
The Origin of the C
Breakdown of the B

Larry Wall

A
pproximately 12 years ago, the Unix programming universe

consisted of two linguistic cultures. You either programmed in

C, or you programmed in the shell (for some value of shell). The

two systems were good for different things, so their capabilities

were widely viewed as complementary. The revelation that came

to me one day was simply that these capabilities were not, in fact, opposite ends of a

single dimension, but rather the axes of a two-dimensional graph.

The C programming language was good
at getting down into the “innards” of things,
but wasn’t very good at whipping things up
quickly. Whereas the shell was good at whip-
ping things up quickly, but couldn’t get
down into the nitty-gritty stuff. So if those
were the two dimensions of the graph, then
each language stayed near its own axis, and
there was this big blank area in the middle.

When I decided to fill that blank area, it
occurred to me that I should design the lan-
guage I wanted. Not that I could help it—I
am a synthesist at heart, and could hardly
help borrowing principles from everything
I’ve ever dabbled in: linguistics, music, sci-
ence, missiology, etc. I like to tell people that
Perl is composed of equal parts computer sci-
ence, linguistics, art, and common sense.
(Note that computer science is outnumbered
three-to-one.)

Traditional computer languages have
mostly tried for minimalism. They attempt
to express in the fewest number of features
everything that users might want to do. But
linguistics, art, and common sense conspire
to tell us that people would rather spend a

little effort learning a richer, more expressive
language, especially if they can learn as they
go. Human languages are not minimalistic.
That should tell us something.

The computer languages taught in schools
and used in industry, from Fortran and Pas-
cal to C and C++, all share in common the
mis-feature of forcing programmers to worry
about all kinds of things that get in the way
of expressing what they’re trying to do.

If you’re a mere mortal, two things drive
you nuts: memory allocation and data typ-
ing. And everything from Teco to Java bogs
you down in various kinds of arbitrary lim-
its. Even my PalmPilot has some rather
strange arbitrary limits. All because designers
think they know better than the user what
will be good for the user. The only designer
that good is God.

There are a lot of other languages in the
world. Dennis Ritchie has said, “people
need to understand that C and Pascal are
really the same language.” Perhaps Perl and
C are the same by Ritchie’s criterion,
nonetheless, Perl does things differently.
Among other things, it takes care of much of

40 April 1999/Vol. 42, No. 4 COMMUNICATIONS OF THE ACM

 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F299157.299166&domain=pdf&date_stamp=1999-04-01


COMMUNICATIONS OF THE ACM April 1999/Vol. 42, No. 4 41

e Camel Lot in the
e Bilingual Unix

the business of memory allocation and data
typing.

Especially when you’re dealing with text
processing, the atomic chunk of data is a
bunch of text. It is not a tuple, a date, or a 13-
bit floating-point number. It is just a thing,
and Perl is conducive to dealing with chunks
the way a human thinks instead of bending
over backward to make things easy for the
computer. We need to optimize both com-
puter time and human time, but when push
comes to shove, computer time is getting
cheaper, and human time is (we hope) getting
more valuable. The person has to come first.

Computer scientists like to throw around
the term “orthogonality,” and that’s what they
mean when they talk about minimal lan-
guages. They visualize a problem space as
having a certain number of dimensions, and
they want to be able to give you coordinates
to say go east 15 yards, and north 25 yards,
for example. They think that somehow or
other that is making things easier for the
computer and the human, but I don’t buy
that. People who hype orthogonality should
be sentenced to draw everything with an
Etch-a-Sketch.

If you’re in a park and you want to visit the
restroom you don’t go due east 15 yards and
25 yards north. You make a beeline straight
for the restroom. Humans love to take short-
cuts; they love to diagonalize.

At the University of California at Irvine
they didn’t put in any sidewalks when they
built the campus; they just planted grass.
The next year, they looked for trails in the
grass and put in sidewalks where they knew
people wanted to go. And those sidewalks
did not go at right angles all of the time.
What I’m trying to do with Perl is formalize

the shortcuts people want to take.
Right from the start Perl was designed to

evolve. One of the reasons for the funny char-
acters on the front of variables’ names is
because it protected the name spaces of the
variables from reserved words and I could add
reserved words and not break anybody’s
script. This sort of thing was intentional.
Beyond that, I wanted to encourage input
from the community.

That’s not stating it strongly enough. A
language without a culture is dead. A sense of
participation is important for any open-
source project, but is utterly crucial for a lan-
guage. I didn’t want people to merely say, “I
know how to program in Perl.” I wanted peo-
ple to say, “I am a Perl programmer.” When
people achieve such cultural identity, many
things suddenly become easy. In particular, a
kind of self-organizing criticality takes place,
and the proper number of leaders (and fol-
lowers) seems to appear as if by magic.

Being the founder of the culture, I’ve nat-
urally tried to impose a few of my own ideas.
It’s “officially okay” for people to speak sub-
sets of the language. (It’s even more okay for
neophytes to speak a subset.) It’s okay to
establish subcultures, lingos, and fiefdoms
within Perl culture. Anyone who wants to be
can be a leader of something. If two people
want to fight over the leadership of the same
thing, we’ll just call them different things and
let Darwin take over from there. We compete
by cooperating better. Hence, diversity is
strength, because it lets different parts of the
community intersect with other communities
and Perl becomes a better “glue” language.

Larry Wall (lwall@oreilly.com) is a senior software
developer with O’Reilly & Associates.

c

 


