
Clustering Gene Expression Patterns

Amir Ben-Dor*

Abstract

With the advance of hybridization array technology re-
searchers can measure expression levels of sets of genes
across different conditions and over time. Analysis of
data produced by such experiments offers potential in-
sight into gene function and regulatory mechanisms.
We describe the problem of clustering multi-condition
gene expression patterns. We define an appropriate
stochastic model of the input, and use this model for
performance evaluations. We present a O(n(log(n))c)-
time algorithm that recovers cluster structures with
high probability, in this model, where n is the num-
ber of genes. In addition to the theoretical treatment,
we suggest a practical heuristic approach based on the
same ideas. We demonstrate the algorithm’s perfor-
mance first on simulated data, and then on actual gene
expression data.

1 Introduction

In any living cell that undergoes a biological process,
different subsets of its genes are expressed in different
stages of the process. The particular genes expressed
at a given stage and their relative abundance are cru-
cial to the cell’s proper function. Measuring gene ex-
pression levels in different stages, different body tissues,
and different organisms is instrumental in understand-
ing biological processes. Such information can help the
characterization of gene/function relationships, the de-
termination of effects of experimental treatments, and
the understanding of many other molecular biological
processes.

Current approaches to measuring gene expres-
sion profiles include SAGE [Velculescu et al 971,

*Department of Computer Science & Engineering, University
of Washington (amirbdQcs .washington.edu). Supported by the
Program in Mathematics and Molecular Biology.

tHPL1, Hewlett Packard Laboratories (zoharyOhp1 .hp. corn).

pel-missioll to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
arc not made or distributed tbr prolit or commercial advantage and that
copies bear this notice and the full citation on the tirst page. ‘fo Cop!’
otherwise. to republish, to post on sewers or to redistribute to lists.
require5 prior specific permission and;or a fee.

RECOMB ‘99 Lyon France
Copyright ACM 1999 l-581 13-069-4/99/04...$5.00

Zohar Yakhinit

RT/PCR [Somogyi et al 951, and hybridization baaed
assays. In the latter, a set of oligonucleotides, or a
set of appropriate cDNA molecules, is immobilized on
a surface to form the hybridization array. When a
labeled target DNA (or RNA) mixture is introduced to
the array, target sequences hybridize to complementary
immobilized molecules. The resulting hybridization
pattern (detected, for example, by fluorescence) is
indicative of the mixture’s content. Hybridization
arrays are thus used as molecular recognition tools for
nucleic acids (see [Drmanac et al 91, Khrapko et al 91,
Lennon Lehrach 91, Pevzner et al 91, Lysov et al 95,
Blanchard Hood 96, Lin et al 961.)

These methods accelerate the rate at which gene
expression pattern information is accumulated, cf.
[Kim’s Lab, Lockhart et al 96, DeRisi Iyer Brown 97,
Wen et al 98, Khan et al 981 (also see Section 3 for
more details). As a result, there is an increasing need
to elucidate the patterns hidden in the data. However,
the nature of studies of multiconditional gene expres-
sion patterns may widely vary. Accordingly, we are
interested in analysis tools that may be useful in all
such contexts. Clustering techniques are applicable as
they would cluster sets of genes that “behave similarly”
under the set of given conditions.

In cluster analysis, one wishes to partition entities
into groups called clusters, so that clusters are homoge-
neous and well-separated. Clustering problems arise in
numerous disciplines including biology, medicine, psy-
chology, economics and others. There is a very rich lit-
erature on cluster analysis going back over two decades
(cf. [Duda Hart, Everitt, Mirkin].) There are numer-
ous approaches to defining quality criteria for solutions,
stipulating the type of clustering sought, and interpret-
ing the solutions. Algorithmic approaches also abound.
Most formulations of the problem are NP-hard, so the
algorithmics emphasizes heuristics and approximation.
Clustering literature lacks concensus on basic defini-
tions, probably due to the diversity of applications of
the problem. A common theme in the literature is the
need to fit the approach to the problem at hand and the .
necessity to assess the quality of solutions by subjective
impression of experts in each area.

Analyzing multi-conditional gene expression patterns
with clustering algorithms involves the following steps:

l Determination of the gene expression data (usually

33

http://crossmark.crossref.org/dialog/?doi=10.1145%2F299432.299448&domain=pdf&date_stamp=1999-04-01

reported as vectors of real numbers).

l Calculation of a similarity matrix S. In this ma-
trix the entry Sij represents the similarity of the
expression patterns for genes i and j. Many pos-
sible similarity measures can be used here. The
actual choice should reflect the nature of the bio-
logical question and the technology that was used
to obtain the data.

l A clustering algorithm. This is the main concern
of this paper. The clustering algorithm should be
effective and efficient. Its input is the similarity
matrix mentioned above and its output is a set of
clusters. Genes that belong to the same cluster
have similar expression patterns, under the given
conditions.

l Means for visually presenting the constructed so-
lution (exemplified in Section 3).

Current approaches to clustering gene expression pat-
terns ([Brown’s Lab, NHGHI, Wen et al 981) utilize hi-
erarchical methods (constructing phylogenetic trees) or
methods that work for Euclidean distance metrics (e.g
k-means). We take a graph theoretic approach, and
make no assumptions on the similarity function or the
number of clusters sought. The cluster structure is pro-
duced directly, without involving an intermediate tree
stage.

In Section 2.1 we describe the stochastic model used
in this work. We then present a provably efficient
method of solving the problem with high probability.
In Section 2.2 we present a practical heuristic approach
based on ideas of the said method and analyze its per-
formance by simulations. In Section 3 we apply it to
actual gene expression data, and analyze its output.

2 The Clustering Algorithm

2.1 Theory

We approach the clustering problem at hand by study-
ing a stochastic model. A graph is called a clique graph
if it is a disjoint union of complete graphs. Given a
graph, consider the problem of finding its nearest clique
graph, where distance is measured by the number of
edges that must be changed (added or removed). Those
cliques can be thought of as the underlying cluster
structure of the graph. In the case of gene expression
patterns it makes (biological) sense to assume that some
true underlying cluster structure does exist for a graph
that represents correlation between patterns of differ-
ent genes. The underlying structure is, however, ob-
scured by the complexity of the biological processes and
corrupted by experimental errors. For our purposes it
makes sense, therefore, to study the clustering problem

34

on a random graph model built upon a cluster structure
and corrupted at random. In this section we therefore
assume that the input to the clustering problem are dis-
tributed according to the corrupted clique-graph model
defined below. It is reminiscent of the planted bisec-
tion model ([Condon Karp 981) and the planted clique
model ([Alon Krivelevich Sudakov 981).

In [KuEera 951 a variety of graph partitioning prob-
lems is considered, in the context of random graphs.
The author considers the bisection problem and the
graph coloring problem. He suggests algorithms for
solving these with high probability and studies their ex-
pected complexity assuming some specific distributions
on the input. In [Condon Karp 98) the authors consider
the graph Z-partition problem: partition the nodes of
an undirected graph into 1 subsets of predefined sizes so
that the total number of inter subset edges is minimal.
They then present a linear (in the number of edges)
time algorithm that solves the graph Z-partition prob-
lem with high probability, on the planted l-partition
model. Our problem is different: no predefined struc-
ture is given (any clique structure is, apriori, a possible
candidate) and minimality with respect to inter cluster
edges as well as intra cluster non-edges is sought.

Definition 2.1:

6)

(ii)

I

A cluster structure is a vector S = (sr, ~2, sd),
where si > 0 and C si = 1. For a cluster struc-
ture S, let y(S) = the smallest entry, d(S) = the
dimension, d.

A cluster structure S = (sr , ~2, sd) defines a
clique graph on the vertices { l...n} in the following
way: The number si corresponds to a clique of size
[s;lvJ (In our simulations we will choose N and S
so that no rounding is needed. For asymptotic re-
sults the rounding is irrelevant) on the appropriate
vertices. Call this graph Qn(S). A relabeling of
the vertices of Qn(S) according to a permutation
u E S, generates the clique graph Qn(S, CT).

Definition 2.2: The random graph model Q(n, Q, S)
(representing random corruption of clique graphs) is
defined as follows: Given a cluster structure S and a
value 0 5 (Y 5 f, the random graph &(n, (Y, S) is ob-
tained from Qn(S) = (V,E) by randomly (1) remov-
ing each edge in E with independent probability a; (2)
adding each edge not in E with independent probability
a; (3) permuting the vertices according to a uniformly
chosen random permutation u E S,. Edge inversions
can be represented by a binary vector 5 of length (T),
where ij is inverted iff <ij = 1. The graph generated

as above, from (0, C) E S, x {O,l}(:) will be denoted
G(a,O = (V,E(a,O). I

Definition 2.3: Consider an algorithm A that takes ar-
bitrary graphs as inputs and returns clique graphs. De-
note the output of A on G = (V,E) by d(G) = (V,F).
Accordingly, F(a, C) is the edge set of d(G((r, C)).

Let 6 > 0. We say that an algorithm A as above
clusters Q(n,a, S) with probability 1 - 6 if the out-
put graph is, asymptotically, as good a solution as
the original cluster graph is, with probability 1 - 6.
More precisely, let AA(~, C) = (E(a, C)AF(o, <)I, and
AInput(a, <) = IE(o, <)AQ,(S, o)l. We require that

Here and throughout this section Pdenotes the relevant
probability measure (which is clear from the context).

Let 6(n) + 0. We say that an algorithm A as above
clusters Q(n,cr,S) with failure rate 6(n) if (using the
same notation)

lim sup
l- P Ad(CJ, C) L AInput (CM) <oo

n-i03 W

I

Theorem 2.4: Let S be a cluster structure and
cY<

(i)

(ii)

(iii)

l/2.

For any fixed 6 > 0 there exists a n(log(n))c-time
algorithm that clusters Q(n, Q, S) with probability
1 - 6. (c is a constant that depends only on the
cluster structure S and on CY).

For any a(n) E fi((log(n))-b), where b is some con-
stant, there exists a n(log(n))@)-time algorithm
that clusters &(n, a, S) with failure rate 6(n). (c(b)
is as above but also depends on b).

For any 6(n) E fl(neb), where b is some constant,
there exists a polynomial-time algorithm that clus-
ters &(n, a, S) with failure rate 6(n).

To prove this theorem we shall present the algorithm
and analyze its performance. It uses ideas similar to
these presented in [Condon Karp 981 and [KuEera 951.
For the proof we need Theorem 2.5, due to Chernoff
([Chernoff 521, [Dembo Zeitouni, Section 2.21). We use
D(p[a) to denote the relative entropy distance from
(p,l -p) to (a,1 - a), That is, D(p[a) = plog(p/a) +
(1 -PI l%((l - P)l(l - a)).

Theorem 2.5: (Chernofi, 1952)
Let X N Binomial(N,p). Let a < p < b. Then
P(X > b) < exp(-ND(b)p)), and P(X < a) <
w(-~D(4d).

We also need a very crude sampling lemma, stated
without proof:

Lemma 2.6: Consider n objects of d diflerent colors,
each color represented by at least nJm objects. If s ob-
jects are sampled uniformly, and independently without
replacement then

P
(

The sample contains 2 s/2m
representatives of each color >

>1-6,

providing 16m2 log(d/G) < s < &.

Proof: (of Theorem 2.4)
Sketch. Before presenting the complete proof, we

outline the idea. Consider a simpler scenario - assume
that the hidden structure S, consists of only two clus-
ters, red, and blue. We say that a logn-subset of ver-
tices is a core if it is monochromatic (either all red or
all blue). The algorithm has two phases. In the first
phase it forms a list L of core candidates. In the sec-
ond it uses each core candidate, L E L, as a classifier,
to partition the rest of the vertices: vertices with at
least 9 neighbors in L versus those that have fewer
neighbors in L. Finally, the partition that is closest (in
the symmetric difference sense) to the input graph is
returned.

The analysis of the algorithm above is based on the
following:

A list of core candidates, ,C, that positively contains
a core can be generated in polynomial time - choose
an arbitrary subset A of size 2 log n and let L: be
the list of all logn-subsets of A.

Assume that a core is used as a classifier to pro-
duce the vertices partition. Using large deviations
bound we show that the produced partition is as
good as the original cluster structure with high
probability.

Note that the time complexity of the second phase is
O(n log n) times the size of C. To reduce the time com-
plexity order we replace the first phase of the algorithm
above by a “recursive” application of the algorithm. We
generate a list that contains O(logn) sub-core candi-
dates, each with loglogn vertices. Each sub-core can-
didate is used to grow a core candidate, which in turn
is used to grow the complete partition.

Complete proof. For clarity we analyze the case
d(S) = 3, y(S) = l/ m. Generalizing to more clusters is 1
straight forward.

We are given a graph on n vertices that was obtained
from a cluster structure S by the process described in
Definition 2.2. Call the vertices of the original clusters
blue, red and white. Write V = B U R U W. For a
vertex w E V let C(v) denote the subset it belongs to
(before corrupting the clique graph). Let S > 0 (will be
related to the tolerated failure probability, at the end).
Let /c(a) = [2/D(1/2lla)l.

35

Uniformly draw a subset Ui of vertices of size
r . k(o) log log(n) where r is determined so that
with probability 1 - b each color has at least
k(a) log log(n) representatives in this chosen sub-
set. By Lemma 2.6 r can be set to be 2m providing
that n is large enough: log log(n) > 8m log(1/6)
and n > 8m2 log log(n).

Uniformly over the subsets of V \ Vi draw a subset
Uz of vertices with r. /c(a) log(n) elements. Again,
r is such that with probability 1 - b each color has
at least k(o) log(n) representatives in this chosen
subset and r = 2m suffices under the above as-
sumptions.

Consider all partitions of Vi into 3 subsets (there
are less than log(n)T.k(“)‘os(3) of them). Call the
subsets of each such partition BF, RF and Wlc.
Run the following enumerated steps starting with
all these partitions. For the analysis focus on a
partition where BF c B, Rf c R and W.f c W
(such a partition is, indeed, considered, since we
are considering all partitions).

For all 21 E Us let c(u) be the color that attains
ihe maximum of deg(u,BF)/IBfI, deg(u,Rf)/IRyI, and

Dean, w?)llw?l. Add ‘1~ to that set. Assume that
C(u) = B. The collection of edges from u to I?? are inde-
pendent Bernoulli(1 - a) (the drawings of 9 and 172 were
independent of everything else). Therefore deg(u,BF) N
Binomial(lBfI,l - a). Using the Chernoff bound stated
above we therefore have

P deg(u Bc) 5 w 9 1 2 >

<
<

-c exd-lBPlo(+b))

log(n)- w~P(+!a) 0)
log(n)-2, (‘4

where lB?l 2 k(a) loglog justifies (1). Similarly,
deg(u, RF) N Binomial(lRFI, cr), and thus

< log(n)-2. (3)

The same holds for WIc, whence C(u) = C(u) with high

probability: P(c(u) # C(u)) < 3 log(n)-2. Finally, by a
union bound

P(d(u) # C(u) for some u E Vs) < 3r. k(a) log(n)-‘.

(4)

2. Focusing on the part of the measure space where no er-
ror was committed in the previous steps (in particular, all
vertices were assigned to their original color), we now have
three subsets of vertices Bg C B, Rf C R and W: C W,
each of size at least k(a)log(n). We take all other vertices
and classify them using these subsets, as in the previous
step. Observe that all edges used in this classification are
independent of the algebra generated by everything previ-
ously done. This is true since in the previous step only edges
from U2 to 171 were considered, and these are of no interest
here. Therefore, the equivalents of (2) and (3) hold, yielding

P(any v E V was not assigned to C(V)) < 3~. Ic(cr)n-‘.
(5)

l Amongst all outputs of the above, chose the par-
tition which is closest (in the symmetric difference

sense) to the input graph.

The total probability of failure in this process is esti-
mated as follows

P
(

The original partition V = B U R U W
is not one of the outputs >

< 26 + 3r. k(a) (n-l + log(n)-l)

5 26 + 6m. k(a) (n-’ + log(n)-‘) , (6)

which is arbitrarily small for large n. As noted above,
we have less than log(n)2m.k(a)‘os(3) parallel processes
here. In each one the expensive part (time-wise) is the
classification of all vertices in V \ (VI U U2) , using the
core clusters Bf , RF and W-f. In this stage O(n log(n))
edges are considered, each at most once: sums over dis-
joint subsets of these are compared to a threshold. Thus
the time spent here is O(nlog(n)) and the total time
complexity is O(n log(n)2”‘“(a) ‘0s(3)+1). This proves
(i).

To see that (ii) holds observe that the dominant term
in (6) is log(n)-l and that the degree here can be in-
creased by pushing k(a) up, paying a price in the time
complexity (the power of log(n) there would increase).
The proof of (iii) is along similar lines and is omitted
here. 1

Remark 2.7: 1. The algorithm’s performance can be
measured by the distribution of the distance of the out-
put clique graph to Qn(S, 0). We are currently work-
ing on formulating and proving the corresponding state-
ment. 2. Observe that for the initial sampling the al-
gorithm needs to know a bound on (y. (away from l/2),
but not its value. I

2.2 Practice

In this section we take a more practical approach, and
present a novel and simple clustering heuristic, called
Cluster Affinity Search Technique, or, in short,
CAST. The algorithm uses the same idea as in the the-
oretical algorithm described in Theorem 2.4, namely
it relies on average similarity (affinity) between unas-
signed vertices and the current cluster seed to make its
next decision. However, it differs from the theoretical
algorithm in some aspects: (1) The theoretical algo-
rithm repeats the same process for many initial seeds.
Here we use “cleaning” steps to remove spurious ele-
ments from cluster seeds and avoid the repetition. (2)
CAST adds (and removes) elements from the current seed
one at a time (and not independently, as in the theo-
retical algorithm). Heuristically, this helps by strength-
ening the constructed seed, thus improving the decision

36

Clustering Affinity Search Technique
. Input: An n-by-n similarity matrix C, and a cutoff parameter t.

l Initializations:

ct0 /* The collection of closed clusters */
C open t 0 /* The constructed cluster */
Ut{l,...,n} /* Elements not yet assigned to any cluster */
a(.) t 0 /* Reset the affinity (total similarity between v and elements in Cope,,) */

l while(U U Copen # 0) do
Let 21 be an element with maximal affinity in U.
if g(u) Z tlCopenl) /* u is of high affinity */

open + Copen lJ {u) /* Insert u into Copen */
u + u \ {ul /* Remove u from U */
For all I in U U Co,,, do

a(z) = a(z) + C(z,u) /* Update the affinity */
end

else /* No high affinity elements outside Cope,, */
Let v be a vertex with minimal affinity in CO,,,.
if (a(v) < tlGpenl) /* u is of low affinity */

Cope* t Copen \ iv) /* Remove v from Cope,, */
.!J t u u {v} /* Insert v into U l /
For all z in U U Cope,, do

4x1 = o(x) - C(z, w) /* Update the affinity */
end

else /* Copea is clean */
C t C U Copen /* Close the cluster l /
Copen + 0 /* Start a new cluster */
a(.) t 0 /* Reset affinity */

end
end

end

. Done, return the collection of clusters, C.

Figure 1: CAST Algorithm

Cluster structure (S) Matching coeff. Jaccard’s coeff.
(0.4,0.2,0.1,0.1,0.1,0.1) 5:o 0:2 1.0 1.0
(0.4,0.2,0.1,0.1,0.1,0.1) 500 0.3 0.999 0.995
(0.4,0.2,0.1,0.1,0.1,0.1) 500 0.4 0.939 0.775

(0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1) 1000 0.3 1.0 1.0
(0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1) 1000 0.35 0.994 0.943

Table 1: Results from simulations.

base for the next step. (3) CAST handles more general
inputs. Namely, it allows the user to specify both a
real-valued similarity matrix, and a threshold param-
eter which determines what is considered significantly
similar. This parameter controls the number and sizes
of the produced clusters.

The input to the algorithm is a pair (C, t), where C
is a n-by-n similarity matrix (C(i, j) E [0, l]), and t is a
similarity cutoff. The clusters are constructed one at a
time. The currently constructed cluster is denoted by
C open. We define the affinity of an element x, denoted
by a(z), to be the sum of similarity values between x

and the elements in Cope,,. We say that an element x is
of high afinity if u(x) 2 tjCopen\. Otherwise, x is called
of Iow afinity. Note that an elements’ status (high/low
affinity) depends on Cope,,. Roughly speaking, CAST al-
ternates between adding high affinity elements to Cope,, ,
and removing low affinity elements from it. When this
process stabilizes Copen is closed and a new cluster is
started. A pseudo-code of the algorithm is given in
Figure 1.

We remark that the “cleaning” steps in CAST serve
to avoid a common shortcoming shared by many pop-
ular clustering techniques (such as single-linkage,

37

complete-linkage, group-average, and centroid): than once this increases the computation time. The ex-
due to their “greedy” nature, once a decision to join two pression data in [DeRisi Iyer Brown 971 (a N 6000 x 7
clusters is made, it cannot be reversed (see [Everitt, ch. matrix) was analyzed in this manner.

2.2.1 Performance Analysis

As is sometimes the case with practical heuristics, it
3 Biological Data

is very hard to prove rigorous performance bounds for
CAST. Instead, we assess its performance by testing its
ability to recover hidden cluster structures in computer
generated random data. Recall (Definition 2.2) that the
corrupted clique graph random graph model is specified
by three parameters: a cluster structure S, an error
probability a, and a size parameter n. For different
choices of these parameters, we perform the following
steps: (A) Draw a random graph G = G(a, C), from the
distribution g(n,a,S). (B) Apply CAST to G (viewed
as a binary similarity matrix), using cutoff t = 0.5. For
each such trial we compute the similarity between the
output cluster structure and the original clique graph
Qn(S, a) using similarity coefficients (matching coeffi-
cient and Jaccard’s coefficient [Everitt, p. 411). Visual
judgment can also be used.

For completeness we define the above mentioned simi-
larity coefficients. Let M(S) be the adjacency matrix of
Q&S 0) (a n-by- n matrix). That is, M(i,j) = 1 if and
only if i and j belong to the same cluster. Similarly, let
M(C) denote the adjacency matrix of the output cluster
structure. Let No, Ni, Ns denote the number of entries
that have ‘0’ in both matrices, the number of entries
that have ‘1’ in both matrices, and the number of en-
tries that differ in the two matrices, respectively. The
matching coefficient is simply the ratio of the total num-
ber of entries on which the two matrices agree, to the
total number of entries: (No+ Ni)/(Nc+ Nr +NZ). Jac-
card’s coefficient is the corresponding ratio when “neg-
ative” matches (No) are ignored: Nr /(Ni + Ns).

In Table 1 we report results (based on at least 100 ex-
ecutions) for various choices of the model parameters.

2.2.2 Implementation Notes

All of the software developed (including the CAST al-
gorithm, the synthetic data generation, and the vi-
sualization tools) was implemented using MATLAB.
The expression matrix for the data in [Kim’s Lab] is
1246 x 146. Running one clustering execution on it takes
under ten seconds on a HP Vectra XU 6/180MHz with
96Mb RAM (after a one time preprocessing step that
computes the similarity matrix). The similarity matrix
for actual gene expression data can take large memory
space. When this is a problem it is possible to com-
pute all similarity values when they are needed. Since
(in CAST) some entries of the matrix are accessed more

3.1 Temporal Gene Expression Pat-
terns

As a first example of applying our clustering techniques
to gene expression data we analyze the data reported,
analyzed and discussed in [Wen et al 981. In this study
the authors establish some relationships between tem-
poral gene expression patterns of 112 rat CNS (Central
Nervous System) genes and the development process
of the rat’s CNS. Three major gene families are consid-
ered: Neuro-Glial Markers family (NGMs), Neurotrans-
mitter Receptors family (NTRs) and Peptide Signaling
family (Peps). All other genes measured in this study
are lumped by the authors into a fourth family: Di-
verse (Div). All families are further subdivided by the
authors, based on apriori biological knowledge.

Gene expression patterns for the 112 genes of inter-
est were measured (using RT/PCR: [Somogyi et al 951)
in cervical spinal cord tissue, at nine different develop-
mental time points. This yields a 112 x 9 matrix of
gene expression data. To capture the temporal nature
of this data, the authors transform each (normalized)
g-dimensional expression vector into a 17-dimensional
vector - 8 difference values (between time adjacent ex-
pression levels) were included. This transformation em-
phasizes the similarity between genes with closely paral-
lel, but offset, expression patterns. Euclidean distances
between the augmented vectors were computed, yield-
ing a 112 x 112 distance matrix. Next, A phylogenetic
tree was constructed for this distance matrix (using
FITCH, [Felsenstein 931). Finally, Cluster boundaries
were determined by visual inspection of the resulting
tree. Some correlation between the resulting clusters
and the apriori family information was observed.

We analyze the same data in the following way. The
raw expression data is preprocessed in a similar manner
- first the normalized expression levels are augmented
with the derivative values. Then, a similarity matrix is
computed based on the LI distance between the aug-
mented 17-dimensional vectors. A hands-off version of
our algorithm, which automatically searches for a good
cutoff value, is applied to the similarity matrix (the
eventual cutoff for the presented data was 0.647). Clus-
ters are directly inferred. The results are depicted in
Figure 2 and Figure 3.

38

Figure 2: The expression patterns of genes in each of
the clusters. The graphs are color coded so as to dis-
tinguish between members of the various families. This
information is lost in the gray scale printing. To see
the clusters in color and for more graphics please visit
[Ben-Dor Yakhini]. 0 ur software enables comparison to
any user defined partition into families. Note a single
NGM in cluster #5 that is dominated by NTRs.

3.2 Multi Experiment Analysis

Clustering gene expression patterns is useful even if the
experiments’ enumeration has no physical meaning (as
opposed to temporal patterns). In [Kim’s Lab] stud-
ies of gene regulation mechanisms in the nematode C.
elegans using cDNA microarrays hybridization assays
are described. Some software tools (Acacia Biosciences,
Inc.) for analyzing the raw data are also accessible from
[Kim’s Lab]. Using our methods and tools we analyzed
the data for 1246 genes, from 146 experiments. The

data is in the form log (GE) (representing the log-

ratio of the two sample intensity values at the corre-
sponding array feature), per experiment. Some experi-
ments are parts of time courses and some compare cer-
tain mutants to a reference cell. Here we only present
some initial clustering results, without further pursuing
any of the implied relationships.

Contrary to Section 3.1, where the similarity measure
needed to reflect the temporal nature of the data, the
order of experiments here, in the total set, has little
or no importance. Therefore, we use a Pearson correla-
tion based similarity measure here. Figure 4 and Figure
5 summerize some of our results. For time courses it
makes sense to use other similarity measures when the

Figure 3: The top figure summerizes the composition of
all clusters, in terms of the defined families. NTRs are
subdivided into four families as detailed in the legend.
Relative agreement of the clusters with the genes’ apri-
ori known functions serves as validation to the study
as well as the current clustering technique. The distri-
bution into clusters, within each one of the individual
families can also be displayed, as in the bottom figure
here.

corresponding sub matrices are clustered. Clustering
the columns (rather than the rows) of the expression
matrix is also possible and contains biologically mean-
ingful information.

39

5

t

..-
I

Figure 4: Top: examples of the clusters found in ana-
lyzing the data in [Kim’s Lab]. Note that it is possible
to identify the regions that significantly contribute to
correlations within a cluster and then analyze the cor-
responding sub matrix. We are currently working on
automating and benchmarking this process. Bottom:
not much information is available about how the genes
studied are grouped into families. Therefore, the fam-
ily comparison utility is presented here mostly for the
purpose of validation. Genes coding sperm proteins (8
genes) were all clearly clustered together. The same is
true for dehydrogenase related genes (3 of them). Clus-
ter #24, containing two growth related genes, is further
described in Figure 5. Due to the gray scale printing,
much of the graphic information is lost. Color graphics
and more examples can be found in [Ben-Dor Yakhini].

21 i

-2L I
0 50 100 150

Figure 5: Top: Cluster #24 contains two growth re-
lated genes, Iin-15 and E2F. Since these exhibit similar
behavior for the set of experiments analyzed, it makes
sense to further study the other four members of this
cluster, to see whether a functional connection can be
found. This is work currently in progress. Bottom: for
each exneriment we comnute the coefficient of variation

for the expression levels‘ (in fact, of the log (G-&&))

of the 6 members of Cluster #24. The experiments are
then sorted according to these numbers (in ascending
order). The purpose is to identify the conditions that
characterize the common behavior of the elements of
the cluster, for further inference. This is presented as
an example of analysis tools that can extend and build
upon the clustering results.

40

Acknowledgements We thank Amir Dembo for helping us in rigorously handling the stochastic model. We
thank Stuart Kim for access to the C. elegans data and for stimulating discussions on computational approaches
to gene expression data interpretation. We thank Mel Kronick for introducing us to the problem and for valuable
advice and information. We thank Ron Shamir for stimulating discussions and for contributing valuable ideas and
insight.

References

[Alon Krivelevich Sudakov 981 N. Alon, M. Krivelevich and B. Sudakov, Finding a large hidden clique in a ran-
dom graph, Proc. Ninth Annual ACM-SIAM Sympoium on Discrete Algorithms (SODA 98), San
Francisco, California, pp 594-598, 1998.

[Ben-Dor Yakhini] Web page for this paper: http://www.cs.washington.edu/homes/amirbd/bioclust .

[Blanchard Hood 961 A. P. Blanchard and L. Hood, Sequence to array: probing the genome’s secrets, Nature Biotech-
nology, vol 14, p 1649, 1996.

[Brown’s Lab]

[Chernoff 521

P. Brown’s laboratory web page: http : //cmgm. stanf ord. edu/pbrown/ .

H. Chernoff, A measure for the asymptotic eficiency for tests of a hypothesis based on the sum
of observations, Ann. of Math. Stat., vol 23, pp 493-509, 1952.

[Condon Karp 981 A. Condon and R. M. Karp, Algorithms for Graph Bisection on the Planted Bisection Model,
manuscript, personal communication, 1998.

[Dembo Zeitouni] A. Dembo, 0. Zeitouni, Large Deviations Techniques and Applications, 2nd edition,
Springer-Verlag, New York, 1998.

[DeRisi Iyer Brown 971 J. DeRisi, V. Iyer and P. Brown, Exploring the Metabolic Genetic Control of Gene Expression
on a Genomic Scale, Science, vol 278, pp 680-686, 1997.

[Drmanac et al 911 R. Drmanac, G. Lennon, S. Drmanac, I. Labat, R. Crkvenjakov and H. Lehrach, Partial se-
quencing by oligohybridization: Concept and applications in genome analysis, Proceedings of the
first international conference on electrophoresis supercomputing and the human genome. Edited
by C. Cantor and H. Lim, (World Scientific, Singapore), pp 60-75, 1991.

[Duda Hart] R. 0. Duda and P. E. Hart, Pattern Classification and Scene Analysis, Wiley-interscience,
NY, 1973.

[Everitt]

[Felsenstein 931

[Khan et al 981

B. Everitt, Cluster Analysis, 3rd edition, Edward Arnold, London, 1993.

J. Felsenstein, PHYLIP version 3.5c, Univ. of Washington, Seattle, 1993.

J. Khan, R. Simon, M. Bittner, Y. Chen, S. B. Leighton, T. Pohida, P. D. Smith, Y. Jiang, G. C.
Gooden, J. M. Trent, and P. S. Meltzer, Gene Expression Profiling of Alveolar Rhabdomyosarcoma
with cDNA Microarrays, manuscript, accepted to Cancer Research, 1998.

[Khrapko et al 911 K. R. Khrapko, A. Khorlin, I. B. Ivanov B. K. Chernov, Y. P. Lysov, S. Vasilenko, V. Floreny’ev,
A. Mirzabekov, Hybridization of DNA with Oligonucleotides Immobilized in Gel: A Convenient
Method for Detecting Single Base Substitutions, Molecular Biology 25, number 3, pp 581-591,
1991.

[Kim’s Lab]

[KuEera 951

Stuart Kim’s laboratory web page: http://cmgm.stanford.edu/Nkimlab/ .

L. KuEera, Expected Complexity of Graph Partitioning Problems. Discrete Applied Math, 57, pp
193-212, 1995.

[Lennon Lehrach 911 G.S. Lennon and H. Lehrach, Hybridization analysis of arrayed cDNA libraries, Trends Genet,
Vol 7, pp 60-75, 1991.

41

[Lin et al 961 C. Y. Lin, K. H. Hahnenberger, M. T. Cronin, D. Lee, N. M. Sampas, and R. Kanemoto, A Method
for Genotyping CYP2D6 and CYP2Cl9 Using GeneChip probe Array Hybridization, 1996 ISSX
Meeting.

[Lockhart et al 961 D. J. Lockhart, H. Dong, M. C. Byrne, M. T. Follettie, M. V. Gallo, M. S. Chee, M. Mittmann, C.
Wang, M. Kobayashi, H. Horton, and E. L. Brown, DNA Expression monitoring by hybridization
to high density oligonvcleotide arrays, Nature Biotechnology 14, pp 1675-1680, DEC 1996.

[Lysov et al 951 Y. Lysov, A. Chernyi, A. Balaev, F. Gnuchev, K. Beattie, A. Mirzabekov, DNA sequencing
by contiguous stacking hybridization on modified oligonucleotide matrices, Molecular Biology 29,
number 1, pp 62-66, 1995.

[Mirkin] B. Mirkin, Mathematical Classification and Clustering, Kluwer academic publishers, 1996.

[NHGRI] NHGRI’s laboratory web page: http://www.nhgri.nih.gov .

[Pevzner et al 911 P. A. Pevzner, Y. Lysov, K. R. Khrapko, A. Belyavsky, V. Floreny’ev, A. Mirzabekov, Improved
Chips for Sequencing by Hybridization, J Biomolecular Str. Dyn., Vol 9, number 2, pp 399-410,
1991.

[Somogyi et al 951 R. Somogyi, X. Wen, W. Ma and J. L. Barker, Developmental kinetics of GAD family mRNAs
parallel neurogenesis in the rat spinal cord, J. Neurosci, Vol 15, No 4, pp 2575-2591, 1995.

[Velculescu et al 971 V. E. Velculescu et al, Characterization of the yeast transcriptome, Cell, Vol 88, pp 243-251,
1997.

[Wen et al 981 X. Wen, S. Fuhrman, G. S. Michaels, D. B. Carr, S. Smith, J. L. Barker and R. Somogyi, Large-
scale temporal gene expression mapping of central nervous system development, PNAS, Vol 95,
No 1, pp 334-339, 1998.

42

