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Improving Freehand Placement for Grasping Virtual Objects via Dual View
Visual Feedback in Mixed Reality

(a) (b) (c) (d)

Figure 1: Assessment of dual view visual feedback for freehand grasping in mixed reality

Abstract1

This paper present a first study into the use of dual view visual2

feedback in an exocentric MR environment for assisting freehand3

grasping of virtual objects. A recent study has highlighted the prob-4

lems associated with user errors in freehand grasping, via an anal-5

ysis of virtual object type, location and size. This work present an6

extension to this evaluation, where the same 30 participants were7

recruited for two experiments (one assessing object size and the8

second object position). We report on results following the same9

protocol of the aforementioned study in a laboratory controlled en-10

vironment using a dual view visual feedback method. We present11

a comprehensive statistical analysis of the comparison between a12

single view and dual view feedback method alongside user evalua-13

tion using the System Usability Scale (SUS). The results presented14

clearly show that the dual view visual feedback significantly in-15

creases user z placement accuracy and improves grasp placement in16

the x and y axes, however completion time was significantly higher.17

No variation or improvement was found in user grasp aperture us-18

ing dual view visual feedback for changes in object size/position.19

We present conclusions on SUS and offer directions forward for20

interaction feedback.21

Keywords: Grasping, Freehand Interaction, Natural Hand Inter-22

action, Human Performance Measurement, Visual Feedback, Dual23

View Feedback, Mixed Reality24

Concepts: •Computing methodologies � Mixed / augmented25

reality; •Human-centered computing � User studies; Interac-26

tion techniques; User centered design; Usability testing;27

1 Introduction28

Freehand grasping, where a user manually interacts with virtual ob-29

jects, is one of the most desirable forms of natural interaction for30

Mixed, Augmented or Virtual reality (MR/AR,VR). While this is31

the case, the the many challenges faced for natural freehand grasp-32

ing and the objective assessment of human errors in freehand vir-33

tual object grasping has largely been unexplored. The recent work34

of Al-Kalbani et al. [2016] has sought to address this and develop-35

ing on the studies of [MacKenzie and Iberall 1994] for real object36

grasping, quantified the errors introduced when users aim to manu-37

ally grasp virtual objects in an exocentric MR environment. While38

the work of Al-Kalbani et al. [2016] presents an initial study into39

the freehand grasp problems and proposes measures for estimating40

the errors introduced by users in freehand grasping, it illustrates a41

significant problem in user grasp accuracy, namely how users of-42

ten fail to accurately estimate the correct depth location of virtual43

objects and how the grasp aperture does not change linearly to the44

changes in virtual object size.45

Within this work we present an extension to the evaluation of Al-46

Kalbani et al. [2016], notably in assessing to what extent the grasp47

displacement can be improved by providing additional visual feed-48

back to the users. We illustrate how improvements can be made49

to user depth estimation thus overcoming the underestimation re-50

ported by Al-Kalbani et al. [2016]. We also show that the com-51

mon errors when users grasp virtual objects in an MR scene can52

be largely mitigated using a dual view exocentric MR environ-53

ment. Size, Shape and object position are compared using dual54

view against a single view and the System Usability Score (SUS) is55

applied to assess the user response and preference.56

The paper is structured as follows: Section 2 details the theo-57

ries of feedback in MR, comparing the use of multi-modal and58

visual feedback methods and illustrating that dual view feedback59

ins novel to this work. Section 3 then presents the methodology60

for our experiments, replicating the experimental controls of Al-61

Kalbani et al. [2016]. Sections 4 and 5 present the two experiments62

conducted and detail findings for dual view visual feedback in com-63

parison to single view feedback. Section 6 concludes the work stat-64

ing the key findings and routes for future analysis.65

2 Related Work66

2.1 Feedback in MR67

Feedback is defined in a general context as the process in which68

the impact of an action is returned to improve or correct the next69

action. Absence of feedback can lead to poorer performance in MR,70

AR and VR environments [Maria et al. 2015] and use of suitable71

feedback can lead to direct improvements in user performance [Pitts72

et al. 2012].73

Feedback modalities vary, with visual, audio, haptic, tactile and74

force feedback commonly used within MR. Multimodal feedback75

is also widely used, and aims to improve user performance through76
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the integration of two or more feedback modalities, thus giving77

users a higher sense of presence in relation to virtual elements in78

MR environments.79

2.1.1 Multimodal Feedback80

Due to the potential advantages of multimodal feedback, it is an ac-81

tive research field with studies aiming to assess the ideal combina-82

tion of modes for a given environment. Duff et al. [2010b; 2010a]83

presented a mixed reality system for stroke rehabilitation with mul-84

timodal visual and aural feedback. Even though the number of users85

was limited to 3 in the usability evaluation, promising results were86

shown for reaching movements. Pacchierotti et al [2012] compared87

force feedback modalities to visual feedback in two finger grasping88

of virtual objects. Findings in their work showed that force feed-89

back improves the accuracy of a user’s grasp.90

Distance perception for moving objects in a virtual environment91

using audio, visual and audio-visual feedback was studied by Re-92

billat et al. [2012]. Large immersive displays in two orientations93

were used in their work for providing immersive visual feedback,94

however quantative analysis of their feedback was not explored.95

Prachyabrued and Borst [2014] also investigated feedback for vir-96

tual grasping, again using visual and audio feedback, and presented97

promising recommendations for mitigating the problems of real98

hand penetration of virtual objects. Pitts et al. [2012] investigated99

the interaction of visual and haptic feedback in automotive touch-100

screen simulation. Their results have shown that using haptic feed-101

back alongside visual feedback improves performance and reduces102

glance time.103

Combinations of real time multimodal feedback (i.e visual, audio,104

haptic, tactile and force) in VR, AR and MR training systems and105

simulations is the subject of much research in the medical domain106

[Duff et al. 2010b; Duff et al. 2010a; Baran et al. 2011; Suther-107

land et al. 2013; Coles et al. 2011; Jia et al. 2013; Horeman et al.108

2012]. Promising results in terms of functionality, adaptive integra-109

tion of feedback modalities and novel contributions of these medi-110

cal systems have been shown. Again system evaluation is generally111

limited with subjective and informal analysis commonly presented.112

Additional methods for multimodal feedback in a AR rehabilita-113

tion systems have applied projection mapping techniques, notably114

Vieira et al. [2015]. Their system used projection mapping tech-115

niques for visual feedback, and added haptics and audio feedback116

modalities to increase sources of awareness in a rehabilitation task.117

Even though it was claimed that this system showed promising re-118

sults in guiding motion in rehabilitation tasks through multimodal119

feedback, a formal evaluation study has not been implemented.120

It is evident from the literature that methods combining different121

feedback modalities with visual feedback do benefit performance122

in interaction. However this can be limited where freehand interac-123

tion, without any wearable device, is required and visual feedback is124

commonly used alone. More recently methods to improve the level125

of visual feedback for users in freehand interaction and extending126

this into multiple view methods, are being developed [Johnsen et al.127

2014].128

2.1.2 Multiple Views in Visual Feedback129

Visual feedback in MR and AR is considered to be a conventional130

type of feedback [Prattichizzo et al. 2012] that is widely used. Dey131

and Sandor [2010; 2014] used visual feedback on handheld AR dis-132

plays to compare different visualizations of occluded virtual objects133

in outdoor environments. Key insights and recommendations were134

offered regarding the impact of size and resolution of handheld AR135

displays, depth perception in outdoor environments and the effect136

of motion parallex on handheld AR systems. Two depth cameras137

and visual feedback through an optically transparent LCD screen138

was utilised by Lee et al. [2013] to present 3D spatial interaction139

with virtual objects on a desktop setup. A novel concept in extend-140

ing traditional 2D desktop interaction to spatial 3D manipulation141

was presented in their work. However, no objective analysis was142

provided to asses the system developed. Chang et al. [2012] si-143

multaneously compared Microsoft’s Kinect with an OptiTrack mo-144

tion capture sensor, and used visual feedback to assess rehabilita-145

tion performance and progress of patients in a game setup. Even146

though quantitative analysis was provided in their study, only two147

participants were included in the evaluation process, and the im-148

pact of feedback on rehabilitation was not investigated. Johnsen149

et al. [2014] developed a virtual pet training MR system through150

gesture and speech recognition to reduce child obesity by using151

physical activity of participants as input. Visual feedback through a152

standard LCD monitor in their work was divided into three regions153

occupying varying sizes of the overall monitor area, with each re-154

gion presenting different information to users. A comprehensive155

analysis of the system was presented, however, the impact of divid-156

ing the visual feedback into three regions was not investigated, and157

information presented in all three regions of the visual feedback158

only showed synthetic virtual components and not participants in159

the real environment. Ha et al. [2014] combined two depth cam-160

eras and used visual feedback through an HMD to allow freehand161

manipulation of 3D virtual objects. Different rendering methods of162

virtual objects were tested and analysed to improve depth percep-163

tion. However, their work was only limited to testing different vi-164

sualization methods and not views. Projection mapping techniques165

[Wilson and Benko 2010; Hilliges et al. 2012; Benko et al. 2014;166

Jones et al. 2014] have also been the subject of much research. With167

the aid of multiple projectors and depth cameras, these techniques168

transform a real world space into a unique augmented experience169

for users. Even though projection system use visual feedback, they170

are usually presented as prototypes that are informally assessed, and171

are mainly focused on user experience.172

While the literature discussed offers evidence for the wide use and173

benefits of visual feedback in MR environments, using different vi-174

sual feedback views to mitigate the problems of spatial grasp place-175

ment in the x, y and z axes has not been explored. Moreover, the176

usability of dual view visual feedback is unclear, and this novel vi-177

sual feedback presented in this paper for freehand grasping in an178

MR context has not yet been explored.179

3 Experiment Design180

Following the same protocol, guidelines and design, this study per-181

forms a replication of the experiment presented in [Al-Kalbani et al.182

2016] with the addition of a second camera, providing a dual visual183

feedback (see Fig. 1a and Fig. 1b). We also focus on the last phase184

of a grasp, as defined in the work of [MacKenzie and Iberall 1994],185

and assess the medium wrap grasp [Bullock et al. 2013; Feix et al.186

2014]. We use the Grasp Aperture (GAp) and Grasp Displacement187

(GDisp) metrics defined in equations 1 and 2 from the grasp model188

presented in [Al-Kalbani et al. 2016] to measure grasp placement.189

GAp �
Ö�Px�Bx�2

� �Py�By�2
� �Pz�Bz�2 (1)

gmp � �GApMPx� palmx

2 ,
GApMPy� palmy

2 ,
GApMPz� palmz

2 � (2)

Where GAp is the distance between the index and thumb fingers in190

the x, y and z axes, and GDisp is the distance between the grasp191

middle point (gmp) and the object middle point (omp) in the x, y192

and z axes (see Fig. 1c).193

To directly follow the methodology of Al-Kalbani et al [2016] we194

compare the influence of object size, shape and position (in x, y195

and z space) on grasp accuracy using the dual visual feedback (see196

Fig. 1d) on simple abstract shapes. Table 1 displays the conditions197

of the two experiments.198
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Table 1: Experiment conditions, where x is measured from the
centre of the sensor, y from ground and z from sensor

Object Size Experiment

Condition Levels
Size 40mm, 50mm, 60mm, 70mm, 80mm, 100mm

Object Type Cube and Sphere

Object Position Experiment

Condition Levels
Position (x, y) LEFT MIDDLE RIGHT

TOP -40, 1290 0, 1290 40, 1290
CENTRE -40, 1250 0, 1250 40, 1250
BOTTOM -40, 1210 0, 1210 40, 1210

Object Type Cube and Sphere

The 9 positions were repeated in each z plane (1400mm, 1600mm and 1800mm) as
shown in Fig. 1b.

3.1 Participants199

The same 30 participants that took part in [Al-Kalbani et al. 2016]200

were recruited from a population of university students and staff201

members. Participants completed a standardized consent form,202

were not compensated, and all data collected was anonymised. Vi-203

sual acuity was measured using a Snellen chart, and each participant204

was required to pass an Ishihara test to exclude for colour blind-205

ness. No participants suffering from colour blindness and/or with206

visual acuity of $ 0.80 were included in the analysis. Height, arm207

length and hand size of all participants were also measured prior to208

each experiment, to ensure that aspects of the experimental design209

are within the biomechanical reach of participants. All participants210

were right handed [Oldfield 1971].211

Participants ranged in age from 19 to 62 (M = 30.43, SD = 9.78),212

in arm length from 480mm to 660mm (M = 552.40, SD = 43.80),213

in hand size from 160mm to 200mm (M = 186.80, SD = 10.40), in214

height from 1570mm to 1950mm (M = 1744.00, SD = 90.00) and 6215

were female and 24 male. Taking into account balance in hand size,216

arm length, gender, age and height, we have separated participants217

into two groups of 15 for the two experiments.218

3.2 System Architecture219

The system developed integrated the use of a Microsoft Kinect 2220

(FOV: 70.0°), a (HD) video camera, a Live! Cam Optia Pro HD we-221

bcam1 (FOV: 71.0°) and a SyncMasterX62 feedback monitor. We222

opted for using a HD webcam as a second view feedback camera223

as two Kinect sensors on one PC is not yet supported [Benko et al.224

2014]. FOV of the Kinect and webcam were different to a small de-225

gree, however, the full interaction space was visible on both views.226

The experiments were developed in C++ using Kinect SDK. Au-227

todesk Maya3 was used for modelling 3D objects, open computer228

vision library OpenCV4 for video processing and open graphics li-229

brary OpenGL5 for real time reading, loading and texturing of three230

dimensional (3D) virtual objects.231

The physical configuration of the sensor strictly followed the rec-232

ommendations of Kinect’s 2 manufacturers6. Participants stood233

2000mm away from the sensor under controlled and constant light-234

ing conditions, the sensor was placed at a height of 1800mm and235

tilted at an angle of 13.78° to show the interaction space around236

participants and to eliminate any significant self occlusion prob-237

1http://support.creative.com/kb/ShowArticle.aspx?sid=10859
2http://www.samsung.com/us/support/owners/product/MD230X6
3http://www.autodesk.com/products/maya/overview
4http://opencv.org/
5http://www.opengl.org/
6http://support.xbox.com/en-GB/xbox-360/kinect/kinect-sensor-setup

lems (see Fig. 1).238

Participants stood 1400mm away from the side view webcam,239

placed to the left hand side and at the same height as the Centre240

Middle position (1250mm) presented to participants in Object Po-241

sition Experiment (see Table. 1). To ensure all objects in varying242

positions in the Object Position are visible to participants on the243

feedback monitor. As the distance to the webcam was smaller to244

the one from the Kinect sensor, 3D virtual objects were computed245

to be larger in OpenGL to reflect an accurate representation of the246

closer distance to participants.247

We have chosen to place the second view visual feedback to the side248

of participants as results in [Al-Kalbani et al. 2016] have shown249

that Grasp Displacement in the x axis was user dependant and was250

influenced by the dominant hand of users, not the feedback method.251

On the other hand, Grasp Displacement in the y axis was influenced252

by the feedback method, thus spatial placement of the hand in the253

y axis was affected by the visual feedback method used. Moreover,254

highest Grasp displacement was found in the z axis due to using255

single view visual feedback, thus we used a side view as a second256

visual feedback method to show the y and z axes, the two axes257

that were directly affected by the feedback method used in [Al-258

Kalbani et al. 2016]. Moreover, high grasp variation was found in259

[Al-Kalbani et al. 2016], meaning that participants used different260

grasp types to the one they were instructed to use in the test. This261

behaviour was attributed to participants trying to visualise their full262

hand. Adding a side view allows participants to visualise all parts263

of their hand without the need to adapt their grasp type.264

The feedback monitor was split into two equally sized side by side265

windows, showing the frontal view feedback from the sensor on the266

left hand side window, and the side view feedback from the webcam267

on right hand size window (see 1a). Positions of the windows on the268

feedback monitor were unchanged throughout the study. However,269

participants were asked to comment on the positions of the windows270

and their influence on their performance in the subjective analysis271

after the experiments.272

3.3 Experimental Protocol273

Participants were naive to the purposes of the experiments, but their274

level of experience in MR systems ranged from novice to expert.275

Participants stood 2000mm away from the monitor (size: 62in �276

30in, resolution: 5760 � 2160), displaying a composited dual-view277

real time mirrored scene overlaying virtual objects with the video278

feed obtained from both the Kinect and the Live! Cam. Grasping279

parameters (GAp, GDisp) are measured from the sensor, not to test280

biomechanics of the hand but to quantify errors in spatial position-281

ing and aperture estimation.282

Participants underwent initial training of the medium wrap grasp on283

real and virtual objects, and were given time to familiarise them-284

selves with the side view visual feedback concept. The test coordi-285

nator explained the procedure between each block of tests (i.e cube286

and sphere), and participants were allowed to rest before presenta-287

tion of every object. Each experiment was formed of a 5 minutes288

training/instruction session, 10 minutes of grasping a cuboid object,289

5 minutes break and 10 minutes of grasping a spherical object.290

During the experiment all participants were instructed to verbally291

inform the test coordinator that they are satisfied with the grasp292

they have performed on both feedback views (frontal and side), and293

maintain the grasp for 5 seconds while the measurements are stored.294

After completing the test, participants were asked to fill in a usabil-295

ity questionnaire and a set of questions regarding their interaction296

with the system. The usability of the system was evaluated by a user297

satisfaction test based on the System Usability Scale (SUS) [Brooke298

1996]. This questionnaire consists of 10 items, which were evalu-299

ated by using a Likert scale ranging from 1 (strongly disagree) to300

5 (strongly agree). Through feedback from this questionnaire, we301

were able to evaluate the ease of use and usability of this new con-302
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figuration of the system.303

In order to further assess interaction strategies and behaviour pro-304

tocols by participants while using the system they were asked to305

answer a set of 6 close-ended questions. These questions were pre-306

sented as a post test questionnaire and participants commented on307

anything they considered related to the questions. Questions were:308

1) Which screen did you look at first? 2) Which screen did you309

depend on the most? 3) Which view did you find to be more impor-310

tant? 4) If used again, would you rather use two feedback views or311

just one (frontal view)? 5) Did you use the dual view in a specific312

order? 6) Do you think changing positions of both feedback screens313

would make a difference in performance?314

3.4 Statistical Analysis315

Kruskal Wallis H test [1952] is used for analysis over the ANOVA316

test as our data did not follow a normal distribution [Field 2012]. A317

post-hoc test for multiple comparisons using Dunn Test with Bon-318

ferroni correction [Dunn 1961] is preferred to a Mann-Whitney U319

post hoc test [Iman and J. 1983], and is used for statistically sig-320

nificant results of the Kruskal Wallis H test, to check for statistical321

differences using pairwise comparisons between groups of indepen-322

dent variables.323

In our results and analysis, we focus on the differences between vi-324

sual feedback methods, and only compare the grasp accuracy met-325

rics (GAp and GDisp) between the two feedback views (single view326

and dual view) as whole sets, thus we do not analyse all the levels327

in our conditions (sizes, positions and object type), as this level of328

detailed analyses was presented in the work of [Al-Kalbani et al.329

2016].330

4 Object Size Experiment331

We used a 2 � 6 within-subjects design, with two primary condi-332

tions: object size and object type (see Table 1). All 15 participants333

took part in both conditions. Every permutation for both object334

types was randomly presented to participants to exclude potential335

learning effects. In total, each participant completed 6 (sizes) � 5336

(repetitions) � 2 (objects) = 60 trials and 900 grasps (60 trials � 15337

participants). Each static grasp of every participant was recorded338

for 5 seconds (75 frames), leading to collecting 67500 raw data339

points (900 grasps � 75 frames).340

Hypothesis: We test the null hypotheses that using dual visual341

feedback in grasping virtual objects that change in size has no effect342

on a) grasp aperture and b) grasp displacement.343

4.1 Procedure344

Participants were instructed to accurately match their grasp aperture345

to the size and position of the virtual object in the shortest time346

possible on both feedback views. During the experiment, an object347

(cube or sphere) appeared on the feedback monitor, in 6 different348

sizes (see Table 1). Objects were positioned 1600mm away from349

the sensor and 400mm away from participants (z), at a height of350

1250mm (y) and at the zero (x) point on the sensor. This position351

was constant throughout the experiment.352

4.2 Results and Analysis353

4.2.1 Results - Grasp Aperture (GAp)354

No statistically significant difference was found in Grasp Aperture355

(GAp) between the two visual feedback methods (single view and356

dual view) in grasping cubes (χ2 (1) = 5.06, p % 0.01). For spheres,357

statistically significant difference was found in Grasp Aperture358

(GAp) between the two visual feedback methods (χ2 (1) = 1270.90,359

p $ 0.01).360

In order to understand the practical significance of the multiple361

comparisons in our post-hoc analysis, Cohen’s d [Cohen 1992]362

effect size for independent t-tests is calculated. A negligible ef-363

fect size (d $ 0.20) for cubes, and a small effect size for spheres364

(d $ 0.30) were found.365

This shows that using dual view visual feedback for freehand366

medium wrap grasping still presents comparable results to previ-367

ous work on single view visual feedback [Al-Kalbani et al. 2016].368

Object size that presented the lowest mean difference between GAp369

and cubes (80mm) was the same to the one reported in [Al-Kalbani370

et al. 2016], but different for spheres (80mm) as 70mm was the size371

reported in [Al-Kalbani et al. 2016]. This indicates that object sizes372

between 70mm and 80mm present most accuracy in GAp regardless373

of the feedback method used.374

Even though the difference between mean GAp across all sizes of375

cubes and spheres was negligible (0.07mm) in this study, it still376

contradicts findings in the single view visual feedback study. As377

we report lower mean GAp across all sizes was found for cubes378

than spheres, the opposite to our findings were reported for single379

view visual feedback.380

(a)

(b)

Figure 2: GAp for different object sizes in the 1600mm z plane in
the Object Size Experiment. Light grey boxplots show cubes, and

dark grey boxplots show spheres. Red triangles on boxplots
indicate the mean GAp across all participants for each size.

Whiskers represent the highest and lowest values within 1.5 times
the interquartile range from the lower and upper quartiles: (a)

Single view visual feedback from [Al-Kalbani et al. 2016] (b) Dual
view visual feedback

Participants maintained their behaviour in matching their GAp to381

object size with the addition of side view visual feedback. For382

both objects, participants overestimated object size up until the size383

that had the lowest mean difference between GAp and object size384

(80mm for cube and sphere). In addition, both objects showed that385

with the 100mm size, participants underestimated its size by a mean386

of -14.51mm for cubes (SD = 24.92), and -20.02mm for spheres387

(SD = 28.59). This behaviour was compatible between one and388

dual view visual feedback.389

Fig. 2b further shows the mean GAp range across all sizes of both390

objects. Even though this range is smaller than the range of GAp391

reported for single view visual feedback (see Fig. 2a), it still shows392

that, given object sizes ranged from 40mm to 100mm, responsive-393
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ness of participants in terms of accurately matching GAp to ob-394

ject size is constrained between 60mm and 80mm, regardless of the395

feedback method used. This finding was surprising in this work as396

participants had additional side view visual feedback, that clearly397

showed their thumb and index fingers, to accurately match their398

GAp to object size. Even though significant differences were found399

between the two visual feedback methods, dual visual feedback400

did not show any improvements over single view feedback in GAp401

matching to object size, and no direct linear relationship between402

object size and GAp as in real objects was found. As statistically403

significant results were found for the feedback method condition,404

the null hypothesis that dual visual feedback in grasping virtual ob-405

jects that change in size does not have an effect on GAp is rejected.406

4.2.2 Results - Grasp Displacement (GDisp)407

Statistically significant difference was found in Grasp Displace-408

ment in the x axis (GDispx) between the two visual feedback meth-409

ods in grasping cubes (χ2 (1) = 2875.70, p $ 0.01). For spheres,410

no statistically significant difference was found in GDispx between411

the two visual feedback methods (χ2 (1) = 4.20, p % 0.01). A small412

effect for cubes (d % 0.30), and a negligible effect for spheres were413

found (d $ 0.20).414

Similar to single view visual feedback, positive GDispx was present415

for both objects. This positive GDispx is expected, as all par-416

ticipants were right handed, and the Grasp Middle Point (gmp)417

was computed on the right hand side of virtual objects. Mean418

GDispx was lower for both objects using dual view visual feedback419

(19.33mm (SD = 21.40) for cubes, and 31.01mm (SD = 20.28) for420

spheres) than single view visual feedback (28.01mm (SD = 14.08)421

for cubes and 31.52 (SD = 14.68) for spheres). This shows that422

adding side view visual feedback significantly improves the gmp423

spatial positioning in the x axis and reduces GDispx from the cen-424

tre of virtual objects.425

Similarity in gmp placement on the x axis was reported for single426

view visual feedback as shown by the range of clusters on the x axis427

in Fig. 3a. Range of the mean GDispx across all sizes of cubes and428

spheres was lower using dual view visual feedback (see Fig. 3b).429

No significant difference was found in Grasp Displacement in the430

y axis (GDispy) between the two feedback methods in grasping431

cubes (χ2 (1) = 5.89, p % 0.01). For spheres, statistically signif-432

icant difference was found in GDispy between the two feedback433

methods (χ2 (1) = 2551.50, p $ 0.01). A negligible effect for cubes434

(d $ 0.20), and a small effect for spheres were found (d $ 0.50).435

Negative GDispy was present for both objects. This reveals that par-436

ticipants placed their gmp below the Object Middle Point (omp), a437

behaviour that was also present in single view feedback and is po-438

tentially attributed to participants trying to show parts of the objects439

presented to them on the feedback monitor, a strategy that reassured440

participants that they have grasped the virtual object.441

Mean GDispy was lower for both objects using dual view visual442

feedback (-12.13mm (SD = 11.10) for cubes, and -4.85mm (SD443

= 12.02) for spheres) than single view visual feedback (-12.37mm444

(SD = 11.94) for cubes, and -9.84mm (SD = 12.51) for spheres),445

this shows that dual view visual feedback significantly improves the446

gmp spatial positioning in the y axis by reducing GDispy from the447

centre of virtual objects. Similar to GDispx, gmp placement across448

participants on the y axis was comparable across object sizes as449

shown by the range of clusters in Fig. 3b. This consistency in gmp450

placement on the y axis was present using one visual feedback (see451

Fig. 3a).452

Mean GDispx and GDispy for each object size in both objects have453

shown that placement of gmp shifted towards the 0 origin of the454

x and y axis as shown in Fig. 3b, this indicates that even though455

GDispx and GDispy are still existent with the use of dual view456

visual feedback, the displacement is reduced and is closer to the457

origin of the virtual object than it was with using single view vi-458

(a)

(b)

Figure 3: gmp placement (black clusters) in the x and y axes of all
participants in the Object Size Experiment presenting 3 sizes

(40mm, 70mm, 100mm) for cubes (top row) spheres (bottom row):
(a) Single view visual feedback from [Al-Kalbani et al. 2016] (b)

Dual view visual feedback

sual feedback. Moreover, SD differences of GDispx and GDispy459

means within object sizes between cubes and spheres were compa-460

rable, indicating that contact of gmp with the surface of the object461

was reflective of size growth of objects rather than movements by462

participants. This behaviour was compatible between one and dual463

view visual feedback, and it shows that even though dual view vi-464

sual feedback reduces GDispx and GDispy and moves participants465

closer to the centroid of virtual objects in the x and y axis, partic-466

ipants remain consistent in their spatial gmp placement regardless467

of changes in object size. This consistency is expected as object468

position was unchanged throughout this experiment.469

Statistically significant difference was found in Grasp Displace-470

ment in the z axis (GDispz) between the two feedback methods471

in grasping cubes (χ2 (1) = 2420.30, p $ 0.01) and spheres (χ2 (1)472

= 5752.40, p $ 0.01). Medium effects for cubes and spheres473

(d $ 0.80) were found.474

GDispz presented the highest displacement out of all three axis with475

single view visual feedback in [Al-Kalbani et al. 2016], and in this476

study we test if dual view visual feedback can mitigate high GDispz477

and aid in achieving accurate depth positioning in MR. In our work,478

the terms underestimation and overestimation are opposite to those479

of depth perception, hence in this study, depth refers to the distance480

from the feedback monitor and not the user as in depth perception481

studies. Negative mean GDispz was found for both objects across482

all sizes, this indicates that majority of participants underestimated483

the z position of omp by placing their gmp in front of the omp for484

all sizes. Overestimation of z position was also present, but not485

as frequent as underestimation, as 54% of the data showed under-486

estimation, while overestimation was present in 45% of the data.487

However, the difference between overestimation and underestima-488

tion is smaller and distributed in a more balanced manner when us-489
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(a)

(b)

Figure 4: gmp placement (black clusters) in the z axis of all
participants in the Object Size Experiment presenting 3 sizes

(40mm, 70mm, 100mm) for cubes (top row) spheres (bottom row):
(a) Single view visual feedback (b) Dual view visual feedback

ing dual view visual feedback than single view visual feedback, as490

underestimation was reported to be present in 67% of the data, and491

overestimation was present in 33% of the data using single view vi-492

sual feedback. Position of gmp in the z axis was comparable across493

all sizes for both objects, and more clustered in the centre of objects494

as shown by Fig. 4b. This is attributed to the more balanced distri-495

bution of z position overestimation and underestimation caused by496

dual view visual feedback.497

Mean GDispz range was lower using dual view visual feedback as498

shown in Fig. 4b than one visual feedback. Mean GDispz was lower499

for both objects using dual view visual feedback (-8.96mm (SD =500

22.56) for cubes and 1.20mm (SD = 27.55) for spheres) than sin-501

gle view visual feedback (-38.39mm (SD = 61.67) for cubes and502

-29.87mm (SD = 60.51) for spheres). This shows that dual view503

visual feedback significantly reduces GDispz, and improves gmp504

spatial positioning in the z axis by reducing GDispz from the cen-505

tre of virtual objects. Moreover, dual view visual feedback reduced506

deviation in GDispz as shown by the SD values when compared to507

reported values of single view visual feedback (see Fig. 4a). As508

statistically significant results were found for the feedback method509

condition, the null hypothesis that dual visual feedback in grasp-510

ing virtual objects that change in size does not have an effect on511

GDisp is rejected. As dual visual feedback has a significant effect512

on GDisp in all axes (x, y and z).513

4.2.3 Results - Completion Time514

Statistically significant difference in completion time between the515

two feedback methods was found for cubes (χ2 (1) = 18863, p $516

0.01) and spheres (χ2 (1) = 16551, p $ 0.01).517

Statistically significant difference in completion time between the518

two feedback methods shows that adding a second view camera519

for visual feedback significantly increases completion time, as the520

overall completion time across all sizes was 7.65s (SD = 5.61) for521

cubes and 6.08s for spheres (SD = 3.18). These completion times522

were larger than those reported for single view visual feedback523

(4.26s (SD = 1.93) for cubes and 3.48s (SD = 1.55) for spheres).524

This was expected as adding a side view camera for dual visual525

feedback makes participants aware of their inaccuracy in grasp526

placement, and leads participants to spend more time adjusting their527

grasp for the purpose of achieving more grasp accuracy.528

4.2.4 Usability Analysis529

SUS average score for the different sizes test was 77 (SD = 16.45).530

Out of 15 participants, 6 (37.50%) preferred to look first to the531

frontal view while 8 (53.33%) focused their attention on the side532

view first, one user remained undecided. To the question of which533

view was the most important for them, the opinion was divided into534

7 (46.66%) users referring to use the frontal view more, while the535

remaining 8 relied more on side view (53.33%). With respect to536

which view was considered more important during the performance537

of the experiment, 7 (46.66%) users considered it to be the frontal538

view while 7 (46.66%) chose the side view. One user remained539

undecided. On using the system again, 9 users (60.0%) will in-540

teract with the system again with dual visual feedback while 5 of541

the remaining (33.33%) did prefer the single view interaction [Al-542

Kalbani et al. 2016]. 13 participants out of the 15 available had a543

specific approach for using dual visual feedback.544

5 Object Position Experiment545

We used a 2 � 3 � 3 � 3 within-subjects design, with two primary546

conditions: object position and object type (see Table 1). All new547

15 participants took part in both conditions. Every permutation of548

position for both object types was randomly presented to partici-549

pants to exclude potential learning effects. In total, each participant550

completed 27 (positions) � 2 (objects) = 54 trials and 810 grasps551

(54 trials � 15 participants). Each static grasp of every participant552

was recorded for 5 seconds (75 frames), leading to collecting 60750553

raw data points (810 grasps � 75 frames).554

Hypothesis: We test the null hypotheses that using dual visual555

feedback in grasping virtual objects that change in position has no556

effect on a) grasp aperture and b) grasp displacement.557

5.1 Procedure558

Participants were instructed to accurately locate and match their559

grasp aperture to the size and position of the virtual object in the560

shortest time possible on both feedback views. 27 different posi-561

tions in all axes (x, y and z) are used (see Table 1), covering a562

working range of 400mm from participants (see Fig. 1b). We chose563

the object sizes that had the lowest mean difference between GAp564

and object size found in literature [Al-Kalbani et al. 2016] (80mm565

for cubes and 70mm for spheres).566

During the experiment, an object (cube or sphere) appeared to par-567

ticipants on the feedback monitor, each object had 27 different po-568

sitions. Size of both objects was unchanged throughout the experi-569

ment.570

5.2 Results and Analysis571

The object position that was used in the Object Size Experiment572

(Centre Middle) was changed in the x, y and z axes (see Table. 1).573

We report on results of the z plane that was used in the Object Size574

Experiment (1600mm), and changes in object positions were com-575

pared as whole sets between the two feedback methods (single and576

dual view visual feedback) to test the influence on visual feedback577

method on GAp and GDisp given that object position changes.578

5.2.1 Results - Grasp Aperture (GAp)579

Statistically significant difference was found in GAp in different po-580

sitions between the two feedback methods in grasping cubes (χ2 (1)581

= 647.99, p $ 0.01) and spheres (χ2 (1) = 2508, p $ 0.01). A small582

effect size for cubes (d % 0.30 and a medium effect size for spheres583

(d % 0.50) were found.584

As shown in Fig. 5b, highest mean differences between GAp and585

object size were in positions to the right hand side of partici-586

pants (Top Right, Centre Right and Bottom Right) for cubes (M587

= 75.21mm, SD = 15.29) and spheres (M = 57.06mm, SD = 15.30).588

This contradicts results from the one visual feedback study as par-589

ticipants performed best in positions to their right hand side (see590

Fig. 5a), however, the opposite was present in dual view visual feed-591

back. This is potentially attributed to the additional side view cam-592
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(a)

(b)

Figure 5: GAp for different positions in the 1600mm z plane in the
Object Position Experiment. Light grey boxplots show cubes, and

dark grey boxplots show spheres. Red triangles on boxplots
indicate the mean GAp across all participants for each size.

Whiskers represent the highest and lowest values within 1.5 times
the interquartile range from the lower and upper quartiles: (a)

Single view visual feedback from [Al-Kalbani et al. 2016] (b) Dual
view visual feedback

era positioned to the left of participants and the dual view feedback,593

and explains the low accuracy in terms of matching GAp to object594

size in the right hand side positions in this study. Lower mean dif-595

ferences between GAp and object size were found in in positions to596

the left hand side of participants (Top Left, Centre Left and Bottom597

Left) for cubes (M = 76.19mm, SD = 15.81) and in central positions598

(Top Middle, Centre Middle, and Bottom Middle) for spheres (M599

= 62.70mm, SD = 23.44). Lowest mean differences between GAp600

and object size were found in the central positions for cubes (M =601

76.37mm, SD = 19.56) and in positions to the left hand side of par-602

ticipants for spheres (M = 70.07mm, SD = 18.60). Positions that603

presented highest and lowest accuracy in matching GAp to object604

size were different between the two visual feedback methods, but605

central positions remain to be a consistent working region in terms606

of accuracy in matching GAp to object size across one and dual607

view visual feedback methods. Underestimation of object size was608

present in all positions, with the exception of positions to the left609

hand side of participants in grasping spheres where a small overesti-610

mation of size was found (M = 70.07mm, SD = 18.60). This shows611

that participants tend to underestimate object size in the majority of612

positions when using dual view visual feedback. This was different613

for single view visual feedback where it was reported that consis-614

tent overestimation was present in positions to the left hand side of615

participants, and underestimation was consistent in positions to the616

right hand side of participants [Al-Kalbani et al. 2016]. Mean GAp617

across all participants and positions was 60.91mm (SD = 18.19)618

for cubes and 74.82mm (SD = 14.60) for spheres, this shows that619

single view visual feedback outperforms dual view visual feedback620

in GAp matching to object size, as reported mean GAp for single621

view visual visual feedback was 79.94mm (SD = 16.17) for cubes622

and 73.87mm (SD = 17.73) for spheres, thus participants performed623

better in matching their GAp to object sizes using single view vi-624

sual feedback. This can be explained by the fact that virtual objects625

changed position, and as participants had no prior knowledge about626

the positions of the virtual object that are presented in this exper-627

iment, accurately locating virtual objects in 3D space using their628

gmp was prioritised over accurately match their GAp to object size.629

Even though this behaviour was present in single view visual feed-630

back, presenting second view visual feedback to participants made631

this behaviour more prominent. As statistically significant results632

were found for the feedback method condition, the null hypothesis633

that dual visual feedback in grasping virtual objects that change in634

position does not have an effect on GAp is rejected.635

5.2.2 Results - Grasp Displacement (GDisp)636

Statistically significant difference was found GDispx between the637

two feedback methods in grasping cubes (χ2 (1) = 210, p $ 0.01)638

and spheres (χ2 (1) = 23, p$ 0.01) in different positions. Negligible639

effects for cubes and spheres (d $ 0.30) were found.640

Mean GDispx was lower for both objects across all positions using641

dual view visual feedback (26.22mm (SD = 22.54) for cubes and642

24.32mm (SD = 29.20) for spheres) than single view visual feed-643

back (30.39mm (SD = 26.90) for cubes and 27.55mm (SD = 30.89)644

for spheres), thus using dual view visual feedback reduced GDispx645

across all positions.646

(a)

(b)

Figure 6: gmp placement (black clusters) in the x and y axes of all
participants in the Object Position Experiment for cubes (left)

spheres (right): (a) Single view visual feedback from [Al-Kalbani
et al. 2016] (b) Dual view visual feedback

As shown by the clusters in Fig. 6b, the range of mean GDispx was647

less spread using dual view visual feedback than single view visual648

feedback (see Fig. 6a). Moreover, a lower SD value show that less649

variability by participants in spatial placement of gmp in the x axis650

was also present while using dual view visual feedback.651

Statistically significant difference was found in GDispy between652

the two feedback methods in grasping cubes (χ2 (1) = 3026, p $653

0.01) and spheres (χ2 (1) = 1349, p $ 0.01) in different positions.654

A medium effect for cubes (d $ 0.80), and a small effect for spheres655

were found (d $ 0.50).656
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Mean GDispy across all positions was 4.21mm (SD = 13.57) for657

cubes and 0.29mm (SD = 18.81) for spheres. GDispy values were658

lower than those reported for one visual feedback (-9.80mm (SD =659

21.99) for cubes and -10.33mm (SD = 24.13) for spheres). Inter-660

estingly, positive mean GDispy was found for both object across all661

positions using dual view visual feedback, this contradicts findings662

reported in one visual feedback, as GDispy was found to be neg-663

ative. This shows that participants in our study placed their gmp664

above the omp when interacting with virtual objects in a dual view665

visual feedback setup. Lower range of the mean GDispy across all666

positions and objects was present using dual view visual feedback667

as shown in Fig. 6b, than single view visual feedback where a more668

spread out range with higher deviation was reported for the mean669

GDispy as shown in Fig. 6a.670

Our results show that dual view visual feedback outperforms single671

view visual feedback by reducing mean GDispx and GDispy across672

all positions which shifted placement of gmp towards the 0 origin673

of the x and y axis, and also by reducing the range of GDispx and674

GDispy with less deviation, meaning that participants were more675

consistent in their spatial gmp placement in the x and y axes using676

dual view visual feedback.677

Statistically significant difference was found in GDispz between the678

two feedback methods in grasping cubes (χ2 (1) = 2298, p $ 0.01)679

and spheres (χ2 (1) = 1990, p $ 0.01) in different positions. Large680

effects for cubes and spheres (d % 0.80) were found.681

Similar to the Object Size Experiment, GDispz presented the high-682

est displacement out of all three axis with single view visual feed-683

back in [Al-Kalbani et al. 2016] for grasping virtual object in differ-684

ent positions. Here mean GDispz across all positions was 3.33mm685

(SD = 22.17) for cubes and 5.07mm (SD = 26.28) for spheres. This686

shows a significant improvement in spatial gmp placement in the z687

axis as reported GDispz means for single view visual feedback were688

-58.75mm (SD = 94.90) for cubes, and -51.60mm (SD = 89.06)689

for spheres. Moreover, lower deviation was shown with the use690

of dual view visual feedback, indicating that participants had less691

variability in their depth estimation across all positions. Positive692

mean GDispz was present for both objects across all positions, this693

contradicts findings in [Al-Kalbani et al. 2016] where underestima-694

tion (negative GDispz) of object position in the z axis was reported695

for both objects across all positions. This shows that dual view696

visual feedback led participants to overestimate object position in697

the z axis across all positions by placing their gmp in front of the698

omp. Mean GDispz was less spread and closer to the 0 origin on699

the z axis for both objects across all positions using dual view vi-700

sual feedback as shown in Fig. 7b, in comparison to single view vi-701

sual feedback (see Fig. 7a). As statistically significant results were702

found for the feedback method condition, the null hypothesis that703

dual visual feedback in grasping virtual objects that change in po-704

sition does not have an effect on GDisp is rejected. As dual visual705

feedback has a significant effect on GDisp in all axes (x, y and z).706

5.2.3 Results - Completion Time707

Statistically significant difference across all positions in completion708

time between the two visual feedback methods was found for cubes709

(χ2 (1) = 5778, p $ 0.01) and spheres (χ2 (1) = 6212, p $ 0.01).710

Statistically significant difference in completion time between the711

two feedback methods shows that adding a side view camera for vi-712

sual feedback significantly increases completion time, as the over-713

all mean completion time across all positions and participants was714

11.43s (SD = 8.63) for cubes and 10.41s (SD = 6.48) for spheres.715

These completion times were higher than those reported for single716

view visual feedback (6.30s (SD = 5.29) for cubes and 5.14s (SD =717

2.63) for spheres).718

Results from the Object Size and Object Position Experiments in719

this work have shown that dual view visual feedback makes a sig-720

nificant impact on spatial positioning in the x and y axes. Moreover,721

depth perception has improved in the z axis in both experiments722

in this study, as GDispz was significantly reduced, making grasp-723

ing virtual objects in a single or varying position more accurate in724

terms of spatial positioning of a grasp. However, this study has also725

shown that adding a second view camera for visual feedback does726

not improve accuracy of GAp matching to object size in compari-727

son to single view visual feedback. Moreover, significantly higher728

completion time was also present in both experiments in this work729

meaning that even though more accuracy can be achieved in spatial730

positioning of gmp in all axes, completion time increases a result.731

This shows that a speed-accuracy trade-off must be made before732

utilising dual view visual feedback.733

In addition, the grasp variation problem that was presented in one734

visual feedback (see Fig. 8a) is reduced using dual view visual feed-735

back as shown in Fig. 8b. This shows that dual view visual feedback736

allows participants to visualise their whole hands using frontal and737

side visual feedback eliminates the need to adapt grasp type, thus738

causing less grasp variation.739

5.2.4 Usability Analysis740

SUS average score for the different sizes test was 64.5 (SD = 13.43).741

Out of 15 participants, 8 (53.3%) referred to look first to the frontal742

view while 6 (37.5%) focused their attention on the side view first,743

one user remained undecided. To the question of which view was744

the most important for them, the opinion was divided into 9 (60.0%)745

users preferring to use the frontal view more, while 5 relied more746

on side view (33.33%). With respect to which view was consid-747

ered more important during the performance of the experiment,748

11 (73.33%) users considered it to be the frontal view while 4749

(26.66%) chose the side view. On using the system again, 12 users750

(80.0%) will interact with the system again with dual view visual751

feedback while 2 (13.33%) did preferred single view interaction752

([Al-Kalbani et al. 2016]). 12 participants out of the 15 available753

had a specific approach for using dual visual feedback.754

6 Conclusions And Future Work755

This work presented a first study into the use of dual view visual756

feedback in an exocentric MR environment for assisting freehand757

grasping of virtual objects. Measures of Grasp Aperture (GAp)758

and Grasp Displacement (GDispxyz) were used to quantify grasp759

ability and comparisons given against traditional single view visual760

feedback. We presented a comprehensive study of the dual view761

visual feedback focusing on mitigating the problems found in free-762

hand grasping of virtual objects in an exocentric MR environment,763

namely grasp displacement in the x, y and axes (GDispxy), high764

displacement in the z axis (GDispz) and inaccurate object size esti-765

mation using GAp.766

The results illustrate that dual view visual feedback significantly767

improves Grasp Displacement in the x and y axes (GDispxy). Fur-768

thermore user estimation of the object z position (the highest dis-769

placement found in the single view study) was significantly im-770

proved with the dual view feedback over single view feedback. This771

mitigation of displacement in the z axis was attributed to users in-772

creased awareness of their placement errors in the z axis via the773

additional side view feedback, thus allowing them to correct their774

grasp placement (see Table 2).775

We also illustrate similarities between the two feedback methods776

(single view and dual view) in user estimation of object size using777

GAp. With single view feedback outperforming dual view visual778

feedback in matching GAp to object size. In the object position ex-779

periment participants were more focused on position change over780

object size, thus similar to single view feedback, GAp varies less781

than expected using dual visual feedback, and was not proportional782

to object size. These findings are important when understanding783

how users respond to different visual feedback views and notewor-784
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Table 2: Descriptive Statistis (Mean � SD): Summary statistics of single [Al-Kalbani et al. 2016] and dual visual feedback: all mean/SD
values are calculated across all participants, object sizes and object types for the Object Size experiment, and across all participants, object

positions and object types for the Object Position experiment

Experiment Feedback GGGAAAppp [mm] GGGDDDiiissspppxxx [mm] GGGDDDiiissspppyyy [mm] GGGDDDiiissspppzzz [mm] Time [s] SUS Score
Object Size Dual View 78.55 � 31.28 25.17 � 21.65 -8.86 � 12.24 -3.88 � 25.69 6.87 � 4.63 77 � 16.45

Single View 73.43 � 27.65 29.77 � 14.49 -11.10 � 12.30 -34.12 � 61.24 3.87 � 1.80
Object Position Dual View 70.17 � 20.04 27.78 � 31.76 0.62 � 18.71 4.91 � 33.42 11.22 � 7.79 64.50 � 13.43

Single View 76.72 � 19.16 27.82 � 31.13 -10.75 � 28.35 -63.70 � 116.95 6.02 � 4.46

(a)

(b)

Figure 7: gmp placement (black clusters) in the z axis of all participants in the Object Position Experiment for cubes (left) spheres (right):
(a) Single view visual feedback from [Al-Kalbani et al. 2016] (b) Dual view visual feedback

(a)

(b)

Figure 8: Examples of the difference in grasp variation shown by
participants in grasping cubes and spheres in the same positions
in 3D space between the two feedback methods: (a) Single view

visual feedback from [Al-Kalbani et al. 2016] (b) Dual view visual
feedback (where top row shows the frontal view, and bottom row

shows the side view)

thy for future work developing freehand grasping systems. Our785

work also shows that changing the visual feedback method does786

not improve size estimation using GAp, as it remains within a mean787

range of 60mm (SD = 31.28) to 70mm (SD = 31.09) across all par-788

ticipants and object types regardless of changes in object size and789

the feedback method employed.790

We further report that completion time significantly increases using791

dual view visual feedback, thus even though our proposed feedback792

method significantly improves spatial grasp placement, it results in793

longer completion times (see Table 2). This is attributed to partic-794

ipants repeatedly correcting their grasp posture for either aperture795

or position using the additional side view visual feedback. This in-796

crease in completion time should be considered in future interaction797

design, however in our work performance was task dependant and798

grasp accuracy was the primary goal. In addition, grasp variation799

that was present using single view visual feedback, was reduced us-800

ing dual view visual feedback. This indicates that enabling partici-801

pants to visualise their hands using side and front views encourages802

more consistency in the grasp type.803

Finally, from the usability analysis we can draw the following con-804

clusions: According to the SUS ranking system of Bangor et al.805

[2009] the dual view visual feedback was rated as “good and ac-806

ceptable” with a score 77 (SD = 16.45) for the object size experi-807

ment, while it was rated as “OK and marginally acceptable” for the808

object position experiment with a score of 64.5 (SD = 13.43) [Ban-809

gor et al. 2009] (see Table 2). According to this, when the object810

position in the MR space changes for every test iteration partici-811

pants found the use of dual view visual feedback more challenging.812

Finally, although there was a divided opinion in both experiments813

about which view is the most important, the majority of users con-814

cluded that they will interact again with the dual view visual feed-815
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back method, and consider this method more accurate and helpful816

for locating virtual objects in an MR environment. Future work will817

consider the changes to grasp accuracy when using different posi-818

tions of the dual view visual feedback in this exocentric MR setting,819

alongside the integration and translation of this form of feedback to820

optical see-through AR/MR systems.821
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