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ABSTRACT 
VRML is a file format for the description of dynamic scene 
graphs containing 3D objects with their visual appearance, 
multimedia content, an event model, and scripting capabilities. It 
is designed to be used on the Internet and on local system and to 
be used as an exchange tile format. Although equipped with 
sophisticated techniques for user interaction the current VRML 
standard still lacks direct support for sharing virtual worlds that 
can not only be visited but also manipulated by multiple users 
distributed over the network. Several multi-user technologies have 
been developed in the past and some use VRML as the rendering 
and interaction vehicle. 
This paper gives a short review of design considerations for 
distributed virtual environments and approaches taken so far in the 
development of multi-user technologies. We present the design 
and implementation of VIRTUS, a multi-user platform that allows 
multiple geographically separated users to enter and manipulate 
shared VRML scenes. 

CR Categories and Subject Descriptors: C.2.4 [Computer- 
Communication Networks]: Distributed Applications - H.5.3 
[Information Interfaces and Presentation]: Collaborative 
Computing - 1.3.2 [Computer Graphics]: Distributed/Network 
Graphics - 1.3.3 [Computer Graphics]: Picture/Image Generation - 
Viewing Algorithms; 1.3.6 [Computer Graphics]: Methodology 
and Techniques - Interaction Techniques; 5.6 [Computer 
Applications]: Computer-Aided -Engineering 
Additional Keywords: VRML, Virtual Worlds, Virtual 
Environments, VRML Event Model, Multi-User Technologies, 
Distributed Environments, Living Worlds, Collaborative Virtual 
Environment (CVE), Computer Supported Collaborative Work 
(CSCW), Architecture Construction Engineering (ACE), Dead 
Reckoning 

1 INTRODUCTION 
Essentially he WWW is a solitary place where many people see 
the same information but have no perceptible support for 
interaction or awareness of one another. Multi-user worlds or 
DVEs (Distributed Virtual Environments) have the potential to 
evolve the Web from a pure information space to a social space 
and to radically alter the way we learn, work, consume, and play 
from isolated pursuits to collaborative activities. 
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Steady progress has been made over the last 20 years of research 
in DVEs and many current systems can portray large, complex, 
rapidly changing environments containing a large number and 
variety of actors with some degree of fidelity. But two factors 
have delayed public interest in DVEs: real time graphics, audio 
hardware, and networks have not been accessible to everyone. 
These barriers disappear with the availability of powerful graphics 
accelerators for PCs, high-speed modems, ISDN-adapters and 
ADSL. The user interfaces of many traditional and new 
applications can now take the next step in the evolution from 
command-line to desktop metaphor to a real 3D-community 
metaphor which allows us to change virtual worlds and observe 
changes made by other geographically separated people. Large 
scale DVEs may turn out to be a new Grand Challenge for 
computer science. 
Most of the DVE systems developed so far have been limited to 
certain platforms, proprietary applications, or network protocols. 
As the Living Worlds [17] initiative and Open Community 
indicate there is increasing movement towards open standards. 
VRML is central to this movement. Since the current VRML 
standard does not offer language constructs for direct multi-user 
support most VRML scenes today run on a single machine, have 
limited interaction and respond to a single user’s input. The 
implementation and authoring of multi-user environments still 
requires skilled programmers with thorough knowledge of 
VRML, Java, JavaScript, and the EAI. 
We present VIRTUS, a multi-user platform based on VRML2.0, 
Java and TCP/IP, which eases the development and authoring of 
distributed environments with a special focus on collaborative 
work. In a case study we use VIRTUS for architectural 
construction and engineering purposes. 

Figure 1: Screenshot of the VIRTUS user interface 
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The rest of this paper is organized as follows: Section 2 offers a 
general overview of multi-user developments with or without use 
of VRML and gives a classification of distributed virtual 
environments. Section 3 reviews related work and summarizes 
some of the hightlights of DVE development. Section 4 discusses 
the architectural design of our multi-user system VIRTUS while 
section5 focuses on some implementation specific details. The 
remaining sections provide lessons learned from the use of VRML 
in the context of architecture, some experimental results and an 
insight into our current and future efforts in this field. 

2 DESIGN CONSIDERATIONS FOR 
DVE SYSTEMS 

This section discusses the issues anyone is confronted when trying 
to implement the key features of DVE systems: Several, if 
possible thousands of geographically separated users are allowed 
to meet and interact in real time in a dynamically and persistently 
modifiable 3D virtual scenery. Verbal communication should not 
only be supported via text but also via voice chat. These 
requirements immediately raise a number of questions concerning 
the division of data and functionality into atomic parts and 
packaging each of these as coherent code structures: 
. What is distributed? 
. How is it distributed? 
. Why is it distributed? 
The answers to these questions illuminate advantages and 
deficiencies of different concepts and lead to a classification of 
DVE systems. 

2.1 Fields of application 
More and more applications are enjoying networked 3D computer 
graphics: military simulations, virtual surgery, engineering, 
architecture, CBT, gaming, product presentation and virtual 
shopping malls. The development of DVEs has been driven 
forward in three fields: 
Military Applications: The benefits of virtual environment for 
military purposes have been realized early: no danger of life or 
destruction, no real damage, strategic simulations in arbitrary 
terrain and landscapes, simulation of vehicle prototypes. More 
possibilities are added if the environment is distributed: training of 
teams, scalability of the number of participants, installation in 
different separated locations, simulation with a combination of 
several military forces and semi-automated forces (SAFs). The 
most prominent developments in the military realm have been 
SimNet[23] and DIS[lB]. Many DVE concepts trace their 
foundations to the SimNet project. 
Entertainment: the entertainment sector offers a potentially large 
marketplace either for home-based or location-based 
entertainment. In/the 1970s games like Adventure or Dungeon & 
Dragon spawned a new genre of role-playing games. MUD 
(Multi-User Dungeon) and their object-oriented versions MOO 
became the generic descriptions for multi-user games. Home- 
entertainment devices fall in two categories: game consoles and 
PCs. Game consoles have little support for multi-user playing. 
The history of multi-player games and teaching systems goes back 
to the 1960s (PLATO) and culminated 1993 in Doom. More and 
more games with support for TCP/IP and protocol tunneling reach 
the market. Some current DVEs have evolved out of earlier 
MUDS (Habitat, Worlds Away, Pueblo). The notion Zocation- 
based entertainment describes multi-player gaming with 
specialized equipment in BattleTech centers or amusement parks. 

Research and commercial systems: Most of the money has 
been spent by and for the specialized high-end military 
applications and low-end networked games [32]. The widespread 
use of the WWW makes computer supported collaborative work 
(CSCW) and virtual shopping applications more and more 
interesting for research and commerce. Goals and principles of the 
Living Worlds proposal include the rapid implementation of 
strictly VRML-based multi-user environments and respect for the 
role of the market. Multi-user VR tends create immersive 

2.2 Performance 
Performance has at least two aspects: rendering performance 
must be improved locally by using specialized hardware for 
coordinate transformations, HLHSR, shading, texture mapping 
and making the graphics hardware accessible to applications in a 
comfortable way via low and high level APIs like OpenGL, 
DirecBD, Java3D or Fahrenheit. This is not a DVE-specific 
problem and the boost of graphic hardware performance we 
currently experience alleviates the problem from day to day. 
The much bigger challenge is communication performance. 
While research labs may have access to Gbps-networks consumer 
links are usually 28.8-modems or ISDN-channels. The limited 
bandwidth requires a reduction of the amount of network traffic 
(textual, motion, state, geometry, sound, video) and limiting the 
number of objects and avatars (and thus polygons) to be rendered. 
Approaches reducing the amount of necessary communication 
have implication on the scalability and consistency of a DVE. 

Figure 2: Environments are partitioned into polygonal regions; 
avatars and objects may have several horizons for visual, acoustic 
perception and radiation and for areas of interest. 

2.3 Scalability 
The number of possible interactions between n simultaneous users 
in a multi-user system is of order O(nZ) at any moment. Ideally 
network traffic should be almost constant or grow near-linear with 
the number of users. 
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Usually there are large regions and associated data in the 
environment that may not be relevant to a particular user at a 
given time. This suggests the idea of partitioning the environment 
into regions (or zones, locales, auras)[2,15] that may either be 
fixed or bound to moving avatars. Events and actions in remote 
zones need not be distributed and remote objects need not be 
visualized or might be visualized at a lower level of detail. Most 
of the traffic is isolated within zones. 
Consider an indoor scene with different rooms separated by walls 
and connected by doors and hallways: Walls may be marked as 
boundaries of regions, doors may be marked as portals to adjacent 
rooms. When the user leaves one region to enter a different one, 
some kind of region management has to detect the situation and 
present the new region to the user. This might involve a sudden 
download of very large scene description tiles. Predictive systems 
might even anticipate user movements and a just-in-time 
scheduler might load regions in advance to avoid interruptions and 
delays when entering. 
Partitioning the world is the key to scalability. Some system use 
the notion aura or area of interest surrounding the user at his 
current position. This might cause bizarre effects in crowded 
aggregations: users in close face-to-face proximity might not see 
each other just because they are in different aura groups. 
There are several variations to the partitioning paradigm. 

2.4 Consistent y 
Since the database is shared by all clients accessing and maybe 
updating the data, the issue of distributed consistency must be 
solved by any DVE to ensure the same view to all participants. 
Solving consistency means satisfying user predictions and 
providing a basis for causality in an environment. 
Since the number participants is not fixed during the run time and 
users may enter the environment after it has changed from its 
initial state there needs to be supportfor late-comers. 
There is always some degree of uncertainty concerning the current 
state of a DVE and we can define different levels of consistency: 
Strict consistency requires immediate propagation of all actions. 
Conflicts between users must be prohibited or resolved. 
The best Qbrt approach relaxes the guarantee for consistency in 
the temporal or value domain to reduce communication costs. 
The issue of consistency is tightly coupled with the issues of data 
replication and communication protocols via the question: Who 
needs to know what and how frequently? Crucial aspects to the 
efficiency of any consistency algorithms are the number of 
participants in the consistency algorithm and the degree to which 
consistency will be guaranteed to these participants. Since the 
complexity of the problem is quadratic in the number n of 
participants, reducing n significantly reduces the number of 
messages to be exchanged. The number of participants in a 
consistency group may be reduced by partitioning environment. 
CSCW oriented systems have strict requirements for consistency 
throughout the DVE they focus on sophisticated group interaction 
models. Large scale simulation platforms on the other hand put 
their focus on simple state updates not on complex. 
SimNet uses dead-reckoning algorithms to extrapolate positions 
of entities based on their last known position, velocity and elapsed 
time since the latest information receipt. The protocol data units 
(PDUs) distributed contain just enough information to 
approximate the current state. 
Many DVEs reduce computing and communication costs by 
updating scene states only in areas relevant to users. Does this 
mean the system may cull all dynamics and autonomous actions in 
areas without observers? This may be appropriate in some 

applications, but not in simulation systems relying on causal 
relationships[ 111 

data management 

centralized II distributed 

I I 

1 
Figure 3: Data management and data replication 

Data describing the DVE contain information about the world and 
its objects. The data may be managed either by a central host with 
guaranteed data consistency or a set of decentralized hosts. The 
latter method raises the question how much of the data should be 
distributed and how and when to update the distributed copies. 

2.5 Connectivity 
Connectivity has various dimensions including bandwidth, 
capacity, protocols and topologies[8]. One peculiarity of DVEs is 
the heterogeneity of data to be transferred: there is a mixture of 
continuous high-bandwidth real-time transmission of data streams 
(>32 kBps audio or >l MBps for video), occasional burst transfers 
of large tiles (graphical data, geometry, texture) and frequent 
small data packages (position updates, state changes). 
The heterogeneity of data types, required bandwidth and 
reliability suggest the use of heterogeneous transport protocols 
using several different basic Internet protocols rather than a single 
fixed distribution scheme. Since there is no established 
infrastructure for efficient distribution at hand multi-user 
developers are still dependent on low-level protocols. The 
complexity of network details should be hidden to the user and the 
application programmer. Future Dial-a-Behavior-Protocols 
(DBPs) promise to modify the operation of protocol on-the-fly 
with respect to syntactic and semantic packet contents. 
Today we must be satisfied with the protocols available on the 
different layers: 
The basic layer-3 Internet protocol in its current version IPv4 and 
next-generation IPv6 may be run on a variety of physical media 
and link control protocols. The transport layer offers the 
connection-oriented TCP, suitable for reliable transfer, and the 
connectionless and unreliable IJDP. Since each UDP-datagram 
may take an individual route, there is no guarantee for arrival of 
datagrams and the correct sequence of arrived datagrams. Less 
overhead and lack of retransmissions make UDP a suitable 
protocol for the transmission of continuous data streams 
UDP may be used in unicast or multicast mode. 
MBone, the experimental subnet of the Internet uses multicast 
UDP. Hosts can subscribe of ignore multicast packet down at the 
hardware level by informing the network adapter which multicast 
addresses to monitor. This way, high-bandwidth streams can reach 
a large group of hosts identified by a single multicast-address 
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without producing load on hosts not in the multicast group. 
However: not every machine is equipped with multicast-capable 
hardware. The major bottleneck is located on the application 
layer: HTTP in combination with FTP, gopher, telnet is 
optimized for serving hypermedia documents from a server to a 
single client in a reliable way. The IEEE DIS-protocol 
(Distributed Interactive Simulation), which was initially 
developed for military use (SimNet, NPSNET) specifies the 
interactions of physical entities by exchanging state information in 
its PDUs. This state includes position, linear and angular velocity 
and acceleration, articulation, etc. Other data units include 
simulation and logistics management, sensor-weapon interactions, 
radio communication which are of questionable use for many 
applications. Transferring state information frequently provides a 
certain degree of consistency and allows for connection and 
disconnection of participants at any time, but these heartbeats 
generate permanent network traffic. The DIS-Java-VRML 
working group is currently exploring the DIS-Java interaction in 
large scale virtual environments. 
More recent proposals VRTP (Virtual Reality Transfer 
Protocol)[7], ISTP (Interactive Sharing Transfer Protocol)[3 I], or 
DWTP (Distributed Worlds Transfer Protocol)[6] assure to 
provide a frameworks for the optimized combination of 
underlying protocols. The CBone (CyberBackbone) is intended to 
improve MBone and offer a guaranteed QoS by partitioning traffic 
within and between networks with the help of area of interest 
managers (AOIMs). All these proposals indicate the need for a 
suitable distributed virtual reality communication infrastructure. 

Table 1: Information types in DVE and more or less suitable 
network protocols 

2.6 Distribution Concepts 

2.6.1 Distribution of Data 

Another attribute of DVEs is the way data are distributed to the 
participant. 
Unicast: the sender sends a message to exactly one receiver 

which is known to the sender. (1: 1 point-to-point) 
Broadcast: the sender sends a message that may be received by 

all instances currently present in the system. Each receiver can 
individually decide if the message is relevant in the current 
situation. (Broadcast packets are filtered by routers to avoid 
network pollution.) 

Multicast: the sender sends messages to a well defined subset of 
instances present in the system. 

2.6.2 Distribution of Processes 

The critical choice of the process distribution subsystem has 
implications on design decision in other subsystems. The 
communication architecture can be hierarchical (client/server- 
model) or decentralized (peer-to-peer-model). Many discussions 
deal with the question “client/server or peer-to-peer? “ 

Client-Server: the majority of small-scale DVEs are realized as 
client-server architectures because this is conceptually and 
practically the simplest and provided possibilities for 
accounting and security management. The scene database is 
centralized in one location: the server. Clients request scene 
descriptions from the server and provide any relevant changes 
originating at their site to the server. Inconsistencies in the 
world description can occur if the clients hold local caches of 
the world. If any changes to the cache should be necessary, 
the server has to invalidate the cached data and replace it by 
an up-to-date master copy. Obviously the server easily 
becomes a bottleneck with increasing number of clients. 
Empirical evidence proves the scalability of sophisticated 
client/server systems to several hundred users. Many 
commercial DVEs use the client server model, not only for 
technical but for administrative and financial reasons: clients 
are free, while servers and services are sold. 

peer-to-peer: This architecture does not provide a single database 
or master copy of worlds. Each client hold its own copy or 
replica of data. Of course, changes to scenes used by several 
clients have to be distributed to all participating browsers. The 
maintenance of consistency is much more difficult here but in 
general peer-to-peer system scale much better to thousands of 
simultaneous users. 

hybrid systems: Single server architectures have at least two 
drawbacks: the server may easily become a performance 
bottleneck and failure of the single server crashes the whole 
DVE. Hybrid systems merge client-server and peer-to-peer 
architectures by replicating and updating the world database 
on several servers and still providing client-server 
communication links from the browsers to the servers. 

The existence of a broad spectrum of functionality between the 
endpoints client/server and peer-to-peer suggests that this 
discrimination is not a proper dichotomy. The VRTP protocol is 
designed for efficient data transfer and monitoring in clientiserver 
as well as in peer-to-peer environments. 

2.7 Persistency 
DVEs should be modifiable at run-time by accepting the 
contribution of new objects and new behavior and optionally 
saving these even after the user who created them has disconnect 
from the system. This issue also involves the creation of user 
profiles, persistent roles and access rights for users. 

2.8 Ownership and Operation Locking 
Multi-user worlds offer lots of opportunities for conflicts. One 
user tries to open a door while another user tries to close it. These 
conflicts must be avoided or resolved. One method to detennine 
which objects may be modified by which users is to assign 
temporary ownership to objects. Manipulation of objects may 
include a change of the object’s coordinate system and changes in 
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the scene graph: users may grasp objects and take them to a 
different world. Operations like these are essential for virtual 
shopping applications. If owning an object means owning the 
complete subtree (child objects) in the VRML scene graph, then it 
might be difficult for user A to present a box of chocolates to user 
B and ask to grab a chocolate. In this situation a locking 
mechanism on an operation or interaction basis is more 
appropriate. 

2.9 Realism 
Besides a degree of visual realism that is acceptable to the user 
DVEs should aim towards sensory fidelity concerning visual, 
aura2 and maybe even tactile information presented to the user 
that replicates the real world to a maximum extent possible. 
One familiar example for missing realism is the lack of collision 
handling[ 181, Objects in the real world to not tend to penetrate 
one another unless they break into pieces. Objects in VRML- 
scenes and most other virtual environments or modelers do not 
hesitate to do so. VRML-Browsers offer an approximate collision 
detection between avatar and collision groups, but inter-object- 
collisions are ignored. VRML-browsers should provide some 
visual cue of contact and penetration by geometrical intersection 
tests. Grasping and assembly operations would benefit 
enormously from contact determination with visual or acoustic 
feedback and from collision avoidance with constraints. Robust 
and accurate collision determination is a time-consuming feature 
usually sacrificed for the sake of rendering speed. 
Some applications might even require the insertion of real-world 
phenomenology like weather, time of the day, location of the 
sun[28]. On the other hand simulations in virtual reality allows us 
to ignore and go beyond the limitations of reality imposed by the 
laws of mechanics (kinematics, dynamics, electrodynamics, 
energy conservation). 

2.10 User lnterfa ce 
User interfaces for 3D virtual multi-user environments demand 
several interesting additions to traditional WIMP-interfaces 
consisting of screen, keyboard and mouse. Movements change the 
user’s visual and auditory perspective. For immersion into the VE 
we have to offer three dimensions to eye, ear, and hand. 
(Auto)stereographic displays for graphic output, spatialized sound 
and real-world mock-ups or gesture-capturing input devices are 
components of expensive VR-Equipment. 
There is still a deficit of HCI theories for merging multi-sensory 
data streams into a single UI, most of the problems have their 
roots in time lags: input device lags, processing lags, rendering 
lag, synchronization lags, and frame-rate induced lags. 
In certain applications (flight simulators) inappropriate user 
interfaces may even induce negative training. We also lack a 
theory for the estimation of the indispensable levels of fidelity. 

2.11 Language 
The implementation of DVEs may vary in some other aspects 
which we just list here: 
. programming language of the system 
. scene description language: VRML, VRML variant, 

proprietary language 
. object behavior description language: Java, JavaScript, 

VRMLscript, Tel, etc. 
. implementation: API, toolkit, or integrated system. 

3 REALIZED SYSTEMS 
This section summarizes some features of a set of popular DVE 
systems. We classified them according to the heterogeneity and 
distribution concept of their processes. The list is not exhaustive. 
Cfient-server systems 
NVR, the Networked Virtual Reality is a C-API for the 

development of multi-user VR applications. Client and server 
communicate via TCP/IP. Objects are kept in client-side 
database, objects and interactions are classified as local or 
global. 

Open Community [ 1 I] is an proposed open standard API callable 
from Java and C for multi-user support in the Internet. It is 
designed to integrate with the Living Worlds and Universal 
Avatars specifications as successor for Spline (Scalable 
Platform for Large Interactive Network Environments). The API 
is independent of graphical description languages. Open 
Community is based on several servers providing different 
services: a Session Server manages multicast addresses for a 
local area, a Locale Server is responsible for a certain region 
(locale) of the world and manages all objects within that region, 
a Persistence Server manages ownership, and a Beacon Server 
provides the necessary multicast addresses to client when they 
initiate the connection to a Locale Server. The partitioning of 
the WorldModel into several, possibly overlapping locales is the 
primary way Open Community achieves scalability to thousands 
of users. Messages are limited to those coming from the current 
and adjacent locales. Each locale has two multicast addresses: 
one for static objects and one for streaming data (voice chat, 
positional audio). Communication is accomplished via ISTP. 

dVS/dVISE (distributed Virtual System) and its authoring 
extension dVISE are successful commercial client-server 
systems composed of several actors. Each actor has a 
specialized task (like I/O or simulation) and a database of 
relevant information. Dead reckoning is used to keep update 
communication at a low rate. 

Community Place[20]: The server process (bureau) acts as a 
position tracker and message forwarder and uses an areas of 
interest algorithm to select the clients to be informed: any 
objects intersecting a user’s aura are candidates for influence or 
interaction, focus represents the degree of interest one user 
brings to bear on another and nimbus represents the degree of 
attention one user pays to another. Static data and scripts are 
replicated locally in the clients. 

Two more systems are the commercial Blaxxun Community 
Server capable of serving up to 5000 simultaneous users [3] and 
VNET. 

3.1 Peer-to-pee r systems 
SimNet, the Simulation Network was initiated in 1983 by 
DARPA and is in use as a military battle simulation environment 
until today [23]. There are no central instances. State changes of 
objects are distributed by broadcast. SimNet’s communication 
protocol DIS was established as IEEE-standard in 1993. SimNet 
and DIS are designed for large-scale environments with some lo5 
participants. 
The NPSNET project [21] at the Naval Postgraduate School in 
Monterey started in 1986 and has been influenced by SimNet 
since 1988. NPSNET is compatible to DIS and can use IP 
Multicast over MBone. NPSNET divides the world statically into 
chunks and associates different multicast addresses to different 
regions. Changes performed by any client in a region are 
distributed to clients within the same region via its multicast 
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address. SimNet and NPSNET use dead-reckoning algorithms to 
reduce network traffic and repair packet losses. GSnet [22] is the 
implementation of a collaborative development environment in 
the framework of the Greenspace project at Fujitsu Ltd. and the 
Human Interface Technology Lab at the University of 
Washington. It uses IP-Multicast by default. GSnet worlds are 
composed of chunks representing objects and methods. Chunks 
may be grouped and maintained in distributed databases. Groups 
are connected by specialized chunks and may be exchanged from 
host to host. Modification of chunks is allowed only to the current 
chunk owner. VEOS (Virtual Environment Operating Shell) [4] 
has a special focus on rapid prototyping, portability, and 
distributed computing. The VEOS kernel is composed of three 
components: SHELL is responsible for process initialization, 
memory allocation and scheduling of computing time. TALK 
coordinates the interprocess communication via unicast. NANCY 
is a transaction manager for a distributed database. A virtual 
environment is a collection of autonomous entities (sets of 
lightweight and heavyweight processes). Communication between 
entities is handled by a separate component named FERN. The 
Distributed Interactive Virtual Environment. DIVE [ 10,301 was 
developed at the Swedish Institute of Computer Science. Each 
host is part of exactly one world and has a complete copy of this 
world which is replicated on demand. High-resolution traffic is 
limited to dynamically associated auras, The aura concept is 
refined by the notions of focus, nimbus, and awareness. 
Experiments identified the size of auras and the maximum number 
of users in one aura as two parameters crucial to system 
performance. MR [25,26], the MR Toolkit and the MR Toolkit 
peers package are developments for handling a variety of input 
devices and provide mechanisms for UDP based communication 
between VR applications over the Internet. They are intended for 
a small number of users, five or less. 

3.2 Hybrid systems 
SpaceFusion [29]: objects may be moved, shared, and change 
their owner. SpaceFusion adopts a multi-server approach: multiple 
server ensure scalability and stability and incorporate security and 
filtering mechanisms. Filtering is based on the concept of regions. 
A client-side fusion manager combines information from different 
servers before presenting it to the user. Other prominent system 
are WAVES [ 191, AVIARY [27], BrickNet, MASSIVE[13,14] 
and CAVERNsoft. Community Place, although inherently 
client/server, has elements of hybrid architecture. 

Figure 4: Data replication: world descriptions are loaded from a 
centralized world database, replicated and updated locally. 

P. UDP (uni-/multicast) 

4 ARCHITECTURE OF VIRTUS 
Our interest in distributed multi-user environment was stimulated 
by a general interest in VRML and then by its practical 
application in architectural education. We outlined VIRTUS, our 
VRML-based multi-user system and finally implemented a first 
prototype. Our approach was guided by the following 
requirements: 
Openness: the system should be open to as many hardware and 
software platforms as possible. It should not be designed for any 
specific application area. 
Consistency: all distributed users in the same world are supposed 
to have the same view at the world. Manipulation by any users 
should have immediate effect on the world seen by others. 
Dynamics: users can enter and leave the virtual environment at 
any moment. All enter and leave events are distributed to all 
instances. New users have an up-to-date view of the world. 
Persistence: user manipulations within the world can have effects 
on the world after the user has left the world and disconnected 
from the system. The current state of the world can be saved at 
any moment. 
Partitioning: complex worlds should be partitioned to minimize 
the amount of necessary communication. 
Extensibility: the system should be implemented in a way that 
allows for easy extensibility concerning new communication 
protocols, new object behaviors and new functionality like inter- 
object collision handling. 
Database-Interface: the system should have an interface to a 
database of objects, avatars and behaviors. 
Complex behaviors: object behavior should not be limited to 
simple movements. A database of complex behaviors for objects 
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like doors, windows, switches, and any kind of devices, 3D 
widgets and avatars is required. 

4.1 Communication Architecture 
We chose the client/server model to distribute functionality for the 
following reasons: the software structure is less complex and 
easier to maintain. Collision handling, user and ownership 
management, and the guarantee of consistency generate less 
problems. The server may act a message filter and keep 
unnecessary communication to a minimum. As a client/server 
system VIRTUS can be extended to a hybrid or multicast system 
with less effort than pure peer-to-peer systems. Since there is 
direct communication only between clients and the server, no 
modifications can be missed by the server. VIRTUS employs 
centralized data management with data replication on demand. 
The server knows all worlds in the environment and all objects in 
all these worlds, handles ownership and guarantees consistency. It 
is notified of changes in any of the worlds and supports 
persistency of object states after client termination. Late-coming 
users immediately have an up-to-date view at the environment. 
The server manages a database of worlds (VirtusWorlds W,,...,W,) 
comprising the universe (VirtusUniverse) and organizes the 
communication to the clients. Each client knows at most one 
VirtusWorld at any moment. When a client switches from one world 
to another, it receives all necessary information about the new 
world from the server. Centralized data management does not 
limit the creation of objects to the server side. Clients may also 
create new objects and insert them to the scene. They are 
registered by the server and presented to other clients. A special 
case of necessary client side object creation is the insertion of 
avatars. 

addvirtusobject 0 

4.2 VirtusObjec t 
Any VirtusWorld is composed of VirtusObjects. Each object is 
described by a triple (shape, state, behavior, state). The shape 
of an object covers all visual and acoustic characteristics: 
geometry, appearance, color, texture, sound. All of these may be 
represented at different levels of detail (LODs). state describes 
the current values of the shape, its relation to the environment 
(position, orientation, weight, etc.) and some internal state 
variables. behavior describes all actions that may influence the 
object’s shape or state. VirtusObjects may be simple or complex. 
Complex objects should be structured into a hierarchy of container 
and child objects. 
VittusObjects contain the following information: A unique object 
identifier assigned by the server. Object relations describing 
parent-child relationships between objects and owner 
information. Object transformation containing position, 
orientation, size, center, and bounding volume information for 
efficient collision handling. Object behavior: objects fall in 
several categories: 
l Passive objects do not create any events. 
l Active objects create events. 
l Static objects do not react to external events. 
l Dynamic objects react to external events. 
Two values describe the event sending and receiving behavior of 
objects. Additionally a standard behavior as reaction to specific 
user actions may be defined for objects. This behavior is inherited 
by child objects. Object descriptions contain the visually and 
acoustic representation, behavior-defining scripts, and textual 
annotations. More MUtech-specific attributes (locks, messages, 
nicknames) are likely to be added in the near future. 
The functionality of an object is encapsulated in the Java-class 
VirtusOb j ect. Table 2 gives an overview of the current set of 
variables in this class. All variables are set and read via methods 
and most of them have default values set at instantiation time. The 
subclass VirtusOb j ectclient. specifies additional variables 
and methods necessary for rendering on the client side. 

mriable mme type ” 1 description 
Object identification 

id Inteser unique identifier 

objectName String t~ame of the object 

Object Relations 

translation 

rotation 

center 

scale 

scaleorientation 
bboxcenter 
bboxSize 

sending 
receiving 
movable 
turnable 
scalable 

Fl&tIl values for translation 

Float [I values for rotat1on 

Float [I coordinates of rotation center 

Float II scaling values 

Float [I scaling orvzntation 

Float [I coordmates of bounding box center 

Float II dimensions of bounding box 

Object Behavior 
BOOle.SI indicator for event sending 
BOOlean indicator for event reception 

BOOleaIl indicator for object translation 

BOOlean indicator for obiect rotation 

BO0l%Xl iodicator for object scaling 

Object Description 
textdescription String [I textual object description 

vrmldescription String [I geometric object description 

scriptdescription StringLl behavioral description 

Table 2: Variables of VirtusObj ect 
Figure 5: Data objects and their instatiation. 
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4.3 VirtusWorld 
A VirtusWorld contains essentially a list of VirtusObjects. Each 
VirtusObject may be a member of one VirtusWorld. Table 3 
illustrates the variables in class VirtusWorld and Table 4 lists 
the methods operating on these variables. 

worldName 

VirtusWorld 

String name of the world 

Container 
VirtusObject [I list of VirtusObject instances 

Table 3: Variables of class VirtusWorld 

method ,,ntfme 
World Management 

getId 
setName 
getName 

returns unique world identifier 
sets or changes the name of the world 
returns the nalne of the world 

gets1zeo returns nulnber of objects in the world 

Object Management 
addVlrtusObject0 adds an obwt to the world 

1 removeVirtusObiect 0 deletes an bbiect from the world I 
getVlrtusObject0 returns reference to the object of the specltied Id 

World Transmission 
send0 send contents of a world 
receive () receives contents of the world 

Table 4: Methods of Class VirtusWorld 

4.4 VirtusUnive rse 
A VirtusUniverse contains a list of several VirtusWorlds and 
represents the complete virtual environment. An example: 
VirtusWorlds may represent individual rooms of a building, the 
VirtusUniverse represents the building. Users may walk from one 
VirtusWorld to the next by leaving rooms through doors. 
We omit a detailed description of variables and methods for class 
Virtusuniverse. The class diagram in Figure 4 illustrates the 
creation process of the virtual universe and the dependencies 
between the classes of the data objects. Method setup () 
initializes the universe, reads world descriptions from a database, 
creates a VirtusObject for each object found in the world. 
addVirtusObj ect ( ) adds the object to the list 
VirtusWorld. 
addVirtusWorld () inserts the world into VirtusUniverse as 
soon as finished loading all objects for the world from the 
database. The identifiers worldId for the VirtusWorlds and 
ob j ec t Id for tde VirtusObjects are generated by the server and 
are guaranteed to be unique. send ( ) transmits a VirtusWorld from 

server to client where receive ( ) reads the description from the 
network connection. VirtusWorlds can be transmitted vice versa 
from client to server. 

4.5 The Server Side 
The server provides each client with its VirtusWorld and delivers all 
updates within these worlds. It keeps all the necessary state 
information about every connected client. Other duties of the 
server include the initialization during the system start, saving 
operations, the guarantee of world-wide consistency, and conflict 

avoidance among objects and users by granting or refusing 
ownership. The server is composed of two threads: VirtusServer 
and Connection. 

Virtus Server Classes 

Figure 6: Server-side class diagram. 

4.5.1 Thread Viftus Server 

VittusServer initializes the system by creating an instance of class 
VittusUniverse and by listening for incoming client requests on a 
well-defined port. As soon as a client asks for participation a 
Connection thread is started with an id number, a port number, and 
a reference to the VirtusUniverse. Since this Connection thread is 
responsible for the communication between client and server it is 
assigned an id, a socket, and a reference to the universe. The 
VirtusServer thread also realizes the saving operation for persistent 
objects to the database, either at termination or on user demand. 

Figure 7: Communication and interaction during start of Virtusserver 

4.5.2 Thread Connection 

For each client there is a dedicated Connection thread that handles 
the communication between client and server. It provides the 
client with information about its world and takes events from the 
client to the other Connection thread. The lifetime of a Connection 
thread expires with the termination of the client-server connection. 
After receiving an acknowledgement of successful transmission of 
the requested world description the Connection thread creates a 
visual representation for the user: an avatar is inserted to the 
VirtusWorld and all clients interested in this world are notified 
about the existence of a new user. This completes the initialization 
phase. 
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The Connection thread now listens for messages coming from the 
client or from other Connection threads. Potential incoming 
messages from the client side are: 

User interactions with objects: object creation, deletion, 
transformation, pushing buttons, using SensorNodes, etc. 
These actions issue events that are sent to the Connection 
thread and forwarded to all Connection threads managing the 
same world. 
User switches from one world to another: The new world is 
transmitted to the client, the avatar is deleted in one world and 
a new avatar is created in the new world. All Connection 
threads managing the old and the new world are notified. 
The client requests ownership for a specific VirtusObject. If the 
server currently owns the VirtusObject and if its ownership is 
transferable, then the Connection thread changes ownership 
and returns acknowledgment. In other cases the request for 
ownership is refused. Not all objects may change ownership: 
avatars are always owned by the server. 
Ownership is returned by the client. Ownership is intended to 
be bound to a user only for a limited period of time. Having 
completed their manipulations users return ownership to the 
server. Connection resets ownership and informs other 
Connection threads, that may have claimed ownership in the 
meantime. 
A client terminates: Connection deletes the avatar, informs 
other Connection threads, returns all ownership from the 
terminated client to the server, informs the VirtusServer thread 
about the termination of the client and terminates itself. 

4.6 The Client Side 
The client side is designed as an applet and acts as the interface 
between the user and the virtual environment. It is composed of 
six elements. Data objects are managed by three classes: 
VirtusWorld,VirtusObject, VirtusObjectClient. 
Vi r tuscl i en t implements the user interface by processing 
user input and by displaying information. Connec tionclient 
manages the communication with the server. VmLInterf ace 
is the interface between Virtusclient and the VRML- 
browser. 

Viffus Client Classes 

~1 
‘ “” ConnectionClient 

virtusObject II 

virtusObjectClient 

Figure 8: Class diagram of the client side. 

4.6.1 Thread VirtusCIient 

This Thread is the main thread on the client side. It offers the 
graphical user interface for input and output of system. and 
initializes Connectionclient and VmLInterf ace. 

4.6.2 Thread ConnectionClient 

ConnectionClient handles all the communication between client and 
server. At initialization time it receives a socket and port number, 
establishes a connection to the server and requests a user 
selectable scene description (a VirtusWorld) from the 
server. VirtusWorld’s method receive () reads the data sent by 
the server and assigns them via input ( ) to VirtusObjects. The 
VirtusWorld is propagated to VRMLlnterface and rendered by the 
browser. The request for an avatar and the notification of the 
current viewer position complete the initialization phase. 
From now on the ConnectionClient waits for messages coming from 
the server and for events issued either by the VRMLlnterface or the 
user. Here are some examples of possible actions: 

A user enters a new world (or region in the universe): 
ConnectionClient receives the world description and forwards 
it to VRMLlnterface. 
VRMLlnterface requests ownership for a VirtusObject. 
ConnectionClient forwards this request to the server and 
forwards acknowledgment or refusal to the interface. 
VRMLlnterface returns ownership of a VirtusObject. The server 
is notified and may grant ownership to different users. 
Viewer position has changed: ConnectionClient forwards an 
event with coordinates of the new position to the server. 
VRMLlnterface returns a general event. An event with event 
type, VirtusObject identifier, event parameters and timestamp 
is sent to the server. 
User requests the end of the session: ConnectionClient sends 
this requests to the server, notifies the VRMLinterface, deletes 
the local VirtusWorld and terminates. 

4.6.3 VRMLlnterface 

VRMLlnterface acts as an interface between VirUsClient and 
ConnectionClient on one side and the VRML-browser on the other. 
It has the capability to manipulate the scene graph in the browser 
and to create and read events in the scene graph. Method 
showVirtusObj ect ( ) adds an object to the scene, 
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showVirtusWorld() adds a complete world to the scene 

graph. 
removeVirt_usObj ect () and removeVirtusWorld (1 
delete components from the scene. Events in a world may be 
traced by adding them to a list of interesting events 
addEven tOu t s ( ) and assigning callback functions. Events 
created by the user or some remote client may be sent to the 
VirtusObjects via setEvent () . 

4.6.4 VIRTUS Corn munication Protocol 

The decision for an appropriate network protocol useful for 
scalable distributed environments is still an open issue. The 
communication between the two threads Connection (server side) 
and ConnectionClient (client side) is ruled by a very simple 
application layer protocol. Figure 9 presents the synchronization 
between the thread during VirtusWorld transmissions. Table 5 lists 
the PDUs currently specified by the protocol. EVENTTYPE is a 
generic name representing a variety of event types: position 
changes issue TRANSLATION events, a proximity node issues 
PROXIMITYSENSOR events, etc. Since the number of parameters 
varies between event types, it is represented as x~,...,x,. Each 
event comes with a timestamp. 

Vi&X6 ConrMiorr Connaction 
Server Thread 1 1 Thread2 1 

Cb 
7 

-L 1 RE QUFST 

; 

: CONNECTION ACCEPTFIJ i 

Figure Thread synchronization during session start. 

CONNECTION REQUEST - 
CONNECTION ACCEPTED - 
CONNECTION REFUSED - 

InitialIration Phase 
VIRTUSWORLD REQUEST VirtusWorld ID stc 
VIRTUSWORLD NOT AVAILABLE - s+c 
VIRTUSWORLD SENDING VirtusWorld ID s-c 
VIRTUSWORLD RECEIVED - s++c 
AVATARCREATE stc 

TRANSLATION ix Y 2) 
ROTATION (x y z’a) 

Working Phase 
OWNERSHIP REQUEST VirtusObject ID 
OWNERSHIP ACCEPTED 
OWNERSHIP REFUSED 
OWNERSHIP RELEASE 
VIRTUSOBJECT CREATE 
VIRTUSOBJECT DELETE 
EVENT 
EVENTTYPE 

VirtusObject ID 
VirtusObject ID 
VirtusObject ID 
VirtusObject 
VirtusObject ID 
VirtusObject ID 

(XI. . ..> x,, 

s-+c 
s+c 
stc 
s-c 
s*c 
s-c 

TIMESTAMP time 
DisconneHicn Phase 

CONNECTION END s-c 
CONNECTION CLOSED s+-+c 

Table 5: VIRTUS’ simple application layer protocol 

5 IMPLEMENTATION OF VIRTUS 
VIRTUS has been implemented entirely with VRML97, Java 1 .O, 
Javal. 1, and the External Authoring Interface EAI. 

5.1 The Server Side 
The server code is responsible for reading world descriptions from 
a database of predefined worlds, for the initialization of a 
VirtusUniverse, for the management of clients, and for the creation 
of avatars. The server-side functionality is bundled in a single 

:kage. 

componmts. 

VwtusObiect.class 

5.2 The Client Side 
The client side is implemented in Java-package 

virtwsCtientPackage. 

virtusclient and virtusClientGU1 implement the user 
interface. ConnectionClient control all communication 
between client and server. VmLInterf ace communicates 
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between Java applet and VRML-plugin. A HTML-File 
VirtusClient.html contains tags to load and embed several user 
interface components: 
. A Java applet with AWT widgets to control and monitor the 

communication, request worlds and view status and log 
messages during the session. The applet contacts the VRML- 
Browser via thread VRMLlnterface. 

. The VRML-Plugin is initialized with a simple VRML-File 
“root.wrl” containing essentially a named entry point 
(ROOT) for the External Authoring Interface 

. The bottom area of the user interface is reserved for future 
integration of additional Applets and controls (text, audio 
chat, video) 

The thread VRMLlnterface is responsible for three tasks: it creates 
2D and 3D textual information (status and error messages) in the 
Applet-Window and in the VRML scene. It manages user 
coordinates during navigation and informs the server-side 
Connection about position changes. Finally it manages all instances 
of VirtusObjects and triggers the rendering of their position, 
orientation and appearance changes. The necessary updates in the 
VRML scene graph, insertion and deletion of VirtusObjects are 
accomplished via standard EAI methods (createVrmlFromString, 
getEventIn) and documented in the Java applet’s log area. User 
position updates VRMLlnterface implements an EventOutObserver 
to catch user interaction in the scene. 
The activation of any Touch-, Plane-, Cylinder-, Sphere-, or 
ProximitySensor in the world is recognized by the 
EventOutObserver and initiates the request for ownership from 
the server. If it is granted 

6 CASE’STUDY: ARC ITECTURAL 
CONSTRUCTION 

In 1995 we implemented a system for 3D virtual walkthroughs 
which was also capable of simulating the building construction in 
4D, with the additional parameter of time. This system was based 
on SuperScape. As also stated by [9] VRML offers today similar 
features to distribute an architect’s design intentions to students, 
clients, contractors, and fabricators. Multi-user environments 
additionally offer the ability to meet many times in a virtual 
collaborative building to review progress, plan and discuss 
changes. 

The benefits of using 3D online techniques in architecture are 
obvious: there is no need to produce and distribute numerous 
views on paper and the models may much easier be checked for 
layout conflicts by visual inspection than large sets of 2D 
drawings. VRML supports the modeling in several levels of detail 
which is a traditional concept in architecture. Furthermore, 
hyperlinks on the 3D components may immediately reveal 
construction specifications, e.g. in HTML. 
However, several deficiencies of the current VRML standard and 
tools will prohibit the adoption of VRML as a primary medium 
for design by the AEC industry in the near future: 
VRML modeling software does not provide the sophisticated 
modeling techniques used in professional CAD systems. VRML- 
export filters are not suitable because they generate polygonal 
approximations of models (large IndexedFaceSets). VRML 
generally provides rather qualitative data for rendering rather than 
quantitative and analytic data for engineering purposes and 
construction processes. Methods to query sizes and object 
distances are required as well as new spatial metaphors for the 
display of analytic data. 

7 EXPERIMENTAL RESULTS AND 
CONCLUSION 

The VIRTUS system has been implemented in first prototype 
mainly as a proof-of-concept within 12 weeks by a single 
programmer. Since it is completely written in Java, it runs 
everywhere. The client side has been successfully tested on IRIX 
6.x and Windows NT 4.0, with Netscape Navigator and Microsoft 
Internet Explorer and CosmoPlayer 1.0.2, 1.1, and 2.1. We chose 
to install installed the VirtusServer on a Sun SPARClO running 
Solaris 2.6 and working at the same time as our HTTP- and FTP- 
server. The clients run primarily on SGI 02 and Indigo* running 
IRIX6.x and PCs running Windows NT4.0 and Linux. Most of the 
machines are lodated in the server’s IOMbps-Ethernet segment, a 
PC is connected via ISDN. The clients use Netscape Navigator 
3.lS, 4.05 and 4.5b, Microsoft Internet Explorer, CosmoPlayer 
1.0.2 and 1.1 under IRIX, and CosmoPlayer 2.1 under NT. 
We ran the system with up to ten simultaneous users, more than 
typically would participate in our architectural design scenario. 
Experimental results indicate only little rendering slowdown when 
users are merely navigating through the scene. Large amounts of 
sensor-interaction however swamp the communication channels 
and cause jumpy motion. We assume the reason for this in the 
quite primitive communication protocol which uses exclusively 
TCP in its current version and performs no filtering or controlled 
sampling of events. Quantitative measurements of network load 
under different conditions will follow. 
As the use of UDP does not require dedicated sockets, setup and 
take down cost or retransmission in case of failure in busy 
networks, it will be used for motion updates and events. The 
transfer of more functionality and intelligence to the client side is 
a promising approach to improve the system. 
Consistency in the VirUsWorlds in guaranteed by ownership 
management in the server. The system is dynamic: users may 
enter and leave the world and any moment, may create new 
objects, which are added as persistent components to the world. 
The current state of the environment can be saved and reloaded. 
The environment (universe) is partitioned (manually) into separate 
worlds. The modular design of VIRTUS provides extensibility 
with little effort. 
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8 CURRENT AND FUTURE WORK 
Currently we are working on a database for more complex, 
sophisticated behaviors, object-oriented paradigms[24] and a set 
of VRML widgets with callback mechanisms. This will include 
dynamics, the use of constraints [ 121 for assembly (Snap & Move 
concepts). We are working on the inter-object collision handling, 
on server-side and on client side and we are investigated methods 
for automatic partitioning of complex environments. 
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