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1. INTRODUCTION 

A widely accepted view is that the function of an operating system is to provide 
a virtual machine within which a user can run his own programs. The develop- 
ment of the THE multiprogramming system [3] laid the foundation for our 
present understanding of operating systems, that  is, that  an operating system 
should be structured as a series of levels, each of which would provide a virtual 
machine for the higher levels. P. Brinch Hansen [1] and C. A. R. Hoare [4] have 
both shown that  Pascal can be extended with processes, monitors, and abstraction 
mechanisms (classes or envelopes) to provide a structured programming language 
suitable for computer operating systems. These languages [1, 6, 8] have been 
used for the construction of operating systems. 

A rather different type of language involves processes that  communicate with 
one another directly, thereby avoiding the need for monitors through which the 
processes communicate. Several language proposals have been based on the 
notion of directly communicating processes [2, 5]. It seems reasonable to choose 
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such a notation to represent a multiprogramming system and to use it to 
investigate the design of an operating system as a set of communicating processes. 
The most influential of these is the Communicating Sequential Processes (CSPs) 
notation [5], developed by Hoare, and it is this notation that  we choose to use as 
a design tool in this paper. This notation has been proposed as a means of 
representing a system as a set of processes executing in parallel and communi- 
cating only by means of input/output operations. 

We give consideration, in this paper, to how such a notation may be used in 
the design of an operating system, and we go further to consider the construction 
of an operating system for a network of computers. Various multicomputer 
operating systems have indeed been programmed, but little in the way of general 
rules for their design has been published. In this paper we consider some of the 
problems of distributing an operating system and how they may be overcome in 
a reasonably methodical manner. 

2. AN OPERATING SYSTEM 

We shall take as an example the conventional single-computer operating system 
described by Welsh and McKeag [7]. This owes a lot to the THE system, and its 
structure is not unlike that  of many other operating systems. In outline it takes 
the following form, expressed in Pascal-plus [6]: 
program operating system; 

moni tor  module  processor; 
. . . ~  

moni tor  module  mainstore; 
. . . ;  
moni tor  module  typewriter; 
. . . ;  

moni tor  module  filestore; 
° . ° ~  

moni tor  module  cardreader; 
. . . ;  
moni tor  module  lineprinter; 
° ° .  

process  userprocess; 
procedure  runuserjob; 

{declare instances of the virtual resources needed--these, together, constitute the 
virtual machine in which the user's job is run} 
begin 

end; 
begin 

while {system switched on} do runuse~job 
end; 

ins tance  user: ar ray[1 . ,  maxuser] of userprocess; 
begin 

{no global variables to initialize} 
end. 

The principal component of the operating system is the "userprocess", for 
which we declare "maxuser" instances, each of which will run a succession of 
jobs for the users of the system. To run a user's job, various resources are 
required, and to administer the resources of each type we program a Pascal-plus 
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m o n i t o r .  Thus  there  is one moni tor  to adminis ter  the "filestore", ano ther  to 
administer  the "typewriters",  and so on. 

In general, the s t ructure of a typical moni tor  to administer  the resources of 
some type is as follows: 

moni tor  module  resourcetype; 
const  

resourcemax -- {resources of this type}; 
type  

*status = ( *success, *failure); 
resourcenum = 1 .. resourcemax {to identify resource}; 

moni tor  module  resourcescheduler; 

procedure  *acquire(...); 

procedure  *release(...); 

moni tor  controller (r: resourcenum); 

procedure  *operation(...); 
. . . ;  
process  module  resourcehandler; 
. , - ~  

ins tance  
resourcecontroller: array[resourcenum] of  controller ((1) (2) (3) . . .  (resourcemax)); 

enve lope  *virtualresource; 
var  * result: status {records result of the last operation on the resource}; 

resource: resourcenum Irecords identity of real resource being used}; 
. . . ;  
procedure  *virtualoperation; 

begin 

end {resourcetype}; 

The  moni tor  contains some constant  and type definitions pertaining to the 
resources and a "resourcescheduler" monitor ,  with a procedure to "acquire" a 
resource from a pool of available resources, and one to "release" a resource back 
to the pool. 

As well as scheduling the use of the resources, we need to control  their  use. In 
Pascal-plus we express this, using a moni tor  "controller" of which we declare as 
many  instances as there  are resources. Each such moni tor  contains variables to 
buffer inpu t /ou tpu t  and for recording results of  data transfers.  A small process 
"resourcehandler" initiates each data  transfer,  waits for the completion interrupt,  
and checks for and reports  data t ransfer  failures. 

The  only other  component  of the moni tor  is a Pascal-plus envelope, which is 
effectively a definit ion of a type representing a virtual resource. Instances of  this 
type are declared by processes needing to use such a resource, thus: 

ins tance  R: resourcetype.virtualresource 

The  only visible aspects of this virtual resource are the variable "R.result" and 
the procedure "R.virtualoperation~'; the envelope instance "R", the scheduler, 
and the appropriate controller  hide everything else: the identi ty of the resource, 
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the delay until it is available, the details of data transfers, the interrupts, the 
fault handling, and so on. 

To consider a typical example, a virtual card reader should provide its user 
with a procedure to read a card. The interface is t.herefore quite simple, compli- 
cated only by the need to provide for a "status" check after reading a card, that 
is, success, failure, and end of file detected. 

envelope *reader; 
vat 

cr: crnum {records identity of real card reader being used}; 
*result: status {records result of the last @eration on the card reader}; 

procedure *read (var c :card); 
begin 

{read a card from card reader "cr" and record "result"} 
crcontroller [cr].read(c, result) 

end; 
begin 

crscheduler.acquire (cr); result :-- success; 

{the eventual return of the card reader to the scheduler's pool is left to the "crhandler" 
process in the controller monitor} 

end; 

There may be minor variations on this theme; for example, the "filestore" monitor 
may offer its users several envelopes, such as "sequentialfile" or "randomaccess- 
file", and it may have more than one scheduler: one to schedule the use of the 
sectors of the disc and the other to schedule access to the disc for data transfers. 
But, in general, for each type of resource, there is a scheduler, there is a controller 
(containing a small device handling process) for each actual resource, and there 
is a virtual resource envelope. Thus a complete operating system will contain 
several such "resourcetype" monitors and a number of "userprocesses"; it may 
also have a number of small service processes, for example, to log the jobs that 
have been run or to provide the operators with statistics of resource usage, but 
such service processes need not concern us here. 

3. FEATURES OF CSP FOR OPERATING SYSTEM DESIGN 

Before designing an operating system, the structures required of, and available 
in, the CSP notation must be considered. Hoare's attempt to unify all the different 
program structures into processes seems acceptable for processes and monitors. 
The representation of abstraction mechanisms seems to be more difficult, how- 
ever. 

One easily recognizes that  an operating system, unlike the normal application 
program, involves a degree of parallelism, its purpose being to share the resources 
that it controls among a number of users who make unpredictable demands upon 
these resources. We have already shown that any operating system requires, for 
each type of device, a scheduler, a controller for each device of that type, and a 
way of providing the user with virtual resources. 

In CSP input and output provide the sole method of communication between 
processes running in parallel. They do not communicate with each other by 
updating global variables. A process may communicate with another process 
which it names-- i f  the latter is subscripted, then it communicates with the 
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specified element of tha t  process array. The one-to-one type of communication 
is quite straightforward 

singleuser :: [ . . .  ; resource ! message( ) ; . . . ]  
/ /  
resource :: [ . . .  ; singleuser ? message( ) ; . . . ]  

However, in the one-to-many type of communication shown below, the "resource" 
process provides a service to any member of an array of "user" processes, the 
point being tha t  in CSP this element must  be named; this is quite different from 
Pascal-plus where communication is through global data  and the identi ty of one 
process is not  known to another. 

resource :: [ . . .  ; (u: 1 .. usermax) user(u) ? message( ) ; . . . ]  
/ /  
user(u : 1 .. usermax) :: [ . . .  ; resource ! message( ) ; . . . ]  

This can easily be extended to an n-to-m type of communication, where we have 
a specific element of "resource" communicating with a specific element of "user". 

resource (r: 1 .. resourcemax) :: [ . . .  ; (u: 1 .. usermax)user(u) ? message( ); . . .  ] 
/ /  
user (u: 1..usermax) :: [ . . .  ; resource(r) ! message( ) ; . . . ]  

Often, the "user" process is not  interested in a particular element of "resource", 
but rather in any element. It therefore would "acquire" such an element, tha t  is, 
choose r. This approach is therefore convenient when considering the represen- 
tat ion of envelopes as a user can now communicate with a "virtual process". 

This, for notational purposes only, can be represented by the following: 

virtualresource =df [. . .  ; ? message( ) ; . . .  ] 
/ /  
user (u : l  .. usermax):: [resource:: virtualresource 

/ / . . . ;  
resource ! message ( ); 

] 

However, in CSP we are not  provided with the facility of defining process types 
or dynamically declaring instances of them. We must  therefore find some way of 
representing this in CSP. In fact, we declare instances to some maximum of the 
"virtualresource" process required and then use them as necessary through a 
scheduling process. In CSP, for communication to succeed between two processes, 
both tags and value lists must  correspond in the input /output  commands. Tha t  
is, in CSP, each process must  name the other in order to communicate,  while in 
Pascal-plus an instance of an envelope is unaware of the identity of the process 
invoking i t - - a  CSP program therefore makes explicit what  a Pascal-plus compiler 
must  deduce from the program. 

3.1 Scheduling 

Consider the problem of scheduling a single resource between n users. In CSP 
this could be trivially expressed as 

scheduler :: * [(i: 1 . .  n) user(i) ? acquire( ) 
user(i) ? release( ) 

] 
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Table  I 

Pasca l -p lus  C S P  

acquire  - -  
if pool = [ ] then WAIT; 
" take  i t em f rom pool" 

r e l e a s e  - -  
"put i t em in to  pool"  

acquire  - -  
[ pool  = [ ] --* W A I T  
0 pool  { ) [ ] ~ " take  i tem 

f rom pool"  
] 

r e l e a s e  - -  
"pu t  i tem in to  pool";  
[ queue = [ ] ---* skip  
D queue ( ) [ ] --* S IGNAL;  

" take  i tem f rom pool"  
] 

Note  tha t  the user identif icat ion enforced by CSP  automat ica l ly  ensures  t ha t  a 
release signal is accepted only f rom the user  current ly  using the  resource. 

A single process may  communica te  with any  e lement  of  an a r ray  of processes. 
Consequently,  Hoare ' s  moni to r  may  be regarded as a single process tha t  com- 
munica tes  with one or more e lements  of  an  a r ray  of user processes.  However,  if  
more t h a n  one device is available,  t hen  a more general solution for the  scheduler 
is r equ i r ed - - the  availabil i ty of  the devices being represented  by a set. 

scheduler :: 
[free: set of  resource; free :-- [1..R]; 

* [free ( )[ ]; (i: 1..n) user(i) ? acquire( ) --* 
r: resource; r := 1 
* [not (r in  free) ---) r := r + 1]; 
free := free - [r]; 
user(i) ! acquire(r) 

D (i: 1..  n) user(i) ? release(r: resource) --) 
free := free + [r] 

] 
l 
/ /  
user (i: 1.- n ) :: 
[r: resource; 

. . .  ; scheduler ! acquire( ); scheduler ? acquire(r); 
. . .  ; scheduler ! release(r); . . .  

] 

W h e n  considering scheduling, an algori thm, for example,  "first  come, first  
served", should be provided so t ha t  processes wait ing to use the resource may  be 
queued. In  the above solution, the scheduler repeatedly inputs  f rom any of the n 
users, not  necessari ly conforming  to a par t icular  algori thm. 

In CSP  we must ,  therefore,  introduce some form of  explicit  queuing if t ha t  is 
wha t  is desired for the par t icular  application.  T h a t  is, in CSP  we mus t  explicitly 
queue the  processes t ha t  pa r t ake  in, for example,  a f irst-come, f i rs t -served 
algori thm, ra ther  t h a n  rely on the  buil t- in synchronizat ion  techniques of  Pascal-  

plus. 
Le t  us consider the  fundamen ta l  difference in style in p rog ramming  a scheduler 

in Pascal-plus  and  CSP.  Tab le  I shows the  acquisi t ion and  release of  a resource 
in skeletal  form. 
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WAIT occupies the same position in both, as does "put item into pool". Because 
in CSP the scheduler has a life of its own, the requesting process must be treated 
as passive data when it is queued. No resumption address can be readily stored 
in the queue, and so it has to resume being processed in the re lease  procedure, 
not in the acqu i re  procedure; therefore we have the inevitable duplication of 
"take item from pool". 

In the design of an operating system a more general technique is required when 
considering the whole problem of queuing. We cannot rely on the underlying 
"run-time" support for such algorithms as scheduling the movement of a disc 
head. We must therefore define a range of queue types that  can take into account 
the fact that each process can be on only one queue at any moment. Any process 
(normally a scheduler) wishing to use such a queue declares an instance of it and 
performs the required operations. Using the process array declaration of CSP, 
we can define a queue element for each process that could require queue suspen- 
sion. 

discscheduler :: 
[ readqueue(direction: (up, down)) :: priorityqueue 

{two processes to represent priority queues} 
//  

writequeue :: fifoqueue {process to represent FIFO queue} 
// 
[{code of "discscheduler" process with such commands as readqueue (up) ! wait 

(cylinder number)} 
] 
] 

3.2 Virtual Resources 

A monitor is an envelope that  guarantees mutual exclusion. Since a monitor has 
already been represented by a process, an envelope can also be represented by a 
process. Following the ideas of operating system design, we wish the user to be 
unaware of an actual resource, but rather to be aware of some corresponding 
virtual resource. 

A user declares "myresource" to be of type "virtualresource". In the example 
given below, the function of"virtualresource" is perhaps rather unnecessary apart 
from hiding the identity of the resource. However, it demonstrates the structure 
required for a more realistic example. 

virtualresource =df 
[r: resource; 

scheduler ! acquire( ); scheduler ? acquire(r); 
* [? transfer( ) --* {use the resource r}]; 
scheduler ! release(r) 

] 
/ /  
user (i: 1..n):: [myresource :: virtualresource 

/ / *  [... ; myresource ! transfer ( ); ...] 
] 

Such a reference to "myresource" can only be made within the scope of the 
declaration of the "user" process. The input command "? transfer( )" accepts an 
input command to use the resource from its (anonymous) creator. Note that  the 
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"scheduler" process now accepts input commands from any of the "virtualre- 
source" processes, not  directly from the users. As stated earlier, we declare 
instances to some maximum "vmax", say, of the process type required, and then  
use them as necessary through a scheduling process. 

virtualresource (v:  1.. vmax) :: 
Jr: resource; 
scheduler ! acquire( ); scheduler ? acquire(r); 
*[(i: 1.. n) user (i) ? transfer( ) --* 

{use resource r}]; 
scheduler I release(r) 

] 
//  
virtualscheduler :: 

[Isome straightforward scheduler}] 
//  
user (i:  1.. n) :: 

[myresource: 1. • vmax; 
virtualscheduler I acquire( ); 
virtualscheduler ? acquire(myresource); 
* [. . .  ; virtualresource(myresource) ! transfer( ) .. .]; 
virtualscheduler ! release (myresource) 

] 

Because of the structure of a CSP process, the "virtualresource" process, unlike 
the envelope construct, can govern the ordering of operations performed on tha t  
resource. This  is particularly useful when writing a process to administer  such 
resources as sequential files. 

3.3 Controllers 

The need for explicit controller processes in such a system is at  first sight a 
debatable one- -one  can argue that ,  for reasons of abstraction and readability, 
the inclusion of a process, one for each resource, is necessary to control the use 
of the device 

controller(r: resource) :: 
*[(v:  1..vmax) virtualresource(v) ? usedevice( )--. 

{perform transfer on device and await 
interrupt} 

] 

But  there is also merit  in the argument  tha t  the structure of CSP is such tha t  
the functions of the envelope and controller can be collapsed into one process--  
in our case the "virtualresource". However the virtual resource process has a 
temporary existence (in principle, at  least), and the resource generally needs a 
permanent  controller process to look after it, even when it is una l loca ted~ to  
field its interrupts, to report its failures and to wait for them to be corrected, to 
hide its idiosyncrasies from the world, and so on. These tasks cannot  be performed 
by the succession of virtual resource processes to which it is allocated. 

One saving is made, however. In Pascal-plus we have one monitor and, local 
to it, one process, for each resource; in CSP we can amalgamate these into a 
single process. 
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d a t a  
t r a n s f e r  

o r  other 
operation 

r e s o u r c e  

Fig. i. Resource administration. 

4. A NETWORK 

Increasingly, there has been a trend toward the interconnection of several 
computers to produce a system as powerful as a mainframe, but at a reduced 
cost. This, of course, is only one advantage. It also provides the facility to expand 
the system, coupled with the attraction of a reliable one. 

The operating system we examined in the earlier part of this paper was 
developed for a single computer with one or more processors and a common 
store. The language that we used there, with its monitors (which are effectively 
shared variables, together with the mutually exclusive operations that can be 
performed upon them), is ideally suited for a common store. Indeed in Pascal- 
plus the only way in which processes may communicate with one another is 
through monitors. It follows that if we are to implement an operating system on 
a network of computers without any common store it would be helpful to drop 
the use of monitors. 

It would appear that the software notation already described in this paper is 
ideally suited to a distributed operating system, principally owing to the concept 
of no shared data. This section, therefore, investigates what changes to the 
process structure are necessary if we choose to implement the system on a 
network of computers and to investigate the suitability of CSP for this new 
system. 

As far as the structure of resource administration is concerned, we have seen 
that in both approaches a process P wishing to use a resource declares an instance 
of a "virtual resource" process, which acquires a free resource from a scheduler 
process. This can be represented diagrammatically as shown in Figure 1. Follow- 
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ing our technique in the previous section of this paper, we shall replace each 
moni tor  by a process and permi t  processes to communicate  directly with each 
other.  This  was one of the reasons tha t  led Hoare  to develop his CPS notation.  
Any moni tor  already containing a process, chiefly each resource control ler  
moni tor  with its resource handler  process, can be merged with its local process. 

Turn ing  therefore to CSP, we may describe our system as follows: 

operatingsystem :: 
[resourcetypeR :: [{declaration of process for a particular 

resource type} 
l 

//  
resourcetypeS :: [. . .] 
//  
resourcetypeT :: [.. .] 
/ /  

//  
user(u: 1..maxuser) :: [{declaration of user process}] 

] 

Each "resourcetype" process takes the following form: 

resourcetypeJ :: 
[resourceschedulerJ :: [Ideclaration of scheduler process}] 
//  
resourcecontrollerJ(j: 1..jmax) :: 

[{declaration of an array of controller 
processes} 

l 
/ /  
virtualresourceJ =dr [{definition of virtual resource}] 
] 

As a result  of this t ransformat ion  we have a number  of "user" processes and, for 
each type of resource, typically a "scheduler" process, a "controller" process for 
each resource of the type, and some number  of instances of a "virtual  resource" 
process. 

Jus t  as in Pascal-plus, so in CSP we can add some structuring to provide a 
bet ter  unders tanding of the design. In the former solution we were able to "wrap 
up" the processes, monitors,  etc. for each resource type within a single monitor ,  
and so in CSP we can nest  the processes to produce a similar s t ructur ing effect. 

In a network,  we must  consider the distr ibution of these processes. It  suffices 
here to consider a simple configurat ion of a main computer  running user programs 
and a satellite computer.  Both  computers  support  peripheral  devices and are 
connected by a full duplex link. Such a design can be modified to permi t  more 
generality of use. 

4.1 Administration of the Link 

For  the adminis t ra t ion of the link two processes are required in each computer.  
Obviously the two in the main computer  deal with traffic to and from the satellite, 
while the two in the satellite deal with traffic in the reverse directions. The  sets 
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LINK 

Computer Computer 

Fig. 2. The link processes. 

of processes are identical and so we place a copy of each in each computer. These 
processes have the following skeletal structure, if we assume that  they commu- 
nicate with any process P: 

tothelink :: * [P ? message ( ) --* {send along link}] 
fromthelink :: * [{accept message from link} --* P ! message( )] 

Since successive transmissions along the link may not be for the same device 
nor indeed for the same process, it is necessary to identify the destination of 
such transmissions. Furthermore, the structure of these processes should be 
intuitively trivial (i.e., the link processes should not be interested in which 
peripheral, function, etc. they are administering), and this suggests that our 
approach should be rather different. 

To this end, we treat the link as a resource like any other and supply each user 
process {or each process wishing to use the link) with a "virtual link". The actual 
handling of the outgoing channel and incoming channel that constitute the link 
is carried out by two processes in each computer, "linkout" and "linkin". It may 
also be necessary to introduce a process to schedule the use of the outgoing 
channel, especially if some messages have priority over others. (See Figure 2.) 

Since many virtual links will be mapped onto the real link we need some 
protocol to match up a "virtual link" process in one computer with the corre- 
sponding "virtual link" process in the other. We therefore introduce a coding 
system, that  is, we associate a unique code with each of the virtual links 
established at any moment and this code will accompany every signal or message 
transmitted over the real link; thus the receiving computer's "linkin" process can 
match the code accompanying the transmission with that  quoted by the "virtual 
link" process expecting the message or signal. 

This system can best be explained by an example. To reduce the amount of 
traffic along the link and to avoid having to buffer an arbitrary amount of 
information in the receiving computer, the protocol we choose is that the driving 
force behind the transmission of a message will be the process that is to receive 
the message. Let P be a process in the main computer and let it transmit to Q in 
the satellite computer. Q, via its "virtual link," transmits a request signal to the 
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(i) P code ~ Q 

(ii) P ~ code Q 

re u stan   re uest O co e 

request (iv) r < Q 

(v) p m e s s a g e ~  message and 
code 

Q 

(vi) P ~linkin~ message >Q 

Fig. 3. The link protocol. 

"linkin" process in the main computer and P, via its "virtual link," also commu- 
nicates with this "linkin" process. Both P and Q will have supplied codes, which 
are used by "linkin" to match P and Q. P then transmits the message, accompa- 
nied by the virtual link code, to the satellite computer's "linkin" process and Q 
also communicates with that  process, again quoting the code. The "linkin" process 
can then direct the message to Q and so avoid having to buffer it. (See Figure 3. 
Note that as we ensure step (ii) precedes step (iii) we are not concerned with 
timing constraints.) The only buffering required is in the "linkin" process, which 
stores codes rather than the messages, and this leads to greater economy and 
efficiency. 

A "user" process wishing to use the link, therefore, does so in the following 
way: 

user :: 
[message: a r r a y  [1 . .n]  o f  char; 
myl ink  :: v i r tua l l ink  (code:codetype)  
/ / . . .  
mylink ! transmitting (message); 

myl ink  ! request  to receive ( ); 
myl ink  ? receiving(message); 

] 

The code may refer to a single process or to a family of processes. 
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4.2 Distributing the Processes 

In a distributed system a user may wish to be able to use resources on the local 
computer and on the satellite computer. Two points are immediately evident: 

(i) The link should be invisible to the "user" process. 
(ii) The "controller" process for any resource must obviously be placed in the 

computer to which that particular resource is attached. 

Let us suppose that the resource that user P wishes to use is not local but a 
peripheral on the satellite computer. By using (i) and (ii) above the "virtual 
resource" and "controller", processes are placed as shown in the main computer 
and the satellite computer, respectively. 

The position of the "scheduler" process is perhaps less obvious. As regards the 
amount of communication with other processes, it could really go in either 
machine. However, we should like the "scheduler" process to be unaware of the 
link, and, further, if the satellite computer serves processes running on itself, or 
indeed on a third computer, it seems logical to place the "scheduler" into the 
same machine as the resources it schedules; if the resources are physically 
distributed, this solution is of course not possible. 

We have said that the "scheduler" should remain unaltered and unaware of 
the link; this criterion should also apply to the "controller" process. This, in turn 
implies that the "virtual resource" process should be in the satellite computer. 
On the other hand, we argued above that it should be placed with the "user" 
process, enabling it to hide the link and the protocols regarding its use from the 
user. So it should be placed in the main computer. The solution is to split the 
functions of the "virtual resource" process and to make it, alone, aware of the 
link. This is in line with the function of any virtual resource process, which is to 
hide any necessary housekeeping. 

In the main computer we therefore have a "virtual resource" process, which 
will accept requests from a process P and code them into messages for transmis- 
sion along the link. In the satellite we have a "shadow virtual resource" process, 
which receives messages from the link, decodes them, and passes them on to the 
"scheduler" and "controller" processes. (See Figure 4.) 

4.3 Distributed Schedulers 

At any moment a great many virtual resources of a particular type may be 
required although there is only a limited number of real resources of that type. 
All but this limited number of virtual resource processes are waiting in the 
scheduler: Thus the scheduler must be able to queue many requests that will, in 
general, come from a variety of computers in the network, and, corresponding to 
each nonlocal request, there will be (in the scheduling computer) a "shadow 
virtual resource" process and a "virtual link" process, both of which will be 
inactive most of the time. 

In small systems this will not matter, but if the scheduling computer Y is 
serving not just one computer X but many, the overhead may be unnecessarily 
large. In such circumstances there may be a case for the scheduler in computer 
Y to limit itself to queuing a limited number of requests from each computer, X, 
say two, and from these it selects the most deserving request for service. We thus 
need to introduce into each computer X a "shadow scheduler" process to filter 
the requests before they are passed to the main scheduler. (See Figure 5.) 
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Fig. 5. Spli t t ing the scheduler. 
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We need to consider carefully what the policy of each "shadow scheduler" 
should be. If the main scheduler operates a strict priority policy, the shadow can 
do likewise. If one desires to operate a first-come, first-served policy, it is not 
enough to ensure that  the main scheduler and its shadows implement that  policy 
independently; rather, each should operate a priority policy where each request 
uses as its priority the real time at which it is passed to its shadow scheduler. It 
is much more difficult to distribute a scheduler that operates the elevator 
algorithm for a moving head disc; such a policy requires the scheduler to serve 
the request for the nearest cylinder in the current direction of travel. Although 
the main scheduler can operate such a policy, the shadow schedulers do not in 
general know which cylinder is currently under the read/write heads, nor do they 
necessarily know the current direction of travel. Thus, if an excessive amount of 
interprocess communication is to be avoided, the best approximation is for the 
shadow schedulers to operate a first-come, first-served algorithm; in practice this 
should be perfectly acceptable. 

The principal reason for introducing shadow schedulers is to ensure that the 
number of housekeeping processes in the computer housing the main scheduler 
is reasonably independent of the numbers of processes in the other computers. 

4.4 General Structure 

Let us consider a process in the main computer wishing to use a resource S in 
the satellite computer, as well as a local resource M in the main computer. As 
far as resource S is concerned, we see that  a "satellite virtual resource" process 
must be declared in the main computer, and a "shadow virtual resource" in the 
satellite computer. 

A certain uniformity therefore appears if each computer allows administration 
of both local and remote resources. Each computer therefore requires the following 
processes for administration of a particular resource type: 

(i) local virtual resource; 
(ii) remote virtual resource; 

(iii) shadow virtual resource; 
(iv) local resource controller (one per resource); 
(v) local resource scheduler; 

(vi) shadow resource scheduler (to perform scheduling algorithm). 

This uniformity eases the "what goes where" decisions necessary for a distributed 
system. 

The structure in the main computer for a resource M being used locally and S 
remotely is as follows: 

maincomputer :: 
[resourcetypeM :: 

[resourceschedulerM :: [...] 
/ /  
resourcecontrollerM (m: 1..mmax) :: [...] 

/ /  
localvirtualresourceM =~j [...] 

] 
/ /  
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resourcetypes :: 
[remotevirtualresourceS =dr [{uses link to communicate with "shadowvirtual- 

resourceS"}] 
/ /  
shadowresourceschedulerS :: [. . .] 

] 
/ /  
link :: 

[linkout :: [...] 
//linkin :: [...] 
//virtuallink =dr [...] 

] 
//  

user :: [{declares instances of "virtuallink', 
"localvirtualresourceM" and 
"remotevirtualresourceS"} 

] 
] 

and the s t ructure  in the satellite computer  is as follows: 

satellitecomputer :: 
[resourcetypeS :: 

[resourceschedulerS :: [. . .] 
/ /  
resourcecontrollerS (s: 1..smax) :: [...] 

/ /  
shadowvirtualresourceS =dr [{communicates with "remotevirtualresourceS" across 

the link}[ 
l 

//  
link ": 

[linkout :: [. . .] 
//linkin :: [...] 
//virtuallink =dr [...] 

l 
] 

5. CONCLUSION 

The  purpose of this paper  was to investigate how an operat ing system could be 
designed using a highly parallel notat ion.  I t  must  be stressed tha t  CSP  was used 
here as a design tool for a s t ructur ing method  and was not  in tended as an 
implementat ion language. We have shown how an operat ing system can be 
clearly defined as a hierarchy of communicat ing sequential  processes in a me- 
thodical way. The  only programming construct  in CSP  is the process. We have 
discussed ways in which the well-understood structures  of envelopes, monitors,  
and processes in Pascal-plus can be represented by processes in CSP  without  
loss of clarity and with little difficulty. We believe tha t  using an abstract  nota t ion 
such as CSP is indeed an at t ract ive technique and it has been shown tha t  clear 
and correct  programs result. 

This  paper  also investigated how a distr ibuted configuration would benefi t  
from an operat ing system designed in this way. If  we consider a system where 
each process is running on its own processor, and where one process can 
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communicate with another process by name, then it is easily seen that  such a 
design approach is indeed attractive. Generally, we would not have such a 
configuration. Rather, we would have several computers linked to form a network 
in a predefined way. In this paper we have shown how and where processes 
should be placed in such a system and what extra processes must be provided. 
Furthermore, we have shown how links between the computers are used in the 
same way as any other resource, and we have devised protocols for communication 
to take place between processes in one machine and those in another machine. 
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