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Locally least-cost error recovery is a technique for recovering from syntax errors by editing the input 
string at the point of error detection. A scheme for its implementation in recursive descent parsers, 
which in principle embodies a process of passing a parameter to each procedure in the parser for each 
terminal symbol in the grammar, has been suggested. For this scheme to be practical it is vital tha t  
as much parameterization as possible is eliminated from the recursive descent parser. This oPtimi- 
zation problem and how it may be split into three separate global data flow analysis problems--  
classifying terminal symbols and the so-called min and max follow cost problems--are discussed. 
The max follow cost problem is a particularly difficult one to solve. The application of Gaussian 
elimination to its solution is shown by expressing it as a continuous data flow problem, and it is also 
related to an "idiosyncratic" data flow problem arising in the optimization of very high level languages. 
Classifying terminal symbols is also difficult since the problem is unsolvable in general. However, for 
the class of LL(1) grammars, the problem is shown to be expressible as a distributive data flow 
problem and so may be solved using, say, Gauss-Seidel iteration. 

Categories and Subject Descriptors: D.3.4 [ P r o g r a m m i n g  Languages ] :  Processors--optimization; 
translator writing systems and compiler generators; G.2.2 [ M a t h e m a t i c s  of  Computa t ion] :  Graph 
Theory--path and circuit problems 

General Terms: Algorithms, Languages 

Additional Key Words and Phrases: Code optimization, compiling, error correction, error recovery, 
error repair, Gaussian elimination, Gauss-Seidel iteration, global flow analysis, lattice, LL grammar, 
parser generator, path problem, regular algebra, shortest path 

1. INTRODUCTION 
One of the principal benefits of the introduction of Backus Normal Form (BNF) 
in the Algol 60 report was to facilitate the development of parser generators. 
Such tools, which assist greatly the compiler writer's task in the initial stages, 
are now finding widespread use. Many parser generators, however, provide little 
assistance with the important requirement of incorporating efficient and effective 
error recovery into the parser, although this situation is changing (e.g., [11, 18- 
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20]). One technique for the automatic inclusion of error recovery, called "locally 
least-cost error recovery," has been investigated [2-4]. The basis for this tech- 
nique is to recover from syntax errors by editing the next input symbol at the 
point of error detection to a syntactically correct string. A table-driven LL(1) 
parser generator that exploits a similar idea has been developed by Fischer et al. 
[11], and Backhouse [5] discusses its implementation in recursive descent parsers. 

The implementation of locally least-cost repairs, as described by the author in 
[5], includes a mechanism for parameter passing that generalizes the follow set 
parameters in the recovery scheme advocated by Wirth [24]. Essentially, the idea 
is to anticipate the possibility of having to repair any terminal symbol by 
computing, before the call of a recursive descent procedure, the cost of editing 
the symbol after the call of the procedure has been completed. The potential 
advantage of this mechanism over the searching strategy suggested by Fischer et 
al. [11] is that locally least-cost repairs can be evaluated using a simple table 
look-up rather than, effectively, solving a shortest path problem when the error 
is detected. Unfortunately, a worst-case analysis of the size of the tables required 
to implement the parameter passing is quite off-putting. Typically, a grammar 
defining a programming language will have between 50 and 100 terminal symbols 
and 300 to 400 production positions; the size of the parameter table is the product 
of these two quantities! Fortunately, an analysis of the values taken by the 
parameters in practice reveals that the vast majority of them are unnecessary 
and so can be eliminated. In addition, the terminal symbols can be partitioned 
into a number of equivalence classes such that the parameter values for symbols 
in the same class are always equal. Thus the parameter table can be considerably 
reduced by storing only the values for a representative element of each class. The 
subject of this paper is the techniques whereby we are able to classify terminal 
symbols in a grammar and eliminate parameters from the parameter table. 

The problems we tackle amount to a global data flow analysis of the recursive 
descent parsers that would be generated were the scheme described in [5] rigidly 
adhered to. In fact, determining whether a parameter is strictly necessary splits 
into two distinct problems, the "min follow cost problem" and the "max follow 
cost problem." The min follow cost problem is a shortest path problem and is 
not so interesting; on the other hand, the max follow cost problem is challenging 
because it can be related to another global data flow problem, which others have 
found difficult [12, 22]. It is a problem that can be solved using a technique like 
Gaussian elimination [6, 8, 22] but cannot be solved using an iterative technique 
like the Gauss-Seidel method [8]. Classifying terminal symbols is an interesting 
problem for two reasons: First, its usefulness is not restricted to locally least-cost 
error recovery--it could be applied to improving the space requirements of other 
recovery schemes, for example, the follow set scheme [24]; second, it is not an 
easy problem since it is unsolvable in general but, as we show, it can be solved 
for LL(1) grammars. 

Throughout this paper we assume that the reader is familiar with the notation 
of context-free languages as used in, for example, [1]. In the definitions that 
follow we refer, without explicit mention, to a context-free grammar G = (N, T, 
P, Z) with nonterminal set N, terminal set T, production set P, and start symbol 
Z. We assume that Z does not appear on the right-hand side of any production. 
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Our results are relevant to the case in which G is LL(1) (in which case a recursive 
descent parser for G exists) although none.of the definitions or lemmas require 
this fact. 

The structure of the remainder of this paper is as follows. Section 2 comprises 
a number of definitions and lemmas leading up to the definition of a locally 
optimal repair, the basis of locally least-cost error recovery, and then briefly 
summarizes its implementation in a recursive descent parser. Section 3 poses 
and solves the problem of classifying terminal symbols, and Section 4 'does 
likewise for the min and max follow cost problems. These two sections may be 
read independently, except for Section 3.4, which defines the notion of an open 
portion graph, which is central to the solution of both problems. Section 5 
describes the results we have obtained on effectiveness of these optimizations 
and Section 6 concludes the paper. 

2. BASIC PRINCIPLES OF LOCALLY LEAST-COST ERROR RECOVERY 

2.1. Cost Functions and Locally Optimal Repairs 

This section contains a summary of the definitions and properties we use in the 
remainder of the paper. For further motivation and comparison with extant work 
see [2] and [5]. Note that  solely for brevity we have adopted a notation that is 
different from [5], as well as having made a number of technical changes in our 
presentation. 

D e f i n i t i o n  1 (Primitive Edit Costs). Let A denote the empty word and u --* v 
denote the edit operation of replacing the string u by the string v. Then 
cost(A --* t), cost(t --, A) and cost(t --, t ' )  denote, respectively, the cost of 
inserting t, the cost of deleting t, and the cost of changing t to t ' ,  where t, t '  E 
T. These costs are primitive and assumed given. All insertion costs are strictly 
positive integers or oo. All change costs are strictly positive integers, o~, or w, 
except cost(t --, t), which is zero for all t E T. An edit cost of o~ (unbounded) 
means that the operation is permissible, but  only if it cannot be circumvented by 
an edit operation or sequence of edit operations of finite cost. An edit cost of oo 

(infinity) means that the edit operation is not permissible. The properties we 
assume of ~ and oo are as follows: 

--oo < C < O ~ < o o  

C 4- oO ~ - W . { -  oo ~- o o - { -  Oo ~-- OO 
t (finite) integers c. for all 

D e f i n i t i o n  2 (Composite Edit Costs). Let v = ala2 . .  • a ,  E T *  where ai ~ T(1 
<_ i <_ n). Let t ~ T. Then the cost of inserting v, denoted I(v), and the cost of 
editing t to a prefix of v, denoted P(t, v), are defined as follows: 

I ( v ) = O  if v = A  ( i . e . , n = 0 )  

= ~ cost(A --* ai) otherwise, 
i=1 

P ( t , v ) = o o  if v = A  

= m i n { I ( a l  -.- ai-1) + cost(t --* ai)} otherwise. 
l';i<__n 
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Definition 3 (Edit Costs for Languages). We extend the insert cost function I 
and the prefix cost function P to languages as follows. Let t E T and L _C (N U 
T)*. Then I(L) and P(t, L) are defined by 

I(L) = m } n ! m i n  tvELG(a) ) and P(t,L) =mien{ ~nJP( t , v ) }  

where 

Lc(a) = {v j v E T* and a ~ *  v}. 

LEMMA 1. P(t, L1.L2) = min{P(t, L1), I(LI) + P(t, L2)}. 

PROOF. Straightforward. [] 

Definition 4 (Continuations). The string u E T* is said to be a valid prefix 
(of Z) if and only if 3v E T* such that  Z ~*  uv. The set of (valid) continuations 
of u, denoted C(u), is defined by 

C(u) = {v I v E T* and uv is a valid prefix}. 

Definition 5 (Locally Optimal Repairs). Let u be a valid prefix and t E T. A 
locally optimal repair of t following u is defined to be t --+ w where w E T* is such 
that 

w ~ C(u), 
and either 

(a) w -- A, cost(t --+ A) _ P(t, w') for all w' E C(u) and cost(t --+ A) < 0% or 
(b) w ~ A, P(t, w) <_ P(t, w') for all w' E C(u) and P(t, w) < oo. 

If no such w exists, then a locally optimal repair of t following u is undefined and 
the syntax analysis must be aborted. 

2.2 Parsing LL(1) Grammars 

Incorporating locally least-cost error recovery into LL(1) parsers is straighfor- 
ward. The feature of LL(1) grammars that  makes this so is that each valid prefix 
u defines a unique leftmost derivation sequence. More specifically, it is possible 
to identify a unique open portion ~, E (N U T)* and a unique production position 
A --+ a .  fl (consisting of a production A --+ ~ and a marker dot) such that  

(1) Z ~ ?  vA'y ~ l  v~l~[ ~ v w ~  = u~'~ for some v, w E T*; 
(2) Z ~*  ux implies x E Lc(~'/) = {x I / ~ / = *  x}. 

Now, given that  we can identify these two quantities, we can reexpress the 
cost of a locally optimal repair of t following u, using Lemma 1, as 

min{cost(t--+ A), P(t, C(u))} = min{min{cost(t--) A), P(t, t~)}, I(~) + P(t, ~/)}. 

The latter equation is important because it makes the choice of a locally optimal 
repair of t following u a two-way decision--either we choose to repair t to a prefix 
of/~ (which choice is represented by the term min{cost(t -+ A), P(t, ~)}), or we 
choose to insert/3 and then repair t to a prefix of the open portion ~ (which 
choice is ¢epresented by the term I (/~) + P(t, ~, )). The associated recovery actions 
are called, respectively, the nonreturn action and the return action because in a 
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recursive descent parser the effect of making the repair is, respectively, not to 
"return and to return from the procedure which recognizes A. 

To make ~the choice between the nonreturn and return actions, it suffices to 
compute and compare the following quantities: 

(1) B ( A  -o  a.fl ,  t) = P(t,  fl) - I(fl), 
(2) P(t,  ~/). 

The first of these quantities is called the boundary cost associated with t at the 
position A ~ a-ft. Note that it is independent of u (it depends only on t and the 
production position) and so can be precomputed and stored as part of the driving 
tables of the parser. The second quantity could depend on u and is called the 
parameter passed to A corresponding to t. 

Computing parameters to be passed to each recursive descent procedure is one 
of the more significant differences between our scheme and that suggested by 
Fischer et al. [11]. It makes no difference to the effectiveness or appropriateness 
of the repairs; its advantage is that it is asymptotically faster since it guarantees 
linear-time parsing for deterministic context-free grammars [2]. The mechanism 
for evaluating the parameters is quite simple. Initially, on the very first call to 
the procedure recognizing Z, the parameter passed is oo for each t E T. Subse- 
quently, suppose the production A --~ aB~ is being recognized and the procedure 
for A calls the procedure for B. Suppose At  is the parameter passed to A 
corresponding to t at this juncture. Then the parameter Bt  passed to B is 

Bt  = min{P(t, fl), I( f l )  + At}. 

Once again we remark that the quantities 

(3) P(t,  fl), and 
(4) I(~)  

are independent of u and so can be included in the parser tables. 
Although locally least-cost error recovery is conceptually elegant, it would 

appear at first sight to be hopelessly inefficient. Consider, for instance, the 
programming language Pascal. A typical grammar for Pascal will have about 50- 
60 terminal symbols and about 400 production positions. Now the quantities (1) 
and (3), which we blithely said should be included in the parser tables, are defined 
for each combination of terminal symbol and production position. Thus there 
are between 20,000 and 24,000 of them! If this were truly necessary, it would not 
only create a huge storage problem but also slow the parsing process substantially, 
since 50-60 parameters have to be evaluated and passed every time a procedure 
is called. Fortunately, by exploiting the computations we are about to discuss, it 
is possible to trim the entries to about 1000. (The actual size depends significantly 
on the primitive costs; the figure we quote is drawn from our experience. We 
have, in fact, generated parsers for Pascal requiring as few as 300 and as many 
as 2000 entries.) 

3. CLASSIFYING TERMINAL SYMBOLS 

3.1 Problem Statement and Motivation 

The first step toward reducing the size of the parser tables is to classify the 
terminal symbols. More specifically, given a context-free grammar G = (N, T, P, 
Z) we wish to find the equivalence classes of T, where t, t '  E T are equivalent if 
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and only if the following condition holds: 

(C1) (Vu E T*)( (3v  E T*)(Z  ~ *  utv) iff (3v '  ~ T*)(Z ~ *  ut 'v ' ) ) .  

More intuitively, t and t '  are equivalent if and only if, in a left-to-right parse of 
G, whenever t is a valid next symbol, then so is t '  also, and vice versa. 

Typical equivalence classes of terminal symbols in the programming language 
Pascal are 

{to, downto} 
I<, >, <=, >--, =} 
{if, goto, while, repeat, for, with} 
{*,/, div, mod, or, and} 
{begin} 

Another way of expressing condition (C1), which will help to motivate the 
problem, is 

(C2) (Vu E T*)({v ]Z 7 "  uvtw for some w E T*} 
= {vIZ  7 "  uv t 'w  for some w E T*}). 

Condition (C2) can be paraphrased in the following way. Suppose in a left-to- 
right parse of sentences in G the string u has been successfully parsed. Consider 
the possibility that  the next symbol is t or t ' .  Then t and t '  are equivalent with 
respect to u if and only if the set of strings v that must prefix t before t may be 
successfully parsed is equal to the set of strings that must prefix t '  before t '  may 
be successfully parsed. The symbols t and t '  are equivalent if they are equivalent 
with respect to all strings u. 

A straightforward consequence of (C2), which is the ultimate motivation for 
our definition of equivalence, is that  if t and t '  are equivalent and the deletion 
costs and change costs associated with t and t '  are equal, then, for all valid 
prefixes u, a locally optimal repair of t following u is also a locally optimal repair 
of t '  following u, and vice versa. Indeed, if these conditions are met, then the 
parameter values and boundary costs associated with t and t '  will always be 
equal in any state of the parse. So instead of computing these values for every 
terminal symbol in the grammar, we only need to do so for a representative 
element of each equivalence class (or, more precisely, for each equivalence class 
after the partition defined by (C1) has been refined according to the given edit 
costs). For Pascal the grammar we used had 63 terminal symbols, which were 
classified into 38 classes, thus giving an immediate reduction of 40 percent in the 
size of the tables. 

Note that the definition of equivalence contains no elements specifically related 
to locally least-cost error recovery. Indeed, the concept may be exploited to 
improve the efficiency of other recovery techniques. For example, in follow set 
error recovery [24] under almost all reasonable methods of computing follow 
sets, if t and t '  are equivalent, they will be both in or both out of any follow set 
passed as a parameter to a procedure. Thus instead of passing sets of symbols, it 
would suffice to pass sets of classes as parameters to the procedures. However, 
in this case the resulting saving of space is not likely to be worthwhile. 
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3.2 Difficulty of the Problem 

The ease with which one can detect equivalent symbols in a grammar for, say, 
Pascal is very variable. It is trivial to see for example that "to" and "downto" 
are equivalent because their only appearance is in an extended BNF production 
of the form 

for_statement -- ... ("to" l "downto") ... 

Less easy to see is that "it', "goto", "while", "repeat", "for", and "with" are 
all equivalent, since their only appearance is at the beginning of statements, but 
they are not equivalent to "case" (which can appear in a record) or "begin". 
Much harder to see from the grammar is that "*", "div', "rood', "and", and 
"or" are all equivalent yet not equivalent to "+" or "-". 

We may appreciate more fully the difficulties involved by examining a specific 
example. Consider the grammar G = ({E, F, R, T, U}, {a, (,), +, ,}, P, E) whose 
production set P is 

E --> TR 
R ~ A R --* +ER 
T--* F U  
U- '*  A U---} *TU 
F---> a F - - .  (E) 

This is a well-known LL(1) grammar defining arithmetic expressions involving 
"+", and "*", the identifier "a", and parentheses "(" and ")". Now if we think 
about the language of arithmetic expressions, it is clear that the equivalence 
classes of terminal symbols are {)}, {a, (}, {+, *}. Thus wherever "a" may appear, 
we may also have "(", and vice versa. Also, in any arithmetic expression all 
instances of "+" may be changed to "*", and vice versa. It is also clear from the 
grammar that "a" and "(" are equivalent, since their only appearance is as the 
first right-hand-side symbol of productions with the same left-hand side. But it 
is certainly not clear from the grammar that "+" and "*" are equivalent, since 
they appear on the right-hand side of quite distinct productions. We shall return 
to this example later to illustrate our algorithm. 

Further evidence for the claim that the problem is by no means trivial is given 
by the following theorem, which states that it is undecidable for general context- 
free grammars! 

THEOREM 2. Giveiz a context-[ree grammar G --- (N, T, P, Z)  it is in general 
undecidable whether t is equivalent to t '  for given t, t '  E T. 

PROOF. It is well known that the problem of deciding whether two context- 
free grammars generate the same language is unsolvable [14]. So take any two 
grammars G1 = (N1, T, P1, $1), G~ = (N2, T, P2, $2) defined over the same 
alphabet T but with distinct nonterminal alphabets N1 and N2. Let t, t ' ,  S be 
distinct symbols not in N1 U N2 U T. Let G = (N~ U N2 U {S}, T U {t, t'}, P1 U 
P2 U {S --* S~t, S --~ S2t'}, S).  Then t is equivalent to t '  in G if and only if the 
languages generated by G~ and G2 are equal. [] 

Since the problem is undecidable in general, we shall restrict ourselves to the 
class of LL(1) grammars, the class for which we have an immediate application. 
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We shall show that  in this case the problem is decidable and that our algorithm 
can be applied "safely" to other grammars in the sense that  it will always produce 
a refinement of the partition of T defined by our equivalence relation. However, 
our results do not extend to giving an exact solution for LR(1) grammars, and 
the decidability of the problem in this case remains open. 

3.3 Solution Plan 

The key to the solution of the classification problem for LL(1) grammars is the 
observation made in Section 2.2 that each valid prefix u defines a unique open 
portion, which we denote by Tu. This allows us to rephrase the definition of 
equivalence as stated in Lemma 2. First, however, we need another definition. 

Definition 6. Let G = (N, T, P, Z) be a context-free grammar and let T E (N 
U T)*. Then FIRST(T) is defined to be {t I t E T and T ~ *  tv for some v E T*}. 

LEMMA 3. Suppose G = (N, T, P, Z) is an LL(1) grammar. Then the symbols t 
and t '  are equivalent if and only if for all valid prefixes u, either {t, t'} C_ FIRST(T=) 
or {t, t'} n FIRST(T, )  = 0. 

PROOF. Obvious from property (2) of an open portion. [] 

The reason that  Lemma 3 is important is that the set of all open portions 
forms a regular set. Moreover, FIRST(T) is always finite (since it is a subset of 
T), so {FIRST(T=) l u is a valid prefix} is a finite set of subsets of T and its 
computation may be expressed as a path problem on a directed graph. Our plan 
of action is therefore as follows. 

(1) Construct a graph J from the given grammar G, paths through which define 
the set of open portions of G. 

(2) Identify the so-called FIRST_SETS problem. FIRST_SETS is a set of 
subsets of T, each element of which is FIRST(v) for some open portion T. 
Use the FIRST_SETS to define a partition on T which is the set of 
equivalence classes of T. 

(3) Express the FIRST_SETS problem as a path problem on J .  More partic- 
ularly, we shall express the problem as a distributive data flow problem [5, 
8-10]. We shall also outline its solution as a continuous data flow problem 
[12] and explain why this alternative has not been adopted. 

3.4 The Solution 

3.4.1 The Open-Portion Graph ~. We shall begin by describing the construc- 
tion of a graph representing the set of open portions of G. Since our definition of 
a distributive data flow problem differs slightly from other definitions we had 
better make clear what we mean by a graph. 

Definition 7. A labeled graph ~ = (~, ~ ~,, s, f) consists of a set of nodes ~,  
a set of arcs ~ an alphabet ~,, and distinguished start and final nodes s and f. 
Associated with each arc a E ~ are three items--its from component from(a), its 
into component into(a), and its label l(a). The from and into components are 
nodes, the label is an element of v2z*. A path from node x to node y in J is a 
sequence of arcs al, a 2 , . . . ,  an where either n = 0 and x = y, or n > 0, from(a1) 
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"R 

fU 

\ 

Figure 1 

= x, into(a,)  --- y, and  into(ai) = from(ai+l) for all i, 1 _ i < n. Such a pa th  spells 
E (N U T)* iff V = A (the emp ty  word) and  n -- 0, or n > 0 and  ~[ = l(al) l(a2) 

• . .  l (a . ) .  

Now suppose G = (N, T, P,  Z)  is a context- f ree  g rammar .  By a p r o d u c t i o n  
p o s i t i o n  of G we mean  a str ing of the  form A ---, a./~ where A ~ a/~ is in P and  
the marke r  " . "  is any  symbol  not  in N U T. F rom G we const ruct  a labeled graph 
~ =  ( ~ ,  ~ ,  ~ ,  s, f )  as follows. The  nodes A / are divided into three  sets. First,  
there  is a node corresponding to every non te rmina l  in G. Second, there is a node 
for every product ion  posi t ion of the  form A ---* a t . f l  where t E T. Finally, there 
are two nodes s and  f, the  s ta r t  and  final nodes of  J,, respectively. T h e  a lphabet  
V2Zof J i s  N U T (so the  arc labels are e lements  of  (N  U T)*)  and  the  arcs 

are const ructed as follows. The re  is an arc labeled Z f rom s to f and  an arc labeled 
A f rom s to each node corresponding to a product ion  posit ion. The re  is an arc 
labeled A from the node Z to the  node f and  an arc labeled fl f rom the node A --.  
a t .  fl to the  node A. Las t  of  all there  is an arc labeled/~ f rom A to B if there  is a 
r ight-hand-side occurrence of A of the  form B --~ aA~.  

Figure 1 shows the graph cons t ruc ted  in this way for the  g r a m m a r  given in 
Sect ion 3.2. 
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LEMMA 4. There is a path spelling 3" /rom s to f in the open portion graph of the 
LL(1) grammar G if and only if3" = ~/,/or some valid prefix u. 

PROOF. First, note that the path of arc length 1 spelling Z from s to f is the 
open portion of A. The remaining paths are the open portions of valid prefixes u 
E T +, which claim is proved as follows. 

We begin by observing that  there is a path spelling # from the node A to the 
final node f if and only if Z ~ ?  vA3" for some 3' E (N U T)*. The "if" part of this 
claim involves a straightforward induction on the length of the leftmost derivation 
sequence and the "only if" part an induction on the arc length of the path. The 
basis for both inductions is that  Z ~ ?  Z, which explains the A arc from Z to / .  
The induction step relies on the fact that Z ~ ?  vA% where 3" ~ A, if and only 
if there is some right-hand-side occurrence of A of the form B --> aAl3 such that 
Z ~ wB~ ~ t  waA#5 ~ *  vA% for some w, ~, and 3" =/36. 

Now suppose 3" = 3"u for some u E T ÷. Let u = vt where t E T. Consider the 
leftmost derivation sequence Z ~ *  u% Since 3" minimizes the length of this 
derivation sequence, we must have Z ~ ?  wA~ ~ l  wat#5 ~ vtfl5 = u3" for some 
production A --. a t#  and some w ~ T*, ~ E (N U T)*. Thus 3" = 135 where A 
at./3 is a production position in G and 5 spells a path from A to / i n  the graph J .  
By the construction of the arcs to and from production positions, we may conclude 
that every open portion 3", spells a path from s to f. 

The converse proceeds similarly. Each path of arc length greater than 1 from 
s to / spe l l s  13~ for some t3, ~ where there is a production position A --, at.13 and 
Z ~ vA5 for some v E T*. Pick any w E Lc(a)  and let u = vwt. Then Z ~ vA5 
~ t  vat/35 ~ vwtB~ = u3" is a minimal length leftmost derivation of u3"; that is, 
3" is the open portion of u. [] 

3.4.2 The F I R S T  SETS.  Looking once again at Lemma 3 we see that our 
primary interest is in FIRST(3") for each open portion 3". Since we now have a 
representation for the set of all open portions, we also have a representation for 
the set of all FIRST sets of open portions. More specifically, we have the following 
definition and lemmas. 

Definition 8. Let G = (N, T, P, Z) be an LL(1) grammar. Then FIRST_ 
SETS(G) is a subset of the set of subsets of T defined by 

x ~ FIRST_SETS(G) iff x = FIRST(3") for some open portion 3" of G. 

LEMMA 5. F I R S T _ S E T S ( G )  = Ix Ix = FIRST(3") where 3" spells a path /rom s 
to f in G} 

PROOF. Trivial from Lemma 4. [] 

LEMMA 6. The terminal symbols t and t '  are equivalent in G if and only if 
It, t '} C x or It, t '} Cl x = O [or all x E F I R S T _ S E T S ( G ) .  

PROOF. Immediate from the definition of FIRST_SETS and Lemma 3. [] 

In order to apply these lemmas by hand to our example grammar (see Section 
3.2), we need to note that  

FIRST(E) = FIRST(T) = FIRST(F) = {a, (}, 
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and 

FIRST(U)  = [*}, 

FIRST(R) = {+}, 

NULLABLE(U),  NULLABLE(R),  

whereas not  NULLABLE(E) ,  n o t  NULLABLE(T),  and not  NULLABLE(F) ,  
where NULLABLE(a)  is true if and only if a ~ *  A. Then by inspection of the 
graph in Figure 1 the reader may verify that FIRST_SETS for our example 
grammar is 

[FIRST(E), FIRST(T),  FIRST(U)  U FIRST(R),  
FIRST(U)  U FIRST(R)  U [)}}. 

(Here we have observed that all paths spelling E . . .  have the same FIRST set, 
all paths spelling T . . .  have the same FIRST set, and so on.) Thus FIRST_ 
SETS evaluates to 

[[a, (}, [+, *}, {+, *,)}} 

and the partition on T defined by it is 

{{a, (}, 1+, *}, {)}}. 

Lemma 6 reduces our problem to finding FIRST_SETS(G),  which, we note, is 
a finite set of finite sets. Lemma 5 is almost all the way to expressing the 
computation of the FIRST_SETS as the "meet over all paths solution" to a 
path-finding problem [15, 16, 22]. Completing this task is our next step. 

3.4.3 A Distributive Data Flow Problem. One of the most significant outcomes 
of work on "optimizing" compilers has been the abstract, algebraic formulation 
of general circumstances in which a number of path-finding algorithms can be 
applied [5, 8-12]. Two approaches to the solution of a path problem have been 
identified. First, an iterative technique like the well-known Gauss-Seidel method 
may be applied if the problem can be shown to be a "distributive data flow 
problem" [8, 10]. Second, elimination techniques like the equally well-known 
Gaussian elimination method may be applied if the problem can be shown to be 
a "continuous data flow problem" [12]. The classification problem succumbs to 
both approaches, but we only consider the former in any detail. In contrast, 
Section 4 considers the so-called max follow cost problem, which is an example 
of a problem that cannot be solved by an iterative technique but can be solved 
by an elimination technique. To give precise meaning to our concept of a 
distributive data flow problem (which differs slightly from other formulations), 
we need a number of definitions 

Definition 9. A semilattice is a pair (Y, A) where Y is a set and A is an 
associative, commutative, and idempotent binary operation on J .  The set Y is 
assumed to have a zero element 0 and a unit element 1 such that 0 A a = 0 and 
1 A a = a for all a E Y. 
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Definition 10. A distributive data flow framework (L, F) consists ofa  semilattice 
L -- ( Y, A ) and a set of functions F: L --* L such that 

(D1) 

(D2) 

(D3) 
(D4) 

Each g E F is distributive, that  is, 

g(x h y) = g(x) h g(y) for all x, y ~ Y. 

There is an identity function i in F such that  

i(x) = x for all x in Y. 

F is closed under composition, that is, g, h E F implies g- h E F. 
Y is equal to the closure of {0} under the meet operation and application 
of functions in F. 

Definition 11. A distributive data flow problem is a triple ( J,, (L, F ) , / )  where 
= (_/f,, ~ ,  ~,, s, f)  is a labeled graph, (L, F) is a distributive data flow 

framework, and , t  is a mapping from c2/* to F satisfying the property 

(D5) / ( a ) . / ( 3 ) = / ( a 3 )  forall  a, 3~ '02 x*. 

The meet over all paths (MOP) solution to this problem is mop(s) where the 
mapping mop from J to Y is given by mop(v) = A {/(~,)(0) ]~ spells a path 
from v to f in ~}. 

THEOREM 7. Given a distributive data flow problem (G, (L, F), / )  in which the 
semilattice L is finite, the following algorithm will compute the MOP solution to 
the problem. 

Algorithm 1. Basic Iterative Algorithm 
{Input: Labeled graph Y¢ = (.~, z~, ~,, s, [), semilattice L = (Y, h), set of functions F, 

and mapping/: ~*  --* F} 
for each v E -/f do re(v) := 1; re(f) := 0; 
repeat change := false; 

for each arc a in ~ do 
begin temp := rn(from(a)); 
m(from(a)) :=/(a(a))(m(into(a))) 
if temp @ rn(from(a)) then change := true 
end 

until not change; 
Irn(v) = mop(v) for all v E .A / } 

We shall not prove Theorem 7 since our formulation differs from others only 
in the requirements that the graph ~¢ have labeled arcs and the property (D5). 
It is not difficult therefore to amend the proofs given in, say, [8] accordingly. 

Let us now show how to express the computation of FIRST_SETS(G) for a 
given LL(1) grammar G as a distributive data flow problem. 

As anticipated in Section 3.4.2, the graph ~ is the open-portion graph of G. 
The semilattice L is (Y, U) where _9 ¢ is the power set of the power set of T. 

{That is, each element of Y is a set of subsets of T.) The zero element is {O} 
and the unit element is 2 T, the power set of T (the set containing all subsets 
of T). 

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984. 



204 • Roland Backhouse 

The elements of the function space F are pairs (x, b) where x C T and b is a 
Boolean. Function application is defined by 

(x ,b ) (X)  = U {x U if  b then  y else O}. 
y E X  

Function composition is defined by 

(x, b). ( y, c) = (x U i f  b then y else 0 ,  b and c). 

Finally the mapping fi: (N U T)* --) F is given by 

/ ( a )  = (FIRST(a) ,  NULLABLE(a)) .  

The definitions of the function space F and the mapping fi  are a little curious, 
but there is a simple explanation. Our principle objective has been to define fi  
so that f (~)({O})  = {FIRST(~)}. We also require that fi(a)-fi(~)({O}) = 
fi(a-~)({ID}). But F IRST(a .# )  = FIRST(a)  U if  NULLABLE(a)  then 
FIRST(~). Hence the two components in f i ( a ) - -F IRST(a )  and NULLABLE(a) .  

LEMMA 8. (L, F) is a distributive data flow framework. 

PROOF. L is obviously a semilattice and we can verify that F satisfies conditions 
D1-D4 as follows. 

(D1) Let X, Y ~ 2 v. Then 

( x , b ) ( X U  Y) - -  

(D2) 

(D3) 

(D4) 

U {x U i f  b then y e lse  O} 
yE XU Y 

= U {x U if  b then  y else O} 
y E X  

U U {x U if  b then  y else O} 
y E Y  

= (x, b)(X) U (x, b)(Y).  

( 0 ,  t rue )  is the identity function. 

(x, b) ( (y ,  c)(X))  

= (x, b)( t.J {Y U i f c  then  z else O}) 
z E X  

= U  
z E X  

= U  
z E X  

= (x U i f  b then y else 0 ,  b and c) (X) 

= ((x, b).(y, c))(X). 

L e t X E 2  T . T h e n X =  U (x, fa l se) (O) .  [] 
x E X  

{x U i f  b then (y U if  c then  z else ~D) else O} 

{x U (if b then y else 0 )  U (if b and c then z else 0)} 

THEOREM 9. I f  G is an LL(1) grammar, then FIRST_SETS(G)  is the MOP 
solution to a distributive data flow problem. 
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PROOF. Noting that fi(y)({O}) = FIRST(-/) U if  NULLABLE(y)  then  
else ~ = FIRST(y) ,  we have by Lemma 5, FIRST_SETS(G) = mop(s) = 
U{fi(y)({~D}) [3" spells a path from s to [ in J }  where J is the open portion 
graph. This together with Lemma 8 leaves only the proof of condition (D5), 
which is proved as follows: 

(D5) fi(a.fl)  = (FIRST(a-/~), NULLABLE(a./~))  
= (FIRST(a)  U i f  NULLABLE(a)  then  FIRST(B), 

NULLABLE(a)  and  NULLABLE(/~)) 
= / ( a )  ./(~). [] 

COROLLARY. If G is an LL(1) grammar, then F I R S T _ S E T S ( G )  may be com- 
puted using Algorithm 1. 

4. MIN AND MAX FOLLOW COSTS 

4.1 The Problems and Their Solution 

Classifying the terminal symbols offers a partial solution to reducing the size of 
the parameter and boundary cost tables, but the improvement (from 24,000 to 
15,000 entries for Pascal) is insufficient for practical purposes. This section 
describes a further analysis of the parameter values, which leads to a much bigger 
reduction in the table sizes. 

We remarked earlier that the boundary costs are independent of the valid 
prefix. Now all parameters are strictly positive, so if perchance a boundary cost 
is negative we know immediately that it is unnecessary--we do not need to 
compare it with the parameter to know that it is smaller, and we know in advance 
what the chosen recovery action will be. Conversely, if the boundary cost is 0% it 
is again unnecessary because we know in advance that the parameter value will 
always be less than or equal to it. Thus in these two cases we can reduce our 
storage requirements and the time taken to evaluate the recovery action. 

Unfortunately, the latter analysis is not sufficient to reduce the parameteri- 
zation to an acceptable level. We can, however, complicate the analysis by 
including some knowledge of the values taken by the parameter. Suppose we 
consider the recovery action given input symbol t at production position 
A -* a./~. Consider the parameter A t  passed to A at this juncture. Suppose we 
precompute the minimum and maximum values that may be taken by At. Let 
these be denoted by m(A, t) and M(A,  t), respectively. Then evaluation of A t  and 
the boundary cost is unnecessary at this position if either 

B(A  --* a.13, t) <_ m(A, t) or B(A  --, a.13, t) >- M(A,  t). 

In the former case we know that the nonreturn action should always be chosen; 
conversely, in the latter case the return action should always be chosen. 

Another way of expressing this is that the boundary cost and parameter value 
are necessary if there are valid prefixes ul and u2, both of which define the 
production position A --> a-/~, but for which the chosen recovery action when t is 
input is in one case to return from and in the other case not to return from the 
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call of the procedure recognizing A, that  is, when 

m(A, t) < B (A --, a.  ~, t) < M(A,  t). 

The functions m and M are called the minimum and maximum follow costs 
and evaluating them is a global flow analysis problem. As we shall see, m is 
straightforward to evaluate, but evaluating M is the difficult problem to which 
we referred in the introduction. 

Let us now formulate precisely the definitions of m and M. Both depend on 
the "follow set" of A, which we define first. 

Definition 12 (Follow Sets). Let A E N. The follow set of A, denoted FOL(A), 
is a subset of (N U T)* defined by 

FOL(A) = {~13v E T * : Z ~  vA-y}. 

Definition 13 (Min Follow Costs). Let A E N and t E T. The minimum cost of 
repairing t following A, denoted re(A, t), is defined by 

re(A, t) = minIP(t, ~)l~( E FOL(A)} 

The definition of M is essentially the same as for m, but with max replacing 
min. However we need first to define the maximum of an infinite set of integers. 
Since we shall exploit it later, it is useful for us to go one step further and define 
a semilattice L at this point. 

Definition 14 (Semilattice L). The semilattice L consists of the set N U {e, oo} 
(where N is the set of natural numbers), together with meet operation A defined by 

a A b = max{a, b} ) 

a h  oJ = 0 0 = o ~ A  o~ ~ f o r a l l  

AX = oo if 

= e if 

= ~ if 

"- max{al, a2 . . . . .  a,} if 

The zero element of L is o o .  

The zero element of L is o o .  

a, b E N  

o o E X  

X C  N U {¢~} a n d ~  E X 

X is an infinite subset of N 

X = {a,, . . . ,  a,} is a finite subset of N. 

Definition 15 (Max Follow Costs). Let A E N and t ~ T. The maximum cost 
of repairing t following A, denoted M(A,  t), is defined by 

M(A,  t) = A {P(t, ~,) I ~/E FOL(A)}. 

Note that  M(A,  t) may be ¢o even though P(t, ~f) is finite for each ~, E FOL(A). 
A simple example would be a grammar with productions 

Z ---, S -t S ---, ( S ) S ---, a. 

Since Z ~ ' ( " S ) "  -t for all n >_ 0, M ( S ,  d) = oo provided only that  -t may not be 
changed to ) at finite cost. 
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984. 



Global Data Flow Analysis Problems • 207 

The key to evaluating m and M is the observation that FOL(A) is a regular 
subset of (N U T)* represented by a set of paths through the open-portion graph. 
To be precise we have the following lemma. 

LEMMA 10. There is a path  spelling ~/ from A to Z in the open-portion graph 
if and only if Z ~ *  vA~/ for some v ~ T*. 

PROOF. Elementary. [] 

Now the evaluation of m amounts to a shortest path problem. For, applying 
Lemma 1, m is the solution to the following system of simultaneous equations: 

m(Z, t) = oo 

m(A,  t) = min {min{P(t, ~), I (~)  + re(B, t)}} 
B~a.A~ER(A) 

for all A ~ Z E N, where R(A), the right-hand-side occurrences of A, is 
{B --~ a .A~ I B --* aA[3 is a production of G}. 

Indeed, it is clear from its definition that re(A, t) = P(t,  FOL(A)) and FOL(A) 
is a regular subset of (N U T)*. So evaluating m is an application of the least 
cost repair of a regular language [5, chap. 5] in the particular case in which the 
input string is of length 1. Algorithms applicable to its solution therefore include 
Dijkstra's shortest path algorithm [10], Gauss-Seidel iteration [8], or Gaussian 
elimination [6, 8, 22]. 

Evaluating M is not so straightforward since it is not susceptible to an iterative 
technique but requires the use of an elimination technique, one of the principal 
reasons being that the lattice L is not finite. (Note, though, that finiteness is not 
a necessary condition for the applicability of algorithm 1.) It is an instance of a 
continuous data flow problem [22], which is not a distributive data flow problem. 

A continuous data flow problem is defined almost identically to a distributive 
data flow problem (sec. 3.4.3). The differences are that finiteness of L and the 
distributivity condition (D1) are abandoned in favor of the following: 

(DI ')  Each function f E F is continuous, that is, for any nonempty X _ L, 

f (AX) = A{f(x)  lx  E X}. 

(D3') F is closed under meet and * (in addition to composition) where 

(i) ([ A g)(x) = f (x )  A g(x); 
(ii) f*(x)  = A{fi(x) l i >- 0}. 

Note that condition (DI ' ) i s  stronger than (D1): A continuous function is also 
distributive. In fact, in our application the function space (see Definition 16) 
satisfies (D1). 

Definitions 7, 14, and the following additional definitions express the evalua- 
tion of M ( A ,  t), for fixed t E T and all A ~ N, as a continuous data flow problem: 

Definition 16 (Function Space F). A valid cost pair is a pair (a, b), such that 
a, b ~ N U {w, ~} and a > 0 or b > 0. An element of F is an ordered sequence f = 
(al, bl), (a2, b2) . . . .  , (a,,  bn) of valid cost pairs such that n ___ 1, ai < ai+l, and 
b, > b~+1(1 _< i ___ n - 1). 
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Each element of F is a function from ~l U {00, ~} into itself given by 

(Ca1, bl), {a2, b2) . . . . .  (anbn))(x) 

= max{min{al + x, bl}, min{a2 + x, b2}, . . . ,  min{a, + x, bn}}. 

Definition 17 (Operations on Functions). Letting X denote the empty sequence 
of valid cost pairs, we define the meet, product, and star operations on F as 
follows. 

(a) Function meet: 

(Ca, b), f)  h ((c, d), g) 

= f A ( ( a , b ) , ( c , d ) , g )  if a < c  and b > d ,  
= f A ( ( c , d ) , ( ( a , b )  Ag))  if a > c  and d > b ,  
= f h  ((max{a, c}, max{b, d}) A g) otherwise, 

where/,  g denote elements of F or X , and 

X A f = f = f A X  forall  f E F .  
(Note: Clearly {a, b), {c, d), g conforms to the definition of an element of F when 
a < c and b > d. It is also straightforward to show by induction on the length of 
g that Cc, d), (Ca, b) A g) conforms to the definition when c < a and d > b.) 

(b) Function products: 

((a, b), [).((c, d), g) 

= Ca + c, min{b, a + d}) A (Ca, b).g) h (f.(c, d)) A f .g 

where [, g are elements of F or X, and 

X . f = f = f . X  for all [ E F .  

(c) Function stars: 

((0, b), f)* = f* 

((c, d), f)* = {0, oo) A {max{c, ¢o}, d)  

where [ is an element of F or X and 

X* = (0 ,  ~).  

Definition 18 (Mapping ft). Let t E T. Then the mapping ft from (N U T)* 
into F is given by 

ft(~) = CI(fi), P(t,/3)) for all /~ e (N U T)*. 

The following theorem enables us to claim that any algorithm that computes 
regular expressions denoting FOL(A) for each A E N can be modified into an 
algorithm for computing M(A, t) for each A E N. 

THEOREM 11. The triple ( J,, (L, F), ft), where J is the open-portion graph of 
G and L, F, and ft are as in definitions 14, 16, 17, and 18, is a continuous data flow 
problem. Moreover, the MOP solution to this problem is the max follow cost 
function for t (i.e., mop(A) -= M(A, t) for all A ~ N). 
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The proof of Theorem 11 is long and tedious, but it is the entire justification 
for the spate of definitions just  given. We shall, however, give some explanation 
for our definitions of function meet, product, and star sufficient for the reader to 
construct the full proof. 

Consider first function product (Definition 17(b)). Here our requirement is 
that/t(fl-~/) = ]:t(~)' f t(7).  Now 

f t ( f l . 7 ) ( x )  = min{I(~7) + x, P( t ,  tim)} 

= min{I(t3) +1(7)  + x, min{P(t, fl), I ( f l )  + P( t ,  7)}}. 

Thus, letting a = I(fl), b = P( t ,  fl), c = 1(7), d = P( t ,  7), it suffices to define 
[t(fl) "ft(')') = Ca, b ) .  Cc, d)  as 

Ca, b ) . ( c ,  d )  = Ca+c ,  min{b, a + d}) .  

The remainder of the definition of function product simply ensures tha t  every 
cost pair defining f is composed with every cost pair defining g and the results 
joined together with the A operation. 

Having so defined function product it is easy to see from Lemma 10 tha t  

mop(A)  = A {ft(7)(oo) I 3pa th  7 f romA to Z in J }  

= A { / t ( 7 ) ( o o ) I Z ~  u A 7  for some u E  T*} 

= M ( A ,  t ) .  

Now consider function meet. The objective here is to define [ A g so tha t  
([  A g) (x)  = [(x)  A g(x) .  This objective is realized by our definition since, essen- 
tially, (Ca1, bl) . . . . .  Can, bn) A Ccl, d~) . . . . .  Cc,,, dm))(x)  is defined to be 
Ca1, b l ) (x )  A . . .  A Can, bn)(X) A CCl, d l ) ( X )  A . . .  A Ccm, dm)(X). The complica- 
tion in the definition is in the formation of Ca, b) A Cc, d)  when a _> c and b _> d 
or, symmetrically, when c _> a and d _> b. This is easily explained for 

Ca, b)(x)  A Cc, d ) ( x )  = max{min{a + x, b}, min{c + x, d}} 

= m i n { a + x , b }  = ( a , b ) ( x )  when a _ c  and b_>d, 

but when a < c and b > d (or, symmetrically, c < a and d < b), no simplification 
can be made to (a, b)(x) A (c, d )(x). Hence our definition of function meet. 

The definition of function meet and the observation tha t  [(  A X) = A f ( X )  for 
any subset X of ~l U {0~, 00} (which is easily proved) enables one to establish tha t  

mop(A)  = M ( A ,  t) = (A {£(7) 1 3pa th  7 from A to Z in J})(oo). 

The peculiar ordering property on sequences of valid cost pairs facilitates 
greatly the evaluation of function stars. Suppose there are cycles in the open- 
portion graph beginning and ending on A. Suppose some subset of these spell the 
strings/31, f12,. • . ,  fin (i.e., A =:,~' u iA~i  for some ui ~- T* and all i, 1 _< i _ n). By 
our earlier analysis of function meet we may assume without loss of generality 
tha t  I(/~) < I(/~2) < .-- < I(~n) and P( t ,  ill) > P(t , /~2)  > " "  > P( t ,  ~n)o Let Q 
= {ill . . . . .  fl~}, ai denote I(fli), bi denote P( t ,  /~i)(1 ___ i _ n) and [ denote Ca1, 
b l ) , . . . ,  (an, bn). Clearly, A = ~ '  u A 7  for some u ~  T*, for all 7 E Q * .  So our 
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requirement  is tha t  

f*(x) = A {(I(~),  P(t ,  ~)) (x)  I ~ e Q*}. 

Now, by the ordering property,/~i ~ *  A if and only if i = 1 and al = I ( ~ )  = 0. 
Moreover,  if indeed ~1 ~ *  A it is easily proved tha t  f t ( a~6)  <- ft(a~) for all a, 
E (N U T)* and hence 

A {(I(~),  P(t ,  ~))(x)  I ~ ~ Q*} = A {{I(~), P(t ,  ~))(x)  [ ~ E (Q - {/~1})*}. 

So the first pair  in the sequence defining f can be ignored when a~ = 0. This  gives 
us the first equation in the definit ion of funct ion stars. 

Suppose, therefore,  tha t  n > 1 or n = 1 and a~ > 0. Let  (c, d)  = (a~, b~) if 
a~ > 0 and (c, d)  = (a2, b2) ~therwise. Le t  R = {/~2 . . . . .  8.} U if a~ = 0 then ~b 
e lse  {/~},/~ = B2 if a~ = 0 and/~ = ~2 otherwise. Note tha t  c > 0 and d = A {P(t, 
~i) I~i ~ R}. More especially d - A {P(t, ~,) I ~ E R+}. Thus  d is an upper  bound 
on f . f*(x) .  Now suppose d = ~. T h e n  f*(x)  is ~ if c = ~,  hut  otherwise it is at  
least o~. (For f*(x)  >_ I({3 m) + x = mc + x for all m > 0.) In other  words, ((c, d ) ,  
g)* = (0, ~ )  A < max{c, ~o}, d)  which is the last clause in the definit ion of 
function star. 

42 Max Follow Costs and an Idiosyncratic Flow Problem 

One of the interest ing features of the rain and max follow cost problems is tha t  
they can be used to model other  problems in global data  flow analysis. This  is 
exemplified in this section by modeling an "idiosyncratic" flow problem [12, 22] 
as a max follow cost problem. 

The  problem is this. Suppose J is the flow graph of a program tha t  contains 
occurrences of an expression a. Le t  E be the arc set, V the node set, and S the 
s ta r t  node of J .  Wi th  each arc e of  E is associated an effect, which has one of  
four values depending upon what  flow of control  through arc e does to the value 
of a. 

gen t effect(e) = kill. . if  
injure 
t rans  

the program recomputes a, 
the program makes a large change to a 
the program makes a small change to a 
the program does not  affect a. 

For  any node A, we say a is implicitly available on entry to A if  there  is a 
positive bound b such that ,  for every pa th  p = el, e2 . . . . .  ek from S to A, there  is 
an i such tha t  (i) effect(ei) = gen, (ii) effect(ej) ~ kill for i < j  _ k, and (iii) the 
number  of values o f j  such tha t  i < j  _< k and effect(ej) = injure is bounded by b. 
The  problem is to determine from {effect(e)le E E} the nodes at  which a is 
implicitly available. 

To  model this as a max follow cost problem we construct  from the flow graph 
a grammar  G as follows. The  nonterminal  a lphabet  is V and the terminal  

alphabet  is E U {a, k, i} (where we assume E n {a, k, i} = ~D). Th e  product ions 
are constructed from the arcs E as follows. Suppose e is an arc from A to B. T h e n  
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introduce the production 

A - *  e B a  if effect(e) = gen, 

A --* e B k  if effect(e) = kill, 

A - - .  e B i  if effect(e) = injure, 

A - ,  e B  if effect(e) = trans. 

Introduce also the production A -* A for each A E N. Finally define the primitive 
edit costs as follows. 

cost(A --, k) = 0% cost(A --* i) = 1, 

cost(a --. a) = 0, cost(a - ,  k) = 0% cost(a --~ i) = oo. 

All other costs are arbitrary 
The claim is tha t  M ( A ,  a)  = oo if and only if a is not implicitly available at  

node A in ~. This is easy to prove because S ~ *  e~e2. • • e , A w  if and only if there 
is a path  el, e 2 , . . . ,  e, from S to A in J a n d  w = t ,  t n - l " "  "tl  where th is a if 
effect(e) = gen, tk is k if effect(e) = kill, tk is i if effect(e) = injure and t~ is A if 
effect(e) = trans. 

In terms of locally least-cost error recovery, the implicit-availability problem 
is this. Suppose the path  p = ele2. • • e, has been parsed when a is encountered 
(i.e., the input is ele2- • • e , a .  • • ). Then there are three possibilities: 

(a) a is OK; 
(b) recovery can be achieved by inserting a finite number of i's; 
(c) no repair of a is possible according to the given costs and the analysis must  

be aborted. 

An implication of this result is tha t  the continuous data flow framework we 
constructed in Section 4 is an alternative framework (albeit a less efficient one) 
to tha t  proposed by Tarjan [22] for the solution of this problem. 

5. EXPERIMENTAL RESULTS 

The objective of this paper has been to show how a number of optimization 
problems arising in the practical implementat ion of locally least-cost error 
recovery can be expressed as global data  flow analysis problems; elsewhere [4] 
we have given a detailed analysis of the efficiency and effectiveness of the 
technique vis ~ vis the follow set technique advocated by Wir th  [24]. In this 
section we present a brief summary of the results we have obtained using our 
parser generator where they pertain to reducing the size of the parameter  and 
boundary cost tables. All these results relate to a Pascal grammar having 69 
terminal  symbols and 368 production positions; for complete details see 
Bugge [7]. 

We have already mentioned tha t  classifying terminal  symbols effectively 
reduced their number to 38, tha t  is, by approximately 40 percent. In theory the 
resulting reduction in the size of the boundary cost and parameter tables may 
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Table I. Table Sizes for Five Pascal Parsers 

Number of entries 
Constraints on 

edit costs Boundary costs Parameters 

All infinite 44 187 
All finite 693 1164 
High delete costs made in- 528 1073 

finite 
Delete costs and change 184 669 

costs either infinite or 1 
Infinite delete costs made 236 621 

unbounded 

not be so great; in practice we found that the reduction was between 30 and 40 
percent. 

The effect of the min and max follow cost calculations on the table sizes 
depends to some extent on the primitive edit costs. We generated five parsers 
using different assignments to the edit costs. The resulting sizes of the parameter 
and boundary cost tables is shown in Table I. The parser having the fewest table 
entries is the first; for this parser all costs were set to infinity and therefore the 
parser aborts from all syntax errors. (The effect of the parameterization is to 
transform the recursive descent parser from a strong LL(1) parser into an LL(1) 
parser, i.e., from a parser that  may take parsing decisions before announcing an 
error into one that announces errors at the earliest possible opportunity.) The 
remaining parsers were all generated with the aim of producing the best possible 
error recovery within the specified constraints on the edit costs. 

The maximum possible size of the boundary cost table is 198 × 69 = 13662 
entries (the number of production positions excluding the first in each production 
× the number of terminals), and so the worst improvement we obtained was a 
reduction to 5 percent of the maximum table size. The maximum possible size of 
the parameter table is 205 × 69 = 14007 entries (the number of right-hand-side 
occurrences of nonterminals × the number of terminals), and so the worst 
improvement we obtained was a reduction to less than 10 percent of the maximum 
table size. The best improvements we obtained, excluding the first parser, were 
to table sizes of less than 2 and 5 percent of the maximum possible sizes of the 
boundary cost and parameter tables, respectively. Nevertheless, the absolute 
table sizes are still significantly large and are a drawback to the recovery scheme. 

The main conclusions of [4] were that  locally least-cost error recovery is more 
effective than the follow set scheme, but because they have the same inherent 
limitations and because locally least-cost error recovery requires substantially 
more storage space than the follow set scheme, the follow set scheme is to be 
recommended in conventional programming environments. It was noted though 
that  the parameters (in locally least-cost error recovery) most often perform a 
simple Boolean function {e.g., in the infinite-cost parser they indicate whether a 
terminal symbol is OK or not) and so, by replacing integer entries by Booleans, 
further improvements in the table sizes may tip the balance in favor of locally 
least-cost error recovery. However, algorithms for detecting when such replace- 
ments may be made have yet to be developed and remain as open problems. 
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6. CONCLUSIONS 

Originally global data flow analysis was developed for use in "optimizing" com- 
pilers for improving code compiled from a hand-written program. The application 
described here is novel in the sense that the code being improved is itself 
automatically generated. It is an interesting application, first, because without it 
the scheme described in [5] would simply not be viable and second, because it 
seems to be a harder application than others studied previously. We have reason 
to believe that parameter minimization in implementing locally least-cost error 
recovery in LR parsers [3] may be yet more difficult. The solution to our 
optimization problems has nevertheless been relatively straightforward and this 
must be attributed to earlier theoretical work on identifying a most general 
framework for global flow analysis problems [9, 13, 15-17, 21-23]. 

Solving min and max follow cost problems may prove to be an important 
paradigm for evaluating path-finding algorithms, particularly elimination tech- 
niques. The reason for this is that we must solve about 40 different problems 
(the max follow cost problem for each terminal class in the grammar) defined on 
the same flow graph (the open portion graph). Thus the advantages of using an 
algorithm that exploits the structure of the graph over, say, the iterative tech- 
niques, which do not, will be multiplied and so should be readily apparent. It 
would be interesting to see, for instance, whether notions of reducibility used in 
conventional global data flow problems are of value to the follow cost problems 
presented here. 
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