This 

process will continue iterating until all requests have been received by the DMC unit, 

which implies that each thread in the execution context will read and process each 

incoming memory request. 

The final stage of the algorithm requires an explicit barrier in order to ensure 

that all threads have completed their respective processing and all the potential 

memory requests have been flushed to the equivalent HMC requests. We also 

implement a single data reduction for the purpose of collecting the statistical timing 

and tuning values from each of the parallel threads after processing has been 

completed. 

5.2 Partitioned Work Algorithm 
As shown in the Figure 5-3, the partitioned work algorithm (PWA) assigns the 

address spaces to the individual thread ranks in a similar manner to the PAA approach. 

However, it also separates the read and write requests. In this algorithm, the thread 
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ranks are also split into two halves. The lower half of the thread ranks handle the read 

requests and the upper half of the thread ranks handle the write requests. In the 

following equation, γ represents N divided by 2 and α represents the size of each 

partition, which is the quotient of the total addressing space and γ.  

 

Figure 5-3 Partitioned Work Algorithm 
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For the threads with the TID greater than or equal to γ, the threads will only 

insert the write requests which meets the following condition, as shown in the relation: 

(TID – γ) ×β ≤ addr ≤ (TID - γ +1) × β  

For the threads with TID smaller than γ, the threads will only insert the read 

requests which meets the following condition, as shown in the following relation: 

TID × β ≤ addr ≤ (TID + 1) × β   

For instance, assume there are sixteen threads are used and β is 0x01000000. 

There are also eight requests which are read and write, as listed in table 1. In this 

manner, thread 0 and thread 1 will only insert the read requests within the address 

space spanning addresses 0x00000000 to 0x0FFFFFFF and 0x10000000 to 

0x1FFFFFFF, respectively. Conversely, threads 8 and 9 will only consider write 

requests from the address space spanning 0x00000000 to 0x0FFFFFFF and 

0x10000000 to 0x1FFFFFFF, respectively. All of these threads will follow the same 

approach until all requests are inserted, coalesced and subsequently expired to be 

dispatched to one or more HMC devices. And an example are shown in the Figure 5-4 

to demonstrate all the requests listed in the table 1 inserted by algorithm PWA. 
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Figure 5-4 Example of PWA 
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CHAPTER 6 

EVALUATION 

There are 5 test cases are used to make comparison between the two concurrent 

DMC algorithms and the serial DMC on the perspective of efficiency. 

 The first one is the High Performance Conjugate Gradient Benchmark, also 

known as HPCG, which is a software package that performs a fixed number 

of symmetric Gauss-Seidel preconditioned conjugate gradient iterations using 

double precision (64 bit) floating point values [32]. 

 The 2rd test case is a synthetic graph theory benchmark called SSCA#2 

which is developed by the DARPA High Productivity Computer Systems 

(HPCS). This benchmark is composed of four kernels operating on a large-

scale, directed multi-graph [34]. 

 The 3rd test case is the stream benchmark, which is designed to measure 

sustainable memory bandwidth for contiguous, long-vector memory accesses 

[35]. 

 The final two test cases represent a pathological scatter and gather operation, 

respectively. Each benchmark initializes two long vectors that represent an 

index vector and a storage vector. The indices are initialized using random 

numbers generated from a known polynomial. The benchmark executes 1024 

iterations of full scans across the entire storage vector where each lookup 

performs A[i] = B[Idx[i]] for the scatter and A[Idx[i]] = B[i] for the gather, 

respectively. 

We execute the concurrent DMC microcode using 2, 4 and 8 threads. Given that 

the maximum HMC configuration attached to a single socket is currently 8, there is no 

apparent motivation to drive microcode concurrency beyond 8 parallel units. Further, the 

chip area required to implement such a parallel execution unit directly in the memory 

pipeline would outweigh the marginal benefit. For each of the address partitioned 

algorithm PAA and the work partitioned algorithm PWA, we record the number and 

distribution of incoming memory requests as well as the number and distribution of 
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outgoing HMC requests. We calculate the relative efficiency of the given simulation by 

dividing the number of coalesced requests by the total number of input requests. The 

requests of the PAA and the PWA approach are presented in Figure 6-1 and Figure 6-2, 

respectively.  

 

Figure 6-1 PAA Results 

As shown in Figure 6-1 the PAA approach performs relatively well on the 

STREAM, scatter and gather tests. The performance and scalability are stable and 

outperform the lack of coalescing as the thread concurrency scales from 2 to 8. The 

scatter and gather test case provides particularly good scalability at 8 threads as it 

coalesces 72.48% of the incoming memory accesses. However, the test cases 

demonstrating the HPCG and the SSCA2 benchmarks only exhibit slight increases in 

overall efficiency.  

Upon further analysis, we find that the HPCG and SSCA2 tests demonstrate much 

larger input sets for the aforementioned simulation results. Analyzing the raw request 

data shows us that individual memory requests generated by these two tests tend to be 
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unique and discrete in spatial address space. As such, they represent a much more 

difficult memory request pattern than that of the STREAM, scatter and gather test cases.  

Similarly, the results of the PWA approach provide nearly identical results. Figure 

6-2 demonstrates that there is little difference between the second and fourth threads and 

the overall efficiency peaks at roughly 6% for the STREAM, scatter and gather test cases. 

However, the overall efficiency for the HPCG and the SSCA2 tests demonstrate a slight 

increase of 0.15% and 0.43%, respectively. 

 

 

Figure 6-2 PWA Results 

The HMC request distribution of the PAA algorithm executing the HPCG  

benchmark using 2 and 8 threads is illustrated in Figure 6-3  and Figure 6-4, 

respectively. As the concurrency scales from 2 to 8 threads, we observed that more HMC 

requests were generated for the maximum request size of 128-bytes. However, it is also 

apparent that the majority of the requests were coalesced into smaller 16-byte write 
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requests (WR16). We attribute this behavior to application divergence to perform 

operations such as constructors, destructors, and system calls.  

In addition to the aforementioned results, we present the raw data from the 8 

thread simulations of the PAA and PWA algorithms in Tables 2 and 3, respectively. In 

the PAA approach, we achieved a maximum efficiency of 72.48% with the scatter and 

gather tests and the lowest efficiency in the STREAM test of 36.42%. Across all the test 

cases, we find an average increase in efficiency of 55.17%. Similarly, with the PWA 

approach, we maximize our efficiency with the scatter and gather tests at 78.86% and our 

lowest recorded efficiency with the STREAM test at 32.73%. Our average efficiency in 

the PWA approach is found to be 55.94%. As such, the PWA approach is found to be 

slightly more efficient across our diverse set of application test cases. 

 

Figure 6-3 HMC request distribution with the PAA algorithm and two threads 

Given that the cost of memory requests are a first order performance bottleneck 

when accessing main memory, we also take into account the total costs of the HMC 

requests generated by the concurrent DMC unit. The HMC device architecture has a 
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unique packet request structure for read and write requests that require an additional 32-

bytes of control overhead for each memory request, regardless of the memory payload 

size. As such, the total cost of the HMC requests are calculated by adding the total 

control overhead and the total data overhead.  

 

Figure 6-4 HMC request distribution with the PWA algorithm and two threads 

We measure the relative cost decrease and present data that represents the 

proportional decrease in memory request cost scaled from two to eight threads. Figure 6-

5 elicits these results. In the PAA approach, the largest overall cost decrease is 17.42% 

with the scatter and gather test results. Additionally, the minimum cost decrease is 

associated with the HPCG test with a cost decrease of 0.11%. The average cost decrease 

across all PAA tests is 8.83%.  

We also present the cost decrease results with the PWA approach. The total 

request costs of the scatter and gather tests decreased by 20.21%. However, the SSCA2 

test only achieved a cost decrease of 0.25%. The average cost decrease across all PWA 

tests is 10.04% and, as such, the PWA approach is considered to be more efficient with 

respect to the overall cost decrease. 
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Figure 6-5 Proportion of the overall cost decrease of PWA and PAA approaches 
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Table 6-1 Evaluation of PAA with 8 threads 

Algorithm PAA 

Test Case Total Input Total Output Efficiency (%) 

Gather 608280 167388 72.481752 

Scatter 608280 167388 72.481752 

HPCG 646840285 340632587 47.338996 

SSCA2 1936197717 1023581527 47.134452 

Stream 3292791 2093492 36.421959 

 
 

Table 6-2 Evaluation of PWA with 8 threads 

Algorithm PWA 

Test Case Total Input Total Output Efficiency (%) 

Gather 608280 128538 78.868613 

Scatter 608280 128538 78.868613 

HPCG 646840285 333785917 48.397475 

SSCA2 1936197717 1145435847 40.840967 

Stream 3292791 2214737 32.739825 
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CHAPTER 7 

CONCLUSION 

In this work, we have presented a new methodology to the core dynamic memory 

coalescing approach using concurrent microcode that increases the overall efficacy and 

scalability of coalescing memory requests designed for one or more hybrid memory cube 

devices. The two approaches presented form a methodology that provides highly 

concurrent architectures, such as the GoblinCore-64, the ability to dynamically optimize 

incoming memory request traffic and make best use of available memory link bandwidth. 

We demonstrate the approach using several pathological kernels such as vector-scalar 

multiplication (in STREAM benchmark) and scatter/gather memory requests. We also 

demonstrate the approach using common application benchmarks in the form of 

STREAM, HPCG and SSCAv2.  

The future direction of the research will focus on the extension of the research 

based on the architectural direction of the GoblinCore-64 project. The GC64 architecture 

will be expanded and improved as an open architecture for advanced data analytics. We 

will continue to utilize and expand our support for the RISC-V ISA and our use of hybrid 

memory cube devices as main memory. We will also continue to improve the efficacy of 

the DMC methodology by optimizing the microcode implementing the microcode 

directly in RISC-V assembly in order to remove as much of the microcode latency as 

possible [36]. 
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