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ABSTRACT

In this work, we present an in-depth analysis of the inter-
dependency between the non-native prosody and the na-
tive language (L1) of English L2 speakers, as separately
investigated in the Degree of Nativeness Task and the Na-
tive Language Task of the INTERSPEECH 2015 and 2016
Computational Paralinguistics ChallengE (ComParE). To
this end, we propose a multi-task learning scheme based
on auxiliary attributes for jointly learning the tasks of L1
classification and prosody score regression. The effectiveness
of this approach is demonstrated in extensive experimental
runs, comparing various standardised feature sets of prosodic,
cepstral, spectral, and voice quality descriptors, as well as
automatic feature selection. In the result, we show that the
prediction of both prosody score and L1 can be improved
by considering both tasks in a holistic way. In particular,
we achieve an 11 % relative gain in regression performance
(Spearman’s correlation coefficient) on prosody scores, when
comparing the best multi- and single-task learning results.
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1. INTRODUCTION

As spoken language applications become more frequent in
global business and commerce, it is envisioned that systems
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performing both language proficiency assessment and native
language identification will be increasingly in demand. For
example, context-aware spoken dialogue systems can exploit
accent-specific acoustic models, adapt the tempo of speech
synthesis to the language proficiency of individual speakers,
or even switch to a user’s native language in case of difficul-
ties with the interaction in the default language. Realising
these capabilities in automatic systems conceivably leads to
more natural and human-like interaction, as humans typi-
cally adapt to the language proficiency of their counterparts,
as well as better recognition accuracy and user customisa-
tion. Another relevant application field is Computer-Assisted
Pronunciation Training (CAPT) for providing corrective feed-
backs to language learners [28, 16].

Non-native speakers of English diverge from native English
speakers in terms of linguistic (e.g., morphology, syntax,
lexicon) and phonetic aspects, comprising segmental and
supra-segmental (prosodic) traits. Located on word level and
above, prosodic speech phenomena encompass word accent
position, syntactic-prosodic boundaries, and rhythm, hence
determine the language proficiency in a second language (L2)
and by that, mutual understanding [13].

In the Degree of Nativeness task of the Computational
Paralinguistic ChallengE (ComParE) 2015 [23], prosody with
respect to sentence melody and rhythm was considered to
assess the pronunciation quality of English L2 speakers on
a rating scale. Further studies targeting in particular this
task include, e.g., [13, 25, 26]. In contrast, in the ComParE
2016 Native Language task [24], the native language (L1) of
non-native English L2 speakers from eleven L1 backgrounds
has to be automatically identified. Relatedly, a few studies
investigated non-native accent identification using prosodic
parameters [17, 15], and supra-segmental native traits when
trying to model language-specific rhythm [20]. However, in
the literature there has been little work on native language
identification despite its similarity to the task of language
identification (in which a system distinguishes between dif-
ferent languages), and dialect or accent identification (in
which a system recognises regional native speaker dialects
of a single spoken language, such as British vs American
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English (]2, 3, 14]).

Most importantly, the interdependency between non-native
prosody and L1 background has not been considered, let alone
exploited for automatic speech analysis, although there exists
an intuitive and proven coherence between them [6]. Overall,
L1 background was identified to have a high impact on the
degree of L2 foreign accent, besides other factors such as age
of L2 learning, length of residence in an L2-speaking country,
gender, formal instruction, language learning aptitude and
motivation, as well as amount of native language (L.1) use [18].
Linguistically and phonetically speaking, the global language
system can be divided into different language groups. For
example, a difference in rhythm in terms of isochrony can be
observed between syllable timed languages such as French,
and stress-timed languages such as English [1]. More recent
studies [9, 20] indicate that syllables that are weak in stress-
timed languages are pronounced stronger in syllable-timed
languages, resulting in L1-specific idiosyncrasies and prosodic
traits, respectively. Therefore, depending on the resemblance
of two languages, it seems reasonable to assume that English
L2 speakers from different L1 backgrounds produce more or
less ‘natural’ pronunciation. That is to say, the accuracy
with which nonnative speakers pronounce an L2 is, at least
to some extent, dependent on their L1 [18].

Motivated by this hypothesis, we conducted extensive stud-
ies on the automatic analysis of non-native speech, showing
that the recognition performance for each task can be signif-
icantly improved by jointly learning both speaker traits.

2. METHODOLOGY

2.1 Multi-Task Learning

Let us first introduce some required notation: xl(l) cx®
denotes the i-th feature vector for classification task I, while
yEl) € YW denotes its gold standard label for task [, where
X is the acoustic feature space and Y is the label space for
task [. [;-] denotes the concatenation of features. To exploit
the interdependency between non-native prosody and L1 of
English L2 speakers, we use auxiliary features in a classifier
chain, similar to the work [21]. The idea is to append ‘L1’
as attribute to the feature vector associated with the target
label ‘prosody’ in the Degree of Nativeness task (DN), and
vice versa for the Native Language task (N). In case that
the auxiliary label is missing in a specific database, we have
to rely on a predicted label obtained by semi-supervised
learning, exploiting a classifier §™ : X — Y™ trained on
the original training set of task [. In the scope of this paper,
I,m € {DN,N}. Accordingly, the multi-task training data
Ca(n> be( f())rm}llarised as pairs of feature vectors and labels

), ~(m 1)

; Iy

(x5 95

standard yl(m) for the auxiliary label, we can use this as
attribute. Here, it is noted that this approach is a form
of Cross-Task-Labelling (CTL) as proposed in our previous
work [31, 30], which can be understood as a generalisation of
semi-supervised learning to L-dimensional labels, where each
dimension corresponds to a classification task. As the multi-
task learning scheme is based on combining acoustic features
with labels in the feature space, it is crucial to evaluate the
performance with a variety of acoustic feature sets to assess
the complementarity.

. Otherwise, if a database already has a gold
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2.2 Feature Sets

For the audio and acoustic analysis, we compare the rele-
vance of six feature groups. A full description of the feature
groups can be found in [27, 22].

ComParE: The ComParFE set of supra-segmental acoustic
features is a well-evolved set for automatic recognition of
paralinguistic speech phenomena, as used for the baseline of
the INTERSPEECH ComParE series. It contains 6 373 static
features resulting from the computation of various functionals
over low-level descriptor (LLD) contours. The configuration
file is included in the 2.1 public release of openSMILE (8,
7]. Important subgroups of the ComParE feature set com-
prise prosodic (PROS), Mel Frequency Cepstral Coefficients
(MFCC), spectral (SPEC), and voice quality (VQ) features.

Prosodic Features (PROS): Given the importance of
sentence melody and rhythm to the assessment of L2 speakers’
proficiency (cf. Section 1), we extracted a set of prosodic
features based on loudness, energy, and Fy (SHS & Viterbi
smoothing) to locally describe arbitrary units of speech such
as words or syllables.

Mel Frequency Cepstral Coefficients (MFCC):
MFCC features are among the most popular speech fea-
tures for automatic speech recognition, music information
retrieval, and a wide variety of paralinguistic tasks. The mel
scale takes human hearing perception into account, where
lower frequencies are resolved better by human hearing than
higher ones [5].

Spectral Features (SPEC): Spectral statistical LLDs,
such as spectral variance and spectral flux, are often used
in multimedia analysis, and are part of the descriptor set
proposed in the MPEG-7 multimedia content description
standard. For this reason, they are very relevant for music
and sound analysis.

Voice Quality (VQ): Voice quality LLDs are used to
discriminate harmonic and noise-like sounds. Like the
harmonics-to-noise ratio (HNR), they describe the quality of
the excitation signal and thus the quality of the voice. For
instance, jitter and shimmer are micro-prosodic variations of
the length and amplitudes of the fundamental frequency for
harmonic sounds.

Correlation-based Feature Selection (CFS): The
brute-force combination of LLDs and functionals potentially
yields features that are irrelevant for the machine learning
task considered, or not meaningful in general. Automatic fea-
ture selection is a data-driven way to deal with this problem,
such as by selecting features that exhibit high correlation
with the target label(s). However, since feature brute-forcing
yields many features of similar nature and hence similar cor-
relation with the target label(s), it is required to combine
feature selection with feature decorrelation to arrive at a
small, yet efficient feature space. To this end, correlation-
based feature selection (CEFS) can be employed [29]. There,
the merit M of a feature subset S with k features is given by

k CCet (1)
Vk+ k(k—1)CCq’
where CCcr denotes the mean correlation coefficient (CC) of
features in S with the class label, and CCg is the average
CC of features in S with each other. It is easy to see that a
candidate subset that maximises M will provide an optimal
trade-off between high predictive power regarding the class

label (numerator) and low redundancy among the features
(denominator).

M(S) =



Table 1: Databases of Non-Native Spoken English:
Number of instances per class in the train/devel /test
split used for the Challenges.

# ComParE 2015 ComParE 2016
Train Test b)) Train Devel Test ¥
ARA 62 - 62 300 86 80 466
CHI 203 - 203 300 84 74 458
FRE 257 166 423 300 80 78 458
GER | 2208 451 2659 300 85 75 460
HIN - 37 37 300 83 82 465
HUN 216 - 216 - - - -
ITA 290 176 466 300 94 68 462
JAP 406 - 406 300 85 75 460
KOR - - - 300 90 80 470
POR 248 - 248 - - - -
SPA - 169 169 300 100 77 477
TEL - - - 300 83 88 471
TUR - - - 300 95 90 485
% 3890 999 4889 | 3300 965 867 5132
3. CORPORA

3.1 ComParE 2016

The Educational Testing Service (ETS) Corpus of Non-
Native Spoken English comprises more than 64 hours of
speech from 5132 non-native speakers of English, with eleven
different L1 backgrounds (Arabic (ARA), Chinese (CHI),
French (FRE), German (GER), Hindi (HIN), Italian (ITA),
Japanese (JAP), Korean (KOR), Spanish (SPA), Telugu
(TEL), and Turkish (TUR); cf. Table 1). Each speech record-
ing is 45 seconds long and was obtained in the context of
the TOEFL iBT assessment, which is designed to measure a
non-native speaker’s ability to use and understand English
at the university level. The dataset was divided into speaker-
independent partitions: 3300 instances (64 %, approximately
41.3 hours) were selected as training data, 965 instances
(19 %, approximately 12.1 hours) for the validation set, and
867 responses (17 %, approximately 10.8 hours) were used
as test data.Unlike the ComParE 2015 databases, a prosody
score is not provided and hence, CTL is used to obtain the
missing labels by machine labelling.

3.2 ComParE 2015

Following the protocol of the ComParE 2015, the AUWL
and ISLE databases are used for training while the C-AuDiT
database is used for testing. The AUWL corpus [11] com-
prises 31 speakers (13f, 18 m; 36.5+ 15.3 years; native lan-
guages: 16 GER, 4 ITA, 3 CHI, 3 JAP, 2 ARA, 1 Portuguese
(POR), 1 Hungarian (HUN); cf. Table 1), 5.5 hours, 3732
speech files (423 distinct sentences/phrases). Each speech
file was annotated by five phoneticians with respect to its
prosody (sentence melody and rhythm) on a five-point scale
ranging from (1) for normal to (5) for very unusual. With
the (simplifying) assumption of an interval scale, we took
the arithmetic average of the five labellers to obtain inter-
subjective prosody scores [13], with an average of 1.7 and a
standard deviation of 0.5 (range 1.0-3.8). From the ISLE
corpus, we used material comprising 36 speakers (11f, 25 m;
native languages: 20 GER, 16 ITA), 0.3 hours, 158 speech
files (5 distinct sentences); prosody scores were collected in
a similar manner (2.14+0.5, range 1.3-3.4). The C-AuDiT
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Figure 1: Distribution of prosody scores in the

AUWL-ISLE and C-AUDIT databases.

database [12] contains read non-native English short stories
broken down into single sentences. The material comprises
58 speakers (31f, 27 m; native languages: 26 GER, 10 FRE,
10 ITA, 10 SPA, 2 HIN), 2.7 hours, and 999 speech files (19
distinct sentences). Prosodic scores were collected similarly
to AUWL, except for using a 3-point scale from 0 for good
to 2 for bad (0.5+0.3, range 0.0-1.6). Figure 1 shows the
distribution of prosody scores for each L1 in the AUWL,
ISLE, C-AuDiT (AIC) database family.

4. EXPERIMENTS AND RESULTS
4.1 Experimental Setup

In our experiments, we applied Support Vector Machines
(SVM) with linear kernels for the classification task, and
Support Vector Regression (SVR; also with linear kernels)
with epsilon-insensitive loss for regression. In all tasks, the
Sequential Minimal Optimisation (SMO; [19]) algorithm was
used for training. For transparency and reproducibility, we
used open-source implementations (WEKA 3, revision 3.7.13;
[10]. The e parameter was fixed at 1.0, while the complexity
parameter C' was optimised by training set cross-validation.
Due to different text materials and recording conditions, the
latter did not always result in optimal values for test. Fea-
tures were scaled to zero mean and unit standard deviation,
using the scales and offsets from the training set. In training
set cross-validation, these were calculated on the training
set of each fold. Considering the cross-corpus nature of the
Degree of Nativeness task, we used a 4-fold double nested
loop over speakers and texts for cross-validation as defined
in the ComParE 2015 [23].

Moreover, we separately evaluated the performance on the
test set containing only the intersection set of the L1 back-
grounds found in the AUWL, ISLE, and C-AuDiT databases



Table 2: Degree of Nativeness (DN) and Native Lan-
guage (N); Performance on the test set in terms of
p (Spearman’s rank correlation) and unweighted aver-
age recall (UAR), by single-task learning (ST), and
by multi-task learning (MT).

Feature set | # DN (p) N (UAR[%])
ST | MT | ST | MT
ComParE | 6373 | 427 .447 | 475 47.8
SPEC 2600 | .326 .335 | 40.8  40.0
MFCC 1400 | 412 444 | 394  39.8
PROS 483 366 474 | 33.5 348
VQ 390 340 382 | 26.8 255
CFS 98 409 476 | 41.2 421

Table 3: Degree of Nativeness (DN) performance by
p for various feature sets (#: number of features)
with ST, MT, as well as dummy regression corre-
sponding to training mean prediction, on a subset of
the C-AUDIT database comprising speakers whose L1
background is also found in the AUWL-ISLE set.

Feature set |  # | ST | MT
SVR on acoustic features
ComParE | 6373 | .435 | .459
SPEC 2600 | .338 | .348
MFCC 1400 | .416 | .458
PROS 483 | 402 | .511
V@ 390 | .364 | .409
CFS 98 | .431 | .495
Training mean prediction

mean pros. | 1 | 0.273

(FRE, GER, and ITA), for a total of 793 instances. This
serves to verify the hypothesis that the performance depends
on whether the L1 background of a test speaker has already
been seen in training or not. For the regression task, we
considered Spearman’s rank correlation coeflicient p, given
the ordinal-scaled annotations as outlined in Section 3, as in
the ComParE 2015. The evaluation measure for the classifi-
cation task is unweighted average recall (UAR), as per the
ComParE 2016 protocol.

4.2 Discussion of Results

In this section, we describe the results of the acoustic
modelling using the feature sets described in Section 2.2,
where the baseline is defined as the accuracy achieved by
ST learning when using the ComParE set. From the results
in Table 2, it can be clearly seen that on the Degree of
Nativeness task, MT consistently outperforms ST for each
feature set considered. In particular, the best MT result
yields an 11 % relative gain in p over the best ST result. The
performance gain by MT over ST is largest for the PROS
feature set (30 % relative).

As regards the performance of different feature sets, we
observe feature selection by CFS to be particularly effective
for prosody score regression. The relevance of the auxiliary
attributes is highlighted by the fact that they are selected by
the CFS method out of 6373 ComParE features, remaining
as one of the 136 features for L1 classification and 98 for
prosody score regression, respectively. Using only 98 features,
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we are able to improve over the large ComParE feature set
by 11 % relative. Further, we corroborate the findings from
[4] that prosodic features seem to be appropriate to assess
the naturalness of English produced by non-native speakers.

In contrast, only a slight improvement tendency by MT
can be observed for the Native Language task. Investigating
this further, we found that the predicted prosody scores
on the ETS corpus were all in a tight range. This can be
explained by a comparable English proficiency of all the
TOEFL examinees considered in the study, but it is also
conceivable that it might be due to low performance of the
prosody regression on the ETS corpus. Interestingly, we also
found that the various feature groups ranked differently as
to their worth for prosody regression vs L1 classification.

In Table 3, we show the results for the Degree of Nativeness
task obtained on the reduced test set of L1 backgrounds that
match the training set L1 backgrounds. As expected, the ST
performance is higher on this test set than on the full test
set, due to a larger match of training and test data. However,
the gain by MT is similar on both test sets, and in the result,
we are able to achieve up to .511 rank correlation by prosodic
features and MT learning. For prosodic features, the gain by
MT over ST is significant according to a z-test (p < .001).
In Table 3, we also show the performance of a ‘dummy’
regressor that, given the L1 of a test speaker, outputs the
mean prosody score among the training speakers with the
same L1. This achieves a p of .273, which is significantly lower
(p < .005 according to a z-test) than any of the performances
with acoustic features achieved on the same test set. We
can thus conclude that the notable regression performances
by acoustic features cannot be simply explained by implicit
L1 classification. It remains to investigate if the large gain
by including L1 is due to the regressor simply learning the
mean score of each L1 group, which could be conjectured
due to the unequal distributions per L1 group (cf. Figure
1). To this end, we conducted an additional evaluation of
Spearman’s p within each L1 group in the test set, using the
PROS features. We found an improved p by MT within each
of the French, German, and Italian L1 groups, although the
difference was smaller in magnitude (up to .044) than the
total gain by MT on the whole test set (.109). This confirms
that the L1 feature helps the regression beyond a simple
mean adjustment per L1 group.

5. CONCLUSIONS

In a large-scale study on the interdependency of auto-
matic prosody assessment and I.1 background identification
of non-native English speakers, we were able to confirm the
hypothesis that knowledge of the L1 background of non-
native English speakers helps significantly in assessing their
language proficiency and vice versa. In future work, we will
extend our multi-task learning scheme to incorporate auto-
matic prediction of L1 into prosody score regression, as well
as to use other learning models such as shared-hidden-layer
deep neural networks.
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