
Communicating Sequential Processes
for Centralized and Distributed
Operating System Design
M. ELIZABETH C. HULL and R. M. McKEAG
The Queen's University of Belfast

This paper demonstrates how the notation of Communicating Sequential Processes may be used in
the design of an operating system. It goes further to show how such an approach assists in the design
and development of a system distributed over a network of computers. The technique uses a well-
defined design methodology.

Categories and Subject Descriptors: C.2.4 [Computer-Communications Networks]: Distributed
Systems--network operating systems; D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.3.3 [Programming Techniques]: Language Constructs--concurrent programming lan-
guages; Pascal-plus; D.4.0 [Operating Systems]: General; D.4.1 [Operating Systems]: Process
Management--concurrency; scheduling; synchronization

General Terms: Design, Languages

Additional Key Words and Phrases: Operating systems, parallel programming, program design,
communicating sequential processes, distributed systems

1. INTRODUCTION

A widely accepted view is that the function of an operating system is to provide
a virtual machine within which a user can run his own programs. The develop-
ment of the THE multiprogramming system [3] laid the foundation for our
present understanding of operating systems, that is, that an operating system
should be structured as a series of levels, each of which would provide a virtual
machine for the higher levels. P. Brinch Hansen [1] and C. A. R. Hoare [4] have
both shown that Pascal can be extended with processes, monitors, and abstraction
mechanisms (classes or envelopes) to provide a structured programming language
suitable for computer operating systems. These languages [1, 6, 8] have been
used for the construction of operating systems.

A rather different type of language involves processes that communicate with
one another directly, thereby avoiding the need for monitors through which the
processes communicate. Several language proposals have been based on the
notion of directly communicating processes [2, 5]. It seems reasonable to choose

Authors' addresses: M.E.C. Hull, School of Computer Science, Ulster Polytechnic, Shore Road,
Newtownabbey, Co Antrim BT37 0QB, Northern Ireland; R.M. McKeag, Department of Computer
Science, The Queen's University of Belfast, Belfast BT7 1NN, Northern Ireland.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1984 ACM 0164-0925/84/0400-0175 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984, Pages 175-191.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2993.2381&domain=pdf&date_stamp=1984-04-01

176 • M.E.C. Hull and R. M. McKeag

such a notation to represent a multiprogramming system and to use it to
investigate the design of an operating system as a set of communicating processes.
The most influential of these is the Communicating Sequential Processes (CSPs)
notation [5], developed by Hoare, and it is this notation that we choose to use as
a design tool in this paper. This notation has been proposed as a means of
representing a system as a set of processes executing in parallel and communi-
cating only by means of input/output operations.

We give consideration, in this paper, to how such a notation may be used in
the design of an operating system, and we go further to consider the construction
of an operating system for a network of computers. Various multicomputer
operating systems have indeed been programmed, but little in the way of general
rules for their design has been published. In this paper we consider some of the
problems of distributing an operating system and how they may be overcome in
a reasonably methodical manner.

2. AN OPERATING SYSTEM

We shall take as an example the conventional single-computer operating system
described by Welsh and McKeag [7]. This owes a lot to the THE system, and its
structure is not unlike that of many other operating systems. In outline it takes
the following form, expressed in Pascal-plus [6]:
program operating system;

moni tor module processor;
. . . ~

moni tor module mainstore;
. . . ;
moni tor module typewriter;
. . . ;

moni tor module filestore;
° . ° ~

moni tor module cardreader;
. . . ;
moni tor module lineprinter;
° ° .

process userprocess;
procedure runuserjob;

{declare instances of the virtual resources needed--these, together, constitute the
virtual machine in which the user's job is run}
begin

end;
begin

while {system switched on} do runuse~job
end;

ins tance user: ar ray[1 . , maxuser] of userprocess;
begin

{no global variables to initialize}
end.

The principal component of the operating system is the "userprocess", for
which we declare "maxuser" instances, each of which will run a succession of
jobs for the users of the system. To run a user's job, various resources are
required, and to administer the resources of each type we program a Pascal-plus

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

Communicating Sequential Processes • 177

m o n i t o r . Thus there is one moni tor to adminis ter the "filestore", ano ther to
administer the "typewriters", and so on.

In general, the s t ructure of a typical moni tor to administer the resources of
some type is as follows:

moni tor module resourcetype;
const

resourcemax -- {resources of this type};
type

*status = (*success, *failure);
resourcenum = 1 .. resourcemax {to identify resource};

moni tor module resourcescheduler;

procedure *acquire(...);

procedure *release(...);

moni tor controller (r: resourcenum);

procedure *operation(...);
. . . ;
process module resourcehandler;
. , - ~

ins tance
resourcecontroller: array[resourcenum] of controller ((1) (2) (3) . . . (resourcemax));

enve lope *virtualresource;
var * result: status {records result of the last operation on the resource};

resource: resourcenum Irecords identity of real resource being used};
. . . ;
procedure *virtualoperation;

begin

end {resourcetype};

The moni tor contains some constant and type definitions pertaining to the
resources and a "resourcescheduler" monitor , with a procedure to "acquire" a
resource from a pool of available resources, and one to "release" a resource back
to the pool.

As well as scheduling the use of the resources, we need to control their use. In
Pascal-plus we express this, using a moni tor "controller" of which we declare as
many instances as there are resources. Each such moni tor contains variables to
buffer inpu t /ou tpu t and for recording results of data transfers. A small process
"resourcehandler" initiates each data transfer, waits for the completion interrupt,
and checks for and reports data t ransfer failures.

The only other component of the moni tor is a Pascal-plus envelope, which is
effectively a definit ion of a type representing a virtual resource. Instances of this
type are declared by processes needing to use such a resource, thus:

ins tance R: resourcetype.virtualresource

The only visible aspects of this virtual resource are the variable "R.result" and
the procedure "R.virtualoperation~'; the envelope instance "R", the scheduler,
and the appropriate controller hide everything else: the identi ty of the resource,

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

178 • M.E.C. Hull and R. M. McKeag

the delay until it is available, the details of data transfers, the interrupts, the
fault handling, and so on.

To consider a typical example, a virtual card reader should provide its user
with a procedure to read a card. The interface is t.herefore quite simple, compli-
cated only by the need to provide for a "status" check after reading a card, that
is, success, failure, and end of file detected.

envelope *reader;
vat

cr: crnum {records identity of real card reader being used};
*result: status {records result of the last @eration on the card reader};

procedure *read (var c :card);
begin

{read a card from card reader "cr" and record "result"}
crcontroller [cr].read(c, result)

end;
begin

crscheduler.acquire (cr); result :-- success;

{the eventual return of the card reader to the scheduler's pool is left to the "crhandler"
process in the controller monitor}

end;

There may be minor variations on this theme; for example, the "filestore" monitor
may offer its users several envelopes, such as "sequentialfile" or "randomaccess-
file", and it may have more than one scheduler: one to schedule the use of the
sectors of the disc and the other to schedule access to the disc for data transfers.
But, in general, for each type of resource, there is a scheduler, there is a controller
(containing a small device handling process) for each actual resource, and there
is a virtual resource envelope. Thus a complete operating system will contain
several such "resourcetype" monitors and a number of "userprocesses"; it may
also have a number of small service processes, for example, to log the jobs that
have been run or to provide the operators with statistics of resource usage, but
such service processes need not concern us here.

3. FEATURES OF CSP FOR OPERATING SYSTEM DESIGN

Before designing an operating system, the structures required of, and available
in, the CSP notation must be considered. Hoare's attempt to unify all the different
program structures into processes seems acceptable for processes and monitors.
The representation of abstraction mechanisms seems to be more difficult, how-
ever.

One easily recognizes that an operating system, unlike the normal application
program, involves a degree of parallelism, its purpose being to share the resources
that it controls among a number of users who make unpredictable demands upon
these resources. We have already shown that any operating system requires, for
each type of device, a scheduler, a controller for each device of that type, and a
way of providing the user with virtual resources.

In CSP input and output provide the sole method of communication between
processes running in parallel. They do not communicate with each other by
updating global variables. A process may communicate with another process
which it names-- i f the latter is subscripted, then it communicates with the

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

Communicating Sequential Processes • 179

specified element of tha t process array. The one-to-one type of communication
is quite straightforward

singleuser :: [. . . ; resource ! message() ; . . .]
/ /
resource :: [. . . ; singleuser ? message() ; . . .]

However, in the one-to-many type of communication shown below, the "resource"
process provides a service to any member of an array of "user" processes, the
point being tha t in CSP this element must be named; this is quite different from
Pascal-plus where communication is through global data and the identi ty of one
process is not known to another.

resource :: [. . . ; (u: 1 .. usermax) user(u) ? message() ; . . .]
/ /
user(u : 1 .. usermax) :: [. . . ; resource ! message() ; . . .]

This can easily be extended to an n-to-m type of communication, where we have
a specific element of "resource" communicating with a specific element of "user".

resource (r: 1 .. resourcemax) :: [. . . ; (u: 1 .. usermax)user(u) ? message(); . . .]
/ /
user (u: 1..usermax) :: [. . . ; resource(r) ! message() ; . . .]

Often, the "user" process is not interested in a particular element of "resource",
but rather in any element. It therefore would "acquire" such an element, tha t is,
choose r. This approach is therefore convenient when considering the represen-
tat ion of envelopes as a user can now communicate with a "virtual process".

This, for notational purposes only, can be represented by the following:

virtualresource =df [. . . ; ? message() ; . . .]
/ /
user (u : l .. usermax):: [resource:: virtualresource

/ / . . . ;
resource ! message ();

]

However, in CSP we are not provided with the facility of defining process types
or dynamically declaring instances of them. We must therefore find some way of
representing this in CSP. In fact, we declare instances to some maximum of the
"virtualresource" process required and then use them as necessary through a
scheduling process. In CSP, for communication to succeed between two processes,
both tags and value lists must correspond in the input /output commands. Tha t
is, in CSP, each process must name the other in order to communicate, while in
Pascal-plus an instance of an envelope is unaware of the identity of the process
invoking i t - - a CSP program therefore makes explicit what a Pascal-plus compiler
must deduce from the program.

3.1 Scheduling

Consider the problem of scheduling a single resource between n users. In CSP
this could be trivially expressed as

scheduler :: * [(i: 1 . . n) user(i) ? acquire()
user(i) ? release()

]

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

180 • M.E.C. Hull and R. M. McKeag

Table I

Pasca l -p lus C S P

acquire - -
if pool = [] then WAIT;
" take i t em f rom pool"

r e l e a s e - -
"put i t em in to pool"

acquire - -
[pool = [] --* W A I T
0 pool {) [] ~ " take i tem

f rom pool"
]

r e l e a s e - -
"pu t i tem in to pool";
[queue = [] ---* skip
D queue () [] --* S IGNAL;

" take i tem f rom pool"
]

Note tha t the user identif icat ion enforced by CSP automat ica l ly ensures t ha t a
release signal is accepted only f rom the user current ly using the resource.

A single process may communica te with any e lement of an a r ray of processes.
Consequently, Hoare ' s moni to r may be regarded as a single process tha t com-
munica tes with one or more e lements of an a r ray of user processes. However, if
more t h a n one device is available, t hen a more general solution for the scheduler
is r equ i r ed - - the availabil i ty of the devices being represented by a set.

scheduler ::
[free: set of resource; free :-- [1..R];

* [free ()[]; (i: 1..n) user(i) ? acquire() --*
r: resource; r := 1
* [not (r in free) ---) r := r + 1];
free := free - [r];
user(i) ! acquire(r)

D (i: 1.. n) user(i) ? release(r: resource) --)
free := free + [r]

]
l
/ /
user (i: 1.- n) ::
[r: resource;

. . . ; scheduler ! acquire(); scheduler ? acquire(r);
. . . ; scheduler ! release(r); . . .

]

W h e n considering scheduling, an algori thm, for example, "first come, first
served", should be provided so t ha t processes wait ing to use the resource may be
queued. In the above solution, the scheduler repeatedly inputs f rom any of the n
users, not necessari ly conforming to a par t icular algori thm.

In CSP we must , therefore, introduce some form of explicit queuing if t ha t is
wha t is desired for the par t icular application. T h a t is, in CSP we mus t explicitly
queue the processes t ha t pa r t ake in, for example, a f irst-come, f i rs t -served
algori thm, ra ther t h a n rely on the buil t- in synchronizat ion techniques of Pascal-

plus.
Le t us consider the fundamen ta l difference in style in p rog ramming a scheduler

in Pascal-plus and CSP. Tab le I shows the acquisi t ion and release of a resource
in skeletal form.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

Communicating Sequential Processes • 181

WAIT occupies the same position in both, as does "put item into pool". Because
in CSP the scheduler has a life of its own, the requesting process must be treated
as passive data when it is queued. No resumption address can be readily stored
in the queue, and so it has to resume being processed in the re lease procedure,
not in the acqu i re procedure; therefore we have the inevitable duplication of
"take item from pool".

In the design of an operating system a more general technique is required when
considering the whole problem of queuing. We cannot rely on the underlying
"run-time" support for such algorithms as scheduling the movement of a disc
head. We must therefore define a range of queue types that can take into account
the fact that each process can be on only one queue at any moment. Any process
(normally a scheduler) wishing to use such a queue declares an instance of it and
performs the required operations. Using the process array declaration of CSP,
we can define a queue element for each process that could require queue suspen-
sion.

discscheduler ::
[readqueue(direction: (up, down)) :: priorityqueue

{two processes to represent priority queues}
//

writequeue :: fifoqueue {process to represent FIFO queue}
//
[{code of "discscheduler" process with such commands as readqueue (up) ! wait

(cylinder number)}
]
]

3.2 Virtual Resources

A monitor is an envelope that guarantees mutual exclusion. Since a monitor has
already been represented by a process, an envelope can also be represented by a
process. Following the ideas of operating system design, we wish the user to be
unaware of an actual resource, but rather to be aware of some corresponding
virtual resource.

A user declares "myresource" to be of type "virtualresource". In the example
given below, the function of"virtualresource" is perhaps rather unnecessary apart
from hiding the identity of the resource. However, it demonstrates the structure
required for a more realistic example.

virtualresource =df
[r: resource;

scheduler ! acquire(); scheduler ? acquire(r);
* [? transfer() --* {use the resource r}];
scheduler ! release(r)

]
/ /
user (i: 1..n):: [myresource :: virtualresource

/ / * [... ; myresource ! transfer (); ...]
]

Such a reference to "myresource" can only be made within the scope of the
declaration of the "user" process. The input command "? transfer()" accepts an
input command to use the resource from its (anonymous) creator. Note that the

ACM Transactions on Programming Languages and Systems, VoL 6, No. 2, April 1984.

182 • M.E.C. Hull and R. M. McKeag

"scheduler" process now accepts input commands from any of the "virtualre-
source" processes, not directly from the users. As stated earlier, we declare
instances to some maximum "vmax", say, of the process type required, and then
use them as necessary through a scheduling process.

virtualresource (v: 1.. vmax) ::
Jr: resource;
scheduler ! acquire(); scheduler ? acquire(r);
[(i: 1.. n) user (i) ? transfer() --

{use resource r}];
scheduler I release(r)

]
//
virtualscheduler ::

[Isome straightforward scheduler}]
//
user (i: 1.. n) ::

[myresource: 1. • vmax;
virtualscheduler I acquire();
virtualscheduler ? acquire(myresource);
* [. . . ; virtualresource(myresource) ! transfer() .. .];
virtualscheduler ! release (myresource)

]

Because of the structure of a CSP process, the "virtualresource" process, unlike
the envelope construct, can govern the ordering of operations performed on tha t
resource. This is particularly useful when writing a process to administer such
resources as sequential files.

3.3 Controllers

The need for explicit controller processes in such a system is at first sight a
debatable one- -one can argue that , for reasons of abstraction and readability,
the inclusion of a process, one for each resource, is necessary to control the use
of the device

controller(r: resource) ::
*[(v: 1..vmax) virtualresource(v) ? usedevice()--.

{perform transfer on device and await
interrupt}

]

But there is also merit in the argument tha t the structure of CSP is such tha t
the functions of the envelope and controller can be collapsed into one process--
in our case the "virtualresource". However the virtual resource process has a
temporary existence (in principle, at least), and the resource generally needs a
permanent controller process to look after it, even when it is una l loca ted~ to
field its interrupts, to report its failures and to wait for them to be corrected, to
hide its idiosyncrasies from the world, and so on. These tasks cannot be performed
by the succession of virtual resource processes to which it is allocated.

One saving is made, however. In Pascal-plus we have one monitor and, local
to it, one process, for each resource; in CSP we can amalgamate these into a
single process.
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

Communicating Sequential Processes • 183

d a t a
t r a n s f e r

o r other
operation

r e s o u r c e

Fig. i. Resource administration.

4. A NETWORK

Increasingly, there has been a trend toward the interconnection of several
computers to produce a system as powerful as a mainframe, but at a reduced
cost. This, of course, is only one advantage. It also provides the facility to expand
the system, coupled with the attraction of a reliable one.

The operating system we examined in the earlier part of this paper was
developed for a single computer with one or more processors and a common
store. The language that we used there, with its monitors (which are effectively
shared variables, together with the mutually exclusive operations that can be
performed upon them), is ideally suited for a common store. Indeed in Pascal-
plus the only way in which processes may communicate with one another is
through monitors. It follows that if we are to implement an operating system on
a network of computers without any common store it would be helpful to drop
the use of monitors.

It would appear that the software notation already described in this paper is
ideally suited to a distributed operating system, principally owing to the concept
of no shared data. This section, therefore, investigates what changes to the
process structure are necessary if we choose to implement the system on a
network of computers and to investigate the suitability of CSP for this new
system.

As far as the structure of resource administration is concerned, we have seen
that in both approaches a process P wishing to use a resource declares an instance
of a "virtual resource" process, which acquires a free resource from a scheduler
process. This can be represented diagrammatically as shown in Figure 1. Follow-

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

184 • M.E.C. Hull and R. M. McKeag

ing our technique in the previous section of this paper, we shall replace each
moni tor by a process and permi t processes to communicate directly with each
other. This was one of the reasons tha t led Hoare to develop his CPS notation.
Any moni tor already containing a process, chiefly each resource control ler
moni tor with its resource handler process, can be merged with its local process.

Turn ing therefore to CSP, we may describe our system as follows:

operatingsystem ::
[resourcetypeR :: [{declaration of process for a particular

resource type}
l

//
resourcetypeS :: [. . .]
//
resourcetypeT :: [.. .]
/ /

//
user(u: 1..maxuser) :: [{declaration of user process}]

]

Each "resourcetype" process takes the following form:

resourcetypeJ ::
[resourceschedulerJ :: [Ideclaration of scheduler process}]
//
resourcecontrollerJ(j: 1..jmax) ::

[{declaration of an array of controller
processes}

l
/ /
virtualresourceJ =dr [{definition of virtual resource}]
]

As a result of this t ransformat ion we have a number of "user" processes and, for
each type of resource, typically a "scheduler" process, a "controller" process for
each resource of the type, and some number of instances of a "virtual resource"
process.

Jus t as in Pascal-plus, so in CSP we can add some structuring to provide a
bet ter unders tanding of the design. In the former solution we were able to "wrap
up" the processes, monitors, etc. for each resource type within a single monitor ,
and so in CSP we can nest the processes to produce a similar s t ructur ing effect.

In a network, we must consider the distr ibution of these processes. It suffices
here to consider a simple configurat ion of a main computer running user programs
and a satellite computer. Both computers support peripheral devices and are
connected by a full duplex link. Such a design can be modified to permi t more
generality of use.

4.1 Administration of the Link

For the adminis t ra t ion of the link two processes are required in each computer.
Obviously the two in the main computer deal with traffic to and from the satellite,
while the two in the satellite deal with traffic in the reverse directions. The sets

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

Communicating Sequential Processes • 185

LINK

Computer Computer

Fig. 2. The link processes.

of processes are identical and so we place a copy of each in each computer. These
processes have the following skeletal structure, if we assume that they commu-
nicate with any process P:

tothelink :: * [P ? message () --* {send along link}]
fromthelink :: * [{accept message from link} --* P ! message()]

Since successive transmissions along the link may not be for the same device
nor indeed for the same process, it is necessary to identify the destination of
such transmissions. Furthermore, the structure of these processes should be
intuitively trivial (i.e., the link processes should not be interested in which
peripheral, function, etc. they are administering), and this suggests that our
approach should be rather different.

To this end, we treat the link as a resource like any other and supply each user
process {or each process wishing to use the link) with a "virtual link". The actual
handling of the outgoing channel and incoming channel that constitute the link
is carried out by two processes in each computer, "linkout" and "linkin". It may
also be necessary to introduce a process to schedule the use of the outgoing
channel, especially if some messages have priority over others. (See Figure 2.)

Since many virtual links will be mapped onto the real link we need some
protocol to match up a "virtual link" process in one computer with the corre-
sponding "virtual link" process in the other. We therefore introduce a coding
system, that is, we associate a unique code with each of the virtual links
established at any moment and this code will accompany every signal or message
transmitted over the real link; thus the receiving computer's "linkin" process can
match the code accompanying the transmission with that quoted by the "virtual
link" process expecting the message or signal.

This system can best be explained by an example. To reduce the amount of
traffic along the link and to avoid having to buffer an arbitrary amount of
information in the receiving computer, the protocol we choose is that the driving
force behind the transmission of a message will be the process that is to receive
the message. Let P be a process in the main computer and let it transmit to Q in
the satellite computer. Q, via its "virtual link," transmits a request signal to the

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

186 • M . E . C . Hull and R. M. McKeag

(i) P code ~ Q

(ii) P ~ code Q

re u stan re uest O co e

request (iv) r < Q

(v) p m e s s a g e ~ message and
code

Q

(vi) P ~linkin~ message >Q

Fig. 3. The link protocol.

"linkin" process in the main computer and P, via its "virtual link," also commu-
nicates with this "linkin" process. Both P and Q will have supplied codes, which
are used by "linkin" to match P and Q. P then transmits the message, accompa-
nied by the virtual link code, to the satellite computer's "linkin" process and Q
also communicates with that process, again quoting the code. The "linkin" process
can then direct the message to Q and so avoid having to buffer it. (See Figure 3.
Note that as we ensure step (ii) precedes step (iii) we are not concerned with
timing constraints.) The only buffering required is in the "linkin" process, which
stores codes rather than the messages, and this leads to greater economy and
efficiency.

A "user" process wishing to use the link, therefore, does so in the following
way:

user ::
[message: a r r a y [1 . .n] o f char;
myl ink :: v i r tua l l ink (code:codetype)
/ / . . .
mylink ! transmitting (message);

myl ink ! request to receive ();
myl ink ? receiving(message);

]

The code may refer to a single process or to a family of processes.
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

Communicating Sequential Processes • 187

4.2 Distributing the Processes

In a distributed system a user may wish to be able to use resources on the local
computer and on the satellite computer. Two points are immediately evident:

(i) The link should be invisible to the "user" process.
(ii) The "controller" process for any resource must obviously be placed in the

computer to which that particular resource is attached.

Let us suppose that the resource that user P wishes to use is not local but a
peripheral on the satellite computer. By using (i) and (ii) above the "virtual
resource" and "controller", processes are placed as shown in the main computer
and the satellite computer, respectively.

The position of the "scheduler" process is perhaps less obvious. As regards the
amount of communication with other processes, it could really go in either
machine. However, we should like the "scheduler" process to be unaware of the
link, and, further, if the satellite computer serves processes running on itself, or
indeed on a third computer, it seems logical to place the "scheduler" into the
same machine as the resources it schedules; if the resources are physically
distributed, this solution is of course not possible.

We have said that the "scheduler" should remain unaltered and unaware of
the link; this criterion should also apply to the "controller" process. This, in turn
implies that the "virtual resource" process should be in the satellite computer.
On the other hand, we argued above that it should be placed with the "user"
process, enabling it to hide the link and the protocols regarding its use from the
user. So it should be placed in the main computer. The solution is to split the
functions of the "virtual resource" process and to make it, alone, aware of the
link. This is in line with the function of any virtual resource process, which is to
hide any necessary housekeeping.

In the main computer we therefore have a "virtual resource" process, which
will accept requests from a process P and code them into messages for transmis-
sion along the link. In the satellite we have a "shadow virtual resource" process,
which receives messages from the link, decodes them, and passes them on to the
"scheduler" and "controller" processes. (See Figure 4.)

4.3 Distributed Schedulers

At any moment a great many virtual resources of a particular type may be
required although there is only a limited number of real resources of that type.
All but this limited number of virtual resource processes are waiting in the
scheduler: Thus the scheduler must be able to queue many requests that will, in
general, come from a variety of computers in the network, and, corresponding to
each nonlocal request, there will be (in the scheduling computer) a "shadow
virtual resource" process and a "virtual link" process, both of which will be
inactive most of the time.

In small systems this will not matter, but if the scheduling computer Y is
serving not just one computer X but many, the overhead may be unnecessarily
large. In such circumstances there may be a case for the scheduler in computer
Y to limit itself to queuing a limited number of requests from each computer, X,
say two, and from these it selects the most deserving request for service. We thus
need to introduce into each computer X a "shadow scheduler" process to filter
the requests before they are passed to the main scheduler. (See Figure 5.)

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

188 • M . E . C . Hull and R. M. McKeag

virtual ~)_ LINK t shadow
resource virtual

J resource

i / Main /
computer /

/

scheduler controller resource

Fig. 4.

S a t e l l i t e c o m p u t e r

Spli t t ing the virtual resource.

Computer X

LINK , /

resource

Computer Y

Fig. 5. Spli t t ing the scheduler.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

Communicating Sequential Processes • 189

We need to consider carefully what the policy of each "shadow scheduler"
should be. If the main scheduler operates a strict priority policy, the shadow can
do likewise. If one desires to operate a first-come, first-served policy, it is not
enough to ensure that the main scheduler and its shadows implement that policy
independently; rather, each should operate a priority policy where each request
uses as its priority the real time at which it is passed to its shadow scheduler. It
is much more difficult to distribute a scheduler that operates the elevator
algorithm for a moving head disc; such a policy requires the scheduler to serve
the request for the nearest cylinder in the current direction of travel. Although
the main scheduler can operate such a policy, the shadow schedulers do not in
general know which cylinder is currently under the read/write heads, nor do they
necessarily know the current direction of travel. Thus, if an excessive amount of
interprocess communication is to be avoided, the best approximation is for the
shadow schedulers to operate a first-come, first-served algorithm; in practice this
should be perfectly acceptable.

The principal reason for introducing shadow schedulers is to ensure that the
number of housekeeping processes in the computer housing the main scheduler
is reasonably independent of the numbers of processes in the other computers.

4.4 General Structure

Let us consider a process in the main computer wishing to use a resource S in
the satellite computer, as well as a local resource M in the main computer. As
far as resource S is concerned, we see that a "satellite virtual resource" process
must be declared in the main computer, and a "shadow virtual resource" in the
satellite computer.

A certain uniformity therefore appears if each computer allows administration
of both local and remote resources. Each computer therefore requires the following
processes for administration of a particular resource type:

(i) local virtual resource;
(ii) remote virtual resource;

(iii) shadow virtual resource;
(iv) local resource controller (one per resource);
(v) local resource scheduler;

(vi) shadow resource scheduler (to perform scheduling algorithm).

This uniformity eases the "what goes where" decisions necessary for a distributed
system.

The structure in the main computer for a resource M being used locally and S
remotely is as follows:

maincomputer ::
[resourcetypeM ::

[resourceschedulerM :: [...]
/ /
resourcecontrollerM (m: 1..mmax) :: [...]

/ /
localvirtualresourceM =~j [...]

]
/ /

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

190 • M.E.C. Hull and R. M. McKeag

resourcetypes ::
[remotevirtualresourceS =dr [{uses link to communicate with "shadowvirtual-

resourceS"}]
/ /
shadowresourceschedulerS :: [. . .]

]
/ /
link ::

[linkout :: [...]
//linkin :: [...]
//virtuallink =dr [...]

]
//

user :: [{declares instances of "virtuallink',
"localvirtualresourceM" and
"remotevirtualresourceS"}

]
]

and the s t ructure in the satellite computer is as follows:

satellitecomputer ::
[resourcetypeS ::

[resourceschedulerS :: [. . .]
/ /
resourcecontrollerS (s: 1..smax) :: [...]

/ /
shadowvirtualresourceS =dr [{communicates with "remotevirtualresourceS" across

the link}[
l

//
link ":

[linkout :: [. . .]
//linkin :: [...]
//virtuallink =dr [...]

l
]

5. CONCLUSION

The purpose of this paper was to investigate how an operat ing system could be
designed using a highly parallel notat ion. I t must be stressed tha t CSP was used
here as a design tool for a s t ructur ing method and was not in tended as an
implementat ion language. We have shown how an operat ing system can be
clearly defined as a hierarchy of communicat ing sequential processes in a me-
thodical way. The only programming construct in CSP is the process. We have
discussed ways in which the well-understood structures of envelopes, monitors,
and processes in Pascal-plus can be represented by processes in CSP without
loss of clarity and with little difficulty. We believe tha t using an abstract nota t ion
such as CSP is indeed an at t ract ive technique and it has been shown tha t clear
and correct programs result.

This paper also investigated how a distr ibuted configuration would benefi t
from an operat ing system designed in this way. If we consider a system where
each process is running on its own processor, and where one process can
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

Communicating Sequential Processes • 191

communicate with another process by name, then it is easily seen that such a
design approach is indeed attractive. Generally, we would not have such a
configuration. Rather, we would have several computers linked to form a network
in a predefined way. In this paper we have shown how and where processes
should be placed in such a system and what extra processes must be provided.
Furthermore, we have shown how links between the computers are used in the
same way as any other resource, and we have devised protocols for communication
to take place between processes in one machine and those in another machine.

ACKNOWLEDGMENT

The authors wish to thank the referees of an earlier version of this paper for
their very helpful comments.

REFERENCES
1. BRINCH HANsEN, P. The programming language concurrent Pascal. IEEE Trans. Softw. Eng.

SE-1, 2 {June 1975), 199-207.
2. BRINCH HANSEN, P. Distributed processes: A concurrent programming concept. Commun. ACM

21, 11 (Nov. 1978), 934-941.
3. DIJKSTRA, E.W. The structure of the THE multiprogramming system. Commun. ACM 11, 5

(May 1968), 341-346.
4. HOARE, C.A.R. Monitors: An operating system structuring concept. Commun. ACM 17, 10 {Oct.

1974), 549-557.
5. HOARE, C.A.R. Communicating sequential processes. Commun. ACM 21, 8 (Aug. 1978), 666-

677.
6. WELSH, J., AND BUSTARD, D.W. Pascal-plus--Another language for modular multiprogram-

ruing. So#w. Pract. Exper. 9 (1979), 947-957.
7. WELSH, J., AND MCKEAG, R.M. Structured System Programming, Prentice-Hall, Englewood

Cliffs, N.J., 1980.
8. WIRTH, N. MODULA: A programming language for modular multiprogramming. So#w. Pruct.

Exper. 7 (1977), 3-35.

Received April 1982; revised February, July 1983, accepted August 1983

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

