
Using DevOps Principles to Continuously Monitor RDF
Data Quality

Roy Meissner
Institute for Applied Informatics

Hainstrasse 11
Leipzig, Germany

meissner@informatik.uni-leipzig.de

Kurt Junghanns
Institute for Applied Informatics

Hainstrasse 11
Leipzig, Germany

kjunghanns@informatik.uni-leipzig.de

ABSTRACT
One approach to continuously achieve a certain data qual-
ity level is to use an integration pipeline that continuously
checks and monitors the quality of a data set according to
defined metrics. This approach is inspired by Continuous
Integration pipelines, that have been introduced in the area
of software development and DevOps to perform continu-
ous source code checks. By investigating in possible tools to
use and discussing the specific requirements for RDF data
sets, an integration pipeline is derived that joins current ap-
proaches of the areas of software-development and semantic-
web as well as reuses existing tools. As these tools have not
been built explicitly for CI usage, we evaluate their usability
and propose possible workarounds and improvements. Fur-
thermore, a real-world usage scenario is discussed, outlining
the benefit of the usage of such a pipeline.

CCS Concepts
•Information systems→ Information integration; Re-
source Description Framework (RDF); Data cleaning;
•Software and its engineering → Software maintenance
tools;

Keywords
DevOps; Continuous Integration; RDF; Data Quality; Qual-
ity Monitoring; Data Integration; Instant Feedback;

1. INTRODUCTION
Recent research results of Arndt et al. [1] uncovered an

approach towards storing an RDF data stores data inside
a Git repository. A natural continuation of this idea will
lead to uploaded data stores on repository hosting services
(RHS), like GitHub, in order to backup, share and publish
the data. Besides this, some ontologies and data sets are al-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SEMANTiCS 2016 September 12-15, 2016, Leipzig, Germany
c⃝ 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4752-5/16/09.

DOI: http://dx.doi.org/10.1145/2993318.2993351

ready developed and published on RHSs, like MODS RDF1,
Public NPM Domain Ontology2 and many more.

One of the enhancements of the DevOps movement, that
gained traction within the last years as of the area of soft-
ware development, is the development workflow of Contin-
uous Integration (CI), that has been implemented by sev-
eral providers for popular RHSs. CI refers to a develop-
ment workflow where a development team frequently com-
mits their work. Each commit is tested and integrated by
an automated build tool detecting errors [6]. Current CI ap-
proaches focus on software development (source code repos-
itories), rather than data centered repositories.

As a CI pipeline helps to maintain an integrable quality
of the content of an RHSs hosted repository [5], we define
in this paper a CI pipeline for repositories containing RDF
data. Our focus is to reuse existing software solutions to
check and analyse the repositories content and, in the end,
to indicate the data quality and integrability of the RDF.
We have implemented the presented pipeline exemplarily on
the RHS provider GitHub3 and the CI provider Travis-CI4

to showcase its functionality and validate the usability of
the available RDF quality assessment software for the CI
use case.

2. RELATED WORK
Sandro Cirulli presents a CI pipeline that integrates XML

data and converts them to RDF [3]. He describes that his
department uses the pipeline for quality assessment, quality
improvement and to execute integration tasks. As of the
quality assessment part, the used software solutions (RD-
FUnit for RDF based data) provide JUnit result sets that
integrate quite well with their remaining technology stack
(Jira). Considering the (for this paper interesting) part of
the CI usage for quality assessment, he just states that RD-
FUnit is used. In addition, he outlines benefits of the usage
of the CI pipeline, that are only repetitions of general bene-
fits of the usage of a CI pipeline (like in [5, 6]) and thus not
use case specific.

VoCol, described by Peterson et al. [11], is a tool which
aims to improve the whole process of vocabulary creation
and maintenance. Their motivation is that common vocab-

1MODS RDF GitHub repository: https://github.com/
blunalucero/MODS-RDF
2Public NPM Domain Ontology GitHub repository: https:
//github.com/nature/public-npg-domain-ontology
3GitHub (RHS) Homepage: http://github.com
4Travis-CI (continuous integration tool) Homepage: https:
//travis-ci.org

http://dx.doi.org/10.1145/2993318.2993351
https://github.com/blunalucero/MODS-RDF
https://github.com/blunalucero/MODS-RDF
https://github.com/nature/public-npg-domain-ontology
https://github.com/nature/public-npg-domain-ontology
http://github.com
https://travis-ci.org
https://travis-ci.org


ularies are mostly simple because the creation process is too
difficult. In order to improve the situation they discussed
necessary steps and possible solutions of the process, which
resulted in the implementation of an collaborative environ-
ment for ontology engineering. VoCol covers quality assess-
ment topics like validation in terms of syntax, semantic er-
ror detection and reporting in order to make users aware of
possible errors. Therefore it uses some of the tools that are
described as of section 3, as users work at vocabularies.

3. OVERVIEW OF RDF QUALITY ASSESS-
MENT TOOLS

The Raptor Utils5 are a set of command-line tools to parse
and convert several RDF serialization formats and check
parts of their syntax and semantics. A similar attempt is
trailed by Apache Jena RIOT6, that is part of the Apache
Jena project.
The Ontology Pitfall Scanner! (OOPS!) is an RDF au-

thoring tool for detecting common problems when creating
ontologies. It is described by M. Poveda-Villalón et al. [12],
where they explicitly state that they have implemented a
web-service that checks an issued ontology against a pattern
library for the most common pitfalls. They have developed
their tool for ontology validation only. Nevertheless, some of
the described pitfalls in [12] can be treated as general pitfalls
and will also apply for plain RDF data sets.
Beek et al. introduce the Linked Open data (LOD) Wash-

ing Machine [2], that is a part of the LOD Laundromat. The
LOD Washing Machine is a software that scans common
RDF document serializations for patterned pitfalls that are
explicitly LOD focused. These pitfalls will be automatically
fixed or deleted. Thus the final data set is pitfall free re-
garding their defined pitfall library. In addition, they record
occurring pitfalls for further usage scenarios, like surveys.
Kontokostas et. al describe the tool Databugger [8] (that

has been renamed to RDFUnit) that focuses on LOD data
quality assessment. It is a tool that automatically computes
test cases based on RDF data sets or ontologies and can
also use manually created ones. These test cases are sub-
sequently executed as SPARQL queries on top of an issued
RDF data set to discover and assess data quality problems.
The result of a test execution is reported in a human read-
able format and the RDF data is left unaltered, thus it has
to be revised manually in order to fix issues.
Debattista et al. present the Luzzu Assessment Quality

Framework [4], which is a web-service that executes metrics
on linked data and stores a history of executions with results
in order to keep or increase their quality. The tool can be
extended with custom metrics and focuses on scalability to
improve the assessment performance. Metrics have to use
Luzzu specific vocabularies. In order to improve the metric
creation process, they invented the Luzzu quality metric lan-
guage. Each execution of Luzzu performs five steps which
are defined as the data quality lifecycle. The result set of
an execution is a queryable quality report. They state that
Luzzu is scalable and can be used for any kind of RDF data.
Zaveri et al. present among other topics several tools

for RDF quality assessment [13]. According to our inves-

5Raptor RDF Syntax Library (Homepage): http://librdf.
org/raptor
6Apache Jena RIOT Documentation: https://jena.apache.
org/documentation/io/

tigations, all quality assessment related tools, that have not
been mentioned until now, are not available or executable
any more. Therefore we do not include them.

4. INTEGRATION PIPELINE
The following sections outline the approach and state of

the art implementation of CI at CI providers, preliminaries
to the proposed integration pipeline, the integration pipeline
itself and a usage scenario.

4.1 Continuous Integration
According to [5] (that cites [6] the overall goal of CI is

to continuously check a repository for possible errors, out-
line warnings and to keep or improve the integrability of the
repositories content. Integrability is therefore used as of two
different aspects: to check the quality, as well as the integra-
bility in terms of integrability with other data/software of
the repositories content. As the last aspect heavily depends
on the use case of the content, we will mainly focus at the
first aspect as of the following sections.

In [10], Vladimir Pecanac presents a comparison of the
most discussed CI providers (according to his Google Trends
research). By digging through their corresponding documen-
tation, the following state of the art CI provider approach
has been revealed:

Current CI software providers offer (virtual) linux ma-
chines, which will execute predefined scripts (the pipeline)
with every push to a corresponding repository that is hosted
at some RHS. Or to be more precise: the CI software regis-
ters an after-push hook that triggers the corresponding CI
pipeline. Thus, the used CI software realizes the continuous
execution of the pipeline.

CI providers allow two exit codes that indicate the health-
iness of an execution: succeeded and failed. The healthiness
of a whole pipeline execution (in contrast to an execution
of a particular command) is visualized by a badge, that
is, for open-source software, often included into the RHS
repository itself (like into the file README.md at a GitHub
repository ). A CI user is able to view each pipeline run that
has been executed and inspect the concrete outputs of each
command in order to fix issues or improve the repositories
content.

4.2 Preliminaries
With the explanations from section 4.1 in mind, tools

that check the data contained in a repository have to be
executable as command-line tools or requestable as web-
services. Command-line tools are preferred because of their
a priori better integration into the CI environment, that is
command-line based. As of the range of applicable tools,
a CI pipeline will have to use tools that support failed ex-
ecutions rather than just print warnings but succeed the
execution. Otherwise the CI provider is not able to indicate
to the user if a pipeline run failed.

As of the fact that many tools exist for special aspects of
RDF data quality on the WWW, like we have outlined in
sections 2 and 3 as well as the listed tools in [13], an RDF
integration pipeline (IP) does not have to be reinvented.
Instead it can reuse existing tools. These tools will have to
check the syntax of a data set, as well as for common pitfalls,
like outlined in [7, 13] and the publications of the mentioned
tools in section 3.

http://librdf.org/raptor
http://librdf.org/raptor
https://jena.apache.org/documentation/io/
https://jena.apache.org/documentation/io/


4.3 Integration Pipeline
According to the available tools from sections 2 and 3, we

classified them according to their main focus. Therefore we
defined three classes: syntax and basic semantic accuracy,
vocabulary/ontology and plain data. We classified the tools
as follows:

• Syntax and basic semantic accuracy

– Raptor Utils

– Apache Jena RIOT

• Vocabulary/Ontology

– OOPS!

– VoCol

– Luzzu

– RDFUnit

– LOD Washing Machine

• Plain data

– RDFUnit

– Luzzu

– LOD Washing Machine

This classification in mind, we use the Raptor Utils in each
and every case as a precondition to check for syntax errors
and a basic level of semantic accuracy. We chose Raptor
Utils because of their availability in most modern Linux dis-
tributions software repositories and thus easier setup process
at the CI provider.
To check plain RDF data sets, we propose to use the tools

RDFUnit and Luzzu. We dockerized RDFUnit to be able to
use it regardless of the underlying Linux (virtual) machine
of the CI provider. As of the LOD Washing Machine we
could not ascertain on how to use it as a standalone tool,
or put another way without the remaining tools of the LOD
Laundromat. Thus it is currently not usable for CI. The
proposed pipeline for plain RDF data sets is depicted in
figure 1.
To check vocabularies/ontologies for common pitfalls, we

propose to use the tools OOPS!, VoCol, Luzzu and RDFU-
nit. OOPS! is already hosted as a web-service and thus we
had not dockerized it. Luzzu can be used likewise. VoCol,
in contrast, isn’t usable as of the command-line tool or as
a standalone web-service. It seems to be a precondition to
use the VoCol editing environment in order to use VoCols
functionality. Therefore, the proposed pipeline for RDF vo-
cabularies/ontologies is basically the same like in figure 1.
The only difference is that a new block with the tool OOPS!
is added.

4.4 Usage Scenario
We like to outline as a concrete usage example a contin-

uation of the ideas introduced by Arndt et al. [1]. They
describe a triple store that is built upon the source code
versioning tool git. Whenever a store shall be publicly avail-
able or used in a collaborative manner, it can be uploaded
to some RHS, like GitHub. As soon as the stores data gets
modified, the changes will be pushed to the corresponding
RHS and subsequent, the CI pipeline gets triggered by the
RHS. The CI pipeline executes several tests that check the
contained datasets on the one side for data quality aspects

Figure 1: CI pipeline for plain RDF data sets

and on the other side for integrability aspects (that have to
be implemented for the concrete use case). In the end, the
corresponding commit at the RHS will be highlighted ac-
cording to the data climate and the owner of the repository
will be, if necessary, notified in order to improve the dataset.

5. REALIZATION AND VALIDATION
To showcase the functionality of the proposed CI pipeline,

we have implemented it on top of a Git repository that is
hosted at GitHub. The pipeline itself is executed at the
CI provider Travis-CI and is triggered by a push event. The
used data set and Travis-CI configuration is accessible at the
mentioned Git repository at GitHub at https://github.com/
AKSW/amsl-on-ci. We use a fork of the AMSL vocabulary,
that contains 1711 triples and has been introduced in [9], to
showcase a pipeline for vocabularies. The data set has been
edited manually to introduce custom errors in order to show
the pipelines functionality across different commits.

We observed that the mentioned tool OOPS! and Luzzu
of section 3 are only usable as web-services. As CI providers
deal with exit codes, the response of a web request has to be
parsed and analysed in order to produce proper exit codes.
Thus, extensions or wrappers are needed in order to properly
use these tools on CI providers. In contrast, RDFUnit and
Raptor Utils are usable as command-line tools which pro-
duce for tainted data malicious exit codes (different from
zero). Apart from that, RDFUnit exits for warnings and
complex semantic errors with the status code zero.

We have further noticed that all mentioned tools are using
different report formats. E.g. RDFUnit is able to produce a
JUnit report, thus they reuse an existing format. Luzzu, in
contrast, introduces a rather new format that can be treated
as an attempt towards a new standard. As of the current

https://github.com/AKSW/amsl-on-ci
https://github.com/AKSW/amsl-on-ci


tool implementations, report converters are needed in order
to process the results of a CI pipeline execution either auto-
matically by a program, or manually by an user in order to
improve the analysed data. This process can be improved
by our suggestions in section 6.
As our proof of concept implementation assumes that an

RHS and a CI provider is used, the implementation may
emerge as inefficient for large or highly dynamic data sets
due to throughput issues. Public RHS providers have imple-
mented repository and file size restrictions (e.g. 1GB repos-
itory size limit at Github7). Additionally, the mentioned CI
providers create a new virtual machine per CI pipeline exe-
cution. Thus, the latest repository content has to be cloned
onto this virtual machine every time it is created, resulting
in network and disk traffic. This may result in delays that
depend on hardware capabilities of the used RHS and CI
providers. As an expedient, we propose to use the differing
fine tuning mechanisms of each provider. A way to further
improve the throughput is to set up the provider software
at self controlled hardware or to use specialized CI software
that reuses created virtual machines.

6. CONCLUSION & PERSPECTIVE
We presented two Continuous Integration pipelines to check

RDF data sets as well as vocabularies/ontologies for their
data quality and in order to improve their integrability. There-
fore we evaluated available RDF quality assessment tools
and dockerized some of these in order to make them eas-
ily usable for integration pipelines. Some of the presented
tools are difficult to use at CI because of their lack of proper
command-line interfaces (CLI). The remaining tools need
custom extensions in order to improve their CI integrability.
The proposed pipelines use CLI tools only and can therefore
easily be reproduced and used on other projects.
Our suggestions to improve the area is to settle on a stan-

dardized report format, like Luzzu introduces, as well as
integrate proper CLI into all tools in order to improve their
integrability for the current CI approach. Another improve-
ment, that depends on CLI availability, is to introduce more
then two exit codes by classifying the tools report data.
Adding these improvements will lead to a much easier to
set up and use CI pipeline and so integrate well with a Git
triple store, like introduced by Arndt. et al. [1].

7. ACKNOWLEDGEMENT
This work was partly supported by the European Union’s

Horizon 2020 research and innovation programme for the
SlideWiki Project under grant agreement No 688095.

8. REFERENCES
[1] N. Arndt, N. Radtke, and M. Martin. Distributed

collaboration on rdf datasets using git: Towards the
quit store. In 12th International Conference on
Semantic Systems Proceedings, Sept. 2016.

[2] W. Beek, L. Rietveld, H. Bazoobandi, J. Wielemaker,
and S. Schlobach. Lod laundromat: A uniform way of
publishing other people’s dirty data. In Proceedings of
the International Semantic Web Conference (ISWC),
2014.

7Size limits at Github: https://help.github.com/articles/
what-is-my-disk-quota/

[3] S. Cirulli. Continuous integration for xml and rdf
data. XML LONDON, pages 52–60, 2015.

[4] J. Debattista, S. Londono, C. Lange, and S. Auer.
Luzzu - a framework for linked data quality
assessment. Dec. 2015.

[5] P. M. Duvall, S. Matyas, and A. Glover. Continuous
Integration. Addison-Wesley, Feb. 2008.

[6] M. Fowler. Continuous integration. http://
martinfowler.com/articles/continuousIntegration.html,
May 2006. Access date: 2016-06-30.

[7] A. Hogan, A. Harth, A. Passant, S. Decker, and
A. Polleres. Weaving the pedantic web. 3rd
International Workshop on Linked Data on the Web
(LDOW2010) in conjunction with 19th International
World Wide Web Conference, 2010.

[8] D. Kontokostas, P. Westphal, S. Auer, S. Hellmann,
J. Lehmann, and R. Cornelissen. Databugger: A
test-driven framework for debugging the web of data.
In Proceedings of the Companion Publication of the
23rd International Conference on World Wide Web
Companion, Apr. 2014.

[9] A. Nareike, N. Arndt, N. Radtke, S. Nuck, L. Seige,
and T. Riechert. AMSL: Managing electronic
resources for libraries based on semantic web. In
Proceedings of the INFORMATIK 2014: Big Data –
Komplexität meistern, volume P-232 of
GI-Edition—Lecture Notes in Informatics, pages
1017–1026. Gesellschaft für Informatik e.V., Sept.
2014. c⃝ 2014 Gesellschaft für Informatik.

[10] V. Pecanac. Top 8 continuous integration tools.
http://www.code-maze.com/
top-8-continuous-integration-tools/, Feb. 2016. Access
date: 2016-07-01.

[11] N. Petersen, L. Halilaj, C. Lange, and S. Auer. Vocol:
An agile methodology and environment for
collaborative vocabulary development. Feb. 2015.

[12] M. Poveda-Villalón, A. Gómez-Pérez, and M. C.
Suárez-Figueroa. Oops!(ontology pitfall scanner!): An
on-line tool for ontology evaluation. International
Journal on Semantic Web and Information Systems
(IJSWIS), 10(2):7–34, 2014.

[13] A. Zaveri, A. Rula, A. Maurino, R. Pietrobon,
J. Lehmann, and S. Auer. Quality assessment for
linked data:a survey. Semantic Web Journal,
7(1):63–93, Mar. 2015.

https://help.github.com/articles/what-is-my-disk-quota/
https://help.github.com/articles/what-is-my-disk-quota/
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
http://www.code-maze.com/top-8-continuous-integration-tools/
http://www.code-maze.com/top-8-continuous-integration-tools/

	Introduction
	Related Work
	Overview of RDF quality assessment tools
	Integration Pipeline
	Continuous Integration
	Preliminaries
	Integration Pipeline
	Usage Scenario

	Realization and Validation
	Conclusion & Perspective
	Acknowledgement
	References

