
Global Data Flow Analysis Problems Arising
in Locally Least-Cost Error Recovery
ROLAND BACKHOUSE
Heriot-Watt University

Locally least-cost error recovery is a technique for recovering from syntax errors by editing the input
string at the point of error detection. A scheme for its implementation in recursive descent parsers,
which in principle embodies a process of passing a parameter to each procedure in the parser for each
terminal symbol in the grammar, has been suggested. For this scheme to be practical it is vital tha t
as much parameterization as possible is eliminated from the recursive descent parser. This oPtimi-
zation problem and how it may be split into three separate global data flow analysis problems--
classifying terminal symbols and the so-called min and max follow cost problems--are discussed.
The max follow cost problem is a particularly difficult one to solve. The application of Gaussian
elimination to its solution is shown by expressing it as a continuous data flow problem, and it is also
related to an "idiosyncratic" data flow problem arising in the optimization of very high level languages.
Classifying terminal symbols is also difficult since the problem is unsolvable in general. However, for
the class of LL(1) grammars, the problem is shown to be expressible as a distributive data flow
problem and so may be solved using, say, Gauss-Seidel iteration.

Categories and Subject Descriptors: D.3.4 [P r o g r a m m i n g Languages] : Processors--optimization;
translator writing systems and compiler generators; G.2.2 [M a t h e m a t i c s of Computa t ion] : Graph
Theory--path and circuit problems

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Code optimization, compiling, error correction, error recovery,
error repair, Gaussian elimination, Gauss-Seidel iteration, global flow analysis, lattice, LL grammar,
parser generator, path problem, regular algebra, shortest path

1. INTRODUCTION
One of the principal benefits of the introduction of Backus Normal Form (BNF)
in the Algol 60 report was to facilitate the development of parser generators.
Such tools, which assist greatly the compiler writer's task in the initial stages,
are now finding widespread use. Many parser generators, however, provide little
assistance with the important requirement of incorporating efficient and effective
error recovery into the parser, although this situation is changing (e.g., [11, 18-

This work was supported by a grant from the Science and Engineering Research Council of Great
Britain and was completed when the author was a member of the Department of Computer Science,
Heriot-Watt University.
Author's Address: Department of Computer Science, University of Essex, Wivenhoe Park, Colchester
CO4 3SQ, U.K.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given tha t copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1984 ACM 0164-0925/84/0400-0192 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984, Pages 192-214.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2993.357243&domain=pdf&date_stamp=1984-04-01

Global Data Flow Analysis Problems • 193

20]). One technique for the automatic inclusion of error recovery, called "locally
least-cost error recovery," has been investigated [2-4]. The basis for this tech-
nique is to recover from syntax errors by editing the next input symbol at the
point of error detection to a syntactically correct string. A table-driven LL(1)
parser generator that exploits a similar idea has been developed by Fischer et al.
[11], and Backhouse [5] discusses its implementation in recursive descent parsers.

The implementation of locally least-cost repairs, as described by the author in
[5], includes a mechanism for parameter passing that generalizes the follow set
parameters in the recovery scheme advocated by Wirth [24]. Essentially, the idea
is to anticipate the possibility of having to repair any terminal symbol by
computing, before the call of a recursive descent procedure, the cost of editing
the symbol after the call of the procedure has been completed. The potential
advantage of this mechanism over the searching strategy suggested by Fischer et
al. [11] is that locally least-cost repairs can be evaluated using a simple table
look-up rather than, effectively, solving a shortest path problem when the error
is detected. Unfortunately, a worst-case analysis of the size of the tables required
to implement the parameter passing is quite off-putting. Typically, a grammar
defining a programming language will have between 50 and 100 terminal symbols
and 300 to 400 production positions; the size of the parameter table is the product
of these two quantities! Fortunately, an analysis of the values taken by the
parameters in practice reveals that the vast majority of them are unnecessary
and so can be eliminated. In addition, the terminal symbols can be partitioned
into a number of equivalence classes such that the parameter values for symbols
in the same class are always equal. Thus the parameter table can be considerably
reduced by storing only the values for a representative element of each class. The
subject of this paper is the techniques whereby we are able to classify terminal
symbols in a grammar and eliminate parameters from the parameter table.

The problems we tackle amount to a global data flow analysis of the recursive
descent parsers that would be generated were the scheme described in [5] rigidly
adhered to. In fact, determining whether a parameter is strictly necessary splits
into two distinct problems, the "min follow cost problem" and the "max follow
cost problem." The min follow cost problem is a shortest path problem and is
not so interesting; on the other hand, the max follow cost problem is challenging
because it can be related to another global data flow problem, which others have
found difficult [12, 22]. It is a problem that can be solved using a technique like
Gaussian elimination [6, 8, 22] but cannot be solved using an iterative technique
like the Gauss-Seidel method [8]. Classifying terminal symbols is an interesting
problem for two reasons: First, its usefulness is not restricted to locally least-cost
error recovery--it could be applied to improving the space requirements of other
recovery schemes, for example, the follow set scheme [24]; second, it is not an
easy problem since it is unsolvable in general but, as we show, it can be solved
for LL(1) grammars.

Throughout this paper we assume that the reader is familiar with the notation
of context-free languages as used in, for example, [1]. In the definitions that
follow we refer, without explicit mention, to a context-free grammar G = (N, T,
P, Z) with nonterminal set N, terminal set T, production set P, and start symbol
Z. We assume that Z does not appear on the right-hand side of any production.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

194 • Roland Backhouse

Our results are relevant to the case in which G is LL(1) (in which case a recursive
descent parser for G exists) although none.of the definitions or lemmas require
this fact.

The structure of the remainder of this paper is as follows. Section 2 comprises
a number of definitions and lemmas leading up to the definition of a locally
optimal repair, the basis of locally least-cost error recovery, and then briefly
summarizes its implementation in a recursive descent parser. Section 3 poses
and solves the problem of classifying terminal symbols, and Section 4 'does
likewise for the min and max follow cost problems. These two sections may be
read independently, except for Section 3.4, which defines the notion of an open
portion graph, which is central to the solution of both problems. Section 5
describes the results we have obtained on effectiveness of these optimizations
and Section 6 concludes the paper.

2. BASIC PRINCIPLES OF LOCALLY LEAST-COST ERROR RECOVERY

2.1. Cost Functions and Locally Optimal Repairs

This section contains a summary of the definitions and properties we use in the
remainder of the paper. For further motivation and comparison with extant work
see [2] and [5]. Note that solely for brevity we have adopted a notation that is
different from [5], as well as having made a number of technical changes in our
presentation.

D e f i n i t i o n 1 (Primitive Edit Costs). Let A denote the empty word and u --* v
denote the edit operation of replacing the string u by the string v. Then
cost(A --* t), cost(t --, A) and cost(t --, t ') denote, respectively, the cost of
inserting t, the cost of deleting t, and the cost of changing t to t ' , where t, t ' E
T. These costs are primitive and assumed given. All insertion costs are strictly
positive integers or oo. All change costs are strictly positive integers, o~, or w,
except cost(t --, t), which is zero for all t E T. An edit cost of o~ (unbounded)
means that the operation is permissible, but only if it cannot be circumvented by
an edit operation or sequence of edit operations of finite cost. An edit cost of oo

(infinity) means that the edit operation is not permissible. The properties we
assume of ~ and oo are as follows:

--oo < C < O ~ < o o

C 4- oO ~ - W . { - oo ~- o o - { - Oo ~-- OO
t (finite) integers c. for all

D e f i n i t i o n 2 (Composite Edit Costs). Let v = ala2 . . • a , E T * where ai ~ T(1
<_ i <_ n). Let t ~ T. Then the cost of inserting v, denoted I(v), and the cost of
editing t to a prefix of v, denoted P(t, v), are defined as follows:

I (v) = O if v = A (i . e . , n = 0)

= ~ cost(A --* ai) otherwise,
i=1

P (t , v) = o o if v = A

= m i n { I (a l -.- ai-1) + cost(t --* ai)} otherwise.
l';i<__n

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

Global Data Flow Analysis Problems • 195

Definition 3 (Edit Costs for Languages). We extend the insert cost function I
and the prefix cost function P to languages as follows. Let t E T and L _C (N U
T)*. Then I(L) and P(t, L) are defined by

I(L) = m } n ! m i n tvELG(a)) and P(t,L) =mien{ ~nJP(t , v) }

where

Lc(a) = {v j v E T* and a ~ * v}.

LEMMA 1. P(t, L1.L2) = min{P(t, L1), I(LI) + P(t, L2)}.

PROOF. Straightforward. []

Definition 4 (Continuations). The string u E T* is said to be a valid prefix
(of Z) if and only if 3v E T* such that Z ~* uv. The set of (valid) continuations
of u, denoted C(u), is defined by

C(u) = {v I v E T* and uv is a valid prefix}.

Definition 5 (Locally Optimal Repairs). Let u be a valid prefix and t E T. A
locally optimal repair of t following u is defined to be t --+ w where w E T* is such
that

w ~ C(u),
and either

(a) w -- A, cost(t --+ A) _ P(t, w') for all w' E C(u) and cost(t --+ A) < 0% or
(b) w ~ A, P(t, w) <_ P(t, w') for all w' E C(u) and P(t, w) < oo.

If no such w exists, then a locally optimal repair of t following u is undefined and
the syntax analysis must be aborted.

2.2 Parsing LL(1) Grammars

Incorporating locally least-cost error recovery into LL(1) parsers is straighfor-
ward. The feature of LL(1) grammars that makes this so is that each valid prefix
u defines a unique leftmost derivation sequence. More specifically, it is possible
to identify a unique open portion ~, E (N U T)* and a unique production position
A --+ a . fl (consisting of a production A --+ ~ and a marker dot) such that

(1) Z ~ ? vA'y ~ l v~l~[~ v w ~ = u~'~ for some v, w E T*;
(2) Z ~* ux implies x E Lc(~'/) = {x I / ~ / = * x}.

Now, given that we can identify these two quantities, we can reexpress the
cost of a locally optimal repair of t following u, using Lemma 1, as

min{cost(t--+ A), P(t, C(u))} = min{min{cost(t--) A), P(t, t~)}, I(~) + P(t, ~/)}.

The latter equation is important because it makes the choice of a locally optimal
repair of t following u a two-way decision--either we choose to repair t to a prefix
of/~ (which choice is represented by the term min{cost(t -+ A), P(t, ~)}), or we
choose to insert/3 and then repair t to a prefix of the open portion ~ (which
choice is ¢epresented by the term I (/~) + P(t, ~,)). The associated recovery actions
are called, respectively, the nonreturn action and the return action because in a

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

196 • Roland Backhouse

recursive descent parser the effect of making the repair is, respectively, not to
"return and to return from the procedure which recognizes A.

To make ~the choice between the nonreturn and return actions, it suffices to
compute and compare the following quantities:

(1) B (A -o a.fl , t) = P(t, fl) - I(fl),
(2) P(t, ~/).

The first of these quantities is called the boundary cost associated with t at the
position A ~ a-ft. Note that it is independent of u (it depends only on t and the
production position) and so can be precomputed and stored as part of the driving
tables of the parser. The second quantity could depend on u and is called the
parameter passed to A corresponding to t.

Computing parameters to be passed to each recursive descent procedure is one
of the more significant differences between our scheme and that suggested by
Fischer et al. [11]. It makes no difference to the effectiveness or appropriateness
of the repairs; its advantage is that it is asymptotically faster since it guarantees
linear-time parsing for deterministic context-free grammars [2]. The mechanism
for evaluating the parameters is quite simple. Initially, on the very first call to
the procedure recognizing Z, the parameter passed is oo for each t E T. Subse-
quently, suppose the production A --~ aB~ is being recognized and the procedure
for A calls the procedure for B. Suppose At is the parameter passed to A
corresponding to t at this juncture. Then the parameter Bt passed to B is

Bt = min{P(t, fl), I(f l) + At}.

Once again we remark that the quantities

(3) P(t, fl), and
(4) I(~)

are independent of u and so can be included in the parser tables.
Although locally least-cost error recovery is conceptually elegant, it would

appear at first sight to be hopelessly inefficient. Consider, for instance, the
programming language Pascal. A typical grammar for Pascal will have about 50-
60 terminal symbols and about 400 production positions. Now the quantities (1)
and (3), which we blithely said should be included in the parser tables, are defined
for each combination of terminal symbol and production position. Thus there
are between 20,000 and 24,000 of them! If this were truly necessary, it would not
only create a huge storage problem but also slow the parsing process substantially,
since 50-60 parameters have to be evaluated and passed every time a procedure
is called. Fortunately, by exploiting the computations we are about to discuss, it
is possible to trim the entries to about 1000. (The actual size depends significantly
on the primitive costs; the figure we quote is drawn from our experience. We
have, in fact, generated parsers for Pascal requiring as few as 300 and as many
as 2000 entries.)

3. CLASSIFYING TERMINAL SYMBOLS

3.1 Problem Statement and Motivation

The first step toward reducing the size of the parser tables is to classify the
terminal symbols. More specifically, given a context-free grammar G = (N, T, P,
Z) we wish to find the equivalence classes of T, where t, t ' E T are equivalent if

ACM Transactions on Programmifig Languages and Systems, Vol. 6, No. 2, April 1984.

Global Data Flow Analysis Problems • 197

and only if the following condition holds:

(C1) (Vu E T*)((3v E T*)(Z ~ * utv) iff (3v ' ~ T*)(Z ~ * ut 'v ')) .

More intuitively, t and t ' are equivalent if and only if, in a left-to-right parse of
G, whenever t is a valid next symbol, then so is t ' also, and vice versa.

Typical equivalence classes of terminal symbols in the programming language
Pascal are

{to, downto}
I<, >, <=, >--, =}
{if, goto, while, repeat, for, with}
{*,/, div, mod, or, and}
{begin}

Another way of expressing condition (C1), which will help to motivate the
problem, is

(C2) (Vu E T*)({v]Z 7 " uvtw for some w E T*}
= {vIZ 7 " uv t 'w for some w E T*}).

Condition (C2) can be paraphrased in the following way. Suppose in a left-to-
right parse of sentences in G the string u has been successfully parsed. Consider
the possibility that the next symbol is t or t ' . Then t and t ' are equivalent with
respect to u if and only if the set of strings v that must prefix t before t may be
successfully parsed is equal to the set of strings that must prefix t ' before t ' may
be successfully parsed. The symbols t and t ' are equivalent if they are equivalent
with respect to all strings u.

A straightforward consequence of (C2), which is the ultimate motivation for
our definition of equivalence, is that if t and t ' are equivalent and the deletion
costs and change costs associated with t and t ' are equal, then, for all valid
prefixes u, a locally optimal repair of t following u is also a locally optimal repair
of t ' following u, and vice versa. Indeed, if these conditions are met, then the
parameter values and boundary costs associated with t and t ' will always be
equal in any state of the parse. So instead of computing these values for every
terminal symbol in the grammar, we only need to do so for a representative
element of each equivalence class (or, more precisely, for each equivalence class
after the partition defined by (C1) has been refined according to the given edit
costs). For Pascal the grammar we used had 63 terminal symbols, which were
classified into 38 classes, thus giving an immediate reduction of 40 percent in the
size of the tables.

Note that the definition of equivalence contains no elements specifically related
to locally least-cost error recovery. Indeed, the concept may be exploited to
improve the efficiency of other recovery techniques. For example, in follow set
error recovery [24] under almost all reasonable methods of computing follow
sets, if t and t ' are equivalent, they will be both in or both out of any follow set
passed as a parameter to a procedure. Thus instead of passing sets of symbols, it
would suffice to pass sets of classes as parameters to the procedures. However,
in this case the resulting saving of space is not likely to be worthwhile.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

198 • Roland Backhouse

3.2 Difficulty of the Problem

The ease with which one can detect equivalent symbols in a grammar for, say,
Pascal is very variable. It is trivial to see for example that "to" and "downto"
are equivalent because their only appearance is in an extended BNF production
of the form

for_statement -- ... ("to" l "downto") ...

Less easy to see is that "it', "goto", "while", "repeat", "for", and "with" are
all equivalent, since their only appearance is at the beginning of statements, but
they are not equivalent to "case" (which can appear in a record) or "begin".
Much harder to see from the grammar is that "*", "div', "rood', "and", and
"or" are all equivalent yet not equivalent to "+" or "-".

We may appreciate more fully the difficulties involved by examining a specific
example. Consider the grammar G = ({E, F, R, T, U}, {a, (,), +, ,}, P, E) whose
production set P is

E --> TR
R ~ A R --* +ER
T--* F U
U- '* A U---} *TU
F---> a F - - . (E)

This is a well-known LL(1) grammar defining arithmetic expressions involving
"+", and "*", the identifier "a", and parentheses "(" and ")". Now if we think
about the language of arithmetic expressions, it is clear that the equivalence
classes of terminal symbols are {)}, {a, (}, {+, *}. Thus wherever "a" may appear,
we may also have "(", and vice versa. Also, in any arithmetic expression all
instances of "+" may be changed to "*", and vice versa. It is also clear from the
grammar that "a" and "(" are equivalent, since their only appearance is as the
first right-hand-side symbol of productions with the same left-hand side. But it
is certainly not clear from the grammar that "+" and "*" are equivalent, since
they appear on the right-hand side of quite distinct productions. We shall return
to this example later to illustrate our algorithm.

Further evidence for the claim that the problem is by no means trivial is given
by the following theorem, which states that it is undecidable for general context-
free grammars!

THEOREM 2. Giveiz a context-[ree grammar G --- (N, T, P, Z) it is in general
undecidable whether t is equivalent to t ' for given t, t ' E T.

PROOF. It is well known that the problem of deciding whether two context-
free grammars generate the same language is unsolvable [14]. So take any two
grammars G1 = (N1, T, P1, $1), G~ = (N2, T, P2, $2) defined over the same
alphabet T but with distinct nonterminal alphabets N1 and N2. Let t, t ' , S be
distinct symbols not in N1 U N2 U T. Let G = (N~ U N2 U {S}, T U {t, t'}, P1 U
P2 U {S --* S~t, S --~ S2t'}, S). Then t is equivalent to t ' in G if and only if the
languages generated by G~ and G2 are equal. []

Since the problem is undecidable in general, we shall restrict ourselves to the
class of LL(1) grammars, the class for which we have an immediate application.
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

Global Data Flow Analysis Problems • 199

We shall show that in this case the problem is decidable and that our algorithm
can be applied "safely" to other grammars in the sense that it will always produce
a refinement of the partition of T defined by our equivalence relation. However,
our results do not extend to giving an exact solution for LR(1) grammars, and
the decidability of the problem in this case remains open.

3.3 Solution Plan

The key to the solution of the classification problem for LL(1) grammars is the
observation made in Section 2.2 that each valid prefix u defines a unique open
portion, which we denote by Tu. This allows us to rephrase the definition of
equivalence as stated in Lemma 2. First, however, we need another definition.

Definition 6. Let G = (N, T, P, Z) be a context-free grammar and let T E (N
U T)*. Then FIRST(T) is defined to be {t I t E T and T ~ * tv for some v E T*}.

LEMMA 3. Suppose G = (N, T, P, Z) is an LL(1) grammar. Then the symbols t
and t ' are equivalent if and only if for all valid prefixes u, either {t, t'} C_ FIRST(T=)
or {t, t'} n FIRST(T,) = 0.

PROOF. Obvious from property (2) of an open portion. []

The reason that Lemma 3 is important is that the set of all open portions
forms a regular set. Moreover, FIRST(T) is always finite (since it is a subset of
T), so {FIRST(T=) l u is a valid prefix} is a finite set of subsets of T and its
computation may be expressed as a path problem on a directed graph. Our plan
of action is therefore as follows.

(1) Construct a graph J from the given grammar G, paths through which define
the set of open portions of G.

(2) Identify the so-called FIRST_SETS problem. FIRST_SETS is a set of
subsets of T, each element of which is FIRST(v) for some open portion T.
Use the FIRST_SETS to define a partition on T which is the set of
equivalence classes of T.

(3) Express the FIRST_SETS problem as a path problem on J . More partic-
ularly, we shall express the problem as a distributive data flow problem [5,
8-10]. We shall also outline its solution as a continuous data flow problem
[12] and explain why this alternative has not been adopted.

3.4 The Solution

3.4.1 The Open-Portion Graph ~. We shall begin by describing the construc-
tion of a graph representing the set of open portions of G. Since our definition of
a distributive data flow problem differs slightly from other definitions we had
better make clear what we mean by a graph.

Definition 7. A labeled graph ~ = (~, ~ ~,, s, f) consists of a set of nodes ~,
a set of arcs ~ an alphabet ~,, and distinguished start and final nodes s and f.
Associated with each arc a E ~ are three items--its from component from(a), its
into component into(a), and its label l(a). The from and into components are
nodes, the label is an element of v2z*. A path from node x to node y in J is a
sequence of arcs al, a 2 , . . . , an where either n = 0 and x = y, or n > 0, from(a1)

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

200 • Roland Backhouse

"R

fU

\

Figure 1

= x, into(a,) --- y, and into(ai) = from(ai+l) for all i, 1 _ i < n. Such a pa th spells
E (N U T)* iff V = A (the emp ty word) and n -- 0, or n > 0 and ~[= l(al) l(a2)

• . . l (a .) .

Now suppose G = (N, T, P, Z) is a context- f ree g rammar . By a p r o d u c t i o n
p o s i t i o n of G we mean a str ing of the form A ---, a./~ where A ~ a/~ is in P and
the marke r " . " is any symbol not in N U T. F rom G we const ruct a labeled graph
~ = (~ , ~ , ~ , s, f) as follows. The nodes A / are divided into three sets. First,
there is a node corresponding to every non te rmina l in G. Second, there is a node
for every product ion posi t ion of the form A ---* a t . f l where t E T. Finally, there
are two nodes s and f, the s ta r t and final nodes of J,, respectively. T h e a lphabet
V2Zof J i s N U T (so the arc labels are e lements of (N U T)*) and the arcs

are const ructed as follows. The re is an arc labeled Z f rom s to f and an arc labeled
A f rom s to each node corresponding to a product ion posit ion. The re is an arc
labeled A from the node Z to the node f and an arc labeled fl f rom the node A --.
a t . fl to the node A. Las t of all there is an arc labeled/~ f rom A to B if there is a
r ight-hand-side occurrence of A of the form B --~ aA~.

Figure 1 shows the graph cons t ruc ted in this way for the g r a m m a r given in
Sect ion 3.2.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

Global Data Flow Analysis Problems • 201

LEMMA 4. There is a path spelling 3" /rom s to f in the open portion graph of the
LL(1) grammar G if and only if3" = ~/,/or some valid prefix u.

PROOF. First, note that the path of arc length 1 spelling Z from s to f is the
open portion of A. The remaining paths are the open portions of valid prefixes u
E T +, which claim is proved as follows.

We begin by observing that there is a path spelling # from the node A to the
final node f if and only if Z ~ ? vA3" for some 3' E (N U T)*. The "if" part of this
claim involves a straightforward induction on the length of the leftmost derivation
sequence and the "only if" part an induction on the arc length of the path. The
basis for both inductions is that Z ~ ? Z, which explains the A arc from Z to / .
The induction step relies on the fact that Z ~ ? vA% where 3" ~ A, if and only
if there is some right-hand-side occurrence of A of the form B --> aAl3 such that
Z ~ wB~ ~ t waA#5 ~ * vA% for some w, ~, and 3" =/36.

Now suppose 3" = 3"u for some u E T ÷. Let u = vt where t E T. Consider the
leftmost derivation sequence Z ~ * u% Since 3" minimizes the length of this
derivation sequence, we must have Z ~ ? wA~ ~ l wat#5 ~ vtfl5 = u3" for some
production A --. a t# and some w ~ T*, ~ E (N U T)*. Thus 3" = 135 where A
at./3 is a production position in G and 5 spells a path from A to / i n the graph J .
By the construction of the arcs to and from production positions, we may conclude
that every open portion 3", spells a path from s to f.

The converse proceeds similarly. Each path of arc length greater than 1 from
s to / spe l l s 13~ for some t3, ~ where there is a production position A --, at.13 and
Z ~ vA5 for some v E T*. Pick any w E Lc(a) and let u = vwt. Then Z ~ vA5
~ t vat/35 ~ vwtB~ = u3" is a minimal length leftmost derivation of u3"; that is,
3" is the open portion of u. []

3.4.2 The F I R S T SETS. Looking once again at Lemma 3 we see that our
primary interest is in FIRST(3") for each open portion 3". Since we now have a
representation for the set of all open portions, we also have a representation for
the set of all FIRST sets of open portions. More specifically, we have the following
definition and lemmas.

Definition 8. Let G = (N, T, P, Z) be an LL(1) grammar. Then FIRST_
SETS(G) is a subset of the set of subsets of T defined by

x ~ FIRST_SETS(G) iff x = FIRST(3") for some open portion 3" of G.

LEMMA 5. F I R S T _ S E T S (G) = Ix Ix = FIRST(3") where 3" spells a path /rom s
to f in G}

PROOF. Trivial from Lemma 4. []

LEMMA 6. The terminal symbols t and t ' are equivalent in G if and only if
It, t '} C x or It, t '} Cl x = O [or all x E F I R S T _ S E T S (G) .

PROOF. Immediate from the definition of FIRST_SETS and Lemma 3. []

In order to apply these lemmas by hand to our example grammar (see Section
3.2), we need to note that

FIRST(E) = FIRST(T) = FIRST(F) = {a, (},
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

202 • Roland Backhouse

and

FIRST(U) = [*},

FIRST(R) = {+},

NULLABLE(U), NULLABLE(R),

whereas not NULLABLE(E) , n o t NULLABLE(T), and not NULLABLE(F) ,
where NULLABLE(a) is true if and only if a ~ * A. Then by inspection of the
graph in Figure 1 the reader may verify that FIRST_SETS for our example
grammar is

[FIRST(E), FIRST(T), FIRST(U) U FIRST(R),
FIRST(U) U FIRST(R) U [)}}.

(Here we have observed that all paths spelling E . . . have the same FIRST set,
all paths spelling T . . . have the same FIRST set, and so on.) Thus FIRST_
SETS evaluates to

[[a, (}, [+, *}, {+, *,)}}

and the partition on T defined by it is

{{a, (}, 1+, *}, {)}}.

Lemma 6 reduces our problem to finding FIRST_SETS(G), which, we note, is
a finite set of finite sets. Lemma 5 is almost all the way to expressing the
computation of the FIRST_SETS as the "meet over all paths solution" to a
path-finding problem [15, 16, 22]. Completing this task is our next step.

3.4.3 A Distributive Data Flow Problem. One of the most significant outcomes
of work on "optimizing" compilers has been the abstract, algebraic formulation
of general circumstances in which a number of path-finding algorithms can be
applied [5, 8-12]. Two approaches to the solution of a path problem have been
identified. First, an iterative technique like the well-known Gauss-Seidel method
may be applied if the problem can be shown to be a "distributive data flow
problem" [8, 10]. Second, elimination techniques like the equally well-known
Gaussian elimination method may be applied if the problem can be shown to be
a "continuous data flow problem" [12]. The classification problem succumbs to
both approaches, but we only consider the former in any detail. In contrast,
Section 4 considers the so-called max follow cost problem, which is an example
of a problem that cannot be solved by an iterative technique but can be solved
by an elimination technique. To give precise meaning to our concept of a
distributive data flow problem (which differs slightly from other formulations),
we need a number of definitions

Definition 9. A semilattice is a pair (Y, A) where Y is a set and A is an
associative, commutative, and idempotent binary operation on J . The set Y is
assumed to have a zero element 0 and a unit element 1 such that 0 A a = 0 and
1 A a = a for all a E Y.
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

Global Data Flow Analysis Problems • 203

Definition 10. A distributive data flow framework (L, F) consists ofa semilattice
L -- (Y, A) and a set of functions F: L --* L such that

(D1)

(D2)

(D3)
(D4)

Each g E F is distributive, that is,

g(x h y) = g(x) h g(y) for all x, y ~ Y.

There is an identity function i in F such that

i(x) = x for all x in Y.

F is closed under composition, that is, g, h E F implies g- h E F.
Y is equal to the closure of {0} under the meet operation and application
of functions in F.

Definition 11. A distributive data flow problem is a triple (J,, (L, F) , /) where
= (_/f,, ~ , ~,, s, f) is a labeled graph, (L, F) is a distributive data flow

framework, and , t is a mapping from c2/* to F satisfying the property

(D5) / (a) . / (3) = / (a 3) forall a, 3~ '02 x*.

The meet over all paths (MOP) solution to this problem is mop(s) where the
mapping mop from J to Y is given by mop(v) = A {/(~,)(0)]~ spells a path
from v to f in ~}.

THEOREM 7. Given a distributive data flow problem (G, (L, F), /) in which the
semilattice L is finite, the following algorithm will compute the MOP solution to
the problem.

Algorithm 1. Basic Iterative Algorithm
{Input: Labeled graph Y¢ = (.~, z~, ~,, s, [), semilattice L = (Y, h), set of functions F,

and mapping/: ~* --* F}
for each v E -/f do re(v) := 1; re(f) := 0;
repeat change := false;

for each arc a in ~ do
begin temp := rn(from(a));
m(from(a)) :=/(a(a))(m(into(a)))
if temp @ rn(from(a)) then change := true
end

until not change;
Irn(v) = mop(v) for all v E .A / }

We shall not prove Theorem 7 since our formulation differs from others only
in the requirements that the graph ~¢ have labeled arcs and the property (D5).
It is not difficult therefore to amend the proofs given in, say, [8] accordingly.

Let us now show how to express the computation of FIRST_SETS(G) for a
given LL(1) grammar G as a distributive data flow problem.

As anticipated in Section 3.4.2, the graph ~ is the open-portion graph of G.
The semilattice L is (Y, U) where _9 ¢ is the power set of the power set of T.

{That is, each element of Y is a set of subsets of T.) The zero element is {O}
and the unit element is 2 T, the power set of T (the set containing all subsets
of T).

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

204 • Roland Backhouse

The elements of the function space F are pairs (x, b) where x C T and b is a
Boolean. Function application is defined by

(x ,b) (X) = U {x U if b then y else O}.
y E X

Function composition is defined by

(x, b). (y, c) = (x U i f b then y else 0 , b and c).

Finally the mapping fi: (N U T)* --) F is given by

/ (a) = (FIRST(a) , NULLABLE(a)) .

The definitions of the function space F and the mapping fi are a little curious,
but there is a simple explanation. Our principle objective has been to define fi
so that f (~)({O}) = {FIRST(~)}. We also require that fi(a)-fi(~)({O}) =
fi(a-~)({ID}). But F IRST(a .#) = FIRST(a) U if NULLABLE(a) then
FIRST(~). Hence the two components in f i (a) - -F IRST(a) and NULLABLE(a) .

LEMMA 8. (L, F) is a distributive data flow framework.

PROOF. L is obviously a semilattice and we can verify that F satisfies conditions
D1-D4 as follows.

(D1) Let X, Y ~ 2 v. Then

(x , b) (X U Y) - -

(D2)

(D3)

(D4)

U {x U i f b then y e lse O}
yE XU Y

= U {x U if b then y else O}
y E X

U U {x U if b then y else O}
y E Y

= (x, b)(X) U (x, b)(Y).

(0 , t rue) is the identity function.

(x, b) ((y , c)(X))

= (x, b)(t.J {Y U i f c then z else O})
z E X

= U
z E X

= U
z E X

= (x U i f b then y else 0 , b and c) (X)

= ((x, b).(y, c))(X).

L e t X E 2 T . T h e n X = U (x, fa l se) (O) . []
x E X

{x U i f b then (y U if c then z else ~D) else O}

{x U (if b then y else 0) U (if b and c then z else 0)}

THEOREM 9. I f G is an LL(1) grammar, then FIRST_SETS(G) is the MOP
solution to a distributive data flow problem.
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

Global Data Flow Analysis Problems • 205

PROOF. Noting that fi(y)({O}) = FIRST(-/) U if NULLABLE(y) then
else ~ = FIRST(y) , we have by Lemma 5, FIRST_SETS(G) = mop(s) =
U{fi(y)({~D}) [3" spells a path from s to [in J } where J is the open portion
graph. This together with Lemma 8 leaves only the proof of condition (D5),
which is proved as follows:

(D5) fi(a.fl) = (FIRST(a-/~), NULLABLE(a./~))
= (FIRST(a) U i f NULLABLE(a) then FIRST(B),

NULLABLE(a) and NULLABLE(/~))
= / (a) ./(~). []

COROLLARY. If G is an LL(1) grammar, then F I R S T _ S E T S (G) may be com-
puted using Algorithm 1.

4. MIN AND MAX FOLLOW COSTS

4.1 The Problems and Their Solution

Classifying the terminal symbols offers a partial solution to reducing the size of
the parameter and boundary cost tables, but the improvement (from 24,000 to
15,000 entries for Pascal) is insufficient for practical purposes. This section
describes a further analysis of the parameter values, which leads to a much bigger
reduction in the table sizes.

We remarked earlier that the boundary costs are independent of the valid
prefix. Now all parameters are strictly positive, so if perchance a boundary cost
is negative we know immediately that it is unnecessary--we do not need to
compare it with the parameter to know that it is smaller, and we know in advance
what the chosen recovery action will be. Conversely, if the boundary cost is 0% it
is again unnecessary because we know in advance that the parameter value will
always be less than or equal to it. Thus in these two cases we can reduce our
storage requirements and the time taken to evaluate the recovery action.

Unfortunately, the latter analysis is not sufficient to reduce the parameteri-
zation to an acceptable level. We can, however, complicate the analysis by
including some knowledge of the values taken by the parameter. Suppose we
consider the recovery action given input symbol t at production position
A -* a./~. Consider the parameter A t passed to A at this juncture. Suppose we
precompute the minimum and maximum values that may be taken by At. Let
these be denoted by m(A, t) and M(A, t), respectively. Then evaluation of A t and
the boundary cost is unnecessary at this position if either

B(A --* a.13, t) <_ m(A, t) or B(A --, a.13, t) >- M(A, t).

In the former case we know that the nonreturn action should always be chosen;
conversely, in the latter case the return action should always be chosen.

Another way of expressing this is that the boundary cost and parameter value
are necessary if there are valid prefixes ul and u2, both of which define the
production position A --> a-/~, but for which the chosen recovery action when t is
input is in one case to return from and in the other case not to return from the

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

206 • Roland Backhouse

call of the procedure recognizing A, that is, when

m(A, t) < B (A --, a. ~, t) < M(A, t).

The functions m and M are called the minimum and maximum follow costs
and evaluating them is a global flow analysis problem. As we shall see, m is
straightforward to evaluate, but evaluating M is the difficult problem to which
we referred in the introduction.

Let us now formulate precisely the definitions of m and M. Both depend on
the "follow set" of A, which we define first.

Definition 12 (Follow Sets). Let A E N. The follow set of A, denoted FOL(A),
is a subset of (N U T)* defined by

FOL(A) = {~13v E T * : Z ~ vA-y}.

Definition 13 (Min Follow Costs). Let A E N and t E T. The minimum cost of
repairing t following A, denoted re(A, t), is defined by

re(A, t) = minIP(t, ~)l~(E FOL(A)}

The definition of M is essentially the same as for m, but with max replacing
min. However we need first to define the maximum of an infinite set of integers.
Since we shall exploit it later, it is useful for us to go one step further and define
a semilattice L at this point.

Definition 14 (Semilattice L). The semilattice L consists of the set N U {e, oo}
(where N is the set of natural numbers), together with meet operation A defined by

a A b = max{a, b})

a h oJ = 0 0 = o ~ A o~ ~ f o r a l l

AX = oo if

= e if

= ~ if

"- max{al, a2 a,} if

The zero element of L is o o .

The zero element of L is o o .

a, b E N

o o E X

X C N U {¢~} a n d ~ E X

X is an infinite subset of N

X = {a,, . . . , a,} is a finite subset of N.

Definition 15 (Max Follow Costs). Let A E N and t ~ T. The maximum cost
of repairing t following A, denoted M(A, t), is defined by

M(A, t) = A {P(t, ~,) I ~/E FOL(A)}.

Note that M(A, t) may be ¢o even though P(t, ~f) is finite for each ~, E FOL(A).
A simple example would be a grammar with productions

Z ---, S -t S ---, (S) S ---, a.

Since Z ~ ' (" S) " -t for all n >_ 0, M (S , d) = oo provided only that -t may not be
changed to) at finite cost.
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

Global Data Flow Analysis Problems • 207

The key to evaluating m and M is the observation that FOL(A) is a regular
subset of (N U T)* represented by a set of paths through the open-portion graph.
To be precise we have the following lemma.

LEMMA 10. There is a path spelling ~/ from A to Z in the open-portion graph
if and only if Z ~ * vA~/ for some v ~ T*.

PROOF. Elementary. []

Now the evaluation of m amounts to a shortest path problem. For, applying
Lemma 1, m is the solution to the following system of simultaneous equations:

m(Z, t) = oo

m(A, t) = min {min{P(t, ~), I (~) + re(B, t)}}
B~a.A~ER(A)

for all A ~ Z E N, where R(A), the right-hand-side occurrences of A, is
{B --~ a .A~ I B --* aA[3 is a production of G}.

Indeed, it is clear from its definition that re(A, t) = P(t, FOL(A)) and FOL(A)
is a regular subset of (N U T)*. So evaluating m is an application of the least
cost repair of a regular language [5, chap. 5] in the particular case in which the
input string is of length 1. Algorithms applicable to its solution therefore include
Dijkstra's shortest path algorithm [10], Gauss-Seidel iteration [8], or Gaussian
elimination [6, 8, 22].

Evaluating M is not so straightforward since it is not susceptible to an iterative
technique but requires the use of an elimination technique, one of the principal
reasons being that the lattice L is not finite. (Note, though, that finiteness is not
a necessary condition for the applicability of algorithm 1.) It is an instance of a
continuous data flow problem [22], which is not a distributive data flow problem.

A continuous data flow problem is defined almost identically to a distributive
data flow problem (sec. 3.4.3). The differences are that finiteness of L and the
distributivity condition (D1) are abandoned in favor of the following:

(DI ') Each function f E F is continuous, that is, for any nonempty X _ L,

f (AX) = A{f(x) lx E X}.

(D3') F is closed under meet and * (in addition to composition) where

(i) ([A g)(x) = f (x) A g(x);
(ii) f*(x) = A{fi(x) l i >- 0}.

Note that condition (DI ') i s stronger than (D1): A continuous function is also
distributive. In fact, in our application the function space (see Definition 16)
satisfies (D1).

Definitions 7, 14, and the following additional definitions express the evalua-
tion of M (A , t), for fixed t E T and all A ~ N, as a continuous data flow problem:

Definition 16 (Function Space F). A valid cost pair is a pair (a, b), such that
a, b ~ N U {w, ~} and a > 0 or b > 0. An element of F is an ordered sequence f =
(al, bl), (a2, b2) , (a,, bn) of valid cost pairs such that n ___ 1, ai < ai+l, and
b, > b~+1(1 _< i ___ n - 1).

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

208 • Roland Backhouse

Each element of F is a function from ~l U {00, ~} into itself given by

(Ca1, bl), {a2, b2) (anbn))(x)

= max{min{al + x, bl}, min{a2 + x, b2}, . . . , min{a, + x, bn}}.

Definition 17 (Operations on Functions). Letting X denote the empty sequence
of valid cost pairs, we define the meet, product, and star operations on F as
follows.

(a) Function meet:

(Ca, b), f) h ((c, d), g)

= f A ((a , b) , (c , d) , g) if a < c and b > d ,
= f A ((c , d) , ((a , b) Ag)) if a > c and d > b ,
= f h ((max{a, c}, max{b, d}) A g) otherwise,

where/, g denote elements of F or X , and

X A f = f = f A X forall f E F .
(Note: Clearly {a, b), {c, d), g conforms to the definition of an element of F when
a < c and b > d. It is also straightforward to show by induction on the length of
g that Cc, d), (Ca, b) A g) conforms to the definition when c < a and d > b.)

(b) Function products:

((a, b), [).((c, d), g)

= Ca + c, min{b, a + d}) A (Ca, b).g) h (f.(c, d)) A f .g

where [, g are elements of F or X, and

X . f = f = f . X for all [E F .

(c) Function stars:

((0, b), f)* = f*

((c, d), f)* = {0, oo) A {max{c, ¢o}, d)

where [is an element of F or X and

X* = (0 , ~).

Definition 18 (Mapping ft). Let t E T. Then the mapping ft from (N U T)*
into F is given by

ft(~) = CI(fi), P(t,/3)) for all /~ e (N U T)*.

The following theorem enables us to claim that any algorithm that computes
regular expressions denoting FOL(A) for each A E N can be modified into an
algorithm for computing M(A, t) for each A E N.

THEOREM 11. The triple (J,, (L, F), ft), where J is the open-portion graph of
G and L, F, and ft are as in definitions 14, 16, 17, and 18, is a continuous data flow
problem. Moreover, the MOP solution to this problem is the max follow cost
function for t (i.e., mop(A) -= M(A, t) for all A ~ N).
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

Global Data Flow Analysis Problems • 209

The proof of Theorem 11 is long and tedious, but it is the entire justification
for the spate of definitions just given. We shall, however, give some explanation
for our definitions of function meet, product, and star sufficient for the reader to
construct the full proof.

Consider first function product (Definition 17(b)). Here our requirement is
that/t(fl-~/) =]:t(~)' f t(7). Now

f t (f l . 7) (x) = min{I(~7) + x, P(t , tim)}

= min{I(t3) +1(7) + x, min{P(t, fl), I (f l) + P(t , 7)}}.

Thus, letting a = I(fl), b = P(t , fl), c = 1(7), d = P(t , 7), it suffices to define
[t(fl) "ft(')') = Ca, b) . Cc, d) as

Ca, b) . (c , d) = Ca+c , min{b, a + d}) .

The remainder of the definition of function product simply ensures tha t every
cost pair defining f is composed with every cost pair defining g and the results
joined together with the A operation.

Having so defined function product it is easy to see from Lemma 10 tha t

mop(A) = A {ft(7)(oo) I 3pa th 7 f romA to Z in J }

= A { / t (7) (o o) I Z ~ u A 7 for some u E T*}

= M (A , t) .

Now consider function meet. The objective here is to define [A g so tha t
([A g) (x) = [(x) A g(x) . This objective is realized by our definition since, essen-
tially, (Ca1, bl) Can, bn) A Ccl, d~) Cc,,, dm))(x) is defined to be
Ca1, b l) (x) A . . . A Can, bn)(X) A CCl, d l) (X) A . . . A Ccm, dm)(X). The complica-
tion in the definition is in the formation of Ca, b) A Cc, d) when a _> c and b _> d
or, symmetrically, when c _> a and d _> b. This is easily explained for

Ca, b)(x) A Cc, d) (x) = max{min{a + x, b}, min{c + x, d}}

= m i n { a + x , b } = (a , b) (x) when a _ c and b_>d,

but when a < c and b > d (or, symmetrically, c < a and d < b), no simplification
can be made to (a, b)(x) A (c, d)(x). Hence our definition of function meet.

The definition of function meet and the observation tha t [(A X) = A f (X) for
any subset X of ~l U {0~, 00} (which is easily proved) enables one to establish tha t

mop(A) = M (A , t) = (A {£(7) 1 3pa th 7 from A to Z in J})(oo).

The peculiar ordering property on sequences of valid cost pairs facilitates
greatly the evaluation of function stars. Suppose there are cycles in the open-
portion graph beginning and ending on A. Suppose some subset of these spell the
strings/31, f12,. • . , fin (i.e., A =:,~' u iA~i for some ui ~- T* and all i, 1 _< i _ n). By
our earlier analysis of function meet we may assume without loss of generality
tha t I(/~) < I(/~2) < .-- < I(~n) and P(t , ill) > P(t , /~2) > " " > P(t , ~n)o Let Q
= {ill fl~}, ai denote I(fli), bi denote P(t , /~i)(1 ___ i _ n) and [denote Ca1,
b l) , . . . , (an, bn). Clearly, A = ~ ' u A 7 for some u ~ T*, for all 7 E Q * . So our

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

210 • Roland Backhouse

requirement is tha t

f*(x) = A {(I(~), P(t , ~)) (x) I ~ e Q*}.

Now, by the ordering property,/~i ~ * A if and only if i = 1 and al = I (~) = 0.
Moreover, if indeed ~1 ~ * A it is easily proved tha t f t (a~6) <- ft(a~) for all a,
E (N U T)* and hence

A {(I(~), P(t , ~))(x) I ~ ~ Q*} = A {{I(~), P(t , ~))(x) [~ E (Q - {/~1})*}.

So the first pair in the sequence defining f can be ignored when a~ = 0. This gives
us the first equation in the definit ion of funct ion stars.

Suppose, therefore, tha t n > 1 or n = 1 and a~ > 0. Let (c, d) = (a~, b~) if
a~ > 0 and (c, d) = (a2, b2) ~therwise. Le t R = {/~2 8.} U if a~ = 0 then ~b
e lse {/~},/~ = B2 if a~ = 0 and/~ = ~2 otherwise. Note tha t c > 0 and d = A {P(t,
~i) I~i ~ R}. More especially d - A {P(t, ~,) I ~ E R+}. Thus d is an upper bound
on f . f*(x) . Now suppose d = ~. T h e n f*(x) is ~ if c = ~, hut otherwise it is at
least o~. (For f*(x) >_ I({3 m) + x = mc + x for all m > 0.) In other words, ((c, d) ,
g)* = (0, ~) A < max{c, ~o}, d) which is the last clause in the definit ion of
function star.

42 Max Follow Costs and an Idiosyncratic Flow Problem

One of the interest ing features of the rain and max follow cost problems is tha t
they can be used to model other problems in global data flow analysis. This is
exemplified in this section by modeling an "idiosyncratic" flow problem [12, 22]
as a max follow cost problem.

The problem is this. Suppose J is the flow graph of a program tha t contains
occurrences of an expression a. Le t E be the arc set, V the node set, and S the
s ta r t node of J . Wi th each arc e of E is associated an effect, which has one of
four values depending upon what flow of control through arc e does to the value
of a.

gen t effect(e) = kill. . if
injure
t rans

the program recomputes a,
the program makes a large change to a
the program makes a small change to a
the program does not affect a.

For any node A, we say a is implicitly available on entry to A if there is a
positive bound b such that , for every pa th p = el, e2 ek from S to A, there is
an i such tha t (i) effect(ei) = gen, (ii) effect(ej) ~ kill for i < j _ k, and (iii) the
number of values o f j such tha t i < j _< k and effect(ej) = injure is bounded by b.
The problem is to determine from {effect(e)le E E} the nodes at which a is
implicitly available.

To model this as a max follow cost problem we construct from the flow graph
a grammar G as follows. The nonterminal a lphabet is V and the terminal

alphabet is E U {a, k, i} (where we assume E n {a, k, i} = ~D). Th e product ions
are constructed from the arcs E as follows. Suppose e is an arc from A to B. T h e n

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

Global Data Flow Analysis Problems • 211

introduce the production

A - * e B a if effect(e) = gen,

A --* e B k if effect(e) = kill,

A - - . e B i if effect(e) = injure,

A - , e B if effect(e) = trans.

Introduce also the production A -* A for each A E N. Finally define the primitive
edit costs as follows.

cost(A --, k) = 0% cost(A --* i) = 1,

cost(a --. a) = 0, cost(a - , k) = 0% cost(a --~ i) = oo.

All other costs are arbitrary
The claim is tha t M (A , a) = oo if and only if a is not implicitly available at

node A in ~. This is easy to prove because S ~ * e~e2. • • e , A w if and only if there
is a path el, e 2 , . . . , e, from S to A in J a n d w = t , t n - l " " "tl where th is a if
effect(e) = gen, tk is k if effect(e) = kill, tk is i if effect(e) = injure and t~ is A if
effect(e) = trans.

In terms of locally least-cost error recovery, the implicit-availability problem
is this. Suppose the path p = ele2. • • e, has been parsed when a is encountered
(i.e., the input is ele2- • • e , a . • •). Then there are three possibilities:

(a) a is OK;
(b) recovery can be achieved by inserting a finite number of i's;
(c) no repair of a is possible according to the given costs and the analysis must

be aborted.

An implication of this result is tha t the continuous data flow framework we
constructed in Section 4 is an alternative framework (albeit a less efficient one)
to tha t proposed by Tarjan [22] for the solution of this problem.

5. EXPERIMENTAL RESULTS

The objective of this paper has been to show how a number of optimization
problems arising in the practical implementat ion of locally least-cost error
recovery can be expressed as global data flow analysis problems; elsewhere [4]
we have given a detailed analysis of the efficiency and effectiveness of the
technique vis ~ vis the follow set technique advocated by Wir th [24]. In this
section we present a brief summary of the results we have obtained using our
parser generator where they pertain to reducing the size of the parameter and
boundary cost tables. All these results relate to a Pascal grammar having 69
terminal symbols and 368 production positions; for complete details see
Bugge [7].

We have already mentioned tha t classifying terminal symbols effectively
reduced their number to 38, tha t is, by approximately 40 percent. In theory the
resulting reduction in the size of the boundary cost and parameter tables may

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

212 • Roland Backhouse

Table I. Table Sizes for Five Pascal Parsers

Number of entries
Constraints on

edit costs Boundary costs Parameters

All infinite 44 187
All finite 693 1164
High delete costs made in- 528 1073

finite
Delete costs and change 184 669

costs either infinite or 1
Infinite delete costs made 236 621

unbounded

not be so great; in practice we found that the reduction was between 30 and 40
percent.

The effect of the min and max follow cost calculations on the table sizes
depends to some extent on the primitive edit costs. We generated five parsers
using different assignments to the edit costs. The resulting sizes of the parameter
and boundary cost tables is shown in Table I. The parser having the fewest table
entries is the first; for this parser all costs were set to infinity and therefore the
parser aborts from all syntax errors. (The effect of the parameterization is to
transform the recursive descent parser from a strong LL(1) parser into an LL(1)
parser, i.e., from a parser that may take parsing decisions before announcing an
error into one that announces errors at the earliest possible opportunity.) The
remaining parsers were all generated with the aim of producing the best possible
error recovery within the specified constraints on the edit costs.

The maximum possible size of the boundary cost table is 198 × 69 = 13662
entries (the number of production positions excluding the first in each production
× the number of terminals), and so the worst improvement we obtained was a
reduction to 5 percent of the maximum table size. The maximum possible size of
the parameter table is 205 × 69 = 14007 entries (the number of right-hand-side
occurrences of nonterminals × the number of terminals), and so the worst
improvement we obtained was a reduction to less than 10 percent of the maximum
table size. The best improvements we obtained, excluding the first parser, were
to table sizes of less than 2 and 5 percent of the maximum possible sizes of the
boundary cost and parameter tables, respectively. Nevertheless, the absolute
table sizes are still significantly large and are a drawback to the recovery scheme.

The main conclusions of [4] were that locally least-cost error recovery is more
effective than the follow set scheme, but because they have the same inherent
limitations and because locally least-cost error recovery requires substantially
more storage space than the follow set scheme, the follow set scheme is to be
recommended in conventional programming environments. It was noted though
that the parameters (in locally least-cost error recovery) most often perform a
simple Boolean function {e.g., in the infinite-cost parser they indicate whether a
terminal symbol is OK or not) and so, by replacing integer entries by Booleans,
further improvements in the table sizes may tip the balance in favor of locally
least-cost error recovery. However, algorithms for detecting when such replace-
ments may be made have yet to be developed and remain as open problems.
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

Global Data Flow Analysis Problems • 213

6. CONCLUSIONS

Originally global data flow analysis was developed for use in "optimizing" com-
pilers for improving code compiled from a hand-written program. The application
described here is novel in the sense that the code being improved is itself
automatically generated. It is an interesting application, first, because without it
the scheme described in [5] would simply not be viable and second, because it
seems to be a harder application than others studied previously. We have reason
to believe that parameter minimization in implementing locally least-cost error
recovery in LR parsers [3] may be yet more difficult. The solution to our
optimization problems has nevertheless been relatively straightforward and this
must be attributed to earlier theoretical work on identifying a most general
framework for global flow analysis problems [9, 13, 15-17, 21-23].

Solving min and max follow cost problems may prove to be an important
paradigm for evaluating path-finding algorithms, particularly elimination tech-
niques. The reason for this is that we must solve about 40 different problems
(the max follow cost problem for each terminal class in the grammar) defined on
the same flow graph (the open portion graph). Thus the advantages of using an
algorithm that exploits the structure of the graph over, say, the iterative tech-
niques, which do not, will be multiplied and so should be readily apparent. It
would be interesting to see, for instance, whether notions of reducibility used in
conventional global data flow problems are of value to the follow cost problems
presented here.

ACKNOWLEDGMENTS

Many thanks to Stuart Anderson for his careful reading of the manuscript, to
Edle Bugge for the results quoted in Section 5, and to the referees for their
critical comments.

REFERENCES

1. AHO, A.V., AND ULLMAN, J.D. The Theory of Parsing, Translation and Compiling. Vol. 1,
Parsing. Prentice-Hall, Englewood Cliffs, N.J., 1972.

2. ANDERSON, S.O., AND BACKHOUSE, R.C. Locally least-cost error recovery in Earley's algorithm.
ACM Trans. Program. Lang. Syst. 3, 3 (July 1981), 318-347.

3. ANDERSON, S.O., AND BACKHOUSE, R.C. Locally least-cost error recovery in LR parsers: A
basis. Tech. Rep., Dept. of Computer Science, Heriot-Watt Univ., Edinburgh, Scotland, 1981.

4. ANDERSON, S.O., BACKHOUSE, R.C., BUGGE, E.H., AND STIRLING, C.P. An assessment of
locally least-cost error recovery. Comput. J. 26, 1 (1983), 15-24.

5. BACKHOUSE, R.C. Syntax of Programming Languages: Theory and Practice. Prentice-Hall Int.,
London, 1979.

6. BACKHOUSE, R.C., AND CARRE, B.A. Regular algebra applied to path-finding problems. J. Inst.
Math. Appl. 15 (1975), 161-186.

7. BUGGE, E.H. Implementing and assessing locally least-cost error recovery for Pascal. Master's
thesis, Dept. of Computer Science, Heriot-Watt Univ., Edinburgh, Scotland, 1982.

8. CARRE, B.A. An algebra for network routing problems. J. Inst. Math. Appl. 7 (1971), 273-294.
9. COUSOT, P., AND COUSOT, R. Abstract interpretation: A unified lattice model for static analysis

of programs by construction or approximation of fixpoints. In Conference Record of the 4th ACM
Symposium on Principles of Programming Languages. (Los Angeles, Calif., Jan. 17-19, 1977).
ACM, New York, 1977, pp. 238-252.

10. DIJKSTRA, E.W. A note on two problems in connection with graphs. Numer. Math. 1 (1959),
269-271.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

214 • Roland Backhouse

11. FISCHER, C.N., MILTON, D.R., AND QUIR1NG, S.B. An efficient insertion-only error-corrector
for LL(1) parsers. Acta Inf. 13 (1980), 141-154.

12. FONG, A.C. Generalized common subexpressions in very high level languages. In Conference
Record of the 4th ACM Symposium on Principles of Programming Languages. (Los Angeles, Calif.,
Jan. 17-19, 1977). ACM, New York, 1977, pp. 48-57.

13. FONG, A.C., KAM, J.B., AND ULLMAN, J.D. Application of lattice algebra to loop optimizations.
In Conference Record of the 2nd ACM Symposium on Principles of Programming Languages. (Palo
Alto, Calif., Jan. 20-22, 1975). ACM, New York, 1975, pp. 1-9.

14. HOPCROFT, J.E., AND ULLMAN, J.D. Formal Languages And Their Relation to Automata.
Addison-Wesley, Reading, Mass., 1969.

15. KAM, J.B., AND ULLMAN, J.D. Global data flow analysis and iterative algorithms. J. ACM 23,
1 (Jan. 1976), 158-171.

16. KAM, J.B., AND ULLMAN, J.D. Monotone data flow analysis frameworks. Acta Inf. 7 (1977),
305-317.

17. KILDALL, G.A. A unified approach to global program optimization. In Conference Record of the
ACM Symposium on Principles of Programming Languages. (Boston, Mass., Oct. 1-3, 1973).
ACM, New York, 1973, pp. 194-206.

18. LEWl, J., DEVLAMINCK, K., HUENS, J., AND HUYBRECHTS, M. The ELL(l) parser generator
and the error recovery mechanism. Acta Inf. 10 (1978), 209-228.

19. PAl, A.B., AND KIEBURTZ, R.B. Global context recovery: A new strategy for syntactic error
recovery by table-driven parsers. ACM Trans. Program. Lang. Syst. 2, 1 (Jan. 1980), 18-41.

20. ROHRICH, J. Methods for the automatic construction of error-correcting parsers. Acta In[. 13
(1980), 115-139.

21. ROSEN, B.K. Monoids for rapid data flow analysis. SIAM J. Comput. 9 (1980), 159-196.
22. TARJAN, R.E. A unified approach to path problems. J. ACM 28, 3 (July 1981), 577-593.
23. TARJAN, R.E. Fast algorithms for solving path problems. J. ACM 28, 3 (July 1981), 594-614.
24. WIRTH, N. Algorithms + Data Structures = Programs. Prentice-Hall, Englewood Cliffs, N.J.,

1976.

Received September 1981; revised August 1982; accepted June 1983

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984.

