
q-gram Based Database Searching Using a Suffix Array (QUASAR)

Stefan Burkhardt * Andreas Cramer * Pa010 Ferragina t

Hans-Peter Lenhof * Eric Rivals $ Martin Vingron 3

Abstract

With the increasing amount of DNA sequence information
deposited in public databases, searching for similarity to a
query sequence has become a basic operation in molecu-
lar biology. But even today’s fast algorithms reach their
limits when applied to all-versus-all comparisons of large
databases. Here we present a new database searching al-
gorithm called QUASAR (Q-gram Alignment based on Suf-
fix ARrays) which was designed to quickly detect sequences
with strong similarity to the query in a context where many
searches are conducted on one database. Our algorithm ap-
plies a modification of q-tuple filtering implemented on top
of a suffix array. Two versions were developed, one for a
RAM resident suffix array and one for access to the suffix ar-
ray on disk. We compared our implementation with BLAST
and found that our approach is an order of magnitude faster.
It is, however, restricted to the search for strongly similar
DNA sequences as is typically required, e.g., in the context
of clustering expressed sequence tags (ESTs).

1 Introduction

Numerous and large databases holding DNA and protein
sequences are now readily available over the WEB and
are quickly becoming the “lifeblood of molecular biology”
[Wa195]. This is due to the combination of the power of
biomolecular sequence comparison with the ease-of-use of
tools for searching such databases for sequences exhibiting
similarity to a given query sequence. These searches are
nowadays routine and vital for molecular biology because
they serve to “generate new knowledge” [DooSO]. Whenever
a new gene is cloned and sequenced, visiting the appropriate
databases is the next step. Different, but equally interesting,
applications of these databases are the clustering of similar
sequences into sequence families [KV98], and the assembly
of sequence fragments in genome sequencing [VAS+98].

l MPI fiir Informatik, Im Stadtwald, 66123 Saarbriicken, Germany
‘Dipartimento di Informatica, Universit& di Pisa, Corso Italia 40,

56125 Pisa, Italy
*Deutsches Krebsforschungszentrum, Abt. Theoretische Bioinfor-

matik , INF 280, D-69120 Heidelberg, Germany

Permission to make digital or hard copies of all or part ofrhis work for
pcrronai or classroom use is granted without fee pro\,ided that copies
arc not rnadc or distrihutsd for prolit or conmwrcial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish. to post on serwrs or to redistribute to lists.
requires prior specific permission an&or a fee.

RECOMB ‘99 Lyon France
Copyright ACM 1999 I-581 13-069-4/99/04...$5.00

Fast programs like the BLAST and FASTA pack-
ages [AMS+97, PL88] or iterated Smith-Waterman [SW811
sequence alignments are used for this purpose. Especially
BLAST is impressively fast. This program performs a linear
scan of the whole collection of sequences searching for a set of
words belonging to the neighborhood of some substrings of
the query string. The result is a list of candidate hits in the
database. Although this algorithm performs single database
searches at an amazing speed, today’s applications tend to
introduce more stringent performance requirements where
these algorithms reach their limits. Be it in the comparison
of an EST database to itself for the purpose of clustering or
in the context of shotgun sequencing, all-against-all compar-
isons of large amounts of data need to be computed. The
problem is further augmented by the current exponential
growth in primary sequence data. Thus, database searching
tools that read through the entire database may in the near
future become too slow to cope with the avalanche of data
(see also [Mye92]).

In the field of ezact string matching, techniques have
been developed that preprocess a text in such a way that,
upon searching a pattern, only small parts of that text ac-
tually need to be explicitly accessed. Since in the applica-
tions described above, one imposes a very stringent match
criterion, the hope is to draw on these techniques in or-
der to further improve the efficiency of database search-
ing algorithms. Candidates are sophisticated indexing data
structures like suffix trees [McC76], suffix arrays [MM93],
or Patricia trees [Knu73], that allow to perform queries in
time proportional to the length of the query string while
being as independent as possible of the size of the searched
text [McC76].

Only few attempts have been made to adapt these tech-
niques to the similarity searches needed for biological pur-
poses. Martinez [Mar83], for example, gave the first ap-
plication of a position tree in molecular biology. This
data structure requires about 16 times the space needed
to store the original data which clearly may create seri-
ous problems when applied to large data collections (see
also [Heu97, MH95]). The first sublinear expected time al-
gorithms were proposed by Chang and Lawler [CL941 and
Ukkonen [Ukk92]. They use a suffix tree of the query se-
quence but still scan the database.

Myers [Mye94] suggested a sublinear (in the database
size) search algorithm that is centered around an index built
on the database sequences. The query sequence is split into
small substrings and words from a neighborhood of these
are located in the index. The IBM product FLASH [CR931
takes advantage of a large “probabilistic” index where not

77

http://crossmark.crossref.org/dialog/?doi=10.1145%2F299432.299460&domain=pdf&date_stamp=1999-04-01

all q-tuples are considered, but only some of them are ran-
domly chosen. They report a 18 GB index for a 100 million
residue database which makes such an approach impractical
for large databases.

In this paper we restrict ourselves to the search for se-
quences that are strongly similar to a given query sequence.
A typical scenario is searching an EST database for se-
quences that are derived from the same gene as the query
sequence. The degree of similarity expected here is high
because in essence, one only needs to deal with sequencing
errors. Furthermore, we have in mind an application where
many searches are run together like, e.g., in an all-versus-all
comparison of a set of sequences. Thus, we aim at a search
algorithm that is very fast on each single search at the ex-
pense of (possibly) diminished sensitivity. Given the low
performance of current disks compared to internal memory
(regarding access time and transfer rate), QUASAR is based
on an index data structure to avoid the linear scan of the
entire database.

Following a standard approach (see e.g. [JU91, Ukk92,
HBD94, PW93, PL88]), we reformulate the problem of
searching for database sequences which are very close to the
query sequence to the problem of performing a number of
ezact searches for short subsequences of length q (called q-
grams). Our approach is based on the following observation:
if two sequences have an edit distance below a certain bound,
one can guarantee that they share a certain number of q-
grams [JUSl, Ukk92]. This observation allows us to design
a filter that selects candidate positions from the database
where the query sequence possibly occurs with a high level
of similarity. These positions can later be inspected in more
depth with a standard alignment algorithm.

The crucial point in the approach we use for QUASAR
was therefore the design of the filter which combines some
already known ideas in a new way. We logically partition
the database into equal length blocks of size, say, b (cf.
[WM92]). The search of the query sequence S is then de-
composed into a certain number of “similarity” searches for
subsequences of S of fired length. Such a search is imple-
mented by searching for all the occurrences of its q-grams in
the database, counting for each block the number of searched
q-grams occuring in it. At this point, a properly chosen
bound on the number of shared q-grams allows us to de-
tect blocks which possibly correspond to database portions
highly similar to the query sequence S (i.e., candidate hits).
An array of counters-one per block-is used to speed up
the counting process and a suffix array [MM931 is applied
as a space-efficient data structure for quickly retrieving the
positions where the searched q-grams occur in the database.
We implemented two versions of our data structure and al-
gorithm: one assuming that the whole data collection is
resident in the internal memory of the computer, and the
other assuming that the index data structure is large and
thus has to reside on disk.

The results we achieve with this approach show that our
match criterion and filtering approach are successful, espe-
cially because our focus is on near-perfect matching for many
queries. Our evaluations will focus on such situations show-
ing that our new algorithm is more than one magnitude
faster than BLAST while maintaining about the same sen-
sitivity. In the case of an all-against-all comparison, where
the running time depends quadratically on the number of se-
quences compared, such an improvement leads to a substan-
tial increase in overall performance. Similarly, one can en-
visage that a heavily used web service might take advantage
of the speed offered by our approach by collecting queries for

a few seconds and then searching for them in the database.
The paper is organized as follows. The Algorithm Sec-

tion starts by introducing the match criterion we want all
our candidate hits to fulfill and explains how it is applied as a
filter to select blocks for inspection. It introduces the struc-
ture of QUASAR, shows how the suffix array was combined
with q-gram matching, and describes the implementation.
The Results Section contains the experimental analysis of
the internal memory and the secondary memory version of
our algorithm. It will elaborate on running time, sensitivity,
and also give details on the efficiency of the match criterion
we use as a filter.

2 The Algorithm

We have developed and implemented an approximate
matching algorithm for determining all sequences in a
database D that have a local similarity to a query sequence
S. We say that a sequence d E D is locally similar to S, if
there exists at least one pair (S[i : i+w- 11, d’) of substrings
with the following properties:

l S[i : i + w - l] is a substring of S of length w and d’
is a substring of d.

l The substrings d’ and S[i : i + ‘w - l] have edit distance
at most k, i.e., d’ can be transformed into S[i : i+w-1]
by at most k insert, delete and replace operations.

We call this the approximate matching problem with k differ-
ences and window length w. For simplicity, we assume that
D is one single string of length IDI. A pair of substrings
with the above properties is called an approximate match.
Starting with S[l : w] we perform the approximate matching
calculations for all possible substrings of S of length w.

For simplicity we now consider the first substring S[l : w]
of length w and describe how to determine all approximate
matches of S[l : w] with substrings of D. Our general idea
is the following: We modify an idea introduced by [OM88]
and [JU91] to solve approximate matching by reducing it
to exact matching of short substrings of length q (called q-
grams). It relies on the following lemma:

Lemma 1 [JU91] Let an occurrence of S[l : w] with at
most k differences end at position j in D. Then at least
w + 1 - (k + 1)q of the q-grams in S[l : w] occur in the
substring D[j - w + 1 : j].

This lemma gives a necessary condition for a subsequence
of D to be a candidate for an approximate match with S[l :
w]: At least t = w + 1 - (k + 1)q of the q-grams contained in
S[l : w] occur in a substring of D with length w. Substrings
of D with this property are potential approximate matches
and will later be checked with an alignment algorithm.

2.1 Suffx Array as Index Data Structure

In order to find the potential approximate matches of S[l :
.w] in D, for each q-gram Q in S[l : w] we have to efficiently
retrieve its list of occurrences in D (we call this a hitlist).
By using an index data structure for all q-grams in D we
hope to direct the search for Q towards small portions of D
and thus to avoid scanning the whole database. Since q is
a parameter in our approach, we decided to use a full-text
indexing data structure so that it is not necessary to rebuild
the index if we change q. We use the suffix array as intro-
duced by Manber and Myers [MM93]. The suffix array A

78

1 b +l)b/2 + 1 (i+l)b/2

IBi lB3 1 1:: 1 Bi-2 1 Bi 1 Bi+2] 1 , B2 , Bi-, Bi+, 1:: Bc-2] B,-, Bc-3, ,

b/2

Figure 1: Partition of the database D into overlapping blocks of size b.

built on database D is an array of length IDI storing the lex-
icographically ordered sequence of all suffixes of D. Entry
Ab] contains the text position where the j-th smallest suffix
of D starts. Therefore A requires storing exactly one pointer
per text position (usually 4 bytes). The s&ix array for D
is constructed in a preprocessing step. As we are only in-
terested in the occurrences of q-grams, it is not necessary to
use the search procedure introduced by Manber and Myers.
Instead, we precompute the positions of the hitlists in the
suffix array A for all possible q-grams and store them in an
auxiliary search array of size]C(*, where C is the alphabet.
For a given query q-gram, this allows us to find the start
position of its hitlist in constant time. If we want to change
q, we only have to precompute the start positions again via
a sequential scan of A.

2.2 Block Addressing

In order to find all approximate matches between S[l : w]
and D, we have to identify all the substrings in D that share
at least t q-grams with S[l : w]. A simple approach would
be to assign a counter to each substring of length w in D
(IDI - w + 1 counters) and to increment all the counters of
blocks containing q-grams from S[l : w]. After processing
the hitlists of the query q-grams all substrings with counter
values greater than or equal to t are potential approximate
matches. A main drawback of this solution is the space
required to store the counters. Therefore we combine sev-
eral substrings of length w into a block and assign only one
counter to this block [JU91, WM92]. This strategy has two
effects: it reduces the amount of counters required, but it
can also lead to more false positives. It therefore introduces
a tradeoff between space requirements and the number of
falsely identified candidates.

In detail our block addressing scheme works as follows:
The database D is conceptually divided into blocks of fixed
size b (b > 2~). We assign a counter to each block. This
counter w?l be incremented whenever a search for a q-gram
Q reports an occurrence inside the block. After processing
all q-grams in S[l : w], the counter of a certain block indi-
cates how many q-grams from S[l : w] are contained in this
segment of the database. These counter values are stored in
an array of size ID//b. Using this array we can find all inter-
esting portions of the database, i.e., all blocks that contain t
or more occurrences of q-grams from S[l : w] (see Lemma 1).
These blocks have to be checked for approximate matches
using an alignment algorithm.

If we look in more detail at the simple block addressing
scheme, we see that we will miss candidates for approximate
matches that cross block boundaries. In a worst case sce-
nario, the occurrences of q-grams from S[l : w] are spread
among two adjacent blocks and none of these block coun-

ters reaches the threshold t. In order to avoid this problem,
we use a second block decomposition of the database, i.e.,
a second block array. The second block decomposition is
shifted by half the length of a block (b/2) (see Figure 1). It
is obvious that, if a situation as described above occurs for
blocks Br and B3 in Figure 1, then block Bz contains the
potential candidate.

At the end of the search procedure for the q-grams of
S[l : w] the blocks containing approximate matches to S[l :
w] have a counter value of at least t.

2.3 Window Shifting and Alignment

So far we have discussed our approach to find all approxi-
mate matches for the window S[l : w]. In order to determine
the approximate matches for the next window S[2 : w + 11,
we only have to consider the “old” q-gram S[l : q] and the
“new” q-gram S[w - q + 2 : w + 11. We have to reconsider
the hitlist of the q-gram S[l : q]. We decrement the counter
values of all blocks that contain copies of this q-gram and
that have not reached the threshold t. If a counter for a
block has already reached t, we leave it unmodified. In this
way we mark all candidate blocks already found. Then we
use the suffix array to search for all occurrences of the “new”
q-gram S[w - q + 2 : w + 1) and increment the corresponding
block counters. We shift the window of length w over the
string S until we reach its end.

After computing the list of blocks containing potential
hits, BLAST [AGM+SO] is used to scan all these blocks.
The version we integrated into our code is a modification of
NCBI BLAST 2.0.3. A database in BLAST format is built
in main memory which is then passed to the BLAST search
engine. The construction of this database requires a signifi-
cant amount of time and introduces unnecessary overhead.

2.4 Secondary Memory Version

The size of larger databases may prohibit storing the suffix
array in internal memory. Therefore we developed a sec-
ondary memory version of QUASAR where the suffix array
is stored in secondary memory (hard disk). As hard disks are
mechanical devices, the time to access data is dominated by
moving the disk head to the location where the data resides.
This seek time is not a linear function of distance, i.e., seeks
over short distances are much faster than seeks over long
distances [RW94]. Additionally, modern disk drives are op-
timized to be fast on sequential operations. This is achieved
by read-ahead strategies and command-buffering. There-
fore it is necessary to avoid random disk accesses whenever
possible. The approach described above would introduce
random disk accesses to read the hitlists of the q-grams out
of the suffix array. Our simple solution to circumvent this

79

problem is as follows. We group together several query se-
quences. Then we generate a list of all q-grams contained
in these sequences and sort them with respect to the start
positions of their hitlists in the suffix array. This allows us
to access the suffix array sequentially, reducing the number
of random disk accesses and taking advantage of read-ahead
strategies.

2.5 Complexity

The preprocessing-step (the construction of the suffix array
and the precomputation of the search array) can be done
in O((D(log ID]) time [MM93]. Searching for a specific q-
gram requires constant time but the number of reported
occurrences can be linear in ID]. As there are O(]S]) q-
grams, our approach takes O(]S] . ID]) time. If at the end
c blocks reach the threshold t, the alignment with BLAST
takes further O(c . b . IS’]) time. The space complexity of
our algorithm is dominated by the space used for the suffix
array. At construction time we need 9(D] space. At run
time our internal algorithm only consumes 5101 space.

3 Results

We evaluated the performance and sensitivity of QUASAR
and compared it to NCBI BLAST 2.0.3. In the following,
we describe the setup of our experiments, compare the lists
of similar sequences found by BLAST and QUASAR, and
analyze the running times and the efficiency of our filter.
As QUASAR was designed for processing multiple queries,
we used test sets of 1000 queries (ESTs from the databases
themselves). When evaluating BLAST we also used 1000
queries at a time. This allows BLAST to keep the database
in main memory, so it only has to load it once at the start
of the test run. The time for loading was included in our
calculation for the average time per search because we could
not measure it separately, but we estimate its impact on the
measurement to be far below 1 percent. For QUASAR we
did not include the load time which was 30 seconds for the
mouse EST data base and 114 seconds for the human EST
data base.

3.1 Experiments

Three data sets were used for the tests. Firstly, the set of
mouse EST sequences having no homology to known mouse
mRNAs was used (198323 sequences, 75.2 Million base pairs
(Mbps)). Since we are also engaged in clustering mouse
ESTs, we produced a version of this database which was
modified for clustering purposes (195671 sequences, 73.5
Mbps). In this set we removed the sequences containing
typical mouse repeat sequences and preprocessed the data
to limit the amount of “contextual” repeats. We removed se-
quence tails containing poly-X (X= {A, C, G, T, N}) which
are frequently introduced by sequencing inaccuracies and
are usually “clipped” by the sequencing centers. In fact,
some sequences contained large poly-X strands of up to 300
bp. We also clipped the poly-A and poly-T signals at the
beginning or end of the sequences. The largest data set
we used for testing is the set of human ESTs as contained
in the NCBI Human Unigene database (723675 sequences,
279.5 Mbps). This data set was preprocessed analogously to
the mouse EST data, of course without removing common
mouse repeat sequences.

BLAST was executed with the E-value threshold set to
E = 10e5, all other parameters were left at their default

values. We ran QUASAR with a window length of zu = 50
bps, q-grams of length 11 and a threshold t which guarantees
to find windows with at most 6% difference (i.e., an edit
distance of 3). All tests were conducted on one processor
(SUN Ultra SparcII, 333 Mhz) of a dedicated Sun Enterprise
10000 with 4 GB of main memory and a local disk array.

3.2 Sensitivity

For the comparison between BLAST and QUASAR in terms
of sensitivity, one would ideally compare E-values. How-
ever, as pointed out in the Algorithms Section, we postpro-
cess the matches between the query and selected blocks us-
ing BLAST. We call this version QUASAR-BLAST to keep
things apart. QUASAR-BLAST scans only a filtered subset
of the entire database. Consequently for a pair of sequences,
QUASAR-BLAST and BLAST E-values are not comparable
because they refer to databases of different sizes.

Nevertheless, if a sequence is recorded as a hit by BLAST
and QUASAR-BLAST it will yield the same alignment and
the same score in both cases. This allows us to compare
the lists of matches produced by QUASAR-BLAST and
BLAST. Two outcomes are possible. If both lists contain
the same hit-sequences, they will be in the same order with
the exception of sequences with equal E-values. We report
this as identical results. If the two lists differ, we report the
BLAST E-value of the best match that QUASAR missed.

In the column Identical results in Table 1, one can see
that in most cases (91.4% and 97.1%), QUASAR finds ex-
actly the same hits as BLAST (with E = 10e5). When the
results differ (column False negative), the average E-values
of the first missed match are lo-l2 and lo-l4 respectively.
Note that we averaged the logarithms of the E-values, not
the E-values themselves. The overall minimum E-values for
false negatives are 1O-34 and 10e31. Given that we are guar-
anteed to have passed every block containing at least one
window of more than 94% identity to QUASAR-BLAST
and that a real match of ESTs typically has near-zero E-
value, this assures us that we did not miss any sequences
we intended to find. The cutoff of 10V5 for the BLAST
E-value is not a value one would use to search for very con-
servative matches. Thus the large number of cases where
QUASAR achieves the same sensitivity as BLAST shows
that QUASAR is also able to find evolutionary divergent
homologues of a given query.

The level of sequence identity in some window to which
QUASAR is guaranteed to find a match was set to 6%. This
level is for the “worst case”, i.e., a match where differences
are regularly spaced along the matching sequence. In prac-
tice we achieve better results: for mouse ESTs the maxi-
mum percentage of differences reported by QUASAR aver-
aged over all 1000 queries is 12%. The overall maximum
is 21%, with these numbers being computed on all matches
having more than 6% differences. We are aware of the fact
that theoretical and empirical analyses are necessary to aid
the user in setting the parameters to achieve the level of
sensitivity he wants. For mouse ESTs, we also evaluated
the sensitivity for block sizes between 512 and 4096. The
comparison with BLAST as described above yielded exactly
the same results.

3.3 Performance

The last three columns of Table 1 summarize the aver-
age running times in seconds for QUASAR, QUASAR run-
ning with external memory (QUASAR-E) and BLAST. In
the mouse and human EST databases, QUASAR searches

80

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

I

Filtration Ratio +
Total time -t-

Alignment Time -o--
Filter Time -x--

512 1024 2048
Block size (bp)

4096 8192

Figure 2: Running times and filtration ratio for various block sizes.

DB Size Queries Identical False Neg Filtration CPU times in seconds
Mbps Size(bps) Results E-value Ratio QUASAR QUASAR-E BLAST

Mouse 73.5 368 91.4 % lo-IL 0.24% 0.123 0.128 3.37
Human 279.5 393 97.1 % lo-r4 0.17% 0.38 0.39 13.27

Table 1: Sensitivity and running times of searches in mouse and human EST databases with block size of 1024bps. From
left to right: database and its size, average query size, percentage of searches giving identical results, for searches yielding
different results the minimum and average E-values of the first missed sequence, the filtration ratio and the CPU times of
QUASAR, QUASAR-E and BLAST.

through 73.5 Mpbs and 279.5 Mbps in 0.12 respectively
0.38 seconds. QUASAR-E with the suffix array on the disk
achieves nearly the same performance with 0.13 and 0.39 sec-
onds. Both QUASAR and QUASAR-E are approximately
30 times faster than BLAST. This improvement is especially
significant because there has already been a lot of work and
fine-tuning on BLAST.

The performance of a q-gram based approach like ours
might be influenced by repeats or low-complexity regions.
The running times on the original mouse EST database that
still contains repeats, poly-A, etc. show that this effect is
moderate. A search on this database required on average
0.25 seconds which is still considerably faster than BLAST.
Furthermore, the external memory version QUASAR-E is
nearly as fast as QUASAR. This is due to the sorting of the
q-grams before accessing their hitlists on the disk and to
much smaller data structures in main memory. In practice
this results in a substantial increase in speed over BLAST
and allows us to work on larger problems. For instance, we
were able to run an all-versus-all comparison of the modified
mouse ESTs (195671 queries) on an Ultra Spare 2 with 1 GB
of main memory in less than 11 hours. We estimated the
time required to conduct these searches with BLAST to be
larger than 10 days on the same machine.

3.4 Dependency of the filtration ratio on the block size

To evaluate the quality of our filtration, we measure what
we call filtration ratio. It is defined as the percentage of the
database which is selected by the filtration and passed to the
alignment step. We compute the filtration ratio as follows:

filtered sequences
sequences in database

Since the length of ESTs does not vary much, this is approx-
imately the same as counting numbers of base pairs instead
of numbers of sequences. For block sizes between 512 and
8192, Figure 2 shows the total running time of QUASAR,
the time spent on the filtration and the time spent in the
alignment phase. In the same graph, we show the filtration
ratio in percent.

The filtration ratio increases with the block size: for
larger block sizes the portion of the database passed to the
alignment step grows. Since for each interesting block all
sequences covering that block are searched in the alignment
phase, the total amount of sequences processed in this phase
grows roughly linearly with the block size. In contrast to
this, the time required to filter the database is reduced due
to the smaller number of counters that have to be incre-
mented in this phase and to the reduced size of the block
counter array. It seems surprising that the time required
for the alignment phase does not grow proportionally to the
filtration ratio. This is caused by the overhead of calling the
alignment algorithm and the fixed number of matches that
are found in the alignment phase which are independent of
the chosen block size.

It should be pointed out that the filtration step is ex-
tremely fast and accounts for less than one third of the total
running time (for a block size of 2048bps). Thus, the speed
of QUASAR would benefit most from improvements in the
alignment phase. We therefore plan to improve the inter-
face between the filtration and alignment step. The curve
also shows that the optimal block size lies between 1024 and
4096 bps.

4 Discussion

The work presented here arose from a collaboration concern-
ing the clustering, assembly, and analysis of EST sequences.
Our focus on near-perfect matching of many queries stems
from the interest in this problem. Correspondingly, it is not
our intention to produce a substitute for BLAST or other
current database searching methods. Our approach is in-
tended as a complement to existing methods for applications
where high similarity is expected and where many searches
are performed together.

Our results show that our new approach is more than a
magnitude faster than BLAST in identifying strongly simi-
lar sequences. In the case of an all-against-all comparison,
where the running time is proportional to the squared num-
ber of sequences in the database, such an improvement leads
to a substantial increase in overall performance. Similarly,
one can envisage that a heavily used Web service might take
advantage of the speed offered by our approach by collect-
ing queries for a few seconds and then processing them as a
group.

The good running times of QUASAR are due to the
use of the precomputed suffix array. However, the algo-
rithm to compute the suffix array, although of complexity
O(n log(n)), requires large amounts of internal memory and
takes rather long in absolute time. Furthermore, for large
data sets internal memory is likely to be insufficient for the
construction and secondary memory versions are required to
keep its running time within reasonable limits. This is an
area of future research.

In further ongoing work we are studying in more depth
the dependence of the running times of QUASAR on the size
of the hit lists and the size of the database. We are work-
ing on the parallelization of our algorithm and investigating
possibilities to improve the sensitivity. We are currently
applying QUASAR to run all-against-all comparisons of hu-
man ESTs, mouse ESTs, and Arabidopsis ESTs. Based on
this output, mouse ESTs have already been clustered, as-
sembled, and representative clones have been selected for
design of expression arrays.

5 Acknowledgements

This work was partially supported by the EU ESPRIT
LTR Project N. 20244 (ALCOM-IT), WP 3.2. Stefan
Burkhardt gratefully acknowledges financial support from a
Graduiertenkolleg graduate fellowship of the Deutsche For-
schungsgemeinschaft (DFG). Martin Vingron and Eric Ri-
vals gratefully acknowledge financial support from BMBF
within the German Human Genome Project.

6 Contacting the Authors

The authors can be contacted by sending email to
stburk@mpi-sb.mpg.de.

References

[AGM+SO] S.F. Altschul, W. Gish, W. Miller, E.W. Myers,
and D.J. Lipman. Basic local alignment search
tool. Journal of Molecular Biology, 215:403-410,
1990.

[AMS+97] SF. Altschul, T.L. Madden, A.A. Schaffer, J.
Zhang, Z. Zhang, W. Miller, and D.J. Lipman.
Gapped Blast and Psi-Blast: a new generation

82

[CL941

[CR931

[DooSO]

[HBD94]

[JU91]

[Knu73]

[KV98]

[Mar831

[M&76]

[Heu97]

[MH95]

[MM931

Wye921

WyW

[OM88]

of protein database search programs. Nucleic
Acids Res., 25:3389-3402, 1997.

W. I. Chang and E. L. Lawler. Sublinear ap-
proximate string matching and biological appli-
cations. Algorithmica, 12(4/5):327-344, 1994.

A. Califano and I. Rigoutsos. FLASH: A fast
look-up algorithm for string homology. In L.
Hunter, D. Sea&, and J. Shavlik, editors, Proc.
of the 1st International Conf. on Intelligent Sys-
tems for Molecular Biology, pages 56-64, 1993.

R. F. Doolittle. What we have learned and
will learn from sequence databases, pages 21-31.
Addison-Wesley, 1990.

W. Hide, J. Burke, and D. B. Davison. Bio-
logical evaluation of d2, an algorithm for high-
performance sequence comparison. J. Comp.
Biol., 1:199-215, 1994.

P. Jokinen and E. Ukkonen. Two algorithms for
approximate string matching in static texts. In
PTOC. of the 16th Symposium on Mathematical
Foundations of Computer Science, volume 520 of
Lecture Notes in Computer Science, pages 240-
248, 1991.

D. E. Knuth. The Art of Computer PTO-
gramming (Volume III): Sorting and Searching.
Addison-Wesley, Reading, MA, 1973.

A. Krause and M. Vingron. A set-theoretic
approach to database searching and clustering.
Bioinformatics, 14:430-438, 1998.

H. M. Martinez. An efficient method for finding
repeats in molecular sequences. Nucleic Acids
Research, 11(13):4629-4634, 1983.

E. McCreight. A space-economical suffix tree
construction algorithm. Journal of the ACM,
23(2):262-272, 1976.

K. Heumann. Biologische Sequenzdatenanalyse
groper Datensiitze basierend auf Positionsbaum-
varianten. PhD thesis, 1997.

H. W. Mewes and K. Heumann. Genome analy-
sis: Pattern search in biological macromolecules.
In Combinatorial Pattern Matching, Lecture
Notes in Computer Science, vol. 937, Springer-
Verlag, pages 261-285, 1995.

U. Manber and E. W. Myers. Sufhx Arrays: A
new method for on-line string searches. SIAM
Journal on Computing, 22(5): 935-948, 1993.

E. W. Myers. Algorithmic advances for search-
ing biosequence databases. In Sandor Suhai,
editor, Computational Methods in Genome Re-
search, pages 121-135. Plenum Press, New York,
1992.

E. W. Myers. A sublinear algorithm for ap-
proximate keyword searching. Algorithmica,
12(4/5):345-374, 1994.

0. Owolabi and D. R. McGregor. Fast approx-
imate string matching. Software Practice and
Experience, 18(4):387-393, 1988.

[PL88]

[PW93]

[RW94]

[SW811

[Ukk92]

[VAS+98]

[Wa195]

[WM92]

W. R. Pearson and D. J. Lipman. Improved
tools for biological sequence comparison. PNAS,
85~2444-2448, 1988.

P. A. Pevzner and M. S. Waterman. Multiple fil-
tration and approximate pattern matching. Al-
gorithmica, 13:135-154, 1995.

C. Ruemmler and J. Wilkes. An introduction
to disk drive modeling. IEEE Computer, pages
17-28, 1994.

T. F. Smith and M. S. Waterman. Identification
of common molecular subsequences. Journal of
Molecular Biology, 147:195-197, 1981.

E. Ukkonen. Approximate string-matching with
q-grams and maximal matches. Theoretical
Computer Science, 92(1):191-211, 1992.

J. C. Venter, M. D. Adams, G. G. Sutton, A. R.
Kerlavage, H. 0. Smith, and M. Hunkapillar.
Shotgun sequencing of the human genome. Sci-
ence, 280:1540-1542, 1998.

M. M. Waldrop. On-line archives let biologists
interrogate the genome. Science, 269:1356-1358,
1995.

S. Wu and U. Manber. Fast text searching al-
lowing errors. Communications of the ACM,
35(10):83-91, 1992.

83

