
CHI + GI 1987

The User Interface and Program Structure of a
Graphical VLSI Layout Editor

Kevin S. B. Szab6

Abstract

Mohamed I. Elmasry

In this paper the user interface and program
organization of the SYMPLE VLSI symbolic layout editor
is examined. The user interface is driven by a small
interpreter that is constructed from a LISP-like language
at run time and has access to a consistent library of
menus and graphical information-gathering functions.
To improve maintainability, the editor has been
constructed in a modular form with well-defined
interfaces.

V L S I G r o u p
U n i v e r s i t y o f W a t e r l o o

W a t e r l o o , O n t a r i o N 2 L 3 G 1
(519) 885-1211 x6233

interface designer's view, the cell editing process may be
considered a task of randomly placing zero-dimensional,
single-dimensional, and two-dimensional objects. These
manipulations provide control over point symbols, wire
symbols (for interconnection), and groups of symbols.

Keywords: user interface, CAD/CAM, vlsi editor,
symbolic layout

1. Introduction

When designing VLSI chips, low-level leaf cells are
still laid out manually. This is because the complexity of
placing and interconnecting devices in two dimensions is
currently best handled by a human designer coupled with
a graphical editor. However, direct manipulation of
layout geometry is not only time consuming, but error
prone. Thus need arises for a design automation tool
which allows the designer to simply and effectively
construct VLSI leaf cells in any available chip
technology. SYMPLE, an advanced symbolic layout
editor, is such a design tool [1, 2]. Symbolic layout
abstracts the details of devices and interconnection into a
small set of symbols, allowing the designer to concentrate
on the topology of the circuit while removing errors due
to violation of the many process design rules. The
symbolic notation used by SYMPLE is shown in Figure 1.
Figures 2 and 3 show symbolic constructs that constitute
devices and simple cells. The use of this notation is
discussed in detail in [3, 4]. In the layout process, a
designer must select, place, and interconnect a large
number of symbols to create a single cell. From a user-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

01987 ACM-0-89791-213-6/87/0004/0219 $00.75

A block diagram of the editor is shown in Figure 4.
The various modules communicate through well defined
interfaces and public data types. Only the Process
Interface~Mask Generator and Database
Interface~Compactor share data (for reasons of efficiency).
In the following sections we will examine the modules
that are directly involved in the editing process; these are
the user interface controller, menu, interactive input,
database, editor, and graphical support modules.

2. The User Interface Controller

In SYMPLE we have taken the approach of directly
configuring our user-interface through a state-machine
description. Foley and Wallace [5] proposed that user-
interfaces should be analyzed as state machines in order
to ensure the interface possesses continuity and
consistency. By providing a Finite State Machine (FSM)
which describes the user-interface, the tool-developer can
easily structure the man-machine communication to
conform to these principles.

The FSM is built at run time from a LISP-like
description (however, there is no LISP interpreter). The
system requires approximately 4.5 seconds (clock on the
wall time, V A X 11/785) to build the FSM for a large
65kbyte (2.5k line) configuration file. Figure 5 and 6
show the FSM description and the resulting machine.
The LISP-like syntax has a number of useful
characteristics; the main features of interest are its
simple and easy-to-parse syntax, its extensibility, and its
readability. The configuration file is compiled into an
internal data structure that is efficiently interpreted.
Each state of the machine contains either a menu, a call
to an interaction routine, or a call to an
application/editor routine. Menus become active when
their associated state becomes the current state; menus
are not shared between states. Menu contents and state
transitions are described in the same file. The coupling
between menu contents and state of the user interface
greatly enhances maintainability of the interface, and it
explicitly shows the actions associated with a menu
choice.

219

http://crossmark.crossref.org/dialog/?doi=10.1145%2F29933.275633&domain=pdf&date_stamp=1986-05-01

CHI + GI 1987
The FSM provides the binding between menus, input

functions, and data manipulation of the application.
Encoding the user interface in this form has proved to be
very flexible. State transitions, menu contents, and
even the whole look of the system, can be modified
without any source code changes. Severing the
interaction and application has prevented the user
interface from being scattered throughout the system.
This centralization improves the consistency of the
interface and the maintainability of the system as a
whole. It also encourages development of interaction
tools that are available to all modules of the system. A
very powerful feature of the system is its ability to be
reconfigured as a batch-oriented system. The input and
menu modules provide some simple text-based interfaces
which, when used with the FSM controller, provide a
command-language (script driven) interface to the editor.
This quality is important for our tool because automatic
IC layout systems, such as the Icewater Silicon Compiler
[6] can use our editor as a silicon assembler (providing
the symbol-to-mask post-conversion). It also allows
future systems to build symbolic cells by driving the
editor, in a software-tool fashion, with scripts.

At present, the FSM also provides typed variables for
primitive communication between states, and a state-
stack. Variables can contain integers, reals, or character
strings. The FSM also provides arrays of these types and
the facility to declare a variable read-only (i.e. constant).
The ability to call sections of the state machine as
subroutines is supported with the directives pushstate and
popstate. These are primarily used by the help system,
which must return to the same user state as it was

B/W Colour Symbol

0 0 green Emitter

X X red Base

V V green Collector

~ black Schottky

~] ~] red IIL Injector

[] I i white V I A

I I

V / / / / A

orange

grey

purple

Buried N +

First Metal

Second Metal

red Polysilicon

Figure 1: Partial Symbol Set.

A i n

B in

Devices In Symbolic Form

I o o o x v l

It ooovl

I x x v l

Description

NPN

PNP

IIL

Resistor

NMOS

PMOS

dan
~ J I N-depletion

~ Met, diff,
. , ¢ , Well Contacl

Figure 2: Devices Made From Symbols.

t
Vcc

t

Gnd
Figure 3a: Schematic of an STTL NAND Gate.

Output

invoked from.

3. On-line Help

The user interface FSM provides an interactive help
function at every user-input gathering state. The help
system prototype was added in a single week, including
time for the creation of help screens. When the help
system was added we noticed that the system itself was a
regular tree structured hierarchy with almost identical
menus for each state (each menu asked what the user
wanted help on, if he/she wanted more information, the
next topic, etc.). This regularity allowed us to develop a
help-machine compiler. The help-machine compiler
takes a list of menus and their entries in a hierarchical

220

CHI + GI 1987

A in

B i.._....~__

V I I w x,, ~

Vcc

Output

Gnd

Figure 3b: Symbolic Form of an STTL NAND Gate.

form (figure 7); it generates a state machine with the
necessary menus and states to traverse the help screens
for the system (figure 9). A list of help screens required
is also provided by the help-compiler (figure 8).

4. Menu Functions

The menu utilities interface with the user-interface
controller and the window manager. They have been
designed so that they may easily be replaced with
system-provided menu functions that are available on
most workstations. A number of menu styles are
available, and new styles are easily added to the library
if necessary. The basic styles available are: fixed menu,
popup rectangular menu, popup round menu, popup
slider (valuator) menu, and calculator-keypad menu.

@@@co
Figure 4: Block Diagram for The SYMPLE Editor

(constants (integer
FAILURE 0
SUCCESS 1
LEGAL 2
ABORT 3))

(variables
(integer buttonl) (coordinate polntl))

(stateMachlne
(startState S_BaseState)
(statoDef S..BaseState

(menuDef
(menuStyle fixed (polnt 0 95) (point 100 I00))
(menuHeader "SYMPLE Layout Editor')
(menuItem (text Remove) (nextS~ate S_reml))
(menuItem (t e x t Add) (nex tS ta te S_addI))))

(stateDef S_reml
(callFunctlon PlckSymbol (output point1 buttonl)

(onReturn LEGAL (nextState S_remove))
(onReturn ABORT (nextState S_homeState))))

(stateDef S_remove
(callFunctlon RemoveSymbol (input polntl buttonl)

(onReturn SUCCESS (nextState S_homeState))
(onReturn FAILURE (nextState S_message))))

(stateDef S_addl
(callFunc~ion Ge~Polnt (output polntl buttonl)

(onReturn SUCCESS (nextState S_addSymbol))
(onReturn ABORT (nextState S_homeState))))

(stateDef S_addSymbol
(callFunctlon AddSymbol (input polntl buttonl)

(onReturn SUCCESS (nextState S_homeState))
(onReturn FAILURE (nextState S..message))))

(ssateDef S_message
(callFunctlon Message (input "Operation failed")

(onReturn SUCCESS (nextState S._homeState)))))

Figure 5. User Interface FSM Configuration File

S homeState S__reml S_remove

0 FAILURE

Mere ~- SUCCESS S--messa (M g e l

\ SUCCESS
• A BOIKT

1 FAILURE

S_addl S addSymbol

Figure 6: User Interface FSM Described by Figure 5

The fixed menu occupies a portion of the screen and is
visible as long as its window is of higher priority than the
other windows at the same location. This menu is
normally used as the root of the command tree; when
an item is selected its light-button remains highlighted so
that any mode associated with the operation may be
anticipated by the user. The fixed menus reflect state
whilst the popups are fast and don't consume screen
space.

221

CHI + GI 1987

B a s e S t a t e :

add:

remove "Remove S y m b o l ' ,
add 'Add Symbo l ' ;

success "Successfully Get Point',
abort 'Abort operation';

Figure 7: Input For The Help-compiler

/u/cad/llb/symple/help/H_BaseState
/u/cad/lib/symple/help/D_BaseState/H_remove
/u/cad/llb/symple/help/D_BaseState/H_add
/u/ead/lib/symple/help/V_BaseState/V_add/S.~uccess
/u/cad/lib/symple/help/D.~aseSta%e/V_add/H_abor~

Figure 8: List of Help Screens Required

As mentioned previously, the design of a symbolic
layout involves the unstructured placement of many
symbol types; the user spends the bulk of his/her time
performing this choose and place task. We have adapted
and extended some of Baecker and Buxton's techniques
[7, 8] for selecting and placing symbols. The round
popup menu is used for the addition of symbols. To add
a symbol, the designer points to the desired location and
presses a button. All available symbols immediately pop
up around the cursor without obscuring the area
underneath; to select an item the user moves the cursor
to the symbol and releases the button. The symbol is
then added to the design. This interaction method was
investigated by Singh in his Benesh Dance Editor [9]; it
provides menu choices in the area of interest, avoids the
large arm movements experienced in systems with a
single fixed menu area, and by placing the symbols in a
consistent position relative to the cursor it encourages the

.

; Help states for "BaseState"
...

(stateDef H_BaseState
(cmllFunctlon OutputHelpScreen

(onReturn FAILURE
(nextState M_BaseSnate))

(onRe tu rn SUCCESS
(n e x t S t a t e K _ B a s e S t a t e))

)
)

(s t a t e D e f M_BaseSta te
(menuDef h e l p l

(menuHeader "What would you l i k e t o do n e x t ? ')
(menuSty le t e r m i n a l (p o i n t 0 O) (p o i n t SO 15))
(menuItem (t e x t " E x i t t he Help S u b s y s t e m ')

(nextState S._BaseState))
(menuItem (text "Main Help Menu')

(nextState H._BaseState))
(menultem (text 'More information on this topic')

(n e x t S t a t e M2_BaseSta te))
)

)

(s t a t e D e f M2_BaseSta te
(menuDef h e l p 2

(menuReader 'What would you l i k e d e t a i l o n ? ')
(menuSty le t e r m i n a l (p o i n t 0 O) (p o i n t 60 15))
(menuItem (text "Exit t he Help Subsystem')

(n e x ~ S t a t e S _ B a s e S t a t e))
(menuItem (t e x t "Main Help Menu')

(n e x t S t a t e H _ B a s e S t a t e))
(menuItem (t e x t "Sack t o l e s s d e t a i l e d h e l p ')

(n e x ~ S t a t e H r l a s e S t a t e))
(menuItem (t e x t "Remove Symbol ')

(n e x ~ S t a t e D R a s e S % a t e / H _ r e m o v e))
(menuItem (t e x t "Add Symbol ')

(nextState D_BaseState/H_add))
)

)

; Help states for "Remove Symbol"
; ...

(s t a t e D e f D_BaseSta te /H_remove
(c a l l F u n c ~ i o n S u t p u t H e l p S c r e e n

(onReturn FAILURE
(n e x t S t a t e D_BaseSta te /M_remove))

(onReturn SUCCESS
(n e x t S t a t e D_BaseSta te /M_remove))

)
)

(s t a t e D e f D_BaseState /M_remove
(menuDef h e l p 3

(menuHeader "What would you l i k e %o do n e x t ? ')
(menuSty le t e r m i n a l (p o i n t 0 01 (p o i n t 60 15))
(menuItem (t e x t ' E x i t t h e Help S u b s y s t e m ')

(n e x t S t a t e S _ B a s e S t a t e))
(menuItem (t e x t "Main Help Menu')

(n e x t S t a t e H _ B a s e S t a t e))
(menuItem (text 'Main Menu for thls group')

(n e x t S t a t e M2_BaseState))
(menuItem (text "Next topic (Add Symbol)')

(nextState D_BaseState/R_add))

; Help s t a t e s f o r Add Symbol, S u c c e s s f u l l y Get P o i n t ,
; and Abor t O p e r a t i o n a r e n o t shown

Figure 9: The State Machine For The Help System

user to develop muscle-memory.

The rectangular menus are sized and formated by the
menu-system according to parameters that were placed in
the FSM configuration file. These parameters set the
style, the menu size (for popups) or position on the
screen (for fixed menus) , a list of text or iconic menu
items, and the number of columns or rows desired. The
menu is presented as an array of light buttons.

All actions provided by the menu and interaction
systems can be accessed with a single button device. Use
of a single button device reduces new-user confusion [10]
and allows the system to work with a stylus, which is
preferred by many users (e.g. artists). Common
functions such as help, abort and undo can be bound to
extra buttons on the input device, to menu choices in the
appropriate menu, or to light buttons at a fixed point in
the display. In the future we will allow keystrokes to be
bound to menu choices (a single keystroke will be
equivalent to a menu pick). This will provide the expert
user with a two-handed high-bandwidth communication
path and allow us to implement Shneiderman's B.L.T.
approach [11] for fast menu selections. In the BLT
approach an expert user can short-circuit the verbose
menus by typing a short string of letters; each keystroke
represents a menu choice. An expert user can quickly
move through large hierarchical menu systems with such
an interface.

5. Interactive Input

The interaction library contains a number of general
purpose tools for gathering points, lines, and areas from
the user. Lines and boxes are rubber banded and
optionally snapped to a grid associated with the window.
The data from these routines are communicated to
application or other interaction routines by variables
declared in the FSM configuration file.

222

The symbolic notation requires all interconnect wires
to be horizontal or vertical. To ease entry of these lines,
the wire interaction routine decomposes angled lines into
two parts, one horizontal and the other vertical. The
orientation of the lines (i.e. which piece is horizontal
and which is vertical) depends on the sign of the cursor's
Idxl - Idyl. In the example of Figure 10-c, the cursor has
horizontal motion, resulting in rubber-banding where the
wire connected to the cursor (the alignment wire) is also
horizontal. The wire section between the jog and the
start point (the interconnect wire) is perpendicular to the
alignment wire. Figure 10-f shows vertical cursor motion.
The net effect is that the alignment wire follows the
cursor and that the wire orientation can be altered
through cursor-gestures, without a menu or button
choice.

6. The Database, Editor, and Display Manager Modules

With the exception of the compactor, all modules
communicate with the database through four major
routines:

DbAddSymbol(cell, symbol)
DbDelSymbol(c e l l , symbol)

DbSearchArea(c e l l , a r e a , options)
DbNextSymbol(~symbol)

The DbSearchArea 0 initializes a search of the database,
and successive calls to DbNextSymbol returns the items
within the given area. The symbol type is a union of all
possible symbols; it forms a basic symbol object. This
interface, in conjunction with an object oriented
programming approach, simplifies communication with
the other parts of SYMPLE. For instance, a YANK-area
operation consists of a single loop that calls
DbNextSymbol and links the output onto a linked list.
UNDO is implemented as a single YANK-area that occurs

DESTINATION

o F 'T
START

a) Start Wire b) Jog To Dest. c) Add Wire

CURSOR 'T
START

DESTINATION

O O O

O

d) Start Wire e) Jog To Dest. if) Align Wire Follows
The Cursor Movement

Interconnect

Alignment Wire

Figure 10: Interaction During Wiring

CHI + GI
before the actual edit step. The UNDO action occurs
when the yanked data is PUT back into the database
(again, only a five-line loop). The editor itself is very
easy to maintain and extend; the most complicated edit
routine at this time is the DELETE function, shown in
figure 11. To simplify the editor and allow complete
flexibility in the order of symbol placement the editor
does not immediately recognize illegal symbolic
constructs. Symbol syntax checking and mapping of
symbolic form to mask form is provided by a secondary
scan of the completed layout [2].

The Display Manager is responsible for keeping the
screen display in synchronization with the database.
This module decouples the database and editor from the
window manager. The edit code communicates Add and
Delete requests to the database, and then requests the
display manager to redraw the affected area. While this
may result in more redrawing than necessary, the
simplification of the rest of the system is enormous, and
the screen handling software is centralised. The ability
to redraw any area of the screen also allows the system
to be used with window managers which do not retain
obscured portions of the screen. The Display Manager
also maintains multiple cell views. Each view may
examine different areas of the cell in separate windows
(neither the editor or database require this knowledge).

/*
* Name : EdDelSymbol
* Imports : argl:pointl (CM_CDSRD) arg2:point2 (CM_COORD)
* Returns : SUCCESS J FAILURE
* Purpose : De le t e a symbol from t h e d a t a b a s e .
*/

d e f i n e Window CmGetCoord(1).window /* Paramete r s (v a r i a b l e s) * /
d e f i n e Pointl CmGetCoord(1) .po in t / * from User I n t e r f a c e * /
d e f i n e P o i n t 2 CmGetCoord(2) .po ln t /* C o n t r o l l e r * /

int
EdDelSymbolO
(

extern boo1 DbDelSymbolO;
e x t e r u Ed_yaukO;
e x t e r n ED_YANK_BUF Ed_udBuffer ;
e x t e r n ED_YANK_BUF Ed_ykBuffer ;
ED..SYHBOL *symPtr;
RECTANGLE s e a r c h a r e a ;

/* Undo B u f f e r * /
/* Yank B u f f e r * /

/* e n s u r e t h e p o i n t i s i n the p r o p e r window type * /
i f (c e l l = DiWindToCel l (Window) == DB_NO_CELL) {

r e t u r n (FAILURE) ;
)
s e a r c h a r e a . l l = P o i n t l ;
s e a r c h a r e a . u r = P o i u t 2 ;
U tOrde rRee t (~ s e a r e h a r e a) ;
E d _ y a n k (c e l l , ~ s e a r e h a r e a , ~Ed_ykBuffer) ;
Ed_yank(cell, ~ s e a r e h a r e a , ~Ed_udBuffer) ;

symPtr = Ed_udBuf f e r . sym Li s t ;
w h i l e (symPtr) {

(VgID)DbDelSymbol(cell, ~(symPtr->symbol)) ;
symPtr = symPt r ->nex t ;

DiRedraw(cell, ~(Ed_udBuf fe r . a r ea)) ;
return(SUCCESS);

Figure U: The Delete Routine

1987

223

C H I + OI 1987
7. Window Manager

SYMPLE communicates with the graphics device
through the Window Manager and a device independent
graphics package. The graphics package was written at
Waterloo and is loosely based on the GKS standard [12].
The Window Manager provides multiple overlapping
windows and drawing operations" for these windows. For
ease of porting, the window system has an interface
which is functionally compatible to the window systems
provided with high performance workstations. Since our
environment still includes many older pieces of graphics
hardware, the windowing system also supports multiple
windows on less-intelligent devices such as the AED512
and the Orca3000.

The window manager splits windows into a number of
maximal horizontal strips; a drawing operation attempts
to draw in each of these strips in turn by mapping the
strip to a viewport and relying on the graphics package
to clip superfluous output. This crude technique does not
damage performance of our editor because our graphics
terminals communicate to the host through serial lines
and hence are I/O limited (clipping occurs in the host,
not at the graphics terminal). In the window manager,
the colour, stipple, fill-style, line-style, and write-mask
attributes are all bound to styles in a manner similar to
GKS; all graphical I/O is done in terms of styles. This
interface improves the editor's portability because remote
sites can easily tailor the style table to their graphical
device's characteristics. It also simplifies the application
code for drawing; a routine merely picks a style and
starts to draw. The editor guarantees that symbolic
features are drawn in a known order and thus the display
can still take advantage of colour table and stippling
techniques that simulate overlapping and transparency
[13]. Interactive routines draw in preset interactive
'styles' that map into either a reserved bitplane or into a
XOR drawing mode (for a colour or B/W display
respectively). A shape drawing function is also provided.
It provides the application code with limited segments;
symbolic I/O only requires a handful of symbols to be
drawn and these are ideally mapped into these segments.
The shape-table is initialized at run time. The symbols
may be tailored for device (or site) dependent
considerations.

The window manager differs slightly from other
implementations because of its support for fast menu
operations. A special overlay window is provided for use
by pop-up menus. Basically an efficiency extension, this
window avoids splitting underlying windows into
obscured/visible portions and attempts to operate in a
non-destructive manner. On multiple bit-plane systems
the overlay window is assigned to an unused bitplane; on
systems with bitblit[14, 15] the obscured section is copied
off-screen and then on-screen. If there is no hardware of
either kind, the system gracefully degrades to the slower
draw-menu/redraw-obscured-contents behaviour. During
the time the overlay window is visible no other graphical
I/O may occur. The overlay window is an important
extension for keeping pop-up menus sufficiently fast for
smooth interaction, especially when the display is a
dumb raster device which communicates via a 9600 baud
serial link.

8. Summary and Conclusions

It is difficult to build a user interface which
accommodates a wide range of users; the verbose system
is good for a novice but tedious for experienced users. A
CAD system must be flexible enough to support the full
range of designer expertise: the novice user, the casual
user, and the expert user. SYMPLE supports them
through unobtrusive menus, a user-tailorable interface,
and extensive on-line help with various levels of detail
and tutorial capability.

The user-interface controller and set of
menu/interaction routines form a mini-UIMS (User
Interface Management System) which is both more
powerful and smaller in size than its hard-wired
counterpart. It is a simple and effective user interface
which is also being used as the basis for new interactive
tools that are being built by the VLSI group.

A prototype of SYMPLE was released on the
University of Waterloo CAD Tools tape in October 1986.
Further information on the notation and construction of
SYMPLE is available in previous publications
[1, 2, 3, 16, 17].

9. Acknowledgements

We would like to thank Jim Leask, Mark Pulver, and
Joe Morrison for their help in this work. Jim Leask is
co-author of SYMPLE and shares credit for many of the
ideas presented here. Joe Morrison wrote the help-
system/help-compiler; Mark Pulver worked on the
device-independent graphics package. We would also
like to thank the members of the VLSI group, the
Computer Graphics Laboratory, and the referees for
their help.

10. References

[11

[2]

[3]

K. S. B. Szabo and M. I. Elmasry, Symple: A
Process Independent Symbolic Layout Tool For
Bipolar VLSI, Proceedings of ICCD, 1984, IEEE,
Port Chester, New York, 474-47.

K. S. B. Szabo, J. M. Leask, and M. I. Elmasry,
SYMPLE: A Symbolic Layout Tool For Bipolar
and MOS VLSI, lEE Computer Aided Design (In
review), 1987, IEE.

K. S. B. Szabo, J. M. Leask, and M. I. Elmasry,
Symbolic Layout For Bipolar and MOS VLSI,
IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems (To Be Published),
1987, IEEE Circuits and Systems Society.

224

[4]

[5]

[6]

[71

[8]

[9]

[10]

M. I. Elmasry, Digital Bipolar Integrated Circuits,
John Wiley and Sons, New York, USA, 1983.

J. D. Foley and V. L. Wallace, The Art of
Natural Graphic Man-Machine Conversation,
Proceedings of I.E.E.E., April, 1974, 462-470.

P. A. D. Powell and M. I. Elmasry, The
ICEWATER Language and Interpreter, 21st
Design Automation Conference, June, 1984, IEEE,
98-102.

R. Baecker, Towards An Effective
Characterization Of Graphical Interaction, SeiUac
H Workshop On Man-Machine Interaction, 1980,
North-Holland Publishing Co. IFIP.

W. Buxton, An Informal Study Of Selection
Positioning Tasks, Proceedings Graphics Interface
1982, May, 1982, NCGA (National Computer
Graphics Association), Toronto Ontario, Canada,
323-328.

B. Singh, J. C. Beatty, K. S. Booth, and R.
Ryman, A graphics Editor for Benesh Movement
Notation, CS-82-41, University of Waterloo
Computer Graphics Lab, Waterloo, December,
1982, 120 pages.

L. A. Price and C. A. Cordova, Use of Mouse
Buttons, CHI Proceedings, December, 1983,
IEEE, 262-266.

[11]

[12]

[131

[141

[15]

[16]

[17]

CHI + GI 1987

B. Shneiderman, Design Issues and Experimental
Results for Menu Selection Systems, CS-TR-1303,
CAR-TR-26, University Of Maryland, College
Park, July, 1983, 37 pages.

M. Pulver, J. Morrison, and K. Szabo, A
Graphics Package for Interactive CAD
Applications, VLSI Group, University of
Waterloo, January, 1985.

J. Ousterhout, Caesar: An Interactive Editor For
VLSI Layouts., VLSI Design, 4th Qtr, 1981, Palo
Alto, California, 34-38.

W. M. Newman and R. F. Sproull, Principles Of
Interactive Computer Graphics 2nd Edition.,
McGraw - Hill, 1979.

J. D. Foley and A. Van Dam, Fundamentals of
Interactive Computer Graphics, Addison Wesley,
Reading, Massachusetts, 1982.

M. I. Elmasry, (ed.), Digital VLSI Systems,
I.E.E.E. Press, 1985.

M. I. Elmasry, Stick-Layout Notation For Bipolar
VLSI, VLSI Design, March-April, 1983, Palo
Alto, California, 65-69.

225

