
An Immersion Model for Software Engineering Projects 

Neville Churcher and Andy Cockburn 

Department of Computer Science 
University of Canterbury 

Private Bag 4800, Christchurch, New Zealand 

{ neville, andy@cosc. canterbury.ac.nz} 

Abstract 

Software development projects are an 
essential component of software engineering 
courses. They provide the opportunity 
for students to apply theoretical material 
and to gain valuable experience in an 
environment typical of the workplace. 
These benefits, however, are difficult 
to realise. We discuss our successful 
strategies for managing final-year software 
engineering projects in order to optimise 
the balance between pedagogy, course 
administration, and time constraints. We 
advocate an “immersion” model for software 
engineering projects. The immersion model 
emphasises the commercial realities of 
software development including activities 
such as reverseengineering of existing 
systems, extensive code re-use, team work, 
user-interface development, interviews with 
customers, meetings with management, and 
oral presentations. Our experiences with 
the immersion model have been extremely 
encouraging with significant improvements 
in the quality of student projects. 

1 Introduction 

Teaching text-book theory of software engineering 
and user interface design, though valuable, provides 
students with a shallow understanding of the 
underlying issues. 

We believe it is important for students to experi- 
ence at first hand the application of theory to a ‘real 
world’ software system. Experience gained in group 
dynamics, teamwork, project management, presen- 
tation and technical writing provides students with 
skills that are equally valuable in the job market and 

Permission to make digital/hard copy of all of part of this work for personal or 
classroom use is granted without fee provided that copies are not made or 
distributed for protit or commercial advantage, the copyright notice, the title of 
the publication and io date appear, and notice is given that copying is by 
parmission of ACM, Inc. To copy otherwise, to republish. to post on servers or 
to redistribute to lists, requires prior specmc permIssion and/or a fee. ACSE’97, 
Melbourne. Australia 8 1997 ACM O-69791 -958-O/97/0007 . . ..%I50 

in further study. The opportunities for imparting 
such experience within the confines of an undergrad- 
uate course are limited [4, 71. 

The third year software engineering course we 
teach in the Department of Computer Science at the 
University of Canterbury is typical in that it has, as 
a major component, a software development project. 
In 1995 we introduced the immersion model and 
substantially modified both the project structure 
and our management procedures. Successful results 
were achieved in terms of the quality of the work 
produced, the range of skills learned, and reduction 
of the administrative burden of management and 
assessment. The immersion model has been further 
refined and will continue to be used for the foreseeable 
future. 

Three major factors motivated our reassessment 
of the software engineering project. First, we were 
concerned that standard assignment submissions, ac- 
cepted as normal in most academic courses, do not en- 
courage students to carry out iterative improvement 
of their work based on feedback from the lecturers. 

Second, we were dissatisfied by the amount of staff 
time spent on activities that provided little academic 
benefit to the students. Marking the submissions 
associated with large team projects is a substantial 
burden on the academic staff. If students do not 
revisit the marked work there is little academic value 
in the staff’s work. 

Third, the course time constraints place pressure 
on the scope of the software project. To reinforce the 
theoretical course content a software development 
project has to be sufficiently large and complex to 
require effective use of the management (and other) 
strategies taught in lectures, yet time constraints 
limit the depth of student involvement. These three 
factors, if allowed, can form a vicious circle that 
results in frenetic work by students and lecturers, 
but without commensurate academic gains. 

In this paper we discuss an “immersion model” for 
software engineering projects in which the academic 
staff play the role of project managers, and fellow 
students are used as potential customers. The aim 
is to create many of the commercial realities of soft- 
ware engineering projects within the constraints of 
an academic environment. Most formal assessment 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F299359.299383&domain=pdf&date_stamp=1997-07-02


in the project is replaced by regular (approximately 
fortnightly) meetings with management. We outline 
some of our educational strategies and experiences, 
describe our current approach and compare it with 
some of the alternatives we have explored. 

The paper is structured as follows. The next sec- 
tion outlines our current approach to coordinating the 
project, and briefly describes the 1995 project tasks. 
Section 3 summarises our primary learning objectives 
and identifies some of the advantages and difficulties 
of running a project in this manner. Our experiences 
with two previous models of project course structure 
are compared in section 4. Conclusions are presented 
in section 5. 

2 The immersion model 

This section describes the structure and management 
of our current project model which immerses students 
in a realistic software development scenario. A key 
difference from other models is the fact that students 
are working with “real” software that is in use in the 
outside world. 

The 1995 project is briefly reviewed to provide an 
example of the model’s application. The educational 
(and other) rationale behind our use of the immersion 
model is presented in section 3. 

2.1 Project structure & management 

Approximately forty students work in self-selected 
small groups (normally three per team) throughout 
the year to produce a functioning and documented 
piece of software. The project consists of four over- 
lapping tasks, as follows: 

Analyse and document an existing software sys- 
tem. The focus is on “reverse-engineering” the 
design of the system. 

Modify and extend the functionality of the sys- 
tem. Students are required to make design de- 
cisions, reuse software components, and imple- 
ment extensions. 

Design an improved user interface for the system. 
This stage focuses on design rationale and rapid 
prototyping. 

Implement the interface. The teams package the 
entire system and its documentation for release 
on the Internet. 

Students are informed of this four-stage outline at 
the start of the year, but the detailed specifications 
of each stage are revealed progressively throughout 
the year. 

There is a single formal submission at the end 
of the year: the delivery of the complete extended 
software, interface, and companion documentation. 
On-going feedback, motivation, and direction is given 
to teams at approximately fortnightly meetings at 

which the current course lecturer plays the role of 
project manager. 

At each meeting the team presents a progress re- 
port and discusses progress made, problems encoun- 
tered, alternative solutions, design rationale, and so 
on. Groups are responsible for developing their own 
formats for documenting meetings, design decisions, 
and other records. Each team’s meeting lasts approx- 
imately forty minutes. 

2.2 Package selection criteria 

Monitoring relevant Usenet groups and archive sites 
yields a ready supply of suitable packages for which 
source code is available. Within limits, the quality 
of the package is not critical. Where possible we 
choose a package with which we or the students are 
familiar. However, there are advantages to be gained 
from working with an unfamiliar program-including 
dispelling the illusion that “if it has been released 
then it must be good”. Packages relevant to soft- 
ware development tie in well with other aspects of the 
course-recent examples include tools for literate pro- 
gramming and software metrics. Ideally, the package 
selected has a command line interface as this simpli- 
fies the development of Tel based interfaces. We use 
packages written predominantly in C as our students 
are already familiar with this language, leaving us 
free to concentrate on software engineering issues. We 
expect to switch to an object oriented language in the 
near future. 

2.3 Applying the immersion model 

The 1995 project involved the jgraph package [8] 
which according to its man page 

LL . . . takes the description of a graph or 
graphs in the standard input, and produces 
a postscript file on the standard output. 
Jgraph is ideal for plotting any mixture of 
scatter point graphs, line graphs, and/or 
bar graphs, and embedding the output into 
K&X, or any other text processing system 
which can read PostScript.” 

Figure 2.3 provides an example of jgraph instruc- 
tions and the resultant graph. 

Task 1: Technical documentation 

The first project task required the students to pro- 
duce technical documentation for jgraph. To provide 
context for their work, the students were informed 
that they would be extending the functionality of 
jgraph, and that they would ultimately design and 
implement a graphical interface to their extended sys- 
tem. The regular meetings with ‘management’ allow 
the course supervisors to ensure that the groups re- 
main focused on appropriate tasks. 

This task tests a variety of skills based on the 
ability to read, understand and abstract important 



newgraph 
title : Sample Graph Title 
xaxis min 0 max 10 
label : The X Axis Label 
yaxis label : The Y Axis Label 
new curve 
marktype circle 
fill 0 
linetype solid 
pts 0 0 2 4 3 9 4 16 
label : Line 1 
newcurve 
marktype xbar 
fill 0 
linetype none 
pts 15 9 2 5 5 
label : Line 2 
legend on 

(a) jg-raph instructions (b) The resultant graph 

Figure 1: Preparing and viewing graphs with jgraph. 

elements from C code. The code is undocumented 
and uncommented, packaged into eleven . c files and 
three .h files. Ultimately, the test of the students’ 
documentation is its usefulness in subsequent tasks 
involving modification of the software. We avoid 
precise specification of document structure but state 
that the object is to add ‘value by using the system 
representation techniques covered in lectures (such 
as those of the standard structured techniques) to 
convey the recovered design. Students are advised 
that discussion of algorithms, data structures, use- 
cases etc. should be appropriately cross-referenced 
both within the documentation and to the code 
itself, and students are guided towards appropriate 
support tools. 

Task 2: Design and implement jshell 

The second task required students to develop 
an interactive shell, jshell, which would allow 
exploratory and incremental development of graphs 
through a command line interface. Without 
this extension jgraph requires an entire graph 
description (such as that shown in figure l(a)) to be 
input without any interaction. Consequently, each 
modification to a standard jgraph graph requires a 
time consuming cycle of edit-compile-view. 

The task requirements are deliberately imprecise, 
offering no instructions on how the modifications are 
to be made. The aim is to encourage students to 
detect, confront, and overcome issues requiring design 
and coding decisions. Students are encouraged to 
interview their fellows to determine the requirements 
of the software as perceived by potential users. 

-0- Line I 
n Line2 

TheXAxisLabd 

Sample Graph Title 

The teams rapidly diverged in the focus of their de- 
signs, and we encouraged the diversity provided that 
the proposed solutions were documented with appro- 
priate design rationale, and that they were achievable 
in the available time. The regular meetings provided 
an opportunity to moderate progress and design di- 
rections. 

Some of the major categories of design issues ad- 
dressed by different groups included the following: 

Architecture Some groups opted to modify the 
j graph code directly. Others constructed 
a shell by implementing a front-end which 
communicated with the original jgraph via 
pipes. 

Compatibility Some groups felt it important to en- 
sure that their shell could process jgraph scripts 
directly. Others sacrificed backwards compatibil- 
ity for increased functionality. 

Error handling Those who assembled and passed 
entire j graph scripts to j shell faced a variety 
of problems detecting and reporting errors in the 
script, broken pipes and so on. Those who pro- 
cessed individual commands in the shell com- 
mand loop also faced challenging problems. 

Project tasks suitable for the immersion model ap- 
proach should offer similar scope for design choices. 

Task 3: Design a GUI for jshell 

This task required the design of a non-functional pro- 
totype user interface. 



Before considering any graphical interface 
elements, students were required to identify a system 
context, stating who the users of their system 
would be, and suggesting typical usage scenarios. 
Students were again encouraged to use their peers 
as participants in the design process, with the fellow 
students fulfilling the role of potential customer. 
Depending on their intended user base, the emphasis 
on various usability properties (such as those 
captured by the principles in [l]) varied substantially 
across the project teams. 

Students were also required to produce a rough 
paper and pencil sketch (or “storyboard”) of their 
design, including cut-outs for system components 
such as pull-down menus or transient dialogue-boxes 
[9]. The emphasis was on rapid modifications to 
the interface. “Smart” teams were admonished if 
they produced screen-dumps of executable code. At 
the project meetings the storyboards were used to 
identify potential usability problems, and to discuss 
design alternatives. 

Task 4: Implement the GUI and full system 

Students were then required to implement the system 
designed in the previous task. The GUI was im- 
plemented using the Tool Command Language (Tel) 
and the Tk widget set [6] and was used to drive the 
character based j shell. A sample session with one of 
the best completed applications is shown in figure 2. 

Tel is an interpreted scripting language which is 
powerful and easy to learn. It is also possible to 
embed Tel interpreters in C or C++ programs. 

Tcl/Tk is an extremely effective addition to our 
software engineering project. Previously the size and 
complexity of interface toolkits (such as Xt and Motif, 
SUIT, Interviews, and so on) have almost prohibited 
the inclusion of GUI development within the time 
constraints of the project. In past projects we have 
experimented with the SUIT graphical toolkit and 
with the character-based terminal-independent pack- 
age curses. Both experiences were disappointing: 
students struggled to overcome the complexity of the 
SUIT toolkit, and the crude interfaces produced by 
curses failed to motivate the students. In contrast, 
Tcl/Tk abstracts most of the complexity of GUI de- 
velopment, allowing students to build high-quality 
interfaces quickly. The polished look and feel of their 
systems is also a strong motivator for the students. 

3 Learning objectives and rationale 

This section describes some of our learning objectives 
across several, somewhat overlapping, arenas of sys- 
tem development: requirements and design, software 
issues, user-interface design, team-management, and 
information presentation. Bather than present a com- 
plete list of our educational goals, only those perti- 
nent to the immersion project approach are discussed. 

In general, students benefit in that they have a 
chance to receive feedback early enough to avoid wast- 
ing time on ‘red herrings’ and to learn from small 
mistakes rather than suffer the consequences of large 
ones. The frequent meetings have led to a closer 
relationship with staff, encouraging students to view 
meetings as an opportunity to discuss ideas rather 
than an oral examination. Administering the meet- 
ings is potentially demanding on staff time, but these 
costs are offset in two ways. First, there is no formal 
marking of submissions other than the final submis- 
sion at the end of the course. Second, as the student 
teams have an allocated appointment time with the 
managers, they tend to ‘drop-in’ with problems less 
frequently than they have with previous models of 
project coordination. 

3.1 Requirements and design 
It is important that the functional domain of the 
software project motivates the students. We care- 
fully select the initial project software to ensure that 
students are familiar with, and can gain from, the 
functionality provided. 

A familiar functional domain has an additional im- 
portant advantage: peer students are available as a 
potential target base of users. The project groups 
are encouraged to use their peers (those outside the 
course) as subjects for requirements capture and for 
interviews in task-centred system design [5]. Man- 
agement is represented by the academic staff, and the 
customers are represented by peer students. 

3.2 Software issues 
A primary objective of the project is to disabuse stu- 
dents of the impression, reinforced by several years 
of throw-away programming assignments, that soft- 
ware is a disposable item. Our decision to base the 
entire project on a piece of existing software (such as 
jgraph) is motived by several important educational 
objectives. 

Examining and modifying code written by others 
is a common task in the workplace-particularly 
for entry level employees. 

The difficulty of comprehending code written by 
others is a powerful way to reinforce the impor- 
tance of code quality and documentation. 

Studying existing code nurtures empathies for 
those who will modify the student’s own code. 
Students are advised that their code may be eval- 
uated by peer teams and that it may form part 
of the project exercise in subsequent years. 

Modifying existing code fosters an awareness of 
code evolution. 

Software reuse is increasingly important as the 
professional development community adopts 
object-oriented languages. 



Figure 2: One team’s final system. 

Additionally, experience with graphical user inter- 
face design is a common demand in the workplace. 
By including a GUI development component in the 
project, students gain experience in programming in 
an event-driven style. 

3.3 User interface design 

Our Software Engineering course includes a major 
lecture component on Human-Computer Interaction 
(HCI). Like many theoretical Software Engineering 
topics, theoretical HCI is often viewed as “obvious” 
by students until they experience it for themselves. 
We contend that the immersion approach is particu- 
larly appropriate for a project with a GUI develop- 
ment component. Two of our arguments are given 
below. 

First, iterative design is a cornerstone of good 
user interface development [2, 31. Regular project 
meetings allow several design iterations with 
techniques such as storyboards [9]-students delay 
commitment [lo] to one particular interface solution, 
and have the opportunity to consider and discuss 
alternatives. Rough sketches of the students’ 
proposed solutions allow rapid improvement in the 
designs long before coding starts. The meetings 
use the rough storyboards as conversational props, 
with a focus on good design. In contrast, our 
past experience has shown that, when asked for a 
formal submission of a “rough” storyboard, students 
produce polished computer-generated storyboards 
that focus on presentation rather than on design: 
years of conventional assessments have over-stressed 
the importance of neat presentation over content for 
all submissions. 

Second, once the project groups’ storyboards are 
finalised, the students can begin coding the inter- 

face. All deviations from the storyboard must be 
documented. In our experience, when students do 
not have a concrete target for their user-interface 
design (such as a storyboard), their interfaces tend 
to be caused by work on the functionality rather than 
designed. 

3.4 Team management 

The educational value of team-projects and peer- 
learning are well known [ll]. There are many 
standard requirements in team-projects such as our 
requirement that the overall task be sufficiently 
large to demand continuous work over the year. 
Our concern here, however, is how the immersion 
approach fosters effective group-work within project 
teams. 

It is essential that the students are, from the begin- 
ning, made aware that the project is not amenable to 
last minute assaults. A team size of three ensures that 
communication issues must be addressed, while be- 
ing small enough to avoid large communication over- 
heads. Regular meetings between the team and their 
‘manager’ ensure that groups are continually account- 
able for their progress: an analogy between pay and 
grades is powerfully received by students. 

The immersion model forces students to under- 
stand software developed by others and sharing indi- 
vidually discovered information effectively can prove 
challenging for less organised groups. 

Groups are encouraged to discuss internal prob- 
lems such as personality clashes before they escalate 
to unmanageable proportions. Such situations have 
been particularly problematic under previous project 
coordination styles, but are nipped at the bud when 
raised at the meetings. The meetings also provide 
staff coordinating the course with an early warning 



system for the detection of potential drop-outs, per- 
sonality clashes, and unequal individual contribution. 
The increased student contact helps us balance the 
conflicting aspects of individual assessment for group 
work. 

Team selection is normally negotiated by the stu- 
dents themselves, but some ‘matchmaking’ is usually 
required. The resulting improvements in productivity 
and group dynamics outweigh the slightly more realis- 
tic situation of assigned groups. The fact that groups 
consisting of academically undistinguished but highly 
motivated and organised students often out-perform 
groups who look better ‘on paper’ provides a valuable 
lesson for all concerned. 

To further reduce team problems such as 
inequitable group work, in subsequent years we have 
introduced progress reports which all team members 
must submit independently to the course supervisor 
by email. The students’ responses are requested, 
through standardised email templates, prior to each 
round of project meetings. While easy to administer, 
these messages provide additional information about 
individual contributions and potential disharmony. 

3.5 Information presentation 

Few courses in Computer Science provide the op- 
portunity for iterative improvement of written ma- 
terial. Normally, a submission is made, and it is 
graded. Although the student may attend to the 
marker’s comments, it is rare that another pass is 
made through the same material. 

We strongly believe in the educational value of 
modifying written work from an editor’s comments. 
In our project the meetings with ‘management’ pro- 
vide an opportunity to review the latest draft of the 
documentation. Additionally, all groups are required 
to make a copy of their documentation available on- 
line for the manager’s perusal. 

Oral presentation skills are also promoted. The 
meetings are intended to provide a relatively stress- 
free environment for gaining experience in technical 
discussion. Additionally, each project group makes a 
formal presentation, or ‘sales pitch,’ of their system 
to their peers and managers at the end of the year. 

4 Other project organisation models 

In this section we briefly outline two models for 
project course structure that were used at Canterbury 
prior to our experiment with immersion. All three 
approaches make the assumption that reuse is an 
important component. We have not considered 
models where the products are predominantly built 
from scratch-these essentially represent extended 
programming projects rather than true software 
engineering activities and are not congruent with our 
objectives discussed in section 3. 

4.1 Big bang 

In the big-bang approach tasks are introduced at the 
beginning of the course. Students work in groups 
which are entirely responsible for their own manage- 
ment. The project deliverables are submitted for 
assessment at the end of the course. 

There are many problems associated with this ap- 
proach, but one major difficulty is the failure of some 
groups to begin work early enough to achieve satisfac- 
tory results. To some extent this makes the project 
self-assessing as those who lack managerial skills are 
penalised (often severely). Although this may appear 
convenient, our educational objectives do not include 
punishing those students who do not currently pos- 
sess particular skills and rewarding those who do. 
bther, we should provide all students with opportu- 
nities to learn, improve and demonstrate these skills. 

4.2 Milestones 

To ease the problems of the big bang approach we 
introduced several milestones within the project. The 
idea is to ‘buy’ time-slices from students who work in 
a climate of inexorable internal assessment. Gener- 
ally, milestone points correspond to the availability 
of one or more deliverables for assessment. Individ- 
ual tasks may also be timed so that they overlap, 
allowing for the possibility of introducing changes in 
requirements during the course of the project. 

While we have found that this technique ensures 
that some progress is made earlier in the year, an 
equally undesirable side-effect is introduced. Stu- 
dents perceive the project as a series of small assign- 
ments rather than as a large piece of work-leading 
once again to last-minute poor quality work. Con- 
sequently, the milestones have a tendency to become 
‘inch pebbles’ to the students while the assessment 
load generated makes them appear millstones round 
the necks of staff! The considerable effort invested in 
marking is largely wasted as students have moved on 
to other tasks by the time marking is completed and 
little opportunity is available for them to learn from 
their mistakes. 

5 Conclusions 

The sample project described in section 2.3 empha- 
sises our message that software is constantly evolving. 
Tasks involving design recovery, documentation for 
change, and adding a GUI to an existing application 
are natural companions to the more traditional de- 
sign, coding, and testing activities. 

It is important to choose a topic that can capture 
student interest, and much suitable software such as 
j graph is available via the Internet. The Tcl/Tk lan- 
guage has many features which make it ideal for use 
in projects. It is easy to learn, powerful, very good for 
controlling other programs, and-most important of 
all-fun! This makes it feasible to attempt to develop 



X11 GUI software within the tight time-frame typical 
of software engineering courses. 

We have been encouraged by our results. The 
quality of the end products-the systems and docu- 
mentation that the students produce-has increased. 
Our claims of success are supported by results of an 
evaluation exercise conducted in 1995 by the Univer- 
sity of Canterbury’s Educational Research and Advi- 
sory Unit (ERAU) in addition to the normal course 
surveys. Although the project management demands 
on the staff remain about the same, we feel that our 
time is much better spent. 

Students show greater pride in their achievements 
and commitment to their team. Our experience sug- 
gests that students of more modest academic ability 
achieve better results in the more supportive immer- 
sion model regime. Additionally, the incidence of 
intra-group problems has fallen, primarily because 
problems were detected earlier. 

We are continuing to use and refine the immersion 
approach, and we encourage comments from others 
involved in project-oriented courses. The appendix 
below directs interested readers to an archive of in- 
formation on our 1995 project. 

Appendix 

The full set of task requirements for the 1995 
jgraph project and tar files containing some of the 
student submissions are also available from the same 
address can be accessed from http: //wuw. cost. 
Canterbury. ac .nz/-neville/project314. html 

References 

[I] A Dix, J Finlay, G Abowd and R Beale. Human- 
Computer Interaction. Prentice Hall, 1993. 

[2] JD Gould, SJ Boies and C Lewis. Making 
usable, useful, productivity-enhancing applica- 
tions. Communications of the ACM, Volume 34, 
Number 1, pages 74-85, 1991. 

[3] JD Gould and C L ewis. Designing for usability: 
Key principles and what designers think. Com- 
munications of the ACM, Volume 28, Number 3, 
pages 300-309, 1985. 

[4] R.L. Ibrahim (editor). PTOC. 8th SEI CSEE 
Conference, Volume 895 of Lecture Notes in 
Computer Science, New Orleans, LA, March 
1995. Springer-Verlag. 

[5] C Lewis and J Reiman. Task-Centered 
User Interface Design: A Practical Introduc- 
tion. Shareware text via anonymous ftp from 
ftp.cs.colorado.edu, 1993. 

[6] John K. Ousterhout. Tel and the Tk Toolkit. 
Addison-Wesley, Reading, Massachusetts, 1994. 

[7] KR Pierce. Rethinking academia’s conventional 
wisdom. IEEE Software, Volume March, pages 
94-99, 1993. 

[8] J. Planck. Jgraph - a filter for graph plotting 
to postscript. Anonymous ftp to princeton.edu 
pub/jgraph.Z, 1992. 

[9] M Rettig. Prototyping for tiny fingers. Com- 
munications of the ACM, Volume 37, Number 4, 
pages 21-27, 1994. 

[lo] H Thimbleby. User Interface Design. ACM 
Press, Addison-Wesley, 1990. 

[ll] L Thorley and R Gregory (editors). Using GTOU~ 
Based Learning in Higher Education. Kogan- 
Page, 1994. 


