
CHI + GI 1987

Designing for Designers:
An Analysis of Design Practice in the Real World

Mary Beth Rosson

Susanne Maass

Wendy A. Kellogg

IBM Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, New York 10598

Abstract

Twenty-two designers were interviewed about their design
of interactive systems. They were asked to select a recent
project having a significant user interface component, and
were probed about the general design process invoived, how
the design of the user interface fit into that process, and
their personal strategies for exploring ideas. Analysis of
their responses pointed to two models of the design process.
The relationship of these models to the type of user testing
done and the strategies used for generating ideas is dis-
cussed, especially with respect to the implications for de-
veloping tools to support design.

Rdsumd

Nous avons men6 une enqu~te aupr6s de vingt-deux
ing6nieurs syst6mes, ~ qui nous avons demand6 d'analyser
un projet de leur choix comportant une part importante
d'interface utilisateur. Les questions portaient
essentiellement sur la m6thode g6n6rale de conception du
syst6me, l'int6gration de l'interface utilisateur dans la con-
ception g6n6rale du syst6me, et sur leur strat6gie
personnelle de recherche d'id6es. L'analyse de leurs
r6ponses r6v61e leur pr6f6rence pour deux modules de con-
ception particuliers. Nous analysons la d6pendance de ces
mod61es avec le type de tests ~t effectuer pour v6rifier
l'interface utilisateur, ainsi que les strat6gies de recherche
d'id6es, sp6cialement dans le but de d6velopper des outils
de conception.

Keywords: Design practice, Tools for design, Usability engi-
neering

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1987 ACM-0-89791-213-6/87/0004/0137 $00.75

Introduction
The design of interactive computing systems is a fas-

cinating problem that has attracted considerable attention
in recent years. The attention is due in part to a realization
that the science of human-computer interaction is still in its
infancy, and that we may never know enough about how
users interact with computers to guarantee good system de-
sign. In addition, the design process itself is of interest, as
another example of a complex, interesting human activity
that might be supportable by advanced computing systems.

Research on interactive system design has taken two
perspectives, recommendations regarding the process of de-
sign, and tools to support the process. Carroll, Thomas, and
Malhotra [6] observed a real designer working on a prob-
lem, noting a number of contrasts in this process to the
classic view of top-down hierarchical design. Gould and
Lewis [10] proposed some basic principles to be followed in
design; Boies, Gould, Levy, Richards and Schoonard [2]
then analyzed a case study in which they applied these
principles. Their work reflects a philosophy that has been
widely promulgated: the design of interactive computing
systems must proceed iteratively, and must involve early
and sustained interaction with prospective users (see [1, 5,
9] for more discussion of usability engineering, as this design
philosophy has come to be called.)

A complementary approach to design has focussed on
the development of tools for designers to use. Given an it-
erative design process, we can attempt to provide tools that
make this iteration occur as smoothly as possible. The
proffered tools may simply represent a general program-
ruing environment [8, 18]; more recently, however, there
has been great interest in the possibility of user interface
management systems. These systems are intended to sepa-
rate the development and control of the user interface to a
system from that of its underlying functionality. The sys-
tems generally provide user interface development tools
(e.g., menu layout, error and help management) as well as
a runtime manager to handle the communication between
user interface and application during actual system use (see,
e.g., [4, 11, 15]).

The work we report here represents the beginning of
an effort to combine these two perspectives on the design
problem. We believe that good tools can have a great ira-

137

http://crossmark.crossref.org/dialog/?doi=10.1145%2F29933.30873&domain=pdf&date_stamp=1986-05-01

CHI + GI 1987
pact on the quality of interactive systems that are designed.
But as for the case of interactive systems in general, we be-
lieve that the design of successful tools must begin with
study of the target users and their tasks -- real designers and
their design practices. The literature provides remarkably
few examples of research in this vein (cf. [12, 13]). As our
own starting point, we have interviewed a number of de-
signers about their design experiences.

Interview Procedure
Our goal in this work was to gain as much information

as possible about the design process, not to test formal hy-
potheses. We also wanted to get this information in the
context of real world problems, making the introspective
interview an attractive methodology.

In an effort to recruit as wide a range of designers as
possible, we used two complementary procedures. Some
designers were recruited via a notice on company electronic
bulletin boards. The notice described our interest in design,
focussing on interactive systems for unsophisticated users,
and asked for short descriptions of the projects designers
had worked on; this notice evoked 41 responses. We then
selected projects that represented as much variety as possi-
ble with respect to application, operating environment, and
user interface style. This method resulted in 12 designers.
We identified 10 additional designers ourselves, both by re-
questing participation of designers visiting our research lab,
and by following up on particular projects that were known
to us. The final set included 17 designers who described
designs done while working for IBM, and 5 from other or-
ganizations.

The interview was structured into four main sections.
In the first we obtained information about the designer's
background (job, length of design experience, operating en-
vironments and design projects). The next section asked
about the general design process associated with the project
they had selected (design goal, size and coordination of
project, identifiable stages in the work, and key factors in-
fluencing the outcome). The third section focussed on the
user interface component (where it fit into the process, what
constraints were felt, what principles drove its design, to
what extent consistency was an issue, what parts of the
interface were most difficult to design or implement, what
tools if any were employed, what kind of user testing was
involved, and what problems were identified after com-
pletion of the system). The final section requested design-
ers to introspect about idea generation (how they got ideas
in the first place, how they refined these ideas, how they
tracked idea status, and what might make idea generation
easier or more satisfying).

Over half of the interviews (13) were conducted over
the phone. Regardless of interview medium, the questioning
was always conducted by a single experimenter, with one
or more others present to follow up on answers that seemed
unclear, or on comments that seemed particularly interest-
ing. Interviews were recorded and later transcribed with
assistance from notes taken during discussion. An interview
typically took 1.5 hours, but some took as much as 2.5
hours.

The Design Population
Participants' current positions ranged from program-

mers, software developers, and technical staff, to research-
ers and University professors. Experience in design varied
from 5 to 26 years.

Of the projects described, 13 were designed for
mainframe or mid-sized timesharing environments and 9
designed to run in an intelligent workstation environment.
The projects represented a wide variety of applications, in-
cluding office support (general personal services, electronic
mail, pop-up typewriter), various types of tracking systems
(site performance, facilities and budget planning, inventory
control, education management, manufacturing control),
information or function access (on-line information retrieval,
multi-application interface), personal computer services (disk
maintenance, error diagnostics), an online tutorial, a graph-
ics system, and software development support (UIMS, pro-
gram library management, visual programming aids,
code-generation support). The size of the projects ranged
from individuals working alone to a group of as many as
12-14 during system implementation; project length varied
from a few months to as much as 8 to 10 years. Projects
also varied with respect to their business goals, with five
scheduled for release as external products, two as internal
products, eight as local Information Systems (I/S) support
tools, two as research versions of future external products,
and five as research projects with no commercial plans.

Interview Findings
The interview methodology produced a large amount

of qualitative data, not only about the process of design, but
also designers' beliefs about how user interfaces ought to
be designed. In this brief report, we will summarize salient
features of the design processes described to us, and their
implications for how we might best support the process;
another paper [14] describes some of our findings regarding
designers' beliefs about user interface design.

The General Design Process

Of particular interest to us were designers' comments
regarding design iteration and user testing; these are im-
portant tenets of the emerging philosophy of usability engi-
neering, and we wanted to understand their role in these
actual design accounts.

Iteration in design.

Our participants were almost evenly split in the proc-
ess they followed during design and development. Ten of
them described an incremental development model, in which
design and implementation of the system occurred simul-
taneously in a highly iterative fashion. The other twelve
described a phased development model, in which there was a
design phase followed by an implementation phase, with
some sort of evaluation marking the point between design
and implementation. However, within this group of twelve,
three designers noted that the design phase itself had been
iterative, in the sense that prototypes had been generated,

138

tested and revised; the others indicated that the more tradi-
tional "design on paper" approach had been used.

As one might expect, design model employed was very
much a function of the business status of the project: all of
the projects scheduled for external or internal release as
products were associated with the more tightly controlled
phased development model, whereas all of the research-
oriented projects followed the incremental development
model. Designers working on I /S support tools were split,
with three choosing the incremental model and five the
phased model.

Another factor associated with design model was the
environment in which the work was done. The hardware
component seemed relatively unimportant, with mainframe
and intelligent workstation projects falling into both model
categories. However, projects undergoing incremental de-
velopment tended to use interpretive languages: seven of
the 10 cases used an interpretive language; for the three
other examples, one used an incrementally compiled lan-
guage, and the other two relied on special tools for iterating
on just the user interface. Notably, in the three cases of
design iteration within the phased model, the iteration was
done in a different, interpretive language than the final im-
plementation. In contrast, for the 10 cases of non-iterative
phased development, only two projects chose to use an in-
terpretive language.

Our analysis of these design descriptions suggests that
there are two ways to think about prototyping as part of an
iterative design process. In the incremental model, the pro-
totype is the system, and the iteration that takes place ulti-
mately evolves into the final system. At early points in
development, any given function may be only partially im-
plemented, while the designer explores additional function
in parallel. In the phased model, iteration is limited to the
initial design phase, and the prototype is a simulation of
function that will not be implemented until later.

These two characterizations of prototyping in design
(see also [3]), are of course idealizations. They do however
allow us to understand some of the tradeoffs inherent in the
two approaches. The evolutionary approach demands a
situation permitting flexibility in the design result; the final
design will be known only at the end of the process. It has
the advantage that all design is done in the context of the
target environment, so that system constraints are felt and
dealt with all along the way. It also seems more efficient, in
that the final system is being built throughout the process.
In contrast, the simulation approach lends itself to a situ-
ations needing tighter controls, because at some point the
design is accepted and then implemented. Because the
prototyping is a simulation, some system constraints may
not be felt until the implementation phase, and this may in-
duce compromises in the original design. On the other
hand, in cases where the target environment is complex, an
independent simulation tool might support more freedom in
initial idea exploration. Further, because of the simulation
status of the prototype, it may be possible to examine a
greater breadth of function earlier in the process, and non-
optimal ideas may be easier to discard.

CHI + GI
User testing.

Most designers described some sort of user contact in
their projects, varying from active user involvement in the
generation of design requirements to rather belated field
tests once a system had been completed. In general, though,
most testing was informal (with no special attempt to select
representative users and representative tasks) and occurred
relatively late in the development cycle. Six designers made
an effort to talk to users in advance, some having at least
one end-user on their design teams. Interestingly, all of
these projects were I /S support projects; perhaps because
the target audience in such cases is a well-defined and ac-
cessible body, early interaction with users is a more natural
part of the process.

Only one of these six projects followed this initial user
input with user testing on early prototypes; two others pro-
vided demonstrations to users for their comments. In addi-
tion, two projects that began without any initial user study
tested interactive prototypes; two more built demonstration
systems for user reactions. In all of these cases, the design-
ers indicated that the early user input had been very useful,
in contrast to designers who were provided with the results
of human factors testing, or field tests, late in the process.
Many designers specifically mentioned inadequate informa-
tion about their users' needs, or an inability to do early
testing with users, as a major problem in the design of their
system; reasons given for these problems included user dis-
interest, lack of prototyping tools, lack of resource,
confidentiality of the product under development, and
problems with the group assigned testing responsibility.

The nature of the user testing done varied as a func-
tion of the business goal of the project. In all cases where
the final outcome was to be a system used in a business
setting, at least some form of evaluative testing occurred
somewhere in the process -- sometimes both early and late
in the cycle, but most often in the form of an internal or
external field test after a first version had been imple-
mented. For the research projects, user contact was much
less evaluative in nature, being seen more as a "show and
tell" process that might lead to additional interesting ideas.

A surprising finding was that the likelihood of early
user testing was not related to the design model being fol-
lowed: designers using incremental development were no
more likely to offer an early interactive prototype to users
than were those using the phased approach.

This observation points to another possible tradeoff
between the two types of prototyping described earlier.
Several of the designers using the incremental approach
commented that one of the main reasons for not bringing
users in to interact with their early prototypes was the sys-
tem's lack of robustness; implementing existing function to
a level adequate for usability testing would have taken time
away from exploring new function. A special-purpose tool
designed explicitly for simulating enough function to sup-
port user scenarios might have helped these designers to
better assess their design as they progressed, as well as pro-
viding a critical exploratory evaluation tool for designers
using the phased approach.

1987

139

CHI + GI 1987
Design o f the User Interface

Recently, there has been a good deal of disctission
about the benefits of separating the user interface of a sys-
tem from the rest of system functionality. The argument has
been that this sort of modularity may aid system design in a
number of ways, by promoting iterative development of the
user interface and perhaps making it possible for experts
other than application programmers to develop the interface
[19]. In our interviews, we asked designers if the user
interface to their projects had been designed or imple-
mented separately from the rest of the system.

The replies we received were quite interesting. Eight
designers acknowledged such a separation, with all but one
indicating that the user interface had been considered first.
Eleven others indicated that the user interface had not been
considered distinct from the rest of the system during de-
sign; many seemed to have real difficulty in even imagining
how such a separation might apply to the system they had
designed, and a few made strong statements about the in-
advisability or impossibility of making such a distinction.
Two others indicated that while there was no distinction
initially, they began to see and make one as the design
progressed.

An important distinguishing characteristic between the
designers making and not making a user interface distinction
was the extent to which system functionality was under-
stood in advance. So for example, in the group treating the
user interface as a separate component, two acknowledged
explicitly that the function was known before beginning;
two others were developing systems that were essentially
new interfaces to existing systems; the other four were de-
veloping systems to support function with which they
themselves were very experienced. In contrast, the other
group .of designers was working on systems for unfamiliar
user sets or on function that was breaking new ground. The
two designers who had described a change in the way the
interface was viewed indicated that as the design
progressed, they began to recognize common operations
that could be modularized in the user interface.

These findings raise intriguing questions about the
meaning of "user interface," especially in the context of
design. While it is quite common for researchers in the field
of human-computer interaction to think of the user inter-
face as simply the dialog between the user and the system,
people engaged in system design often balk at this dis-
tinction. For them, the user interface is "what the user
does", and this includes not just dialog, but dialog with
something -- the system function. The user's perception of
the system is an interaction of the function available and the
procedures provided for accessing it, and it is this perception
that designers are striving to optimize (see also the dis-
cussion of usability found in [7]).

The findings also point to questions about the gener-
alized use of tools that guide the appearance and feel of the
user interface. In some situations, a tool encouraging a
particular style of menu layout and interaction techniques
may be very appropriate -- situations in which the applica-
tion domain is understood well enough to determine effec-
tive interaction styles in advance. But for novel designs, it

may be desirable to use less specialized tools, ones that
make no assumptions about interaction style, so that system
function and the interface to it can evolve together. There
was some evidence for this in our interview results: five
designers reported the use of tools associated with a very
specific user interface style (in all cases, a screen design and
control facility); four of the five were ones who began with
a clear understanding of the function to be provided. In
contrast, the designers with more open-ended functional
goals tended to work with rich, less constraining tools.

There remains a question as to whether we can guide
the design of function as well as the interface to it. Ac-
cording to our designers, a critical aspect of getting the right
function is a comprehensive understanding of the task do-
main and of the target users. A design tool in and of itself
will provide none of this understanding -- the designer must
hold and practice the philosophy of user-centered design.
However, it may be that by providing comprehensive,
easy-to-use prototyping tools for simulating user scenarios,
we can make early interaction with users a more attractive
component of early design.

Generating Ideas in Design

When asked to introspect on the source of their most
creative or interesting ideas, almost all of the designers
found it difficult to articulate where their ideas came from,
and were able to make little distinction between the process
of getting an idea and that of developing or refining it. To
get as comprehensive a picture as possible, therefore, we
collapsed introspections about generating and refining
ideas.

Three general categories of activities accounted for
over 60% of designers' comments; these were logical
analysis (analyzing and classifying system function, study-
ing data structures, top-down design languages, representa-
tional techniques such as diagramming),
discussion~consultation (talking with colleagues, experts or
users about design ideas, brainstorming), and what we have
labeled development activities (prototyping or implementing
function, making "to do" notes). Other activities included
looking at other systems, literature reviews, usage scenarios,
preliminary meetings with prospective users, relevant prior
experience, intense concentration on the design problem,
and periods of noninvolvement with the design problem.

Interestingly, although individual designers seemed to
have a hard time describing their creative processes, the
composite picture that emerged fits well with the traditional
psychological literature on prolalem solving and creative
thought (see [17] for an overview). Traditional work on
creative problem solving emphasizes the importance of the
initial representation of a problem; the logical analysis cat-
egory reflects this type of activity. If a problem is not solv-
able in terms of the initial representation, then additional
information must be sought to support a restructuring of
this representation; designers' reported consultation with
others, and their gathering of information generally can be
viewed as examples of this restructuring. Another finding
which appeared to map well onto the traditional account
were comments describing initial intense concentration fol-

140

lowed by a decision to put the problem aside; such a strat-
egy has often been observed to lead to spontaneous
problem solutions.

The "development activities" category was interesting
in that it does not as clearly map onto general observations
of problem-solving. It may, however, reflect a later stage in
the process, a stage when ideas are represented more
concretely for evaluation purposes. This notion is consist-
ent with the finding that such techniques were more likely
to be reported by designers with well-specified starting
goals than by designers working with very general, open-
ended design goals. There was a complementary distinction
in the use of logical analysis strategies, with designers who
were working on open-ended goals reporting more reliance
on this category of techniques than designers with well-
specified goals. Discussion and consultation with colleagues
was important to both groups of designers, although one
may speculate that the nature of the discussion depended
on whether the designer was at the problem representation
or idea evaluation stage.

It is difficult to know how best to support the creative
process in design, a process that is admittedly hard to artic-
ulate and often mysterious (as one designer put it: "I just
sort of scratch around."). There exist tools intended to fa-
cilitate logical analysis; some systems even hope to auto-
mate the process of generating code from some type of
formal notation [16]. And certainly tools exist for proto-
typing; both types of prototyping described earlier would
seem relevant to this process of generating and refining
ideas. But designers' introspections also point to more in-
formal methods of idea generation, often referring to dis-
cussions with colleagues, domain experts, or users. This
suggests that one requirement for a design environment is a
communication facility oriented toward explanation and ra-
tionalization of design ideas.

Some Final Comments
Our analysis of the interview data points to two types

of prototyping tools. For incremental development, de-
signers need a rich, modular, prototyping environment: be-
cause it is assumed that the prototype will grow into the
final system, and because the design is likely to change in
unknown ways, modularity of tools will be especially im-
portant. For phased development, continued iteration on a
design may be impossible. One approach would be to ig-
nore this model of development, under the assumption that
it will always fail and eventually be replaced. But a more
constructive solution would be to work within its con-
straints, to focus on providing a tool that would allow as
much iteration as possible. Key will be the provision of
prototyping tools for simulating function-interface combi-
nations early in design, at the time when most flexibility
exists. Good simulation tools would be useful within the
incremental model as well, because they would support user
testing of function prior to availability of a robust imple-
mentation.

Our analyses also point to a distinction between two
classes of user interface design tools. For some design

CHI + GI

problems, the design space is wide enough that an initial
decision about the most effective user interface will be im-
possible; for more well-specified problems, a designer may
feel confident about (or business reasons may dictate) a
particular style of interaction. These two situations call for
different kinds of tools -- for the former, an integrated, rel-
atively unconstrained environment, where interface and
function can evolve together; for the latter, a structured tool
that guides the designer toward the best implementation of
the chosen interaction techniques.

Our conclusions at this point are of course only tenta-
tive; they are based on qualitative analyses of introspective
reports. But they do suggest avenues of research in the tool
domain. What are the characteristics of a quick but com-
prehensive tool for simulating function and interface for
early testing? How much "simulated functionality" will be
necessary for realistic usability testing? Will simulators
promote usability engineering within both incremental and
phased development models? Will the availability of spe-
cialized user interface tools inhibit designers' creativity in
developing optimal function-interface combinations? These
questions can be answered only by studying design tools in
the context of actual design practice.

Acknowledgements
Thanks to David N. Smith, Tim Breen, and John Richards
for discussions on this project as well as on the more general
topic of tools for design.

References
1. Bennett, J.L. Managing to meet usability requirements:

Establishing and meeting software development goals.
In Visual Display Terminals, J. Bennett, D. Case, J.
Sandelin and M. Smith, Eds., Prentice-Hall, Englewood
Cliffs, NJ, 1984, pp: 161-184.

2. Boies, S.J., Gould, J.D., Levy, S., Richards, J.T., and
Schoonard, J. The 1984 Olympic Message System -- A
case study in system design. Commun. ACM, in press.

3. Budde, R. and Zullighoven, H. Internal Report,
Gesellschaft fur Mathematik und Datenverarbeitung,
GMD - F2G2, D 5205 St.Augustin, 1986.

4. Buxton, W., Lamb, M.R., Sherman, D., and Smith, K.C.
Towards a comprehensive user interface management
system. Computer Graphics 17, 3 (July 1983), 35-42.

5. Carroll, J.M. and Rosson, M.B. Usability specifications
as a tool in iterative development. In Advances in
Human-Computer Interaction, Vol 1, H. R. Hartson,
Ed., Ablex, Norwood, NJ, 1985, pp. 1-28.

6. Carroll, J.M., Thomas, J.C. and Malhotra, A. A
clinical-experimental analysis of design problem solv-
ing. British Journal of Psychology 71, (1979), 143-153.

7. Dehning, W., Essig, H. and Maass, S. The adaptation
of virtual man-computer interfaces to user requirements
in dialogs. Springer-Verlag, Heidelberg, Germany,
1981.

8. Goldberg, A. and Robson, D. Smalltalk-80: The Lan-
guage and its Implementation. Addison-Wesley, Read-
ing, Mass., 1983.

1987

141

CHI +

9.

GI 1987

Good, M., Spine, T.M., Whiteside, J., and George, P.
User-derived impact analysis as a tool for usability en-
gineering. In Human Factors in Computing Systems:
CHI'86 Conference Proceedings, (Boston, Mass.,
April). ACM, 1986, pp. 241-246.

10. Gould, J.D. and Lewis, C. Designing for usability: Key
principles and what designers think. Commun. ACM
28, 3 (1985), 300-311.

11. Green, M. The University of Alberta User Interface
Management System. Computer Graphics 19, 3 (1985),
205-213.

12. Hammond, N., Jorgensen, A., MacLean, A., Barnard,
P., and Long, J. Design practice and interface usability:
Evidence from interviews with designers. In Human
Factors in Computing Systems: CHI'83 Conference
Proceedings (Boston, Mass, Dec.), ACM, 1983, pp.
40-44.

13. Lammers, S. Programmers at work. Microsoft Press,
Redmond, Washington, 1986.

14. Maass, S., Rosson, M.B. and Kellogg, W.A. User-
friendliness, system consistency and other hard-to-

define principles: Interviews with designers. To appear
in Proceedings of Software-Ergonomie "87, (Berlin,
Germany), Teubner, 1987.

15. Myers, B.A. and Buxton, W. Creating highly-
interactive and graphical user interfaces. In
SIGGRAPH'86 Conference Proceedings (Dallas, Texas,
Aug.), ACM, 1986, pp. nn-nn.

16. Olsen, D.R. and Dempsey, E.R. (1983). Syngraph:
A graphical user interface generator. Computer Graph-
ics 17, 3 (July 1983), 43-50.

17. Posner, M.I. Cognition: An introduction. Scott,
Foresman and Company, Glenview, Ill., 1973.

18. Shneiderman, B. A model programming environment.
In Advances in Human-Computer Interaction Vol 1, H.
R. Hartson, Ed., Ablex, Norwood, NJ, 1985, pp.
105-132.

19. Tanner, P.P. and Buxton, W. Some issues in future user
interface management systems. In User Interface
Management Systems, G. E. Pfaff, Ed., Springer-Verlag,
Berlin, 1985, pp. 67-80.

142

