
VIRTUS: A Collaborative Multi-User Platform

Kurt Saar
Institut fir Betriebs- und Dialogsysteme

University of Karlsruhe
Kaiserstrasse 12

D- 76 128 Karlsruhe

ABSTRACT
VRML is a file format for the description of dynamic scene
graphs containing 3D objects with their visual appearance,
multimedia content, an event model, and scripting capabilities. It
is designed to be used on the Internet and on local system and to
be used as an exchange tile format. Although equipped with
sophisticated techniques for user interaction the current VRML
standard still lacks direct support for sharing virtual worlds that
can not only be visited but also manipulated by multiple users
distributed over the network. Several multi-user technologies have
been developed in the past and some use VRML as the rendering
and interaction vehicle.
This paper gives a short review of design considerations for
distributed virtual environments and approaches taken so far in the
development of multi-user technologies. We present the design
and implementation of VIRTUS, a multi-user platform that allows
multiple geographically separated users to enter and manipulate
shared VRML scenes.

CR Categories and Subject Descriptors: C.2.4 [Computer-
Communication Networks]: Distributed Applications - H.5.3
[Information Interfaces and Presentation]: Collaborative
Computing - 1.3.2 [Computer Graphics]: Distributed/Network
Graphics - 1.3.3 [Computer Graphics]: Picture/Image Generation -
Viewing Algorithms; 1.3.6 [Computer Graphics]: Methodology
and Techniques - Interaction Techniques; 5.6 [Computer
Applications]: Computer-Aided -Engineering
Additional Keywords: VRML, Virtual Worlds, Virtual
Environments, VRML Event Model, Multi-User Technologies,
Distributed Environments, Living Worlds, Collaborative Virtual
Environment (CVE), Computer Supported Collaborative Work
(CSCW), Architecture Construction Engineering (ACE), Dead
Reckoning

1 INTRODUCTION
Essentially he WWW is a solitary place where many people see
the same information but have no perceptible support for
interaction or awareness of one another. Multi-user worlds or
DVEs (Distributed Virtual Environments) have the potential to
evolve the Web from a pure information space to a social space
and to radically alter the way we learn, work, consume, and play
from isolated pursuits to collaborative activities.

Pelmission to make digital or hard copses ofall or part ofthis work for
personal or classroom use is granted wthout fee prowded that copies
arc no1 made or distnhuted for prolit or comnicrc~al advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise. to republish. to post on servers or to redistribute to lists,
requires pnor specific permssion and/or a fee.

VRML 99 Paderbom Gemlany
Copyright ACM 1999 l-58113-079-1/99/02...$5.00

Steady progress has been made over the last 20 years of research
in DVEs and many current systems can portray large, complex,
rapidly changing environments containing a large number and
variety of actors with some degree of fidelity. But two factors
have delayed public interest in DVEs: real time graphics, audio
hardware, and networks have not been accessible to everyone.
These barriers disappear with the availability of powerful graphics
accelerators for PCs, high-speed modems, ISDN-adapters and
ADSL. The user interfaces of many traditional and new
applications can now take the next step in the evolution from
command-line to desktop metaphor to a real 3D-community
metaphor which allows us to change virtual worlds and observe
changes made by other geographically separated people. Large
scale DVEs may turn out to be a new Grand Challenge for
computer science.
Most of the DVE systems developed so far have been limited to
certain platforms, proprietary applications, or network protocols.
As the Living Worlds [17] initiative and Open Community
indicate there is increasing movement towards open standards.
VRML is central to this movement. Since the current VRML
standard does not offer language constructs for direct multi-user
support most VRML scenes today run on a single machine, have
limited interaction and respond to a single user’s input. The
implementation and authoring of multi-user environments still
requires skilled programmers with thorough knowledge of
VRML, Java, JavaScript, and the EAI.
We present VIRTUS, a multi-user platform based on VRML2.0,
Java and TCP/IP, which eases the development and authoring of
distributed environments with a special focus on collaborative
work. In a case study we use VIRTUS for architectural
construction and engineering purposes.

Figure 1: Screenshot of the VIRTUS user interface

141

http://crossmark.crossref.org/dialog/?doi=10.1145%2F299246.299287&domain=pdf&date_stamp=1999-02-23

The rest of this paper is organized as follows: Section 2 offers a
general overview of multi-user developments with or without use
of VRML and gives a classification of distributed virtual
environments. Section 3 reviews related work and summarizes
some of the hightlights of DVE development. Section 4 discusses
the architectural design of our multi-user system VIRTUS while
section5 focuses on some implementation specific details. The
remaining sections provide lessons learned from the use of VRML
in the context of architecture, some experimental results and an
insight into our current and future efforts in this field.

2 DESIGN CONSIDERATIONS FOR
DVE SYSTEMS

This section discusses the issues anyone is confronted when trying
to implement the key features of DVE systems: Several, if
possible thousands of geographically separated users are allowed
to meet and interact in real time in a dynamically and persistently
modifiable 3D virtual scenery. Verbal communication should not
only be supported via text but also via voice chat. These
requirements immediately raise a number of questions concerning
the division of data and functionality into atomic parts and
packaging each of these as coherent code structures:
. What is distributed?
. How is it distributed?
. Why is it distributed?
The answers to these questions illuminate advantages and
deficiencies of different concepts and lead to a classification of
DVE systems.

2.1 Fields of application
More and more applications are enjoying networked 3D computer
graphics: military simulations, virtual surgery, engineering,
architecture, CBT, gaming, product presentation and virtual
shopping malls. The development of DVEs has been driven
forward in three fields:
Military Applications: The benefits of virtual environment for
military purposes have been realized early: no danger of life or
destruction, no real damage, strategic simulations in arbitrary
terrain and landscapes, simulation of vehicle prototypes. More
possibilities are added if the environment is distributed: training of
teams, scalability of the number of participants, installation in
different separated locations, simulation with a combination of
several military forces and semi-automated forces (SAFs). The
most prominent developments in the military realm have been
SimNet[23] and DIS[lB]. Many DVE concepts trace their
foundations to the SimNet project.
Entertainment: the entertainment sector offers a potentially large
marketplace either for home-based or location-based
entertainment. In/the 1970s games like Adventure or Dungeon &
Dragon spawned a new genre of role-playing games. MUD
(Multi-User Dungeon) and their object-oriented versions MOO
became the generic descriptions for multi-user games. Home-
entertainment devices fall in two categories: game consoles and
PCs. Game consoles have little support for multi-user playing.
The history of multi-player games and teaching systems goes back
to the 1960s (PLATO) and culminated 1993 in Doom. More and
more games with support for TCP/IP and protocol tunneling reach
the market. Some current DVEs have evolved out of earlier
MUDS (Habitat, Worlds Away, Pueblo). The notion Zocation-
based entertainment describes multi-player gaming with
specialized equipment in BattleTech centers or amusement parks.

Research and commercial systems: Most of the money has
been spent by and for the specialized high-end military
applications and low-end networked games [32]. The widespread
use of the WWW makes computer supported collaborative work
(CSCW) and virtual shopping applications more and more
interesting for research and commerce. Goals and principles of the
Living Worlds proposal include the rapid implementation of
strictly VRML-based multi-user environments and respect for the
role of the market. Multi-user VR tends create immersive

2.2 Performance
Performance has at least two aspects: rendering performance
must be improved locally by using specialized hardware for
coordinate transformations, HLHSR, shading, texture mapping
and making the graphics hardware accessible to applications in a
comfortable way via low and high level APIs like OpenGL,
DirecBD, Java3D or Fahrenheit. This is not a DVE-specific
problem and the boost of graphic hardware performance we
currently experience alleviates the problem from day to day.
The much bigger challenge is communication performance.
While research labs may have access to Gbps-networks consumer
links are usually 28.8-modems or ISDN-channels. The limited
bandwidth requires a reduction of the amount of network traffic
(textual, motion, state, geometry, sound, video) and limiting the
number of objects and avatars (and thus polygons) to be rendered.
Approaches reducing the amount of necessary communication
have implication on the scalability and consistency of a DVE.

Figure 2: Environments are partitioned into polygonal regions;
avatars and objects may have several horizons for visual, acoustic
perception and radiation and for areas of interest.

2.3 Scalability
The number of possible interactions between n simultaneous users
in a multi-user system is of order O(nZ) at any moment. Ideally
network traffic should be almost constant or grow near-linear with
the number of users.

142

Usually there are large regions and associated data in the
environment that may not be relevant to a particular user at a
given time. This suggests the idea of partitioning the environment
into regions (or zones, locales, auras)[2,15] that may either be
fixed or bound to moving avatars. Events and actions in remote
zones need not be distributed and remote objects need not be
visualized or might be visualized at a lower level of detail. Most
of the traffic is isolated within zones.
Consider an indoor scene with different rooms separated by walls
and connected by doors and hallways: Walls may be marked as
boundaries of regions, doors may be marked as portals to adjacent
rooms. When the user leaves one region to enter a different one,
some kind of region management has to detect the situation and
present the new region to the user. This might involve a sudden
download of very large scene description tiles. Predictive systems
might even anticipate user movements and a just-in-time
scheduler might load regions in advance to avoid interruptions and
delays when entering.
Partitioning the world is the key to scalability. Some system use
the notion aura or area of interest surrounding the user at his
current position. This might cause bizarre effects in crowded
aggregations: users in close face-to-face proximity might not see
each other just because they are in different aura groups.
There are several variations to the partitioning paradigm.

2.4 Consistent y
Since the database is shared by all clients accessing and maybe
updating the data, the issue of distributed consistency must be
solved by any DVE to ensure the same view to all participants.
Solving consistency means satisfying user predictions and
providing a basis for causality in an environment.
Since the number participants is not fixed during the run time and
users may enter the environment after it has changed from its
initial state there needs to be supportfor late-comers.
There is always some degree of uncertainty concerning the current
state of a DVE and we can define different levels of consistency:
Strict consistency requires immediate propagation of all actions.
Conflicts between users must be prohibited or resolved.
The best Qbrt approach relaxes the guarantee for consistency in
the temporal or value domain to reduce communication costs.
The issue of consistency is tightly coupled with the issues of data
replication and communication protocols via the question: Who
needs to know what and how frequently? Crucial aspects to the
efficiency of any consistency algorithms are the number of
participants in the consistency algorithm and the degree to which
consistency will be guaranteed to these participants. Since the
complexity of the problem is quadratic in the number n of
participants, reducing n significantly reduces the number of
messages to be exchanged. The number of participants in a
consistency group may be reduced by partitioning environment.
CSCW oriented systems have strict requirements for consistency
throughout the DVE they focus on sophisticated group interaction
models. Large scale simulation platforms on the other hand put
their focus on simple state updates not on complex.
SimNet uses dead-reckoning algorithms to extrapolate positions
of entities based on their last known position, velocity and elapsed
time since the latest information receipt. The protocol data units
(PDUs) distributed contain just enough information to
approximate the current state.
Many DVEs reduce computing and communication costs by
updating scene states only in areas relevant to users. Does this
mean the system may cull all dynamics and autonomous actions in
areas without observers? This may be appropriate in some

applications, but not in simulation systems relying on causal
relationships[111

data management

centralized II distributed

I I

1
Figure 3: Data management and data replication

Data describing the DVE contain information about the world and
its objects. The data may be managed either by a central host with
guaranteed data consistency or a set of decentralized hosts. The
latter method raises the question how much of the data should be
distributed and how and when to update the distributed copies.

2.5 Connectivity
Connectivity has various dimensions including bandwidth,
capacity, protocols and topologies[8]. One peculiarity of DVEs is
the heterogeneity of data to be transferred: there is a mixture of
continuous high-bandwidth real-time transmission of data streams
(>32 kBps audio or >l MBps for video), occasional burst transfers
of large tiles (graphical data, geometry, texture) and frequent
small data packages (position updates, state changes).
The heterogeneity of data types, required bandwidth and
reliability suggest the use of heterogeneous transport protocols
using several different basic Internet protocols rather than a single
fixed distribution scheme. Since there is no established
infrastructure for efficient distribution at hand multi-user
developers are still dependent on low-level protocols. The
complexity of network details should be hidden to the user and the
application programmer. Future Dial-a-Behavior-Protocols
(DBPs) promise to modify the operation of protocol on-the-fly
with respect to syntactic and semantic packet contents.
Today we must be satisfied with the protocols available on the
different layers:
The basic layer-3 Internet protocol in its current version IPv4 and
next-generation IPv6 may be run on a variety of physical media
and link control protocols. The transport layer offers the
connection-oriented TCP, suitable for reliable transfer, and the
connectionless and unreliable IJDP. Since each UDP-datagram
may take an individual route, there is no guarantee for arrival of
datagrams and the correct sequence of arrived datagrams. Less
overhead and lack of retransmissions make UDP a suitable
protocol for the transmission of continuous data streams
UDP may be used in unicast or multicast mode.
MBone, the experimental subnet of the Internet uses multicast
UDP. Hosts can subscribe of ignore multicast packet down at the
hardware level by informing the network adapter which multicast
addresses to monitor. This way, high-bandwidth streams can reach
a large group of hosts identified by a single multicast-address

143

without producing load on hosts not in the multicast group.
However: not every machine is equipped with multicast-capable
hardware. The major bottleneck is located on the application
layer: HTTP in combination with FTP, gopher, telnet is
optimized for serving hypermedia documents from a server to a
single client in a reliable way. The IEEE DIS-protocol
(Distributed Interactive Simulation), which was initially
developed for military use (SimNet, NPSNET) specifies the
interactions of physical entities by exchanging state information in
its PDUs. This state includes position, linear and angular velocity
and acceleration, articulation, etc. Other data units include
simulation and logistics management, sensor-weapon interactions,
radio communication which are of questionable use for many
applications. Transferring state information frequently provides a
certain degree of consistency and allows for connection and
disconnection of participants at any time, but these heartbeats
generate permanent network traffic. The DIS-Java-VRML
working group is currently exploring the DIS-Java interaction in
large scale virtual environments.
More recent proposals VRTP (Virtual Reality Transfer
Protocol)[7], ISTP (Interactive Sharing Transfer Protocol)[3 I], or
DWTP (Distributed Worlds Transfer Protocol)[6] assure to
provide a frameworks for the optimized combination of
underlying protocols. The CBone (CyberBackbone) is intended to
improve MBone and offer a guaranteed QoS by partitioning traffic
within and between networks with the help of area of interest
managers (AOIMs). All these proposals indicate the need for a
suitable distributed virtual reality communication infrastructure.

Table 1: Information types in DVE and more or less suitable
network protocols

2.6 Distribution Concepts

2.6.1 Distribution of Data

Another attribute of DVEs is the way data are distributed to the
participant.
Unicast: the sender sends a message to exactly one receiver

which is known to the sender. (1: 1 point-to-point)
Broadcast: the sender sends a message that may be received by

all instances currently present in the system. Each receiver can
individually decide if the message is relevant in the current
situation. (Broadcast packets are filtered by routers to avoid
network pollution.)

Multicast: the sender sends messages to a well defined subset of
instances present in the system.

2.6.2 Distribution of Processes

The critical choice of the process distribution subsystem has
implications on design decision in other subsystems. The
communication architecture can be hierarchical (client/server-
model) or decentralized (peer-to-peer-model). Many discussions
deal with the question “client/server or peer-to-peer? “

Client-Server: the majority of small-scale DVEs are realized as
client-server architectures because this is conceptually and
practically the simplest and provided possibilities for
accounting and security management. The scene database is
centralized in one location: the server. Clients request scene
descriptions from the server and provide any relevant changes
originating at their site to the server. Inconsistencies in the
world description can occur if the clients hold local caches of
the world. If any changes to the cache should be necessary,
the server has to invalidate the cached data and replace it by
an up-to-date master copy. Obviously the server easily
becomes a bottleneck with increasing number of clients.
Empirical evidence proves the scalability of sophisticated
client/server systems to several hundred users. Many
commercial DVEs use the client server model, not only for
technical but for administrative and financial reasons: clients
are free, while servers and services are sold.

peer-to-peer: This architecture does not provide a single database
or master copy of worlds. Each client hold its own copy or
replica of data. Of course, changes to scenes used by several
clients have to be distributed to all participating browsers. The
maintenance of consistency is much more difficult here but in
general peer-to-peer system scale much better to thousands of
simultaneous users.

hybrid systems: Single server architectures have at least two
drawbacks: the server may easily become a performance
bottleneck and failure of the single server crashes the whole
DVE. Hybrid systems merge client-server and peer-to-peer
architectures by replicating and updating the world database
on several servers and still providing client-server
communication links from the browsers to the servers.

The existence of a broad spectrum of functionality between the
endpoints client/server and peer-to-peer suggests that this
discrimination is not a proper dichotomy. The VRTP protocol is
designed for efficient data transfer and monitoring in clientiserver
as well as in peer-to-peer environments.

2.7 Persistency
DVEs should be modifiable at run-time by accepting the
contribution of new objects and new behavior and optionally
saving these even after the user who created them has disconnect
from the system. This issue also involves the creation of user
profiles, persistent roles and access rights for users.

2.8 Ownership and Operation Locking
Multi-user worlds offer lots of opportunities for conflicts. One
user tries to open a door while another user tries to close it. These
conflicts must be avoided or resolved. One method to detennine
which objects may be modified by which users is to assign
temporary ownership to objects. Manipulation of objects may
include a change of the object’s coordinate system and changes in

144

the scene graph: users may grasp objects and take them to a
different world. Operations like these are essential for virtual
shopping applications. If owning an object means owning the
complete subtree (child objects) in the VRML scene graph, then it
might be difficult for user A to present a box of chocolates to user
B and ask to grab a chocolate. In this situation a locking
mechanism on an operation or interaction basis is more
appropriate.

2.9 Realism
Besides a degree of visual realism that is acceptable to the user
DVEs should aim towards sensory fidelity concerning visual,
aura2 and maybe even tactile information presented to the user
that replicates the real world to a maximum extent possible.
One familiar example for missing realism is the lack of collision
handling[181, Objects in the real world to not tend to penetrate
one another unless they break into pieces. Objects in VRML-
scenes and most other virtual environments or modelers do not
hesitate to do so. VRML-Browsers offer an approximate collision
detection between avatar and collision groups, but inter-object-
collisions are ignored. VRML-browsers should provide some
visual cue of contact and penetration by geometrical intersection
tests. Grasping and assembly operations would benefit
enormously from contact determination with visual or acoustic
feedback and from collision avoidance with constraints. Robust
and accurate collision determination is a time-consuming feature
usually sacrificed for the sake of rendering speed.
Some applications might even require the insertion of real-world
phenomenology like weather, time of the day, location of the
sun[28]. On the other hand simulations in virtual reality allows us
to ignore and go beyond the limitations of reality imposed by the
laws of mechanics (kinematics, dynamics, electrodynamics,
energy conservation).

2.10 User lnterfa ce
User interfaces for 3D virtual multi-user environments demand
several interesting additions to traditional WIMP-interfaces
consisting of screen, keyboard and mouse. Movements change the
user’s visual and auditory perspective. For immersion into the VE
we have to offer three dimensions to eye, ear, and hand.
(Auto)stereographic displays for graphic output, spatialized sound
and real-world mock-ups or gesture-capturing input devices are
components of expensive VR-Equipment.
There is still a deficit of HCI theories for merging multi-sensory
data streams into a single UI, most of the problems have their
roots in time lags: input device lags, processing lags, rendering
lag, synchronization lags, and frame-rate induced lags.
In certain applications (flight simulators) inappropriate user
interfaces may even induce negative training. We also lack a
theory for the estimation of the indispensable levels of fidelity.

2.11 Language
The implementation of DVEs may vary in some other aspects
which we just list here:
. programming language of the system
. scene description language: VRML, VRML variant,

proprietary language
. object behavior description language: Java, JavaScript,

VRMLscript, Tel, etc.
. implementation: API, toolkit, or integrated system.

3 REALIZED SYSTEMS
This section summarizes some features of a set of popular DVE
systems. We classified them according to the heterogeneity and
distribution concept of their processes. The list is not exhaustive.
Cfient-server systems
NVR, the Networked Virtual Reality is a C-API for the

development of multi-user VR applications. Client and server
communicate via TCP/IP. Objects are kept in client-side
database, objects and interactions are classified as local or
global.

Open Community [1 I] is an proposed open standard API callable
from Java and C for multi-user support in the Internet. It is
designed to integrate with the Living Worlds and Universal
Avatars specifications as successor for Spline (Scalable
Platform for Large Interactive Network Environments). The API
is independent of graphical description languages. Open
Community is based on several servers providing different
services: a Session Server manages multicast addresses for a
local area, a Locale Server is responsible for a certain region
(locale) of the world and manages all objects within that region,
a Persistence Server manages ownership, and a Beacon Server
provides the necessary multicast addresses to client when they
initiate the connection to a Locale Server. The partitioning of
the WorldModel into several, possibly overlapping locales is the
primary way Open Community achieves scalability to thousands
of users. Messages are limited to those coming from the current
and adjacent locales. Each locale has two multicast addresses:
one for static objects and one for streaming data (voice chat,
positional audio). Communication is accomplished via ISTP.

dVS/dVISE (distributed Virtual System) and its authoring
extension dVISE are successful commercial client-server
systems composed of several actors. Each actor has a
specialized task (like I/O or simulation) and a database of
relevant information. Dead reckoning is used to keep update
communication at a low rate.

Community Place[20]: The server process (bureau) acts as a
position tracker and message forwarder and uses an areas of
interest algorithm to select the clients to be informed: any
objects intersecting a user’s aura are candidates for influence or
interaction, focus represents the degree of interest one user
brings to bear on another and nimbus represents the degree of
attention one user pays to another. Static data and scripts are
replicated locally in the clients.

Two more systems are the commercial Blaxxun Community
Server capable of serving up to 5000 simultaneous users [3] and
VNET.

3.1 Peer-to-pee r systems
SimNet, the Simulation Network was initiated in 1983 by
DARPA and is in use as a military battle simulation environment
until today [23]. There are no central instances. State changes of
objects are distributed by broadcast. SimNet’s communication
protocol DIS was established as IEEE-standard in 1993. SimNet
and DIS are designed for large-scale environments with some lo5
participants.
The NPSNET project [21] at the Naval Postgraduate School in
Monterey started in 1986 and has been influenced by SimNet
since 1988. NPSNET is compatible to DIS and can use IP
Multicast over MBone. NPSNET divides the world statically into
chunks and associates different multicast addresses to different
regions. Changes performed by any client in a region are
distributed to clients within the same region via its multicast

145

address. SimNet and NPSNET use dead-reckoning algorithms to
reduce network traffic and repair packet losses. GSnet [22] is the
implementation of a collaborative development environment in
the framework of the Greenspace project at Fujitsu Ltd. and the
Human Interface Technology Lab at the University of
Washington. It uses IP-Multicast by default. GSnet worlds are
composed of chunks representing objects and methods. Chunks
may be grouped and maintained in distributed databases. Groups
are connected by specialized chunks and may be exchanged from
host to host. Modification of chunks is allowed only to the current
chunk owner. VEOS (Virtual Environment Operating Shell) [4]
has a special focus on rapid prototyping, portability, and
distributed computing. The VEOS kernel is composed of three
components: SHELL is responsible for process initialization,
memory allocation and scheduling of computing time. TALK
coordinates the interprocess communication via unicast. NANCY
is a transaction manager for a distributed database. A virtual
environment is a collection of autonomous entities (sets of
lightweight and heavyweight processes). Communication between
entities is handled by a separate component named FERN. The
Distributed Interactive Virtual Environment. DIVE [10,301 was
developed at the Swedish Institute of Computer Science. Each
host is part of exactly one world and has a complete copy of this
world which is replicated on demand. High-resolution traffic is
limited to dynamically associated auras, The aura concept is
refined by the notions of focus, nimbus, and awareness.
Experiments identified the size of auras and the maximum number
of users in one aura as two parameters crucial to system
performance. MR [25,26], the MR Toolkit and the MR Toolkit
peers package are developments for handling a variety of input
devices and provide mechanisms for UDP based communication
between VR applications over the Internet. They are intended for
a small number of users, five or less.

3.2 Hybrid systems
SpaceFusion [29]: objects may be moved, shared, and change
their owner. SpaceFusion adopts a multi-server approach: multiple
server ensure scalability and stability and incorporate security and
filtering mechanisms. Filtering is based on the concept of regions.
A client-side fusion manager combines information from different
servers before presenting it to the user. Other prominent system
are WAVES [191, AVIARY [27], BrickNet, MASSIVE[13,14]
and CAVERNsoft. Community Place, although inherently
client/server, has elements of hybrid architecture.

Figure 4: Data replication: world descriptions are loaded from a
centralized world database, replicated and updated locally.

P. UDP (uni-/multicast)

4 ARCHITECTURE OF VIRTUS
Our interest in distributed multi-user environment was stimulated
by a general interest in VRML and then by its practical
application in architectural education. We outlined VIRTUS, our
VRML-based multi-user system and finally implemented a first
prototype. Our approach was guided by the following
requirements:
Openness: the system should be open to as many hardware and
software platforms as possible. It should not be designed for any
specific application area.
Consistency: all distributed users in the same world are supposed
to have the same view at the world. Manipulation by any users
should have immediate effect on the world seen by others.
Dynamics: users can enter and leave the virtual environment at
any moment. All enter and leave events are distributed to all
instances. New users have an up-to-date view of the world.
Persistence: user manipulations within the world can have effects
on the world after the user has left the world and disconnected
from the system. The current state of the world can be saved at
any moment.
Partitioning: complex worlds should be partitioned to minimize
the amount of necessary communication.
Extensibility: the system should be implemented in a way that
allows for easy extensibility concerning new communication
protocols, new object behaviors and new functionality like inter-
object collision handling.
Database-Interface: the system should have an interface to a
database of objects, avatars and behaviors.
Complex behaviors: object behavior should not be limited to
simple movements. A database of complex behaviors for objects

146

like doors, windows, switches, and any kind of devices, 3D
widgets and avatars is required.

4.1 Communication Architecture
We chose the client/server model to distribute functionality for the
following reasons: the software structure is less complex and
easier to maintain. Collision handling, user and ownership
management, and the guarantee of consistency generate less
problems. The server may act a message filter and keep
unnecessary communication to a minimum. As a client/server
system VIRTUS can be extended to a hybrid or multicast system
with less effort than pure peer-to-peer systems. Since there is
direct communication only between clients and the server, no
modifications can be missed by the server. VIRTUS employs
centralized data management with data replication on demand.
The server knows all worlds in the environment and all objects in
all these worlds, handles ownership and guarantees consistency. It
is notified of changes in any of the worlds and supports
persistency of object states after client termination. Late-coming
users immediately have an up-to-date view at the environment.
The server manages a database of worlds (VirtusWorlds W,,...,W,)
comprising the universe (VirtusUniverse) and organizes the
communication to the clients. Each client knows at most one
VirtusWorld at any moment. When a client switches from one world
to another, it receives all necessary information about the new
world from the server. Centralized data management does not
limit the creation of objects to the server side. Clients may also
create new objects and insert them to the scene. They are
registered by the server and presented to other clients. A special
case of necessary client side object creation is the insertion of
avatars.

addvirtusobject 0

4.2 VirtusObjec t
Any VirtusWorld is composed of VirtusObjects. Each object is
described by a triple (shape, state, behavior, state). The shape
of an object covers all visual and acoustic characteristics:
geometry, appearance, color, texture, sound. All of these may be
represented at different levels of detail (LODs). state describes
the current values of the shape, its relation to the environment
(position, orientation, weight, etc.) and some internal state
variables. behavior describes all actions that may influence the
object’s shape or state. VirtusObjects may be simple or complex.
Complex objects should be structured into a hierarchy of container
and child objects.
VittusObjects contain the following information: A unique object
identifier assigned by the server. Object relations describing
parent-child relationships between objects and owner
information. Object transformation containing position,
orientation, size, center, and bounding volume information for
efficient collision handling. Object behavior: objects fall in
several categories:
l Passive objects do not create any events.
l Active objects create events.
l Static objects do not react to external events.
l Dynamic objects react to external events.
Two values describe the event sending and receiving behavior of
objects. Additionally a standard behavior as reaction to specific
user actions may be defined for objects. This behavior is inherited
by child objects. Object descriptions contain the visually and
acoustic representation, behavior-defining scripts, and textual
annotations. More MUtech-specific attributes (locks, messages,
nicknames) are likely to be added in the near future.
The functionality of an object is encapsulated in the Java-class
VirtusOb j ect. Table 2 gives an overview of the current set of
variables in this class. All variables are set and read via methods
and most of them have default values set at instantiation time. The
subclass VirtusOb j ectclient. specifies additional variables
and methods necessary for rendering on the client side.

mriable mme type ” 1 description
Object identification

id Inteser unique identifier

objectName String t~ame of the object

Object Relations

translation

rotation

center

scale

scaleorientation
bboxcenter
bboxSize

sending
receiving
movable
turnable
scalable

Fl&tIl values for translation

Float [I values for rotat1on

Float [I coordinates of rotation center

Float II scaling values

Float [I scaling orvzntation

Float [I coordmates of bounding box center

Float II dimensions of bounding box

Object Behavior
BOOle.SI indicator for event sending
BOOlean indicator for event reception

BOOleaIl indicator for object translation

BOOlean indicator for obiect rotation

BO0l%Xl iodicator for object scaling

Object Description
textdescription String [I textual object description

vrmldescription String [I geometric object description

scriptdescription StringLl behavioral description

Table 2: Variables of VirtusObj ect
Figure 5: Data objects and their instatiation.

147

4.3 VirtusWorld
A VirtusWorld contains essentially a list of VirtusObjects. Each
VirtusObject may be a member of one VirtusWorld. Table 3
illustrates the variables in class VirtusWorld and Table 4 lists
the methods operating on these variables.

worldName

VirtusWorld

String name of the world

Container
VirtusObject [I list of VirtusObject instances

Table 3: Variables of class VirtusWorld

method ,,ntfme
World Management

getId
setName
getName

returns unique world identifier
sets or changes the name of the world
returns the nalne of the world

gets1zeo returns nulnber of objects in the world

Object Management
addVlrtusObject0 adds an obwt to the world

1 removeVirtusObiect 0 deletes an bbiect from the world I
getVlrtusObject0 returns reference to the object of the specltied Id

World Transmission
send0 send contents of a world
receive () receives contents of the world

Table 4: Methods of Class VirtusWorld

4.4 VirtusUnive rse
A VirtusUniverse contains a list of several VirtusWorlds and
represents the complete virtual environment. An example:
VirtusWorlds may represent individual rooms of a building, the
VirtusUniverse represents the building. Users may walk from one
VirtusWorld to the next by leaving rooms through doors.
We omit a detailed description of variables and methods for class
Virtusuniverse. The class diagram in Figure 4 illustrates the
creation process of the virtual universe and the dependencies
between the classes of the data objects. Method setup ()
initializes the universe, reads world descriptions from a database,
creates a VirtusObject for each object found in the world.
addVirtusObj ect () adds the object to the list
VirtusWorld.
addVirtusWorld () inserts the world into VirtusUniverse as
soon as finished loading all objects for the world from the
database. The identifiers worldId for the VirtusWorlds and
ob j ec t Id for tde VirtusObjects are generated by the server and
are guaranteed to be unique. send () transmits a VirtusWorld from

server to client where receive () reads the description from the
network connection. VirtusWorlds can be transmitted vice versa
from client to server.

4.5 The Server Side
The server provides each client with its VirtusWorld and delivers all
updates within these worlds. It keeps all the necessary state
information about every connected client. Other duties of the
server include the initialization during the system start, saving
operations, the guarantee of world-wide consistency, and conflict

avoidance among objects and users by granting or refusing
ownership. The server is composed of two threads: VirtusServer
and Connection.

Virtus Server Classes

Figure 6: Server-side class diagram.

4.5.1 Thread Viftus Server

VittusServer initializes the system by creating an instance of class
VittusUniverse and by listening for incoming client requests on a
well-defined port. As soon as a client asks for participation a
Connection thread is started with an id number, a port number, and
a reference to the VirtusUniverse. Since this Connection thread is
responsible for the communication between client and server it is
assigned an id, a socket, and a reference to the universe. The
VirtusServer thread also realizes the saving operation for persistent
objects to the database, either at termination or on user demand.

Figure 7: Communication and interaction during start of Virtusserver

4.5.2 Thread Connection

For each client there is a dedicated Connection thread that handles
the communication between client and server. It provides the
client with information about its world and takes events from the
client to the other Connection thread. The lifetime of a Connection
thread expires with the termination of the client-server connection.
After receiving an acknowledgement of successful transmission of
the requested world description the Connection thread creates a
visual representation for the user: an avatar is inserted to the
VirtusWorld and all clients interested in this world are notified
about the existence of a new user. This completes the initialization
phase.

148

The Connection thread now listens for messages coming from the
client or from other Connection threads. Potential incoming
messages from the client side are:

User interactions with objects: object creation, deletion,
transformation, pushing buttons, using SensorNodes, etc.
These actions issue events that are sent to the Connection
thread and forwarded to all Connection threads managing the
same world.
User switches from one world to another: The new world is
transmitted to the client, the avatar is deleted in one world and
a new avatar is created in the new world. All Connection
threads managing the old and the new world are notified.
The client requests ownership for a specific VirtusObject. If the
server currently owns the VirtusObject and if its ownership is
transferable, then the Connection thread changes ownership
and returns acknowledgment. In other cases the request for
ownership is refused. Not all objects may change ownership:
avatars are always owned by the server.
Ownership is returned by the client. Ownership is intended to
be bound to a user only for a limited period of time. Having
completed their manipulations users return ownership to the
server. Connection resets ownership and informs other
Connection threads, that may have claimed ownership in the
meantime.
A client terminates: Connection deletes the avatar, informs
other Connection threads, returns all ownership from the
terminated client to the server, informs the VirtusServer thread
about the termination of the client and terminates itself.

4.6 The Client Side
The client side is designed as an applet and acts as the interface
between the user and the virtual environment. It is composed of
six elements. Data objects are managed by three classes:
VirtusWorld,VirtusObject, VirtusObjectClient.
Vi r tuscl i en t implements the user interface by processing
user input and by displaying information. Connec tionclient
manages the communication with the server. VmLInterf ace
is the interface between Virtusclient and the VRML-
browser.

Viffus Client Classes

~1
‘ “” ConnectionClient

virtusObject II

virtusObjectClient

Figure 8: Class diagram of the client side.

4.6.1 Thread VirtusCIient

This Thread is the main thread on the client side. It offers the
graphical user interface for input and output of system. and
initializes Connectionclient and VmLInterf ace.

4.6.2 Thread ConnectionClient

ConnectionClient handles all the communication between client and
server. At initialization time it receives a socket and port number,
establishes a connection to the server and requests a user
selectable scene description (a VirtusWorld) from the
server. VirtusWorld’s method receive () reads the data sent by
the server and assigns them via input () to VirtusObjects. The
VirtusWorld is propagated to VRMLlnterface and rendered by the
browser. The request for an avatar and the notification of the
current viewer position complete the initialization phase.
From now on the ConnectionClient waits for messages coming from
the server and for events issued either by the VRMLlnterface or the
user. Here are some examples of possible actions:

A user enters a new world (or region in the universe):
ConnectionClient receives the world description and forwards
it to VRMLlnterface.
VRMLlnterface requests ownership for a VirtusObject.
ConnectionClient forwards this request to the server and
forwards acknowledgment or refusal to the interface.
VRMLlnterface returns ownership of a VirtusObject. The server
is notified and may grant ownership to different users.
Viewer position has changed: ConnectionClient forwards an
event with coordinates of the new position to the server.
VRMLlnterface returns a general event. An event with event
type, VirtusObject identifier, event parameters and timestamp
is sent to the server.
User requests the end of the session: ConnectionClient sends
this requests to the server, notifies the VRMLinterface, deletes
the local VirtusWorld and terminates.

4.6.3 VRMLlnterface

VRMLlnterface acts as an interface between VirUsClient and
ConnectionClient on one side and the VRML-browser on the other.
It has the capability to manipulate the scene graph in the browser
and to create and read events in the scene graph. Method
showVirtusObj ect () adds an object to the scene,

149

showVirtusWorld() adds a complete world to the scene

graph.
removeVirt_usObj ect () and removeVirtusWorld (1
delete components from the scene. Events in a world may be
traced by adding them to a list of interesting events
addEven tOu t s () and assigning callback functions. Events
created by the user or some remote client may be sent to the
VirtusObjects via setEvent () .

4.6.4 VIRTUS Corn munication Protocol

The decision for an appropriate network protocol useful for
scalable distributed environments is still an open issue. The
communication between the two threads Connection (server side)
and ConnectionClient (client side) is ruled by a very simple
application layer protocol. Figure 9 presents the synchronization
between the thread during VirtusWorld transmissions. Table 5 lists
the PDUs currently specified by the protocol. EVENTTYPE is a
generic name representing a variety of event types: position
changes issue TRANSLATION events, a proximity node issues
PROXIMITYSENSOR events, etc. Since the number of parameters
varies between event types, it is represented as x~,...,x,. Each
event comes with a timestamp.

Vi&X6 ConrMiorr Connaction
Server Thread 1 1 Thread2 1

Cb
7

-L 1 RE QUFST

;

: CONNECTION ACCEPTFIJ i

Figure Thread synchronization during session start.

CONNECTION REQUEST -
CONNECTION ACCEPTED -
CONNECTION REFUSED -

InitialIration Phase
VIRTUSWORLD REQUEST VirtusWorld ID stc
VIRTUSWORLD NOT AVAILABLE - s+c
VIRTUSWORLD SENDING VirtusWorld ID s-c
VIRTUSWORLD RECEIVED - s++c
AVATARCREATE stc

TRANSLATION ix Y 2)
ROTATION (x y z’a)

Working Phase
OWNERSHIP REQUEST VirtusObject ID
OWNERSHIP ACCEPTED
OWNERSHIP REFUSED
OWNERSHIP RELEASE
VIRTUSOBJECT CREATE
VIRTUSOBJECT DELETE
EVENT
EVENTTYPE

VirtusObject ID
VirtusObject ID
VirtusObject ID
VirtusObject
VirtusObject ID
VirtusObject ID

(XI. . ..> x,,

s-+c
s+c
stc
s-c
s*c
s-c

TIMESTAMP time
DisconneHicn Phase

CONNECTION END s-c
CONNECTION CLOSED s+-+c

Table 5: VIRTUS’ simple application layer protocol

5 IMPLEMENTATION OF VIRTUS
VIRTUS has been implemented entirely with VRML97, Java 1 .O,
Javal. 1, and the External Authoring Interface EAI.

5.1 The Server Side
The server code is responsible for reading world descriptions from
a database of predefined worlds, for the initialization of a
VirtusUniverse, for the management of clients, and for the creation
of avatars. The server-side functionality is bundled in a single

:kage.

componmts.

VwtusObiect.class

5.2 The Client Side
The client side is implemented in Java-package

virtwsCtientPackage.

virtusclient and virtusClientGU1 implement the user
interface. ConnectionClient control all communication
between client and server. VmLInterf ace communicates

150

between Java applet and VRML-plugin. A HTML-File
VirtusClient.html contains tags to load and embed several user
interface components:
. A Java applet with AWT widgets to control and monitor the

communication, request worlds and view status and log
messages during the session. The applet contacts the VRML-
Browser via thread VRMLlnterface.

. The VRML-Plugin is initialized with a simple VRML-File
“root.wrl” containing essentially a named entry point
(ROOT) for the External Authoring Interface

. The bottom area of the user interface is reserved for future
integration of additional Applets and controls (text, audio
chat, video)

The thread VRMLlnterface is responsible for three tasks: it creates
2D and 3D textual information (status and error messages) in the
Applet-Window and in the VRML scene. It manages user
coordinates during navigation and informs the server-side
Connection about position changes. Finally it manages all instances
of VirtusObjects and triggers the rendering of their position,
orientation and appearance changes. The necessary updates in the
VRML scene graph, insertion and deletion of VirtusObjects are
accomplished via standard EAI methods (createVrmlFromString,
getEventIn) and documented in the Java applet’s log area. User
position updates VRMLlnterface implements an EventOutObserver
to catch user interaction in the scene.
The activation of any Touch-, Plane-, Cylinder-, Sphere-, or
ProximitySensor in the world is recognized by the
EventOutObserver and initiates the request for ownership from
the server. If it is granted

6 CASE’STUDY: ARC ITECTURAL
CONSTRUCTION

In 1995 we implemented a system for 3D virtual walkthroughs
which was also capable of simulating the building construction in
4D, with the additional parameter of time. This system was based
on SuperScape. As also stated by [9] VRML offers today similar
features to distribute an architect’s design intentions to students,
clients, contractors, and fabricators. Multi-user environments
additionally offer the ability to meet many times in a virtual
collaborative building to review progress, plan and discuss
changes.

The benefits of using 3D online techniques in architecture are
obvious: there is no need to produce and distribute numerous
views on paper and the models may much easier be checked for
layout conflicts by visual inspection than large sets of 2D
drawings. VRML supports the modeling in several levels of detail
which is a traditional concept in architecture. Furthermore,
hyperlinks on the 3D components may immediately reveal
construction specifications, e.g. in HTML.
However, several deficiencies of the current VRML standard and
tools will prohibit the adoption of VRML as a primary medium
for design by the AEC industry in the near future:
VRML modeling software does not provide the sophisticated
modeling techniques used in professional CAD systems. VRML-
export filters are not suitable because they generate polygonal
approximations of models (large IndexedFaceSets). VRML
generally provides rather qualitative data for rendering rather than
quantitative and analytic data for engineering purposes and
construction processes. Methods to query sizes and object
distances are required as well as new spatial metaphors for the
display of analytic data.

7 EXPERIMENTAL RESULTS AND
CONCLUSION

The VIRTUS system has been implemented in first prototype
mainly as a proof-of-concept within 12 weeks by a single
programmer. Since it is completely written in Java, it runs
everywhere. The client side has been successfully tested on IRIX
6.x and Windows NT 4.0, with Netscape Navigator and Microsoft
Internet Explorer and CosmoPlayer 1.0.2, 1.1, and 2.1. We chose
to install installed the VirtusServer on a Sun SPARClO running
Solaris 2.6 and working at the same time as our HTTP- and FTP-
server. The clients run primarily on SGI 02 and Indigo* running
IRIX6.x and PCs running Windows NT4.0 and Linux. Most of the
machines are lodated in the server’s IOMbps-Ethernet segment, a
PC is connected via ISDN. The clients use Netscape Navigator
3.lS, 4.05 and 4.5b, Microsoft Internet Explorer, CosmoPlayer
1.0.2 and 1.1 under IRIX, and CosmoPlayer 2.1 under NT.
We ran the system with up to ten simultaneous users, more than
typically would participate in our architectural design scenario.
Experimental results indicate only little rendering slowdown when
users are merely navigating through the scene. Large amounts of
sensor-interaction however swamp the communication channels
and cause jumpy motion. We assume the reason for this in the
quite primitive communication protocol which uses exclusively
TCP in its current version and performs no filtering or controlled
sampling of events. Quantitative measurements of network load
under different conditions will follow.
As the use of UDP does not require dedicated sockets, setup and
take down cost or retransmission in case of failure in busy
networks, it will be used for motion updates and events. The
transfer of more functionality and intelligence to the client side is
a promising approach to improve the system.
Consistency in the VirUsWorlds in guaranteed by ownership
management in the server. The system is dynamic: users may
enter and leave the world and any moment, may create new
objects, which are added as persistent components to the world.
The current state of the environment can be saved and reloaded.
The environment (universe) is partitioned (manually) into separate
worlds. The modular design of VIRTUS provides extensibility
with little effort.

151

8 CURRENT AND FUTURE WORK
Currently we are working on a database for more complex,
sophisticated behaviors, object-oriented paradigms[24] and a set
of VRML widgets with callback mechanisms. This will include
dynamics, the use of constraints [121 for assembly (Snap & Move
concepts). We are working on the inter-object collision handling,
on server-side and on client side and we are investigated methods
for automatic partitioning of complex environments.

ACKNOWLEDGMENT
We wish to send our thanks to Andreas Steinbuch, who conceived
and implemented most of the VIRTUS code and contributed to the
concept in a very prolific way.

REFERENCES
Cl1

PI

[31

[41

151

[61

[71

PI

[91

[lOI

[Ill

[I21

[I31

[I41

Yoshiaki Araki. VSPLUS: A High-Level Multi-user
Extensions Library For Interactive VRML Worlds.
Proceedings ofthe VRML ‘98 Symposium, ACM.
J.W. Barrus. R.C. Waters and D.B. Anderson. Locales and
Beacons: Efficient and Precise Support for Large Multi-User
Environments”, IEEE Virtual Reality Annual International
Symposium, March 1996, pages 204-213, IEEE Computer
Society Press
Cyberhub, Blaxxun Interactive. [www]
http:llwww.blaxxun.com
W. Bricken and G. Coca. The VEOS Project.
Presence,3(2):11 I-129, Spring 1994.
Wolfgang Broll. Populating the Internet: Supporting Multiple
Users and Shared Applications with VRML. Proceedings of
the VRML ‘97 Symposium, pages 33-40, ACM, Feb. 1997.
Wolfgang Broll. DWTP - An Internet Protocol for Shared
Virtual Environments. Proceedings of the VRML ‘98
Symposium, ACM, 1998.
D. Brutzman, M. Zyda, K. Watson and M. Macedonia.
Virtual Reality Transfer Protocol (VRTP) Design Rationale.
In Proceedings Sixth IEEE Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises,
pages 179-l 86. MIT, Cambridge, Massachusetts, IEEE
Computer Society Press, June 1997.
D. Brutzman. Graphics Internetworking: Bottlenecks and
Breakthroughs. In Clark Dodsworth ed.: Digital Illusions,
pages 6 l-97, Addison Wesley, 1997.
D. Campbell. VRML In Architectural Construction
Documents: A Case Study.
C. Carlsson and 0. Hagsand. DIVE ~ a Multi-user Virtual
Reality System. Proceedings of IEEE Virtual Reality Annual
International Symposium, pages 394-400, September 1993
S. Chenney, J. Ichnowski, D. Forsyth. Efficient Dynamics
Modeling for VRML and Java. Proceedings of the VRML ‘98
Symposium, ACM, 1998.
Stephan Diehl. Extending VRML by One-Way Equational
Constraints. Workshop on Constraint Reasoning on the
Internet, 1997
C. Greenhalgh and S. Benford. MASSIVE: A Distributed
Virtual Reality System Incorporating Spatial Trading.
Proceedings of the 1 jth International Conference on
Distributed Computing Systems, pages 27-34, Mai 1995.
C. Greenhalgh and S. Benford. MASSIVE: A Distributed
Virtual Reality System for Tele-Conferencing. ACM

[I51

[I61

1171

[181

[I91

Transactions on Computer Human Interface, 2(3):239-261,
September 1995.
Olof Hagsand, Rodger Lea and Marten Stenius. Using
Spatial Techniques to Decrease Message Passing in a
Distributed VE System, Proceedings of the VRML ‘97
Symposium, pages 7-l 5, ACM, 1997
R. Hofer and M. Loper. DIS today. Proceedings of the IEEE,
83(8):1124-1137,August 1995
Y. Honda, Y. Mitra, B. Rockwell, B. Roehl. Living Worlds,
Draft 2.0, April 13 1997, [www] http://www.living-
worlds.comldraft_2/index.htm
T.C. Hudson, M.C. Lin, J. Cohen, S. Gottschalk, D.
Manocha. V-COLLIDE: Accelerated Collision Detection for
VRML. Proceedings of the VRML’97 Symposium, pages
117-123, ACM, Feb. 1997.
R. Kazman. Making Waves: On the Design of Architectures
for Low-end Distributed Virtual Environments. Proceedings
of IEEE Virtual Reality Annual International Symposium,
pages 443-449, September 1993.

[20] R. Lea, Y. Honda, K. Matsuda and S. Matsuda. Community
Place: Architecture and Performance. Proceedings of the
VRML ‘97 Symposium, pages 4 l-50, ACM, Feb. 1997.

[21] M. Macedonia, M. Zyda, D. Pratt, P. Barham, and S.
Zeswitz. NPSNET: A Network Software Architecture for
Large-Scale Virtual Environments. Presence,3(4):256-287,
Fall 1994.

[22] J. Mandeville, T. Fumess, M. Kawahata, D. Campbell, P.
Danset, A. Dahl, J. Davidson. K. Kandie, and P. Schwartz.
Greenspace: Creating a Distributed Virtual Environment for
Global Application. IEEE Proceddings of the Networked
Reality Workshop, Oktober 1995.

[23] D. Miller and J. Thorpe. SimNet: The Advent of Simulator
Networking. Proceedings of the IEEE, 83(8):1114-l 123,
August 1995.

[24] Sungwoo Park, Taissok Han. Object-Oriented VRML for
Multi-user Environments. Proceedings of the VRML ‘97
Symposium, pages 25-32, ACM, 1997

[25] C. Shaw and M. Green. The MR Toolkit peers package and
Experiment. Proceedings of IEEE Virtual Reality Annual
International Symposium, pages 463-469, September 1993.

[26] C. Shaw, M. Green, J. Liang, and Y. Sun. Decoupled
Simulation in Virtual Realtiy with the MR Toolkit. ACM
Transactions on Information Systems, 11(3):287-3 17, July
1993.

1271 D. Snowdown and A. West. AVIARY: Design Issues for
Future Large Scale Virtual Environments. Presence, 3(4):
288-308, Fall 1994.

[28] M.R. Stytz. Distributed Virtual Environments. IEEE CG&A,
May 1996, pages 19-3 1

[29] H. Sugano, K. Otani, H. Ueda, S. Hiraiwa, S. Endo, Y.
Kohda. SpaceFusion: A Multi-Server Architecture For
Shared Virtual Environments. Proceedings of the VRML ‘97
Symposium, pages 5 l-58, ACM, Feb. 1997.

[30] Swedish Institute Computer Science: DCE Group Research
Projects. [www] http:l/sics.seldcelgroup-researchigroup-
research.html

[31] R. Waters, D. Andersen, and D. Schwenke. Design of the
Interactive Sharing Transfer Protocol. In Proceedings Sixth
IEEE Workshop on Enabling Technologies: Infrastructure
for Collaborative Enterprises, pages 140-147. MIT,
Cambridge, Massachusetts, IEEE Computer Society Press,
June 1997.

[32] M. Zyda and J. Sheehan. Modeling and Simulation: Linking
Entertainment and Defense. National Academy Press, 1997.

152

