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Abstract 

With the advance of hybridization array technology re- 
searchers can measure expression levels of sets of genes 
across different conditions and over time. Analysis of 
data produced by such experiments offers potential in- 
sight into gene function and regulatory mechanisms. 
We describe the problem of clustering multi-condition 
gene expression patterns. We define an appropriate 
stochastic model of the input, and use this model for 
performance evaluations. We present a O(n(log(n))c)- 
time algorithm that recovers cluster structures with 
high probability, in this model, where n is the num- 
ber of genes. In addition to the theoretical treatment, 
we suggest a practical heuristic approach based on the 
same ideas. We demonstrate the algorithm’s perfor- 
mance first on simulated data, and then on actual gene 
expression data. 

1 Introduction 

In any living cell that undergoes a biological process, 
different subsets of its genes are expressed in different 
stages of the process. The particular genes expressed 
at a given stage and their relative abundance are cru- 
cial to the cell’s proper function. Measuring gene ex- 
pression levels in different stages, different body tissues, 
and different organisms is instrumental in understand- 
ing biological processes. Such information can help the 
characterization of gene/function relationships, the de- 
termination of effects of experimental treatments, and 
the understanding of many other molecular biological 
processes. 

Current approaches to measuring gene expres- 
sion profiles include SAGE [Velculescu et al 971, 
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RT/PCR [Somogyi et al 951, and hybridization baaed 
assays. In the latter, a set of oligonucleotides, or a 
set of appropriate cDNA molecules, is immobilized on 
a surface to form the hybridization array. When a 
labeled target DNA (or RNA) mixture is introduced to 
the array, target sequences hybridize to complementary 
immobilized molecules. The resulting hybridization 
pattern (detected, for example, by fluorescence) is 
indicative of the mixture’s content. Hybridization 
arrays are thus used as molecular recognition tools for 
nucleic acids (see [Drmanac et al 91, Khrapko et al 91, 
Lennon Lehrach 91, Pevzner et al 91, Lysov et al 95, 
Blanchard Hood 96, Lin et al 961.) 

These methods accelerate the rate at which gene 
expression pattern information is accumulated, cf. 
[Kim’s Lab, Lockhart et al 96, DeRisi Iyer Brown 97, 
Wen et al 98, Khan et al 981 (also see Section 3 for 
more details). As a result, there is an increasing need 
to elucidate the patterns hidden in the data. However, 
the nature of studies of multiconditional gene expres- 
sion patterns may widely vary. Accordingly, we are 
interested in analysis tools that may be useful in all 
such contexts. Clustering techniques are applicable as 
they would cluster sets of genes that “behave similarly” 
under the set of given conditions. 

In cluster analysis, one wishes to partition entities 
into groups called clusters, so that clusters are homoge- 
neous and well-separated. Clustering problems arise in 
numerous disciplines including biology, medicine, psy- 
chology, economics and others. There is a very rich lit- 
erature on cluster analysis going back over two decades 
(cf. [Duda Hart, Everitt, Mirkin].) There are numer- 
ous approaches to defining quality criteria for solutions, 
stipulating the type of clustering sought, and interpret- 
ing the solutions. Algorithmic approaches also abound. 
Most formulations of the problem are NP-hard, so the 
algorithmics emphasizes heuristics and approximation. 
Clustering literature lacks concensus on basic defini- 
tions, probably due to the diversity of applications of 
the problem. A common theme in the literature is the 
need to fit the approach to the problem at hand and the . 
necessity to assess the quality of solutions by subjective 
impression of experts in each area. 

Analyzing multi-conditional gene expression patterns 
with clustering algorithms involves the following steps: 

l Determination of the gene expression data (usually 
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reported as vectors of real numbers). 

l Calculation of a similarity matrix S. In this ma- 
trix the entry Sij represents the similarity of the 
expression patterns for genes i and j. Many pos- 
sible similarity measures can be used here. The 
actual choice should reflect the nature of the bio- 
logical question and the technology that was used 
to obtain the data. 

l A clustering algorithm. This is the main concern 
of this paper. The clustering algorithm should be 
effective and efficient. Its input is the similarity 
matrix mentioned above and its output is a set of 
clusters. Genes that belong to the same cluster 
have similar expression patterns, under the given 
conditions. 

l Means for visually presenting the constructed so- 
lution (exemplified in Section 3). 

Current approaches to clustering gene expression pat- 
terns ([Brown’s Lab, NHGHI, Wen et al 981) utilize hi- 
erarchical methods (constructing phylogenetic trees) or 
methods that work for Euclidean distance metrics (e.g 
k-means). We take a graph theoretic approach, and 
make no assumptions on the similarity function or the 
number of clusters sought. The cluster structure is pro- 
duced directly, without involving an intermediate tree 
stage. 

In Section 2.1 we describe the stochastic model used 
in this work. We then present a provably efficient 
method of solving the problem with high probability. 
In Section 2.2 we present a practical heuristic approach 
based on ideas of the said method and analyze its per- 
formance by simulations. In Section 3 we apply it to 
actual gene expression data, and analyze its output. 

2 The Clustering Algorithm 

2.1 Theory 

We approach the clustering problem at hand by study- 
ing a stochastic model. A graph is called a clique graph 
if it is a disjoint union of complete graphs. Given a 
graph, consider the problem of finding its nearest clique 
graph, where distance is measured by the number of 
edges that must be changed (added or removed). Those 
cliques can be thought of as the underlying cluster 
structure of the graph. In the case of gene expression 
patterns it makes (biological) sense to assume that some 
true underlying cluster structure does exist for a graph 
that represents correlation between patterns of differ- 
ent genes. The underlying structure is, however, ob- 
scured by the complexity of the biological processes and 
corrupted by experimental errors. For our purposes it 
makes sense, therefore, to study the clustering problem 
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on a random graph model built upon a cluster structure 
and corrupted at random. In this section we therefore 
assume that the input to the clustering problem are dis- 
tributed according to the corrupted clique-graph model 
defined below. It is reminiscent of the planted bisec- 
tion model ([Condon Karp 981) and the planted clique 
model ([Alon Krivelevich Sudakov 981). 

In [KuEera 951 a variety of graph partitioning prob- 
lems is considered, in the context of random graphs. 
The author considers the bisection problem and the 
graph coloring problem. He suggests algorithms for 
solving these with high probability and studies their ex- 
pected complexity assuming some specific distributions 
on the input. In [Condon Karp 98) the authors consider 
the graph Z-partition problem: partition the nodes of 
an undirected graph into 1 subsets of predefined sizes so 
that the total number of inter subset edges is minimal. 
They then present a linear (in the number of edges) 
time algorithm that solves the graph Z-partition prob- 
lem with high probability, on the planted l-partition 
model. Our problem is different: no predefined struc- 
ture is given (any clique structure is, apriori, a possible 
candidate) and minimality with respect to inter cluster 
edges as well as intra cluster non-edges is sought. 

Definition 2.1: 

6) 

(ii) 

I 

A cluster structure is a vector S = (sr, ~2, . . . . sd), 
where si > 0 and C si = 1. For a cluster struc- 
ture S, let y(S) = the smallest entry, d(S) = the 
dimension, d. 

A cluster structure S = (sr , ~2, . . . . sd) defines a 
clique graph on the vertices { l...n} in the following 
way: The number si corresponds to a clique of size 
[s;lvJ (In our simulations we will choose N and S 
so that no rounding is needed. For asymptotic re- 
sults the rounding is irrelevant) on the appropriate 
vertices. Call this graph Qn(S). A relabeling of 
the vertices of Qn(S) according to a permutation 
u E S, generates the clique graph Qn(S, CT). 

Definition 2.2: The random graph model Q(n, Q, S) 
(representing random corruption of clique graphs) is 
defined as follows: Given a cluster structure S and a 
value 0 5 (Y 5 f, the random graph &(n, (Y, S) is ob- 
tained from Qn(S) = (V,E) by randomly (1) remov- 
ing each edge in E with independent probability a; (2) 
adding each edge not in E with independent probability 
a; (3) permuting the vertices according to a uniformly 
chosen random permutation u E S,. Edge inversions 
can be represented by a binary vector 5 of length (T), 
where ij is inverted iff <ij = 1. The graph generated 

as above, from (0, C) E S, x {O,l}(:) will be denoted 
G(a,O = (V,E(a,O). I 



Definition 2.3: Consider an algorithm A that takes ar- 
bitrary graphs as inputs and returns clique graphs. De- 
note the output of A on G = (V,E) by d(G) = (V,F). 
Accordingly, F(a, C) is the edge set of d(G((r, C)). 

Let 6 > 0. We say that an algorithm A as above 
clusters Q(n,a, S) with probability 1 - 6 if the out- 
put graph is, asymptotically, as good a solution as 
the original cluster graph is, with probability 1 - 6. 
More precisely, let AA(~, C) = (E(a, C)AF(o, <)I, and 
AInput(a, <) = IE(o, <)AQ,(S, o)l. We require that 

Here and throughout this section Pdenotes the relevant 
probability measure (which is clear from the context). 

Let 6(n) + 0. We say that an algorithm A as above 
clusters Q(n,cr,S) with failure rate 6(n) if (using the 
same notation) 

lim sup 
l- P Ad(CJ, C) L AInput ( CM) <oo 

n-i03 W 

I 

Theorem 2.4: Let S be a cluster structure and 
cY< 

(i) 

(ii) 

(iii) 

l/2. 

For any fixed 6 > 0 there exists a n(log(n))c-time 
algorithm that clusters Q(n, Q, S) with probability 
1 - 6. (c is a constant that depends only on the 
cluster structure S and on CY). 

For any a(n) E fi((log(n))-b), where b is some con- 
stant, there exists a n(log(n))@)-time algorithm 
that clusters &(n, a, S) with failure rate 6(n). (c(b) 
is as above but also depends on b). 

For any 6(n) E fl(neb), where b is some constant, 
there exists a polynomial-time algorithm that clus- 
ters &(n, a, S) with failure rate 6(n). 

To prove this theorem we shall present the algorithm 
and analyze its performance. It uses ideas similar to 
these presented in [Condon Karp 981 and [KuEera 951. 
For the proof we need Theorem 2.5, due to Chernoff 
([Chernoff 521, [Dembo Zeitouni, Section 2.21). We use 
D(p[a) to denote the relative entropy distance from 
(p,l -p) to (a,1 - a), That is, D(p[a) = plog(p/a) + 
(1 -PI l%((l - P)l(l - a)). 

Theorem 2.5: (Chernofi, 1952) 
Let X N Binomial(N,p). Let a < p < b. Then 
P(X > b) < exp(-ND(b)p)), and P(X < a) < 
w(-~D(4d). 

We also need a very crude sampling lemma, stated 
without proof: 

Lemma 2.6: Consider n objects of d diflerent colors, 
each color represented by at least nJm objects. If s ob- 
jects are sampled uniformly, and independently without 
replacement then 

P 
( 

The sample contains 2 s/2m 
representatives of each color > 

>1-6, 

providing 16m2 log(d/G) < s < &. 

Proof: (of Theorem 2.4) 
Sketch. Before presenting the complete proof, we 

outline the idea. Consider a simpler scenario - assume 
that the hidden structure S, consists of only two clus- 
ters, red, and blue. We say that a logn-subset of ver- 
tices is a core if it is monochromatic (either all red or 
all blue). The algorithm has two phases. In the first 
phase it forms a list L of core candidates. In the sec- 
ond it uses each core candidate, L E L, as a classifier, 
to partition the rest of the vertices: vertices with at 
least 9 neighbors in L versus those that have fewer 
neighbors in L. Finally, the partition that is closest (in 
the symmetric difference sense) to the input graph is 
returned. 

The analysis of the algorithm above is based on the 
following: 

A list of core candidates, ,C, that positively contains 
a core can be generated in polynomial time - choose 
an arbitrary subset A of size 2 log n and let L: be 
the list of all logn-subsets of A. 

Assume that a core is used as a classifier to pro- 
duce the vertices partition. Using large deviations 
bound we show that the produced partition is as 
good as the original cluster structure with high 
probability. 

Note that the time complexity of the second phase is 
O(n log n) times the size of C. To reduce the time com- 
plexity order we replace the first phase of the algorithm 
above by a “recursive” application of the algorithm. We 
generate a list that contains O(logn) sub-core candi- 
dates, each with loglogn vertices. Each sub-core can- 
didate is used to grow a core candidate, which in turn 
is used to grow the complete partition. 

Complete proof. For clarity we analyze the case 
d(S) = 3, y(S) = l/ m. Generalizing to more clusters is 1 
straight forward. 

We are given a graph on n vertices that was obtained 
from a cluster structure S by the process described in 
Definition 2.2. Call the vertices of the original clusters 
blue, red and white. Write V = B U R U W. For a 
vertex w E V let C(v) denote the subset it belongs to 
(before corrupting the clique graph). Let S > 0 (will be 
related to the tolerated failure probability, at the end). 
Let /c(a) = [2/D(1/2lla)l. 
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Uniformly draw a subset Ui of vertices of size 
r . k(o) log log(n) where r is determined so that 
with probability 1 - b each color has at least 
k(a) log log(n) representatives in this chosen sub- 
set. By Lemma 2.6 r can be set to be 2m providing 
that n is large enough: log log(n) > 8m log(1/6) 
and n > 8m2 log log(n). 

Uniformly over the subsets of V \ Vi draw a subset 
Uz of vertices with r. /c(a) log(n) elements. Again, 
r is such that with probability 1 - b each color has 
at least k(o) log(n) representatives in this chosen 
subset and r = 2m suffices under the above as- 
sumptions. 

Consider all partitions of Vi into 3 subsets (there 
are less than log(n)T.k(“)‘os(3) of them). Call the 
subsets of each such partition BF, RF and Wlc. 
Run the following enumerated steps starting with 
all these partitions. For the analysis focus on a 
partition where BF c B, Rf c R and W.f c W 
(such a partition is, indeed, considered, since we 
are considering all partitions). 

For all 21 E Us let c(u) be the color that attains 
ihe maximum of deg(u,BF)/IBfI, deg(u,Rf)/IRyI, and 

Dean, w?)llw?l. Add ‘1~ to that set. Assume that 
C(u) = B. The collection of edges from u to I?? are inde- 
pendent Bernoulli(1 - a) (the drawings of 9 and 172 were 
independent of everything else). Therefore deg(u,BF) N 
Binomial(lBfI,l - a). Using the Chernoff bound stated 
above we therefore have 

P deg(u Bc) 5 w 9 1 2 > 

< 
< 

-c exd-lBPlo(+b)) 

log(n)- w~P(+!a) 0) 
log(n)-2, (‘4 

where lB?l 2 k(a) loglog justifies (1). Similarly, 
deg(u, RF) N Binomial(lRFI, cr), and thus 

< log(n)-2. (3) 

The same holds for WIc, whence C(u) = C(u) with high 

probability: P(c(u) # C(u)) < 3 log(n)-2. Finally, by a 
union bound 

P(d(u) # C(u) for some u E Vs ) < 3r. k(a) log(n)-‘. 

(4) 

2. Focusing on the part of the measure space where no er- 
ror was committed in the previous steps (in particular, all 
vertices were assigned to their original color), we now have 
three subsets of vertices Bg C B, Rf C R and W: C W, 
each of size at least k(a)log(n). We take all other vertices 
and classify them using these subsets, as in the previous 
step. Observe that all edges used in this classification are 
independent of the algebra generated by everything previ- 
ously done. This is true since in the previous step only edges 
from U2 to 171 were considered, and these are of no interest 
here. Therefore, the equivalents of (2) and (3) hold, yielding 

P(any v E V was not assigned to C(V)) < 3~. Ic(cr)n-‘. 
(5) 

l Amongst all outputs of the above, chose the par- 
tition which is closest (in the symmetric difference 

sense) to the input graph. 

The total probability of failure in this process is esti- 
mated as follows 

P 
( 

The original partition V = B U R U W 
is not one of the outputs > 

< 26 + 3r. k(a) (n-l + log(n)-l) 

5 26 + 6m. k(a) (n-’ + log(n)-‘) , (6) 

which is arbitrarily small for large n. As noted above, 
we have less than log(n)2m.k(a)‘os(3) parallel processes 
here. In each one the expensive part (time-wise) is the 
classification of all vertices in V \ (VI U U2) , using the 
core clusters Bf , RF and W-f. In this stage O(n log(n)) 
edges are considered, each at most once: sums over dis- 
joint subsets of these are compared to a threshold. Thus 
the time spent here is O(nlog(n)) and the total time 
complexity is O(n log(n)2”‘“(a) ‘0s(3)+1). This proves 
(i). 

To see that (ii) holds observe that the dominant term 
in (6) is log(n)-l and that the degree here can be in- 
creased by pushing k(a) up, paying a price in the time 
complexity (the power of log(n) there would increase). 
The proof of (iii) is along similar lines and is omitted 
here. 1 

Remark 2.7: 1. The algorithm’s performance can be 
measured by the distribution of the distance of the out- 
put clique graph to Qn(S, 0). We are currently work- 
ing on formulating and proving the corresponding state- 
ment. 2. Observe that for the initial sampling the al- 
gorithm needs to know a bound on (y. (away from l/2), 
but not its value. I 

2.2 Practice 

In this section we take a more practical approach, and 
present a novel and simple clustering heuristic, called 
Cluster Affinity Search Technique, or, in short, 
CAST. The algorithm uses the same idea as in the the- 
oretical algorithm described in Theorem 2.4, namely 
it relies on average similarity (affinity) between unas- 
signed vertices and the current cluster seed to make its 
next decision. However, it differs from the theoretical 
algorithm in some aspects: (1) The theoretical algo- 
rithm repeats the same process for many initial seeds. 
Here we use “cleaning” steps to remove spurious ele- 
ments from cluster seeds and avoid the repetition. (2) 
CAST adds (and removes) elements from the current seed 
one at a time (and not independently, as in the theo- 
retical algorithm). Heuristically, this helps by strength- 
ening the constructed seed, thus improving the decision 
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Clustering Affinity Search Technique 
. Input: An n-by-n similarity matrix C, and a cutoff parameter t. 

l Initializations: 

ct0 /* The collection of closed clusters */ 
C open t 0 /* The constructed cluster */ 
Ut{l,...,n} /* Elements not yet assigned to any cluster */ 
a(.) t 0 /* Reset the affinity (total similarity between v and elements in Cope,,) */ 

l while(U U Copen # 0) do 
Let 21 be an element with maximal affinity in U. 
if g(u) Z tlCopenl) /* u is of high affinity */ 

open + Copen lJ {u) /* Insert u into Copen */ 
u + u \ {ul /* Remove u from U */ 
For all I in U U Co,,, do 

a(z) = a(z) + C(z,u) /* Update the affinity */ 
end 

else /* No high affinity elements outside Cope,, */ 
Let v be a vertex with minimal affinity in CO,,,. 
if (a(v) < tlGpenl) /* u is of low affinity */ 

Cope* t Copen \ iv) /* Remove v from Cope,, */ 
.!J t u u {v} /* Insert v into U l / 
For all z in U U Cope,, do 

4x1 = o(x) - C(z, w) /* Update the affinity */ 
end 

else /* Copea is clean */ 
C t C U Copen /* Close the cluster l / 
Copen + 0 /* Start a new cluster */ 
a(.) t 0 /* Reset affinity */ 

end 
end 

end 

. Done, return the collection of clusters, C. 

Figure 1: CAST Algorithm 

Cluster structure (S) Matching coeff. Jaccard’s coeff. 
(0.4,0.2,0.1,0.1,0.1,0.1) 5:o 0:2 1.0 1.0 
(0.4,0.2,0.1,0.1,0.1,0.1) 500 0.3 0.999 0.995 
(0.4,0.2,0.1,0.1,0.1,0.1) 500 0.4 0.939 0.775 

(0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1) 1000 0.3 1.0 1.0 
(0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1) 1000 0.35 0.994 0.943 

Table 1: Results from simulations. 

base for the next step. (3) CAST handles more general 
inputs. Namely, it allows the user to specify both a 
real-valued similarity matrix, and a threshold param- 
eter which determines what is considered significantly 
similar. This parameter controls the number and sizes 
of the produced clusters. 

The input to the algorithm is a pair (C, t), where C 
is a n-by-n similarity matrix (C(i, j) E [0, l]), and t is a 
similarity cutoff. The clusters are constructed one at a 
time. The currently constructed cluster is denoted by 
C open. We define the affinity of an element x, denoted 
by a(z), to be the sum of similarity values between x 

and the elements in Cope,,. We say that an element x is 
of high afinity if u(x) 2 tjCopen\. Otherwise, x is called 
of Iow afinity. Note that an elements’ status (high/low 
affinity) depends on Cope,,. Roughly speaking, CAST al- 
ternates between adding high affinity elements to Cope,, , 
and removing low affinity elements from it. When this 
process stabilizes Copen is closed and a new cluster is 
started. A pseudo-code of the algorithm is given in 
Figure 1. 

We remark that the “cleaning” steps in CAST serve 
to avoid a common shortcoming shared by many pop- 
ular clustering techniques (such as single-linkage, 
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complete-linkage, group-average, and centroid): than once this increases the computation time. The ex- 
due to their “greedy” nature, once a decision to join two pression data in [DeRisi Iyer Brown 971 (a N 6000 x 7 
clusters is made, it cannot be reversed (see [Everitt, ch. matrix) was analyzed in this manner. 

2.2.1 Performance Analysis 

As is sometimes the case with practical heuristics, it 
3 Biological Data 

is very hard to prove rigorous performance bounds for 
CAST. Instead, we assess its performance by testing its 
ability to recover hidden cluster structures in computer 
generated random data. Recall (Definition 2.2) that the 
corrupted clique graph random graph model is specified 
by three parameters: a cluster structure S, an error 
probability a, and a size parameter n. For different 
choices of these parameters, we perform the following 
steps: (A) Draw a random graph G = G(a, C), from the 
distribution g(n,a,S). (B) Apply CAST to G (viewed 
as a binary similarity matrix), using cutoff t = 0.5. For 
each such trial we compute the similarity between the 
output cluster structure and the original clique graph 
Qn(S, a) using similarity coefficients (matching coeffi- 
cient and Jaccard’s coefficient [Everitt, p. 411). Visual 
judgment can also be used. 

For completeness we define the above mentioned simi- 
larity coefficients. Let M(S) be the adjacency matrix of 
Q&S 0) (a n-by- n matrix). That is, M(i,j) = 1 if and 
only if i and j belong to the same cluster. Similarly, let 
M(C) denote the adjacency matrix of the output cluster 
structure. Let No, Ni, Ns denote the number of entries 
that have ‘0’ in both matrices, the number of entries 
that have ‘1’ in both matrices, and the number of en- 
tries that differ in the two matrices, respectively. The 
matching coefficient is simply the ratio of the total num- 
ber of entries on which the two matrices agree, to the 
total number of entries: (No+ Ni)/(Nc+ Nr +NZ). Jac- 
card’s coefficient is the corresponding ratio when “neg- 
ative” matches (No) are ignored: Nr /(Ni + Ns). 

In Table 1 we report results (based on at least 100 ex- 
ecutions) for various choices of the model parameters. 

2.2.2 Implementation Notes 

All of the software developed (including the CAST al- 
gorithm, the synthetic data generation, and the vi- 
sualization tools) was implemented using MATLAB. 
The expression matrix for the data in [Kim’s Lab] is 
1246 x 146. Running one clustering execution on it takes 
under ten seconds on a HP Vectra XU 6/180MHz with 
96Mb RAM (after a one time preprocessing step that 
computes the similarity matrix). The similarity matrix 
for actual gene expression data can take large memory 
space. When this is a problem it is possible to com- 
pute all similarity values when they are needed. Since 
(in CAST) some entries of the matrix are accessed more 

3.1 Temporal Gene Expression Pat- 
terns 

As a first example of applying our clustering techniques 
to gene expression data we analyze the data reported, 
analyzed and discussed in [Wen et al 981. In this study 
the authors establish some relationships between tem- 
poral gene expression patterns of 112 rat CNS (Central 
Nervous System) genes and the development process 
of the rat’s CNS. Three major gene families are consid- 
ered: Neuro-Glial Markers family (NGMs), Neurotrans- 
mitter Receptors family (NTRs) and Peptide Signaling 
family (Peps). All other genes measured in this study 
are lumped by the authors into a fourth family: Di- 
verse (Div). All families are further subdivided by the 
authors, based on apriori biological knowledge. 

Gene expression patterns for the 112 genes of inter- 
est were measured (using RT/PCR: [Somogyi et al 951) 
in cervical spinal cord tissue, at nine different develop- 
mental time points. This yields a 112 x 9 matrix of 
gene expression data. To capture the temporal nature 
of this data, the authors transform each (normalized) 
g-dimensional expression vector into a 17-dimensional 
vector - 8 difference values (between time adjacent ex- 
pression levels) were included. This transformation em- 
phasizes the similarity between genes with closely paral- 
lel, but offset, expression patterns. Euclidean distances 
between the augmented vectors were computed, yield- 
ing a 112 x 112 distance matrix. Next, A phylogenetic 
tree was constructed for this distance matrix (using 
FITCH, [Felsenstein 931). Finally, Cluster boundaries 
were determined by visual inspection of the resulting 
tree. Some correlation between the resulting clusters 
and the apriori family information was observed. 

We analyze the same data in the following way. The 
raw expression data is preprocessed in a similar manner 
- first the normalized expression levels are augmented 
with the derivative values. Then, a similarity matrix is 
computed based on the LI distance between the aug- 
mented 17-dimensional vectors. A hands-off version of 
our algorithm, which automatically searches for a good 
cutoff value, is applied to the similarity matrix (the 
eventual cutoff for the presented data was 0.647). Clus- 
ters are directly inferred. The results are depicted in 
Figure 2 and Figure 3. 
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Figure 2: The expression patterns of genes in each of
the clusters. The graphs are color coded so as to dis-
tinguish between members of the various families. This
information is lost in the gray scale printing. To see
the clusters in color and for more graphics please visit
[Ben-Dor Yakhini]. 0 ur software enables comparison to
any user defined partition into families. Note a single
NGM in cluster #5 that is dominated by NTRs.

3.2 Multi Experiment Analysis

Clustering gene expression patterns is useful even if the
experiments’ enumeration has no physical meaning (as
opposed to temporal patterns). In [Kim’s Lab] stud-
ies of gene regulation mechanisms in the nematode C.
elegans using cDNA microarrays hybridization assays
are described. Some software tools (Acacia Biosciences,
Inc.) for analyzing the raw data are also accessible from
[Kim’s Lab]. Using our methods and tools we analyzed
the data for 1246 genes, from 146 experiments. The

data is in the form log (GE) (representing the log-

ratio of the two sample intensity values at the corre-
sponding array feature), per experiment. Some experi-
ments are parts of time courses and some compare cer-
tain mutants to a reference cell. Here we only present
some initial clustering results, without further pursuing
any of the implied relationships.

Contrary to Section 3.1, where the similarity measure
needed to reflect the temporal nature of the data, the
order of experiments here, in the total set, has little
or no importance. Therefore, we use a Pearson correla-
tion based similarity measure here. Figure 4 and Figure
5 summerize some of our results. For time courses it
makes sense to use other similarity measures when the

Figure 3: The top figure summerizes the composition of
all clusters, in terms of the defined families. NTRs are
subdivided into four families as detailed in the legend.
Relative agreement of the clusters with the genes’ apri-
ori known functions serves as validation to the study
as well as the current clustering technique. The distri-
bution into clusters, within each one of the individual
families can also be displayed, as in the bottom figure
here.

corresponding sub matrices are clustered. Clustering
the columns (rather than the rows) of the expression
matrix is also possible and contains biologically mean-
ingful information.
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Figure 4: Top: examples of the clusters found in ana- 
lyzing the data in [Kim’s Lab]. Note that it is possible 
to identify the regions that significantly contribute to 
correlations within a cluster and then analyze the cor- 
responding sub matrix. We are currently working on 
automating and benchmarking this process. Bottom: 
not much information is available about how the genes 
studied are grouped into families. Therefore, the fam- 
ily comparison utility is presented here mostly for the 
purpose of validation. Genes coding sperm proteins (8 
genes) were all clearly clustered together. The same is 
true for dehydrogenase related genes (3 of them). Clus- 
ter #24, containing two growth related genes, is further 
described in Figure 5. Due to the gray scale printing, 
much of the graphic information is lost. Color graphics 
and more examples can be found in [Ben-Dor Yakhini]. 
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Figure 5: Top: Cluster #24 contains two growth re- 
lated genes, Iin-15 and E2F. Since these exhibit similar 
behavior for the set of experiments analyzed, it makes 
sense to further study the other four members of this 
cluster, to see whether a functional connection can be 
found. This is work currently in progress. Bottom: for 
each exneriment we comnute the coefficient of variation 

for the expression levels‘ (in fact, of the log (G-&&) ) 

of the 6 members of Cluster #24. The experiments are 
then sorted according to these numbers (in ascending 
order). The purpose is to identify the conditions that 
characterize the common behavior of the elements of 
the cluster, for further inference. This is presented as 
an example of analysis tools that can extend and build 
upon the clustering results. 
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