
Distributed Collaboration on RDF Datasets Using Git

Towards the Quit Store

Natanael Arndt
Universität Leipzig
Augustusplatz 10

04109 Leipzig, Germany
arndt@informatik.uni-leipzig.de

Norman Radtke
Universität Leipzig
Augustusplatz 10

04109 Leipzig, Germany
radtke@informatik.uni-leipzig.de

Michael Martin
Universität Leipzig
Augustusplatz 10

04109 Leipzig, Germany
martin@informatik.uni-leipzig.de

ABSTRACT
Collaboration is one of the most important topics regarding
the evolution of the World Wide Web and thus also for the
Web of Data. In scenarios of distributed collaboration on
datasets it is necessary to provide support for multiple dif-
ferent versions of datasets to exist simultaneously, while also
providing support for merging diverged datasets. In this pa-
per we present an approach that uses SPARQL 1.1 in com-
bination with the version control system Git, that creates
commits for all changes applied to an RDF dataset contain-
ing multiple named graphs. Further the operations provided
by Git are used to distribute the commits among collabora-
tors and merge diverged versions of the dataset. We show
the advantages of (public) Git repositories for RDF datasets
and how this represents a way to collaborate on RDF data
and consume it. With SPARQL 1.1 and Git in combina-
tion, users are given several opportunities to participate in
the evolution of RDF data.

CCS Concepts
•Information systems → Data management systems;
Network data models; Distributed database trans-
actions; Data federation tools; Version management;
Resource Description Framework (RDF); •Software and
its engineering → Collaboration in software development;

Keywords
co-evolution, distributed version control system, distributed
collaboration, git, SPARQL Update, rdf dataset

1. INTRODUCTION
Collaboration of people and machines is a major aspect of

the World Wide Web and especially on the Semantic Web.
Currently the access to RDF data on the Semantic Web is
possible following the SPARQL specification [18] and the

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request per-
missions from permissions@acm.org.
SEMANTiCS 2016, September 12–15, 2016, Leipzig, Germany

© 2016 Copyright held by the owner/author(s). Publication rights
licensed to ACM. ISBN 978-1-4503-4752-5/16/09…$15.00
DOI: http://dx.doi.org/10.1145/2993318.2993328

Linked Data principles [13]. This allows clients to access
and retrieve data stored and published by central services
and databases.

The collaboration on such Linked Data Sets, currently is
mainly done by keeping a central version of a dataset, and
collaborators are editing on the same instance simultane-
ously. This situation has drawbacks in different scenarios,
where multiple different versions of the dataset should or
could exist simultaneously. The existence of multiple dif-
ferent versions of a dataset occurs, if not all participants si-
multaneously have access to the same database management
system, for instance if they are working from mobile devices
with limited network connection. Further the establishment
of multiple different versions might be necessary, even on a
common database management system. For instance, when
in an ongoing discussion a consensus on a certain topic is
not yet reached, or different releases of a dataset should be
available.

In software development the same problem exists, when
a distributed team is simultaneously working on a common
code basis. Especially if one version of a program includes
new features, while a different version should consist only
of well tested functionality. A common methodology to ad-
dress this issue is, that every developer has her own copy
of the program source code and can independently imple-
ment new features or fix bugs, while one or more common
synchronized versions of the source code are created using
a version control system capable of dealing with concurrent
versions.

Transfered back to the Linked Open Data Cloud the sub-
ject of collaboration are datasets resp. graphs, instead of the
source code files for a software program. Collaborators are
individual data scientists and domain experts curating lo-
cal versions of a dataset instead of programmers. For the
Semantic Web now the overall question is: How can the col-
laborative curation of distributed Linked Data Knowledge
Bases be synchronized?

Our aim is to provide a system that enables distributed
collaboration of domain experts and data scientists on RDF
datasets. For this purpose we are proposing a methodol-
ogy of using a SPARQL 1.1 interface in combination with
Git and we introduce the Quit Store (“Quads in Git”) as
abstraction layer between the repository and applications
working with the RDF dataset. In contrast to many other
approaches (cf. section 6) we are concentrating on a pure
RDF data model, containing statements and don’t look at
additional semantics, like OWL or SKOS. This especially
means we don’t have to care about semantic conflicts, but

http://dx.doi.org/10.1145/2993318.2993328

only structural conflicts. We rather want to provide a solid
foundation usable for collaboration on RDF data. Checks
regarding a special semantic or even domain and application
specific checks can be integrated on top of the Quit Store
in custom merge tools or using quality assessment tools as
e.g. proposed in [11]. Currently we are not aiming at big
datasets (gigabytes or millions of triples), we rather want
to investigate the methodology on datasets which can be
curated by individual humans.

Within the Linked Enterprise Dataservices (LEDS)1 project
the topic of co-evolution for the management of background
knowledge requires a system for synchronizing and distributed
knowledge bases, as well as benchmarking relevant systems.
Further use cases and requirements where formulated dur-
ing the work on a history data project Pfarrerbuch2 and the
Héloïse platform3 [15]. For the design of our system, we have
especially concentrated on the following three use cases:

Collaboration, Synchronization and Exchange.
As stated before collaboration is one of the most impor-

tant topics regarding the evolution of the World Wide Web
and knowledge bases. Wiki systems have already provided
a centralized technology to support people in collaborat-
ing in data creation. Using a distributed system can even
loosen collaborators from the need of central platforms and
from the need of working with the same user interface. This
methodology of branches for public contributions should
also be integrated with the Structured Feedback protocol
[1].

Synthetic Dataset Dreation for Benchmarks and Tests.
Searching for benchmarking and test datasets in RDF

for distributed co-evolution and collaboration systems only
brought up the DBpedia Live changesets4. But this dataset
contains a linear history and doesn’t include branching and
merging. Following the “chicken or the egg” problem it is
hard to create such datasets without an existing platform.
The Quit Store system should help to generate test data to
evaluate different merge strategies on real RDF data and
more complex co-evolution scenarios.

Backup.
When working with RDF data it is, as for other data,

always important to create backups of the current work.
Providing a specific tool that supports the data creator in
tracking the changes of the data and synchronizing the data
with a secure location, e.g. for open data a publicly hosted
repository, helps to avoid additional superfluous steps in the
daily workflow. Further a version controlled backup system
can help to restore data even after faulty changes.

The paper is structured as follows: general requirements
for a distributed collaboration and versioning setup are for-
mulated in section 2, followed by relevant preliminaries, such
as Git, thoughts about RDF serialization and Diff and blank
nodes, in section 3. The methodology of the system is spec-
ified in detail in section 4. Further we are documenting our
1http://www.leds-projekt.de/
2http://aksw.org/Projects/Pfarrerbuch
3Héloïse - European Network on Digital Academic History:
http://heloisenetwork.eu/platform
4http://live.dbpedia.org/changesets/

prototypical reference implementation in section 5. We are
discussing the state of the art and related work in section 6.
Finally a conclusion and an outlook on future work is given
in section 7.

2. REQUIREMENTS
In the following we present requirements relevant for a

distributed collaboration system on RDF Datasets under
consideration of co-evolution by using a distributed version
control system. The requirements are structured in require-
ments coming from collaboration aspects and the versioning
requirements.

2.1 Collaboration Requirements
Requirements for collaborative vocabulary development

are already formulated in [9]. We are adopting the require-
ments formulated there, which are overlap with our require-
ments. But in contrast to [9] we mainly concentrate on the
technical collaboration on a distributed network, rather than
focusing on a specific use case, such as vocabulary creation.

Provenance of Contributions.
Provenance information should be attached to a contribu-

tion to the common dataset. This shall at least be a change
reason, author information and date of commit. For the
automatic interaction with the system, information which
require manual interaction might be omitted. (cf. “Com-
munication support (R1)” and “Provenance of information
(R2)” in [9])

Roles and Access Rights.
The system should respect and be able to support different

access conditions and restrictions for collaborating agents in
different roles. The system should not introduce new roles
and access conditions, other than used in the underlaying
collaboration platform (this would also support but not pre-
sume “Different roles (R3)” as required in [9]).

Syntactical Robustness.
The collaborating platform should ensure, that a syntac-

tically correct input RDF dataset on commit will result in
a syntactically correct dataset again. The system should
report, but not break on syntactical errors.

Support of RDF Datasets and
Modularization of Graphs.

The system should be able to handle multiple RDF graphs,
i.e. RDF dataset, in a repository. This allows users resp. col-
laborators to organize the stored knowledge in individual
organizational units, as it is required by their application.
This requirement also provides the functionality to imple-
ment the requirement “Modularity (R9)” as formulated in
[9]. The method should work with different granularities of
modularization of RDF datasets.

Heterogenous Repositories.
A repository can contain RDF Data alongside other files.

This should allow usage scenarios, where RDF graphs are
embedded in bigger projects, such as source code reposito-
ries.

http://www.leds-projekt.de/
http://aksw.org/Projects/Pfarrerbuch
http://heloisenetwork.eu/platform
http://live.dbpedia.org/changesets/

Heterogenous Setup of Editors.
Different implementations of collaboration interfaces can

access and collaborate on a common repository. Collabo-
rators can use different RDF editors to contribute to the
repository. To some extend the methodology should even
be robust to manual editing of RDF files contained in the
repository. In contrast to the requirement „Editor agnos-
tic (R8)“ as formulated in [9], we don’t require the syntax
independence on the repository and understand the editor
agnosticism as transparency of the interface.

2.2 Versioning Requirements
In the following we are formulating requirements which

are mainly implied by the usage of a co-evolution approach
for supporting the distributed collaboration.

Declarative Version Log.
The version log should contain declarative entries for a

version of the RDF dataset, which can be used to retrieve
any version in the history of the repository. Additionally to
the declarative entries, imperative or procedural annotations
can be added to help to reconstruct the semantics of the
version log.

Deltas Among Versions.
It should be possible to calculate the substantial difference

between versions generated by contribution of collaborators.
The calculated difference should be expressed in a machine
readable format. (cf. “Deltas among versions (R7)” in [9])

Support Version Log Operations.
The system should support various operations to work on

a version log. The required operations are merge, revert
(resp. backout), and commit. Further operations, such as
commute, rebase and other operations for history editing
might be helpful but are not directly required.

3. PRELIMINARIES
In the following we are giving a brief overview and in-

troduction to technologies and design considerations, which
are relevant for our methodology. For the basic technologies,
we are giving a number of references for further reading and
a detailed understanding. Design considerations which are
serving as foundation for our methodology are briefly dis-
cussed and possible alternative decisions are pointed out.

3.1 Git
Git is a distributed version control system5 designed to

be used in software development. It is used for over 35
million projects on github6 and can also be used on other
platforms, such as bitbucket or gitlab and can be hosted on
self controlled servers or used in a pear to pear manner as
well. Git is very flexible in providing branching and merging
strategies and synchronizing with multiple remote reposito-
ries. Due to the flexibility, best practices and workflows
have been developed to support software engineering teams

5https://git-scm.com/
6https://github.com/about, 2016-05-04

with organizing different versions of a programs source code,
such as e.g. gitflow7 and the Forking Workflow8.

In contrast to other version control systems (VCS) such
as Subversion or CVS9, Git is a distributed version control
system (DVCS), similar to Mercurial. As such, in Git, users
work on a local version of a remote Git repository, which is
a complete clone of the remote repository. Git operations,
such as git commit are executed on the local system. The
repository contains commits, which represent a certain ver-
sion of the working directory. Each version of the working
directory contains the current state of its files at the given
version. Even so Git is mainly intended to work with text
files, it is also capable of dealing with other binary files.
Files are stored as a binary large object (blob), while equal
files are stored as pointers to the corresponding blob of each
file.

Out of the box, Git already provides the capability to
store provenance information alongside a commit (cf. “Prove-
nance of Contributions”). “Heterogenous Repositories” are
also possible as Git doesn’t put any limitations on the file
types under version control. The Git version log can be
considered as “Declarative Version Log”, since each version
exactly contains the status if the files as it is at the point
of the commit creation. Using git diff it is also possible to
get the “Deltas Among Versions” and Git supports merge,
revert, commit as well as (interactive) rebase operations.

3.2 Serialization of RDF Data
RDF 1.1 specifies multiple different formats which can

be used for serializing RDF graphs (RDF/XML10, Turtle11,
RDFa12, N-Triples13) and RDF datasets (TriG14, JSON-
LD15, N-Quads16). RDF graphs and RDF datasets can
be serialized in different formats and thus the same RDF
statements can result in completely different textual rep-
resentations and the resulting file size can vary. Even the
same graph or dataset serialized twice in the same serial-
ization format can be textually different. To allow a better
readability and processability of the differences between two
versions in the version control system (cf. section 2 “Deltas
Among Versions”), we have to find an easy to compare de-
fault serialization format. For our approach we have decided
to use the N-Quads serialization [4] in Git repositories. N-
Quads is a line-based, plain text format, which represents
one statement per line. Since Git is also treating lines as
atoms on merging, it will automatically treat statements in
N-Quads as atomic units. Further N-Quads in contrast to
N-Triples supports the encoding of complete RDF datasets.
N-Triples is a subset of N-Quads, by only using the default
graph. Another candidate would be TriG (Turtle extended
7http://nvie.com/posts/a-successful-git-branching-model/
8https://www.atlassian.com/git/tutorials/comparing-
workflows/forking-workflow
9Concurrent Versions System, http://savannah.nongnu.
org/projects/cvs

10https://www.w3.org/TR/2014/REC-rdf-syntax-
grammar-20140225/

11https://www.w3.org/TR/2014/REC-turtle-20140225/
12https://www.w3.org/TR/2015/NOTE-rdfa-primer-
20150317/

13https://www.w3.org/TR/2014/REC-n-triples-20140225/
14https://www.w3.org/TR/2014/REC-trig-20140225/
15https://www.w3.org/TR/2014/REC-json-ld-20140116/
16https://www.w3.org/TR/2014/REC-n-quads-20140225/

https://git-scm.com/
https://github.com/about
http://nvie.com/posts/a-successful-git-branching-model/
https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow
http://savannah.nongnu.org/projects/cvs
http://savannah.nongnu.org/projects/cvs
https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
https://www.w3.org/TR/2014/REC-turtle-20140225/
https://www.w3.org/TR/2015/NOTE-rdfa-primer-20150317/
https://www.w3.org/TR/2015/NOTE-rdfa-primer-20150317/
https://www.w3.org/TR/2014/REC-n-triples-20140225/
https://www.w3.org/TR/2014/REC-trig-20140225/
https://www.w3.org/TR/2014/REC-json-ld-20140116/
https://www.w3.org/TR/2014/REC-n-quads-20140225/

by support for RDF datasets), in contrast to N-Quads one
line doesn’t necessarily represent one statement. Also due
to the predicate and object list features (using ; or , as de-
limiter) as well as multi line literals, automatic line merges
can destroy the syntax. Similar problems would occur with
the other serialization formats listed above. To further en-
sure stability and comparability of the files we are using a
canonicalized serialization.

Halilaj et al. [9] propose the usage of Turtle in Git repos-
itories, to address the requirement to be editor agnostic.
Since a transformation to any other serialization format is
possible, e.g using rapper17 or Jena RIOT18, our approach
doesn’t put additional constraints on the usage of the seri-
alization format in an editor application. Further as stated
above, we find N-Quads to be of better fit for Git versioning
than Turtle.

3.3 Blank Nodes in Versioning
Using RDF as an exchange format, still blank nodes are

a problem we have to deal with. Blank nodes are identi-
fiers with a local scope and so might be different for each
participating platform. Implementing all atomic operations
using atomic graphs as proposed in [3] and also discussed
in [13] could be a solution, by building an identity for the
blank nodes using their context. Still this would involve
additional effort and wouldn’t directly lead to a practical
and working solution for a distributed collaboration system.
Thus we have decided to follow the recommendation of RDF
1.1, which recommends replacing blank nodes with IRIs [6],
and assume that each graph managed by our store is skolem-
ized in advance.

4. METHODOLOGY
In this chapter we are describing our system and method-

ology. The system and methodology is structured in three
steps: (1) the read and write interface using SPARQL 1.1
Select and Update, (2) the translation of the operations of
the read/write interface to the respective versioning opera-
tions on the Git repository, and (3) the stage making use
of the Git system to enable collaboration workflows. Each
step is supported by our implementation as described later.

4.1 SPARQL 1.1 Read/Write Interface
As an interface accessible to other applications, we are us-

ing a SPARQL 1.1 endpoint. The endpoint supports SPARQL
1.1 Select and Update to provide a read/write interface on
the RDF data. The Select Queries can be used to read data
from the underlaying store and the Update Queries to add,
change or delete data from the store. In the following ex-
ample we want to show how an incoming Update Query will
affect the file system. Therefor the Quit Store contains two
named graphs http://dbpedia.org/ serialized in a file dbpedia.nq
(cf. listing 1) and http://my.quit.graph/ with the correspond-
ing file default.nq (cf listing 2).

<http://dbpedia.org/resource/Aachen> <http://www.w3.org↵
/1999/02/22-rdf-syntax-ns#type> <http://dbpedia.org/↵
ontology/City> <http://dbpedia.org/> .

Listing 1: An example graph with one statement from
DBpedia (dbpedia.nq)

17http://librdf.org/raptor/rapper.html
18https://jena.apache.org/documentation/io/

<http://subject1> <http://predicate1> <http://object1> <http↵
://my.quit.graph/> .

Listing 2: A simple graph containing one statement
(default.nq)

As mentioned above, the Quit Store accepts Select and
Update Queries, whereby the Update operation may result
in a new version of one or more named graphs depending
on the patterns used. Listing 3 shows an Update Query ex-
ecuted on the Quit Store. The query moves all triples of
the named graph http://dbpedia.org/ and inserts these into
the named graph http://my.quit.graph/ and the differences be-
tween the resulting files can be seen in listings 4 and 5.

INSERT {
GRAPH <http://my.quit.graph/> { ?s ?p ?o }

} WHERE {
GRAPH <http://dbpedia.org/> { ?s ?p ?o }

};
DELETE {
GRAPH <http://dbpedia.org/> { ?s ?p ?o }

} WHERE {
GRAPH <http://dbpedia.org/> { ?s ?p ?o }

}

Listing 3: An example SPARQL 1.1 Update query

--- a/dbpedia.nq
+++ b/dbpedia.nq
@@ -1,4 +0,0 @@
-<http://dbpedia.org/resource/Aachen> <http://www.w3.org↵
/1999/02/22-rdf-syntax-ns#type> <http://dbpedia.org/↵
ontology/City> <http://dbpedia.org/> .

Listing 4: The differences of the file dbpedia.nq before and
after the query execution

--- a/default.nq
+++ b/default.nq
@@ -1,3 +1,7 @@
+<http://dbpedia.org/resource/Aachen> <http://www.w3.org↵
/1999/02/22-rdf-syntax-ns#type> <http://dbpedia.org/↵
ontology/City> <http://my.quit.graph/> .
<http://subject1> <http://predicate1> <http://object1> <http↵
://my.quit.graph/> .

Listing 5: The differences of the file default.nq before and
after the query execution

4.2 Translate Read/Write to Git
The SPARQL 1.1 read/write interface allows users to query

and edit RDF data contained in the quad store. Since we
want to enable a collaboration system using Git, these pure
read/write operations have to be transformed to operations
on the Git repository. A read operation will not cause direct
changes on the Git repository and thus the write operation
is of most interest here. The major operations on a version-
ing system are commit to create a new version in the version
log and merge, and revert as operations on the version log.
This task is taken by a Query-Analyzer in combination with
the Quad-Store interface.

The commute operation mentioned in [5] is not of a high
importance for a distributed version control system like Git,
since it can deal with multiple parallel branches. Thus it

http://librdf.org/raptor/rapper.html
https://jena.apache.org/documentation/io/

doesn’t need to merge branches by commuting them into
a linear version history, as it is shown in [5]. Nevertheless
the commute operation can still be executed in Git using
the interactive rebase operation. In the following we are de-
scribing the individual operations on the versioning system
and their execution.

Commit.
If the store receives an Update Query via its API, we ex-

ecute this query and serialize and canonicalize the named
graphs and write them to their corresponding files. We do
not need to check whether files have changed since the pre-
vious commit, because we can use the git add command with
the --update parameter, which will add all changed files un-
der version control to the staging area. Note that due to the
canonicalization two equal graphs will also result in the same
serialization and if the staging area is empty, nothing has to
be commited to the version log. If after adding the files the
staging area isn’t empty a git commit will succeed and a new
commit is created in the Git version log. Figure 1 depicts
an initial commit “A” without any predecessor resp. parent
commit and a commit “B” referring to its parent “A”.

A B

Figure 1: Two commits with a parent relation

Formally speaking a version of a graph produced with
Quit Store is: Let G be a graph under version control in a
Quit Store Q and FG a serialized representation of G in a file.
B{A}({FG})19 is a commit containing the file F and referring
to its parent commit A (cf. fig. 1). G′ will be the new version
of G after any change operation regarding G was executed
on Q, it will result in FG′ with FG ̸= FG′ . FG′ is the new
version of the file added to the new commit C{B{A}}({FG′}).
Since a commit is referring to its predecessor and not vice
versa, nothing hinders us from creating a second commit
D{B{A}}({FG′′}), which is then a new branch or fork, which
is diverged from B. Taking the commits A, B{A}, C{B},
and D{B} results in a directed rooted in-tree, as depicted in
fig. 2.

A B C

D

Figure 2: Two branches evolved from a common commit

Based on the comparison of commits C({FG}), D({FG′})
and their respective contents (FG, FG′) a patch can be gen-
erated by calculating the difference ∆(FG, FG′) between the
contents. A patch is a pattern that contains lines that have
to be deleted from a file and lines that have to be inserted
into a file, in order to transform the version FG of the file
into the version FG′ . Applying this method on canonicalized
N-Quads files, will give us a patch containing one triple per
line, which has to be inserted resp. deleted from the graph,
thus ∆(FG, FG′) ⇔ ∆(G,G′). In our case a patch is every
change of a version controlled file in the used Git repository.

19In the further writing, the indices and arguments of com-
mits are sometimes omitted for better readability, while
clarity should still by maintained by using distinct letters

Since we are receiving the change operations from the top
layer SPARQL endpoint, note that there is an important
difference between a received Update Query with INSERT DATA
or DELETE DATA operation or even INSERT … WHERE resp. DELETE …
WHERE and the resulting patch after applying the changes.
There might be a statement a user wants to be deleted that
doesn’t exist or a user wants to add a statement that is
already contained in the store. In turn in general a valid
patch is a patch that can be expressed as a valid SPARQL
1.1 Update Query using INSERT DATA and DELETE DATA opera-
tions, where the quad data of the DELETE DATA contains all
removed statements and the quad data of the INSERT DATA all
added statements from the patch.

Merge Different Branches.
If the tree of commits is diverged, as shown in the example

of fig. 2 we now want to merge the branches again. This
allows us to get a version of the graph, containing changes
made in the different branches. This is done by creating a
commit E{C{B},D{B}}({FG′′′}), which has two predecessor
commits it is referring to. Taking the commits A, B{A},
C{B}, D{B}, and E{C,D}, we get an acyclic directed graph,
as it is depicted in fig. 3.

A B C

D

E

Figure 3: Merge commits from one into another graph using
git merge

Since we are not only interested in the branching and
merging model of the commits, we want to know, what a
merge means for the graph G′′′, resulting from merging G′

and G′′. Note, that merging in this context is not to be un-
derstood as in the RDF 1.1 Semantics Recommendation [10]
as the union of two graphs. Git is using a three-way-merge,
taking into account the versions of the files in the two com-
mits to be merged FG′ , FG′′ and the most recent common
ancestor FG

20. For each line Git decides on a merge commit
whether it will be included into the result according to the
decision matrix given in table 1. Since we are using N-Quads
files, the decisions will be the same for triples contained in
the graphs G′, G′′, and G. A merge conflict in Git occurs,
when two close by lines where added or removed in different
files and thus Git can’t decide, whether they are resulting
from the same original line or if they are contradicting. For
our RDF data model these merge commits can be easily re-
solved, by deciding for each line resp. triple based on table 1
and sorting the resulting lines alphabetically to maintain the
canonicalization. Semantic contradictions within the result-
ing RDF graph can then be dealt with using additional tools,
which can work on valid RDF files from this point on.

Revert a Commit.
Reverting the commit B{A}({FG}) and directly applying

it to B is done by creating a commit B−1
{B}({FG̃0}) (where

A({FG0})). Where one gets FG̃0 by calculating the patch
between ∆(FG0 , FG), swapping the set of added and deleted

20How does Git merge work: https://www.quora.com/How-
does-Git-merge-work, 2016-05-10

https://www.quora.com/How-does-Git-merge-work
https://www.quora.com/How-does-Git-merge-work

A
FG′

B
FG′′

base
FG

result
FG′′′

O O O O Non existing lines

X X X X
Lines existent in all files will
also be in the result

X O O X
A line added to FG′ is also
added to the result

O X O X
A line added to FG′′ is also
added to the result

O X X O
A line removed from FG′ is also
not added to the result

X O X O
A line removed from FG′′ is
also not added to the result

X X O X
A line added to both branches
is also added to the result

O O X O
A line removed from both
branches is also not added to
the result

Table 1: Decision table for the different situations on a
three-way-merge (X = line exists, O = line doesn’t exist)

lines, and applying the patch to FG, which results in FG̃0 .
After this operation FG̃0 = FG0 and thus G̃0 = G0.

A B B−1

Figure 4: A commit reverting the previous commit

Using Git, reverting a commit is possible via the com-
mand git revert <commitid>. Figure 4 shows a versioning log
containing three commits, where the latest commit reverts
its parent and thus the state of the working directory is equal
to the one produced by the first commit. While it is obvious,
how to revert the previous commit it may be a problem, if
other commits exist between the commit to be reverted and
the current top of the versioning log (HEAD). In this case
again a three-way-merge is applied (cf. table 1), where the
merge base is the commit to be reverted, branch A is the
parent commit of the commit which is to be reverted, and
branch B the current HEAD. Merge conflicts can be resolved
in the same way, as for merge commits.

4.3 Enable Collaboration Workflows With Git
So far all operations where executed on a local version-

ing graph, which can diverge and be merged, but still no
collaboration with remote participants is possible. To allow
collaboration on the World Wide Web, the versioning graph
can be published (push) to a remote repository, from where
other collaborators can copy (clone) the complete graph. If
a collaborator already has cloned a previous version of the
versioning graph, she can update here local graph by execut-
ing a pull. Further it is possible for collaborators to create
their own branches, which they don’t frequently merge with
the branches of other collaborators, or which is merged in a
later stage, e.g. for an independent development of an RDF
dataset; this is called fork.

In the domain of software development different work-
flows have evolved in using Git to improve the quality of
collaboratively developed software [17, 14] e.g. Gitflow21 and
the Forking Workflow22. Halilaj et al. [9] have proposed a
branching model for RDF vocabulary development, which is
built on top of the Gitflow model.

21http://nvie.com/posts/a-successful-git-branching-model/
22https://www.atlassian.com/git/tutorials/comparing-
workflows/forking-workflow

5. IMPLEMENTATION
The prototypical implementation of the Quit Store23 is

developed with Python24 with the RDFlib25 to deal with
RDF and combined with Flask API26 to provide a SPARQL
1.1 Interface via HTTP (cf. fig. 5). The underlaying stor-
age of the RDF dataset is implemented by an in memory
Quad-Store and local files which are kept in sync with the
corresponding named graphs in the store (cf. File References
in fig. 5). Every file contains alphabetically sorted N-Quads.

Incoming queries are analyzed by the Query-Analyzer,
which distinguishes between SPARQL Update and Select
Queries. The store also contains a separate graph for con-
figuration settings, which is shown in listing 6. The config-
uration graph is not part of the store which is accessible via
the SPARQL endpoint.
@base <http://quit.aksw.org/> .
@prefix conf: <http://my.quit.conf/> .

conf:dbpedia a <Graph> ;
<graphUri> <http://dbpedia.org/> ;
<isVersioned> 1 ;
<hasQuadFile> "dbpedia.nq" .

conf:graph1 a <Graph> ;
<graphUri> <http://my.quit.graph/> ;
<isVersioned> 1 ;
<hasQuadFile> "graph.nq" .

Listing 6: An example configuration for a Quit Store

File References

SPARQL 1.1 Interface

Public Git Repository

Local Git Repository

Query-Analyzer

Quad-Store

SPARQL Query

Update

Dump to files

Select

Parse files

Response

Figure 5: The components of the Quit Store

To create a new version of a graph on the local file system
we have to update the content of the local files. Therefor
the FileReference class provides methods to get and set the
file content, as well as canonicalizing each file using cant.py
from the Semantic Web Application Platform - SWAP27.

23https://github.com/AKSW/QuitStore
24https://www.python.org/
25https://rdflib.readthedocs.io/en/stable/
26http://flask.pocoo.org/
27https://www.w3.org/2000/10/swap/

http://nvie.com/posts/a-successful-git-branching-model/
https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow
https://github.com/AKSW/QuitStore
https://www.python.org/
https://rdflib.readthedocs.io/en/stable/
http://flask.pocoo.org/
https://www.w3.org/2000/10/swap/

After an execution of a Select Query the files and the store
remain in the same state. If we execute an Update Query,
all named graphs are serialized to the corresponding files
and new versions are staged and commited by the methods
of the GitRepo class, which manages the local Git repository.

The default Git operations pull, checkout and push are
also available via the Quit Store HTTP interface. They
allow the user to navigate in the version history and syn-
chronize with remote repositories.

Write Through Strategies.
Before an operation is completed and the user can get

a success message, the store has to make sure to persist
the effective changes. In order to allow a flexible tradeoff
we provide configurable multistage write through strategies
and levels of failures:

Query-Receive Fails if the store is not available (SPARQL
interface)

Query-Execution Fails on syntax errors, or if a graph is
not available (Query-Analyzer, Quad-Store)

Push (git push) Fails on remote conflicts, or if the reposi-
tory server is not available

Depending on the desired use case there might be different
requirements on availability resp. request time outs and con-
sistency. Based on these requirements the necessary write
through strategy can be selected.

6. RELATED WORK
As related work we consider both: approaches for version-

ing of RDF data, and means for collaborating on RDF data
by synchronizing or exchanging dataset differences. Version-
ing of RDF data is a long standing topic. Berners-Lee and
Connolly [13] introduce an ontology that describes patches
in “a way to uniquely identify what is changing” and “to
distinguish between the pieces added and those subtracted”.
This can be used for subsequently expressing the evolution
of an RDF dataset, e. g. using the Quit Diff [2] tool, which
allows to generate patches by comparing graph serializations
or commits in a Git repository and expressing the changes
using changeset vocabularies.

Beside syntactical diffs there are important approaches
of ontology evolution and versioning using description logic
provided with OWL[19]. In [20] the authors describe two
tools they developed to target this problem. The first named
owl2diff 28 detects changes between different versions of OWL
ontologies and the second owl2merge helps “to resolve con-
flicts and perform a three-way merge”. We tested the owl2diff
tool with the example described in section 4.1 by transform-
ing the resulting files to Turtle. The result is shown in list-
ings 7 and 8.

* OntologyFormat("KRSS2 Syntax")
- Prefix(owl:=<http://www.w3.org/2002/07/owl#>)
- Prefix(rdf:=<http://www.w3.org/1999/02/22-rdf-syntax-ns#>)
- Prefix(xsd:=<http://www.w3.org/2001/XMLSchema#>)
- Prefix(:=<http://www.semanticweb.org/owl/owlapi/turtle#>)
- Prefix(xml:=<http://www.w3.org/XML/1998/namespace>)
- Prefix(rdfs:=<http://www.w3.org/2000/01/rdf-schema#>)

28https://github.com/utapyngo/owl2vcs

- ClassAssertion(<http://dbpedia.org/ontology/City> <http://↵
dbpedia.org/resource/Aachen>)

Listing 7: The differences detected by owl2diff of the file
dbpedia.ttl and …

+ ClassAssertion(<http://dbpedia.org/ontology/City> <http://↵
dbpedia.org/resource/Aachen>)

Listing 8: … of the file default.ttl

Other systems, such as OWLDiff [12] and Ecco [8] also
present tools for comparing two versions of an OWL ontol-
ogy. In contrast to our approach these systems are assuming
an expressive OWL ontology and are not focusing on work-
ing with general RDF datasets.

Auer and Herre [3] suggest a versioning and evolution
framework for RDF knowledge bases. This work provides
a practical approach for dealing with blank nodes in change
sets, and introduce a hierarchical system for structuring a
set of changes, as well as a system to formalize the evo-
lution patterns leading to the changes of a knowledge base.
Cassidy and Ballantine [5] also discuss a version control sys-
tem for RDF graphs. Their approach is based on a system
called Darcs and covers the versioning operations commute,
revert and merge. Unfortunately these approaches are not
usable for distributed collaboration since they don’t include
a branching and merging model, which can easily deal with
different co-existing versions, as it is possible with Git.

R&Wbase [16] is a tool which also has an understanding of
coexisting branches within a versioning graph, which is very
close to the concept of Git. In contrast to Git, R&Wbase
always stores the differences between versions, rather then
always the complete file at a certain version as it is done for
Git. The individual change sets of the versions are stored
in named graphs, this makes it impossible to use the system
to manage RDF datasets with multiples named graphs.

The Git4Voc, as proposed by Halilaj et al. [9] is a method-
ology and collection of best practices for collaboratively cre-
ating RDF vocabularies using Git repositories. To support
vocabulary authors in the process of creating rdf/owl vo-
cabularies Git4Voc as implemented in VoCol as pre- and
post-commit hooks, which call various tools for automatic
checking the vocabulary specification. Even though Git4Voc
is focusing on vocabularies and only adds a collection of pre-
and post-commit hooks, it has formulated very important
requirements for collaboration on RDF data. We have par-
tially incorporated these requirements in section 2.

7. CONCLUSION & FUTURE WORK
In this paper we have presented a methodology together

with the Quit Store tool for providing a SPARQL 1.1 read-
/write interface to query and change an RDF dataset in a
quad store. The contents of the store are tracked for version
control in a local filesystem in parallel. These files are then
managed using the Git distributed version control system to
provide the versioning operations commit, merge and revert.
By using the distributed features of Git, it is on the one
hand possible to keep track and to integrate data provided
by others and on the other hand possible to provide a highly
dynamic collaboration platform. This brings us further on
answering the question, how the collaborative curation of

https://github.com/utapyngo/owl2vcs

distributed Linked Data Knowledge Bases can be synchro-
nized. In future work, we have to evaluate this methodol-
ogy and system regarding its correctness and usability with
interested collaborating communities, as pointed out in sec-
tion 1, and its performance and scalability regarding the
size of datasets, the amount of change operations and the
number of collaborating parties.

In the future the usage in enterprise scenarios as described
in [7] is possible. We are also planning to lift the Structured
Feedback protocol [1] to a next level by directly recording the
user feedback as commits in a Quit Store, which can enable
mighty co-evolution strategies. As there is a big ecosystem
of methodologies and tools around Git for supporting the
software development process, the Quit Store can help to
create such an ecosystem for RDF dataset creation as well.

8. ACKNOWLEDGEMENTS
This work was partly supported by the following grants

from the German Federal Ministry of Education and Re-
search (BMBF) for the LEDS Project under grant agree-
ment No 03WKCG11C and the European Union’s Horizon
2020 research and innovation programme for the SlideWiki
Project under grant agreement No 688095.

9. REFERENCES
[1] N. Arndt, K. Junghanns, R. Meissner, P. Frischmuth,

N. Radtke, M. Frommhold, and M. Martin. Structured
feedback: A distributed protocol for feedback and
patches on the web of data. In Proceedings of the
Workshop on Linked Data on the Web co-located with
the 25th International World Wide Web Conference
(WWW 2016), volume 1593 of CEUR Workshop
Proceedings, Montréal, Canada, Apr. 2016.

[2] N. Arndt and N. Radtke. Quit diff: Calculating the
delta between rdf datasets under version control. In
12th International Conference on Semantic Systems
Proceedings, SEMANTiCS ’16, Leipzig, Germany,
Sept. 2016.

[3] S. Auer and H. Herre. A versioning and evolution
framework for RDF knowledge bases. In Proceedings
of at Sixth International Andrei Ershov Memorial
Conference - Perspectives of System Informatics
(PSI’06), 27-30 June, Novosibirsk, Akademgorodok,
Russia, volume 4378, June 2006.

[4] G. Carothers. Rdf 1.1 n-quads: A line-based syntax
for rdf datasets. https://www.w3.org/TR/2014/REC-
n-quads-20140225/, Feb. 2014.

[5] S. Cassidy and J. Ballantine. Version control for RDF
triple stores. In J. Filipe, B. Shishkov, and M. Helfert,
editors, ICSOFT 2007, Proceedings of the Second
International Conference on Software and Data
Technologies, pages 5–12, Barcelona, Spain, 2007.
INSTICC Press.

[6] R. Cyganiak, D. Wood, and M. Lanthaler. Rdf 1.1
concepts and abstract syntax.
https://www.w3.org/TR/2014/REC-rdf11-concepts-
20140225/, Feb. 2014.

[7] M. Frommhold, N. Arndt, S. Tramp, and N. Petersen.
Publish and Subscribe for RDF in Enterprise Value
Networks. In Proceedings of the Workshop on Linked
Data on the Web co-located with the 25th International
World Wide Web Conference (WWW 2016), 2016.

[8] R. S. Gonçalves, B. Parsia, and U. Sattler. Ecco: A
hybrid diff tool for owl 2 ontologies. In P. Klinov and
M. Horridge, editors, OWLED, volume 849 of CEUR
Workshop Proceedings, 2012.

[9] L. Halilaj, I. Grangel-González, G. Coskun, and
S. Auer. Git4voc: Git-based versioning for
collaborative vocabulary development. In 10th
International Conference on Semantic Computing,
Laguna Hills, California, Feb. 2016.

[10] P. J. Hayes and P. F. Patel-Schneider. Rdf 1.1
semantics. https://www.w3.org/TR/2014/REC-rdf11-
mt-20140225/, Feb. 2014.

[11] D. Kontokostas, P. Westphal, S. Auer, S. Hellmann,
J. Lehmann, and R. Cornelissen. Databugger: A
test-driven framework for debugging the web of data.
In Proceedings of the Companion Publication of the
23rd International Conference on World Wide Web
Companion, pages 115–118, Republic and Canton of
Geneva, Switzerland, 2014.

[12] P. Kremen, M. Smid, and Z. Kouba. Owldiff: A
practical tool for comparison and merge of owl
ontologies. In F. Morvan, A. M. Tjoa, and R. Wagner,
editors, DEXA Workshops, pages 229–233. IEEE
Computer Society, 2011.

[13] T. B. Lee and D. Connolly. Delta: an ontology for the
distribution of differences between rdf graphs.
Technical report, W3C, 2001.

[14] S. Phillips, J. Sillito, and R. Walker. Branching and
merging: an investigation into current version control
practices. In In International workshop on Cooperative
and human aspects of software engineering, CHASE
’11, ACM, pages 9–15, 2011.

[15] T. Riechert and F. Beretta. Collaborative research on
academic history using linked open data: A proposal
for the heloise common research model. CIAN-Revista
de Historia de las Universidades, 19(0), 2016.

[16] M. V. Sande, P. Colpaert, R. Verborgh, S. Coppens,
E. Mannens, and R. V. de Walle. R&wbase: git for
triples. In C. Bizer, T. Heath, T. Berners-Lee,
M. Hausenblas, and S. Auer, editors, LDOW, volume
996 of CEUR Workshop Proceedings, 2013.

[17] E. Shihab, C. Bird, and T. Zimmermann. The effect of
branching strategies on software quality. 2013 ACM /
IEEE International Symposium on Empirical Software
Engineering and Measurement, 0:301–310, 2012.

[18] The W3C SPARQL Working Group. Sparql 1.1
overview. https://www.w3.org/TR/2013/REC-
sparql11-overview-20130321/, Mar. 2013.

[19] W3C OWL Working Group. OWL 2 Web Ontology
Language document overview.
https://www.w3.org/TR/2012/REC-owl2-overview-
20121211/, Dec. 2012.

[20] I. Zaikin and A. Tuzovsky. Owl2vcs: Tools for
distributed ontology development. In Proceedings of
the 10th International Workshop on OWL:
Experiences and Directions (OWLED 2013) co-located
with 10th Extended Semantic Web Conference (ESWC
2013), volume 1080 of CEUR Workshop Proceedings,
Montpellier, France, May 2013.

https://www.w3.org/TR/2014/REC-n-quads-20140225/
https://www.w3.org/TR/2014/REC-n-quads-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/

	Introduction
	Requirements
	Collaboration Requirements
	Versioning Requirements

	Preliminaries
	Git
	Serialization of RDF Data
	Blank Nodes in Versioning

	Methodology
	SPARQL 1.1 Read/Write Interface
	Translate Read/Write to Git
	Enable Collaboration Workflows With Git

	Implementation
	Related Work
	Conclusion & Future Work
	Acknowledgements
	References

