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ABSTRACT
Decisions on how best to optimize today’s energy systems
operations are becoming ever so complex and conflicting
such that model-based predictive control algorithms must
play a key role. However, learning dynamical models of en-
ergy consuming systems such as buildings, using grey/white
box approaches is very cost and time prohibitive due to its
complexity. This paper presents data-driven methods for
making control-oriented model for peak power reduction in
buildings. Specifically, a data predictive control with re-
gression trees (DPCRT) algorithm, is presented. DPCRT
is a finite receding horizon method, using which the build-
ing operator can optimally trade off peak power reduction
against thermal comfort without having to learn white/grey
box models of the systems dynamics. We evaluate the per-
formance of our method using a DoE commercial reference
virtual test-bed and show how it can be used for learning pre-
dictive models with 90% accuracy, and for achieving 8.6%
reduction in peak power and costs.

CCS Concepts
•Computing methodologies → Classification and re-
gression trees;

Keywords
Machine learning; Predictive control; Building control; Peak
power reduction.

1. INTRODUCTION

The organized electricity markets in the United States all
use some variant of real-time or time-of-use (TOU) pricing
for wholesale electricity. For e.g. PJM’s real-time market
is a spot market where electricity prices are calculated at
five-minute intervals based on the grid operating conditions.
The volatility in real-time electricity prices poses the biggest
operational and financial risk for large scale end-users of
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electricity such as large commercial buildings, industries and
institutions [1]; often referred to as C/I/I consumers. For
example the polar vortex triggered extreme weather events
in the U.S. in January 2014, which caused many electricity
customers to experience increased costs. Parts of the PJM
electricity grid experienced a 86 fold increase in the price of
electricity from $31/MW h to $2, 680/MW h in a matter of
a few minutes [19]. Similarly, the summer price spiked 32
fold from an average of $25/MW h to $800/MW h in July of
2015.

Buildings consume more than one third of the world’s to-
tal primary energy [15]. They account for 40% of all energy
use in the U.S and for 72% of total U.S. electricity consump-
tion [7]. Large C/I/I buildings, are the biggest consumers
of electricity and a significant contributor to peak load con-
ditions on the grid. The largest use of energy consumption
in buildings is attributed to the heating, ventilation and air-
conditioning (HVAC) systems. Therefore, measures directed
at the HVAC systems are attractive for load curtailment and
energy-efficient building operation.

Control-oriented predictive models of an energy system’s
dynamics and energy consumption, are needed for under-
standing and improving the overall energy efficiency and op-
erating costs. With a reasonably accurate forecast of future
weather and building operating conditions, dynamical mod-
els can be used to predict the energy needs of the building
over a prediction horizon, as is the case with model predic-
itve control (MPC). However, a major challenge with MPC
is in accurately modeling the dynamics of the underlying
physical system.

Learning predictive models of building’s dynamics using
first principles based approaches (e.g. with EnergyPlus [8])
is very cost and time prohibitive and requires retrofitting the
building with several sensors [26]. The user expertise, time,
and associated sensor costs required to develop a model of a
single building is very high. This is because usually a build-
ing modeling domain expert typically uses a software tool
to create the geometry of a building from the building de-
sign and equipment layout plans, add detailed information
about material properties, about equipment and operational
schedules. There is always a gap between the modeled and
the real building and the domain expert must then manu-
ally tune the model to match the measured data from the
building [23].

The alternative is to use black-box, or completely data-
driven modeling approaches, to obtain a realization of the
system’s input-output behavior. The primary advantage of
using data-driven methods is that it has the potential to
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eliminate the time and effort required to build white and
grey box building models. Listening to real-time data, from
existing systems and interfaces, is far cheaper than unleash-
ing hoards of on-site engineers to physically measure and
model the building. Improved building technology and bet-
ter sensing is fundamentally redefining the opportunities
around smart buildings. Unprecedented amounts of data
from millions of smart meters and thermostats installed in
recent years has opened the door for systems engineers and
data scientists to analyze and use the insights that data can
provide, about the dynamics and power consumption pat-
terns of these systems. The challenge now, with using data-
driven approaches, is to close the loop for real-time control
and decision making for large C/I/I buildings .

In our previous work [3], we developed and evaluated
a model based control with regression trees (mbCRT) al-
gorithm which enables closed-loop control of buildings for
demand response while using regression trees based, data-
driven predictive models. In this paper we present a new
approach with significant improvements over mbCRT [3] for
implementing finite receding horizon control using regression
trees based data-driven models.

This work has the following data-driven contributions:

1. We present a method for constructing a multi-variate
output predictive model using regression trees. This is
via node level optimization for determining variable se-
lection and splitting criteria. The proposed algorithm
achieves an accuracy of 90% on test data set.

2. We address the limitations of mbCRT, and present a
data predictive control with regression trees (DPCRT)
algorithm for finite receding horizon control. DPCRT
bypasses the cost and time prohibitive process of build-
ing high fidelity models of buildings that use grey and
white box modeling approaches while still being suit-
able for receding horizon control design (like MPC).
In application to peak power curtailment, we observe
that DPCRT beats mbCRT by 8.6%.

The DPCRT algorithm is first of its kind that does finite
receding horizon control with regression trees. We evaluate
the performance of our methods using a U.S. Department of
Energy (DoE) commercial reference building model.

The paper is organized as follows. In Sec. 2, our approach
to predictive modeling with a multi-output regression tree is
described. Sec. 3 presents the finite receding horizon control
for regression tree algorithm. The performance of DPCRT
is compared to mbCRT in Sec. 4 , using a realistic commer-
cial building simulation. Sec. 5 provides an overview and a
comparison to existing work in this area. We conclude the
paper with a summary of the results and a brief discussion
of future work in Sec. 6.

2. REGRESSION TREES WITH
MULTI-VARIATE OUTPUT

Our goal is to construct data-driven functional models
that relates the value of the response variable, say power con-
sumption, YkW with the values of the predictor variables or
features [X1, · · · ,Xn] which can include weather data, set-
point information and building schedules. When the data
has lots of features, as is the case in large buildings, which

interact in complicated, nonlinear ways, assembling a sin-
gle global model, such as linear or polynomial regression,
can be difficult, and lead to poor response predictions. An
approach to non-linear regression is to partition the data
space into smaller regions, where the interactions are more
manageable. We then partition the partitions again; this is
called recursive partitioning, until finally we get to chunks
of the data space which are so tame that we can fit simple
models to them. Regression trees is an example of an al-
gorithm which belongs to the class of recursive partitioning
algorithms. The seminal algorithm for learning regression
trees is CART as described in [5]. Some of its modifica-
tions include MARS [11] and C4.5 algorithm [22]. However,
regression tree based methods are predominantly univari-
ate output, i.e. defined only for single output variable. We
describe a splitting criteria for the trees which enables us
to predict multiple outputs [25]. If we consider these new
outputs as the future states of the single output system, the
multi-output tree enables us to implement receeding horizon
control as the prediction can be made for multiple steps. For
example, consider a training dataset with information about
the building states like zone temperatures, control set points
and ambient weather. The output we are interested in is
the power consumption of the building. With a single out-
put model, we can estimate the power consumption of the
building at only one time step T . The new approach allows
us to predict the power consumption of the same building at
multiple time steps, i.e. with a tree with p outputs, we can
estimate the power consumption at T, T +1, . . . , T +p. This
is termed as look-ahead capability of a multi-variate output
tree. We will consider this example in detail in Sec. 4.

In this section, we first explain how a CART based re-
gression tree is built, and then modify it into a multi-variate
output model suitable for finite horizon prediction.

2.1 Model Construction

We use the following notation. We represent a dataset
with N observations, where each input has n features and
model has p outputs as

xi := [x1i , . . . , x
n
i ]T ∈ Rn,

yi := [y1i , . . . , y
p
i ]T ∈ Rp, (1)

i ∈ {1, 2, . . . , N}.

Splitting of nodes is shown in Fig. 1. At ith node, CART
splits the data set into 2 subsets. The left branch RL con-
tains the data corresponding to xi ≤ ti and the right branch
RR corresponding to xi > ti. The optimal split at each node
is then determined by minimizing the sum of mean square
error in both the branches:

(xk, tk) = arg min
∑

{i|xi∈RL}

(yi − ȳL)2 +
∑

{i|xi∈RR}

(yi − ȳR)2

(2)

where yi ∈ R and ȳL and ȳR are the mean outputs of all the
data points in RL and RR, respectively. The tree is grown
in this fashion till the number of data points in the terminal
nodes (leaves) exceeds the minimum number of observations
in a leaf minLeaf , which is often a tuning parameter. Typ-
ically a tree is grown till minLeaf size is achieved, and then
cost-complexity pruning is employed by collapsing the weak
splits [13].
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Figure 1: Binary regression tree: first split occurs with input
xi at ti, second split with input xj at tj and so on, resulting
in 5 regions in this case R1, . . . , R5.

We extend the same approach to deal with the multi-
output data. In order to determine node splits, we are again
interested in calculating the splitting variable xk and the
splitting value tk, but this time we account for errors in all
p outputs. Appropriately, we modify (2) as follows:

(xk, tk) = arg min
∑

{i|xi∈RL}

||yi − ȳL||2l +
∑

{i|xi∈RR}

||yi − ȳR||2l .

(3)

In this case, ȳL, ȳR ∈ Rp and represent the mean of ∀yi ∈
RL and ∀yi ∈ RR, respectively. Norm in this optimization
criteria can be chosen to l1 norm if we want to minimize the
largest absolute error in the outputs or l2 norm which will
minimize the sum of squares across all the outputs. Further,
we can introduce weights matrix Q ∈ Rp×p as other tuning
parameter and choose the optimization objective similar to
the cost function in MPC:

(xk, tk) = arg min
∑

{i|xi∈RL}

(yi − ȳL)TQ(yi − ȳL)+ (4)

∑
{i|xi∈RR}

(yi − ȳR)TQ(yi − ȳR).

Both (3) and (4) can be solved numerically by discretizing
the search space of tk between max(xk) and min(xk) calcu-
lated across N data points. Finer the resolution res, better
the accuracy of splits. The terminating condition for grow-
ing the tree remains unchanged in (3) and (4).

So far, we covered how a tree is built when all the fea-
tures/variables are continuous. it is often the case that some
of the features in the data set are categorical, i.e. they can
only take discrete values. The problem of partitioning a set
of discrete values in two subsets is a combinatorial problem.
Consider a categorical input feature xc which can take q
different values belonging to the set Sc = {t1c , . . . , tqc}. Num-
ber of ways to partition Sc into two non-empty subsets are
2q−1 − 1. Note that the different possible partitions scale
exponentially with q, unlike in the continuous case where it
grows linearly with res. Hence, when q is large, exact search
is not computationally easy to solve. We use a near-optimal
approach to narrow down this search over all possible parti-
tions. The approach is simliar to the one described in [24] for
single-output system. We first find out all yis corresponding
to each element in Sc and then order the set Sc according to
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xi ≤ ti
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xk ≤ tk
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Figure 2: Binary regression tree: first split occurs with con-
tinuous input xi at ti, second split with categorical input xj

at trj such that Sj,L = {t1j , . . . , trj} and Sj,R = {tr+1
j , . . . , tqj}.

an increasing mean:

ȳq =

∑
{i|xc=tqc}

||yi||l

Nq
, (5)

where Nq is the number of data points for which xc = tq.
Once Sc = {t1c , . . . , tqc} is ordered such that ȳ1 < · · · < ȳq,
we split the variable as if it is a continuous variable using (3)
or (4) depending upon the chosen type of formulation. If the
cost is minimized for xc ≤ trc , then the left branch contains
xc ∈ Sc,L = {t1c , . . . , trc} and the right branch contains xc ∈
Sc,R = {tr+1

c , . . . , tqc}. A tree with a mix of continuous and
categorical variables is shown in Fig. 2.

In summary, when the data set contains both types of
variables- continuous and categorical, first the range of all
the categorical variables is sorted. Then, the optimal cost of
splitting is determined for each input feature. Finally, the
input feature for which this cost is minimum is taken as the
splitting variable. Following this approach, we obtain a tree
model in the form ofy

1

...
yp

 = f
(
x1, . . . , xn

)
. (6)

In the context of a building model, this approach is vali-
dated in Sec. 4.2.

2.2 Interpretability of regression trees

Regression trees based approaches are our choice of data-
driven models since they highly interpretable, by design.
Interpretability is a fundamental desirable quality in any
predictive model. Complex predictive models like neural-
networks , support vector regression etc. go through a long
calculation routine and involve too many factors. It is not
easy for a human engineer to judge if the operation/decision
is correct or not or how it was generated in the first place.
Building operators are used to operating a system with fixed
logic and rules. They tend to prefer models that are more
transparent, where it is clear exactly which factors were used
to make a particular prediction. At each node in a regres-
sion tree a simple, if this then that, human readable, plain
text rule is applied to generate a prediction at the leafs,



t t+ 1 t+N

u(t)

u(t+ 1)
u(t+N − 1)

applied

moving windowfuturepast

Figure 3: Finite-horizon moving window of MPC: at time t,
the MPC optimization problem is solved for a finite length
window of N steps and the first control input u(t) is applied;
the window then recedes one step forward and the process
is repeated at time t+ 1.

which anyone can easily understand and interpret. Making
machine learning algorithms more interpretable is an active
area of research [12], one that is essential for incorporating
human centric models in cyber-physical energy systems.

3. DATA PREDICTIVE CONTROL

The data-driven algorithm described so far uses the fore-
cast of features to obtain building power consumption pre-
dictions. In this section, we describe a control algorithm
which utilizes the multi-variate output capability of our re-
gression tree model to implement receding horizon control.
This is one of our primary contributions.

Recall that the objective of learning a regression tree is to
learn a model f for predicting the response Y with the values
of the predictor variables or features X1, . . . ,Xn; i.e. Y =
f(X1, . . . ,Xn). Given a forecast of the features X̂1, . . . , X̂n

we can predict the response Ŷ . Now consider the case where
a subset, Xc ⊂ X of the set of features/variables X’s are ma-
nipulated variables i.e. we can change their values in order
to drive the response Y towards a certain value. In the
case of buildings, the set of variables can be separated into
disturbances (or non-manipulated) variables like outside air
temperature, humidity, wind etc. while the controllable (or
manipulated) variables would be the temperature and light-
ing set-points within the building. Our goal is to modify the
regression trees and make them suitable for synthesizing the
optimal values of the control variables in real-time. In our
previous work, we proposed an algorithm for model based
control with regression trees (mbCRT) [3]. This algorithm
utilizes a separation of variables principle to allow for a con-
trol optimization in the leaves of the tree. Although mbCRT
enables control with regression trees based models, it suffers
from two significant limitations:

1. mbCRT is based on uni-variate output regression tree
models and is unable to make multi-variate predic-
tions.

2. The mbCRT algorithm is a ’one-step look-ahead’ algo-
rithm. It can only account for an unexpected distur-
bance only one time-step before it occurs, thus making
it sub-par as compared to receding horizon control al-
gorithms.

In mbCRT, given building data (X,Y) in the form of (1),
we can separate the controllable Xc (or manipulated vari-

Algorithm 1 Data Predictive Control with Regression
Trees

Design Time
procedure Model Training using Separation of
Variables

Set Xc ← manipulated features
Set Xd ← non-manipulated features
Build a predictive tree T with (Y,Xd) using (6)
for all regions Ri at the leaves of T do

Choose a function h for the problem

Fit linear model h
(
Y1
Ri
, . . . ,YpRi

)
= β0,i + βTi Xc

end for
end procedure
Run Time
procedure Predictive Control

while t < tstop do
Determine the leaf and region Ri(t) using Xd(t)
Obtain the linear model at Ri(t)
Choose a cost function g for the problem
Solve optimization in (12) or (13) to determine

optimal control action [X∗c(t), . . . ,X∗c(t+ p)]T

Apply the first input X∗c(t)
end while

end procedure

ables) and uncontrollable variables Xd (or non-manipulated
variables or disturbances) in the features such that Xc∪Xd ≡
X. This is called separation of variables. Applying this sep-
aration of variables, the regression tree is built only on the
non-manipulated variables or disturbances (Xd,Y). We ob-
tain a model in the following form:

Y = f
(
X1
d, . . . ,Xnd

)
. (7)

In the leafRi of the tree, we fit a parametric model (linear re-
gression) which is a function only of the controllable/manipulated
variables:

YRi = β0,i + βTi Xc. (8)

In this manner, we train a regression tree using only Xd, and
then in each leaf we train a linear model which is a function
only of Xc. To solve the control problem when only Xd is
known, we navigate to an appropriate leaf Ri and determine
Xc from the following optimization problem:

minimize g (YRi ,Xc)

subject to YRi = β0,i + βTi Xc,
Xc ∈ Xdes,

(9)

where g is some function of the response variable and/or
control variables we wish to minimize.

The finite receding horizon control approach involves opti-
mizing a cost function subject to the dynamics of the system
and the constraints, over a finite horizon of time. After an
optimal sequence of control inputs are computed, the first
input is applied, then at the next step the optimization is
solved again as shown in Fig. 3.

In the following section, we extend the mbCRT algorithm
such that we can implement receding horizon control and
address the limitations in mbCRT. This algorithm is called
data predictive control with regression trees (DPCRT).



(X,Y)(X,Y)

XcXc XdXd

R1R1
RiRi

h
(
Y1

R1
, . . . ,Yp

R1

)
= β0,1 + βT

1 Xch
(
Y1

R1
, . . . ,Yp

R1

)
= β0,1 + βT

1 Xc

minimize g (h,Xc)

subject to h
(
Y1

Ri
, . . . ,Yp

Ri

)
= β0,i + βT

i Xc,

Xc ∈ Xdes

minimize g (h,Xc)

subject to h
(
Y1

Ri
, . . . ,Yp

Ri

)
= β0,i + βT

i Xc,

Xc ∈ Xdes

(X,Y)(X,Y)

XcXc Xd(t)Xd(t)

RiRi

h
(
Y1

Ri
, . . . ,Yp

Ri

)
= β0,i + βT

i Xch
(
Y1

Ri
, . . . ,Yp

Ri

)
= β0,i + βT

i Xc

Fit a linear model on YRi ,Xc in the leafFit a linear model on YRi ,Xc in the leaf Solve the optimization problem in the leaf toSolve the optimization problem in the leaf to
determine optimal X∗

cdetermine optimal X∗
c

PREDICTIVE CONTROLPREDICTIVE CONTROLMODEL TRAININGMODEL TRAINING

Y(t)Y(t)

Figure 4: Data Predictive Control with Regression Trees with Model Training Process (L) and Receding Horizon Control (R).

During control step, the optimal control action [X∗c(t), . . . ,X∗c(t+ p)]T is determined. The first input X∗c(t) is applied to the
system. The resulting output Y(t) which is a feature for the next time step is fed back to determine to determine Ri(t+ 1).

3.1 DPC with Regression Trees
The central idea behind DPCRT is to build a tree model

which can also predict future states of the system. Thus,
while training a regression tree with multiple response vari-
ables, we still use separation of variables as in mbCRT, the
difference lies in the number of output variables in each leaf.
Therefore, (7) is appropriately modified asY1

...
Yp

 = f
(
X1
d, . . . ,Xnd

)
. (10)

In each leaf of the tree, we now fit a linear model on a
function h : Rp → R of all the response variables such that

h
(
Y1
Ri
, . . . ,YpRi

)
= β0,i + βTi Xc. (11)

A simple example of h is an affine function which we will
use for our case study in Sec. 4. Once the model is trained,
we solve the following optimization problem:

minimize g (h,Xc)

subject to h
(
Y1
Ri
, . . . ,YpRi

)
= β0,i + βTi Xc,

Xc ∈ Xdes.

(12)

We solve this optimization in the same manner as finite
receding horizon control, and Xc includes all the control vari-
ables for the chosen horizon, i.e. Xc := [Xc(t), . . . ,Xc(t+ p)]T .
We choose the first optimal control input X∗c(t) and proceed
to the next time step.

If the number of control variables is large, the optimization
problem (12) may require many data points in the leaves
or in other words a large minLeaf which can affect the
accuracy of the regression tree. Therefore, we also introduce
a variant of this algorithm which will ease the selection of a

lower minLeaf :

minimize g
(
h1, . . . , hnc,Xc

)
subject to h1 (Y1

Ri
, . . . ,YpRi

)
= β0,i + βTi X1

c ,

...

hnc (Y1
Ri
, . . . ,YpRi

)
= γ0,i + γTi Xnc

c ,

Xc ∈ Xdes.

(13)

Here, hj is a linear model which depends only in the con-
trol variable Xjc. Note that Xjc can still be a vector when
horizon length is greater than 1. With suitable choice of g
and h, the problems (12) and (13) can be formed as convex
optimization problems.

Our algorithm for DPC with regression trees in summa-
rized in Algo. 1 and a schematic is shown in Fig. 4. During
training process, the tree is trained only on uncontrollable
variables with linear models in the leaves which are a func-
tion only of controllable variables. During control step, at
time t, the uncontrollable features Xd(t) are known and thus
the leaf Ri(t) is known. The optimization problem in Ri(t) is

solved to determine the control action [X∗c(t), . . . ,X∗c(t+ p)]T .
The first input X∗c(t) is applied to the system. The resulting
output Y(t) which is a feature for the next time step is fed
back to determine to determine Ri(t+ 1).

Again, in the context of a building model, we show the
efficacy of DPCRT in Sec. 4.3.

4. CASE STUDY

In this section, we present a comprehensive case study to
show how DPCRT can be used for receding horizon control
for peak power reduction in buildings.



00:00 03:00 06:00 09:00 12:00

[hh:mm]

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
P

[M
W

]

PT

PT+10

PT+20

Ground Truth

Figure 5: Building power consumption at time T predicted
at time T is denoted by PT , predicted 10 steps ahead at
time T − 10 is denoted by PT+10, and predicted 20 steps
ahead at time T − 20 is denoted by PT+20.

4.1 Building test-bed
We use the DoE Commercial Reference Building (DoE

CRB) simulated in EnergyPlus [9] as the virtual test-bed
building. This is a large 12 story office building consisting of
73 zones with a total area of 500, 000 sq ft. There are 2, 397
people in the building during peak occupancy. During peak
load conditions the building can consume up to 1.6 MW of
power. For the simulation of the DoE CRB building we use
actual meteorological year data from Chicago for the years
2012 and 2013.

The multi-variate output regression trees are built using
a training data-set from July 2012. The training data-set
contains the following types of features/variables:

1. Weather Data W: This includes measurements of
the outside dry-bulb and wet-bulb air temperature, rel-
ative humidity, and wind characteristics. Since we are
interested in predicting the power consumption for a
finite horizon, we include the weather forecast of the
complete horizon in the training features.

2. Schedule Data S: We create proxy variables which
correlate with repeated patterns of electricity consump-
tion e.g., due to occupancy or equipment schedules.
Day of Week is a categorical predictor which takes val-
ues from 1-7 depending on the day of the week. This
variable can capture any power consumption patterns
which occur on specific days of the week. Likewise,
Time of Day is quite an important predictor of power
consumption as it can adequately capture daily pat-
terns of occupancy, lighting and appliance use without
directly measuring any one of them. Besides using
proxy schedule predictors, actual building equipment
schedules can also be used as training data for building
the trees.

3. Building Data B: The state of the building includes
(i) Chilled Water Supply Temperature, (ii) Hot Water
Supply Temperature, (iii) Zone Air Temperature, (iv)
Supply Air Temperature, and (v) Lighting levels.

00:00 03:00 06:00 09:00 12:00

[hh:mm]

0.2

0.4

0.6

0.8

1

1.2

1.4

P
[M

W
]

T1 : PT

T1 : PT+5

T2 : PT

T2 : PT+5

Figure 6: A comparison of power consumption of the build-
ing for two different regression trees. T1 is trained on all
the features while T2 is trained only on non-manipulated
features using separation of variables.

4. Power Consumption P: This is the response vari-
able, in addition to zone temperatures. We also con-
sidered autoregressive terms of power consumption in
the input. An auto-regressive tree model is a regu-
lar regression tree except that the lagged values of the
response variable are also predictor variables for the
regression tree.

If the response variables of the regression tree are chosen
as the power consumption of the building over a finite hori-
zon, at time T , the outputs are PT ,PT+1 . . .PT+p. Thus,
the tree model T is written as

PT
PT+1

...
PT+p

 = f (WT , . . . ,WT+p,S,B,PT−1, . . . ,PT−δ) .

(14)

4.2 Model Validation: Multi-variate outputs
For a tree with order of autoregression δ = 6 and a pre-

diction horizon p = 20 and Q in (4) as Identity matrix, the
results on the test dataset are shown in Fig. 5. The test set
shows a day from July 2013, which the model has never seen
before. It shows the building power consumption predicted
at any time PT as compared to the actual power consump-
tion of the building. Since we can predict the power for
multiple steps (horizon) at a time, we compare it to PT+10

calculated 10 steps before T , i.e. T − 10, PT+20 calculated
20 steps before T , i.e. T−20, and the ground truth from the
test dataset. It can be seen that even with a relatively long
horizon, the multi-variate output tree model captures the
rapid changes in the response variable (power consumption)
very accurately.

4.3 Model Validation: DPCRT
The performance of DPCRT depends on two key assump-

tions: (a) first, is that the separation of variables doesn’t
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Figure 7: Model validation for linear regression at the leaves of the tree. The predicted and the actual power consumption
are very close.

Table 1: NRMSE for regression trees with (T1) and without
(T2) controllable features.

PT PT+1 PT+2 PT+3 PT+4 PT+5

T1 0.1037 0.1036 0.1116 0.1124 0.1140 0.1164
T2 0.1156 0.1182 0.1270 0.1268 0.1324 0.1308

introduce significant errors while training the tree, and (b)
second, that the linear regression at the leaves is a valid as-
sumption. We verify the validity of these assumptions in
terms of their effect on model accuracy.

4.3.1 Separation of Variables
We train two kinds of regression trees: (1) a tree T1 that

has all the features as described earlier, and (2) a tree T2
that was learned from non-manipulated variables only with
a linear model on the control/manipulated variables at the
leaves. The predicted power consumption of the building at
time T and T + 5 (see (14)), i.e. PT and PT+5, respectively,
for both trees is shown in Fig. 6. The normalized root
mean square error (NRMSE) for these 2 outputs on the test
dataset is shown in Tab. 1. We notice a small loss in model
accuracy with T2 due to the separation of variables. This is
the opportunity cost for integrating control synthesis with
the tree, since otherwise the control features would have
been a part of the splitting critea rather than a linear model
in the leaves of the tree. In the case of T2 we exploit the
tree structure to reach the right leaf, the actual output is
determined by fitting a linear model which is a function of
the controlled variables.

4.3.2 Linear Approximation at Leaves
For the tree T2, we fit a linear model on the sum of all out-

puts, i.e. the sum of power consumption over the complete
control horizon. Recall (11) which is now expressed as

Y1
Ri

+ · · ·+ YpRi
= β0,i + βTi Xc. (15)

Equivalently,in terms on power consumption, at each leaf we
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Figure 8: The tree has 703 leaves. For each leaf, a maxi-
mum and a minimum error in prediction of average power
consumption over the control horizon Ppred − Pact is calcu-
lated from the data points that end up in that leaf.

fit a linear model:

PT + · · ·+ PT+p = β0 + βTXc. (16)

For 4 randomly selected leaves, the fit of the linear model
against the actual power consumption is shown in Fig. 7.
The error observed in the predicted and actual power con-
sumption for all leaves is depicted in Fig. 8. it can be seen
that for a small number of samples in the leaves of the tree
the linear model assumption is valid.

4.4 DPC for Peak Power Reduction
We will now compare 2 different control algorithms: mbCRT

[2] and DPCRT for peak power curtailment. Recall the
model of the building in Sec. 4.2. As described before, the
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Figure 9: The test scenario used in the simulations has a
1.5× peak disturbance between 15:30 and 16:00 hrs. The
electricity consumption for this peak is typically heavily pe-
nalized and is of the order of 30×.

data samples consist of 4 types of features, namely weather
data, schedule data, building data and autoregressive terms
of building power consumption. Of all the features, we use
3 features from the Building Data as controllable variables.
These are

1. Zone Temperature Cooling Set Point C [◦C],

2. Chilled Water Temperature Set Point H [◦C], and

3. Lighting Set Point L [-].

To predict the power consumption at a future time in-
stance, we first need to predict the zone temperature at that
time because they are used as features in the power tree. To
accomplish this, two types of trees are built.

1. Power tree which predicts the power consumption of
the building P using all the features except the con-
trollable features, and

2. Temperature trees which predict the mean zone tem-
perature of each zone. The tree for the ith zone pre-
dicts the temperature Ti using weather data, schedule
data and autoregessive terms of the temperature of
that zone.

Both the trees use a linear model at the leaves which is a
function solely of the controllable variables.

In the case of mbCRT, we use the formulation (9), which
uses single output regression trees. The objective function g
consists of 2 terms: the cost for the power consumption and
the cost for the thermal comfort. The choice of the factor λ
can be subjective and is used to trade-off between the two.
The optimal control input [C∗,H∗,L∗]T is determined by
solving the following optimization problem at the leaf.

minimize P + λ
∑
i

|Ti − Tref |

subject to Ti = α0,i + α1,iC + α2,iH+ α3,iL,
P = β0 + β1C + β2H+ β3L
Cmin ≤ C ≤ Cmax,

Hmin ≤ H ≤ Hmax,

Lmin ≤ L ≤ Lmax.

(17)

For DPC with Regression Trees (DPCRT), we use the
formulation (13). Now the objective function covers the cost
for the complete horizon. So the governing optimization
problem becomes

minimize

p∑
j=1

PCj + PHj + PLj
3

+ λ

p∑
j=1

∑
i

∣∣∣∣∣T Cij + T Hij + T Lij
3

− Tref

∣∣∣∣∣
subject to T Cij = αC0,ij + αC1,ijC1 + · · ·+ αCp,ijCp,

T Hij = αH0,ij + αH1,ijH1 + · · ·+ αHp,ijHp,

T Lij = αL0,ij + αL1,ijL1 + · · ·+ αLp,ijLp,
p∑
j=1

PCj = βC0 + βC1 C1 + · · ·+ βCpCp,

p∑
j=1

PHj = βH0 + βH1 H1 + · · ·+ βHp Hp,

p∑
j=1

PLj = βL0 + βL1 L1 + · · ·+ βLp Lp,

Cmin ≤ Cj ≤ Cmax,

Hmin ≤ Hj ≤ Hmax,

Lmin ≤ Lj ≤ Lmax,

j = {1, . . . , p} .
(18)

Here, the optimization variables are the control inputs for
the complete horizon, i.e. [C1, . . . , Cp]T , [H1, . . . ,Hp]T and

[L1, . . . ,Lp]T .
We now compare the solutions from the two problems (17)

and (18) when simulated in closed-loop with the Energy-
Plus mode of the building. The primary difference between
mbCRT and DPCRT is that mbCRT is only a single step
look-ahead control algorithm while DPCRT is a receding
horizon control algorithm. In order to compare the perfor-
mance of DPCRT we consider a scenario in which there is
a significant disturbance which is only anticipated 30 mins
in advance and leads to a sudden increase in zone tempera-
tures in the building. This maybe akin to a sunned spike in
occupancy or equipment being witched ON at a brief notice.
Under this scenario, it is important to react to the distur-
bance in a predictive manner in order to minimize the peak
power consumption. This scenario is shown in Fig. 9. Be-
tween 15:30 and 16:00 hrs, an enormous spike in the power
consumption (1.5×) is expected because of a scheduled op-
eration.

The control strategies are tested over a 2 hour duration
between 15:00 hrs and 17:00 hrs. Fig. 10 shows 3 control
strategies: mbCRT, DPCRT and a Naive load reduction
strategy. The naive strategy is equivalent to not respond-
ing to the disturbance at all. It maintains the desired zone
temeprature set point C, chiller water temperature set point
H and lighting level L throughout the test period. In Fig.
11, it can be seen that DPCRT reacts to the disturbance
much before mbCRT, which waits until the last time-step
before the disturbance to react. This leads to a significantly
lower peak power consumption that mbCRT. In the case of
DPCRT, the control horizon is 6. At 15:00 hrs, DPCRT
strategy is same as the greedy one. At 15:05 hrs, the down-
stream disturbance is visible to DPCRT algorithm and it
starts to pre-cool the building by decreasing both cooling
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Figure 11: A comparison of building power consumption
obtained from mbCRT and DPCRT along with the greedy
strategy.

and chiller water set points. At 15:25 hrs, the C and the H
are reduced to mimimum so that in the period of extreme
disturbance an optimal trade-off between power consump-
tion and thermal comfort is maintained. Thus, DPCRT al-
gorithm foresees the disturbance and takes a preemptive ac-
tion against it. On the other hand, the mbCRT algorithm
considers the power consumption and the zone temperatures
of only one time step. Therefore, it does not know of an up-
coming disturbance. At every time step, it chooses that C,
H and L which optimizes the cost for that time step. Natu-
rally, this leads to a jaggy behavior in the control strategy.

We can see a similar behavior for the power consumption
in Fig. 11. The DPCRT algorithm gradually increases the
power consumption because it can see the disturbance before
it actually reaches 15:30 hrs, while in the case of mbCRT,
the power consumption overshoots by a big margin because
the controller deals with the disturbance in a single step.
DPCRT maintains zone temperature much closer to the ref-

Table 2: Quantitative comparison for Energy Consumption,
Peak Power and % Reduction in Peak Power of DPCRT
compared to Naive approach and mbCRT.

Energy Peak Power Peak
[kWh] [MW] Reduction

Naive 5358 1.63 3.1%
mbCRT 5097 1.73 8.6%
DPCRT 5102 1.58 -

erence temperature of 24 degrees while both mbCRT and
the naive strategy have large deviations from the desired
temperature.

The quantitative comparison is presented in Tab. 2. Be-
tween 15:00 and 17:00 hrs, DPCRT and mbCRT result in
similar energy usage, 5102 kWh and 5097 kWh, respectively,
both outperforming the Naive strategy which incurs 5358
kWh. Peak power in the case of DPCRT is 1.58 MW which
is lower than both mbCRT (1.73 MW) and the Naive strat-
egy (1.63 MW), although Naive outperforms mbCRT. The
peak power with DPCRT is 8.6 % less than mbCRT and 3.1
% less than the Naive. While both DPCRT and mbCRT
account for thermal comfort, DPCRT deviates less from the
desired temperature. The Naive strategy does not trade off
on thermal comfort. Thus, DPCRT outperforms mbCRT
both in terms of a reduced peak power consumption and
better thermal comfort.

5. RELATED WORK
There exist several different approaches to balance the

power consumption in buildings and avoid peaks, e.g. by
load shifting and load shedding [16, 14]. However, they op-
erate on coarse grained time scales and do not guarantee
any thermal comfort. Another popular approach to energy
efficient control for commercial buildings and data centers is
model predictive control [18, 20]. These usually assume that
the model of the system is either perfectly known or found
in literature, whereas the task is much more complicated
and time consuming in case of a real building and some-
times, it can be even more complex and involved than the
controller design itself. After several years of work on using
first principles based models for demand response, multiple
authors [26, 27] have concluded that the biggest hurdle to
mass adoption of intelligent building control is the cost and
effort required to capture accurate dynamical models of the
buildings.

In data-driven optimal control literature, the models are
trained on optimal solutions obtained from MPC. The re-
sulting models can then be used for explicit MPC, as in [4].
This approach has been applied to problems of stabiliza-
tion [6] and freeway traffic systems using regression trees
[21]. Another class of methods solve nonlinear optimiza-
tion directly on the trained models to do receding horizon
control. This has been done for wind turbine control using
evolutionary optimization algorithm [17], and for building
control using branch and bound search algorithm [10].

The DPCRT algorithm is first of its kind that does finite
receding horizon control with regression trees. It is com-
putationally efficient because the optimization problem is
convex and the number of constraints scales linearly with
the number of control variables.



6. CONCLUSION
Data predictive control with regression trees (DPCRT) is

an algorithm for implementing receding horizon control with
data-driven (regression trees) based models. DPCRT uses
multi-variate output regression trees where the different out-
puts represent the future states of the system. By separating
the controllable and uncontrollable features during training,
and fitting a linear model on just the controllable features,
the optimization is reduced to a simple convex program.
This enables the use of receding horizon control synthesis
for problems of peak power reduction in buildings which
otherwise are dependent on first principles based model of
the building. The performance of DPCRT is evaluated on a
DoE commercial reference virtual test-bed. DPCRT results
in a much lower energy consumption when compared to a
Naive control strategy. DPCRT also leads to 8.6% decrease
in the peak power reduction of the building as compared to
mbCRT and 3.1% as compared to the Naive strategy. The
receding horizon prediction ability of DPCRT results in a
smooth control actions as we the disturbance occurs while
mbCRT leads to a sudden control action and higher peak
consumption. In the future, we will compare the results
directly with MPC.
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