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Abstract 

With the increasing amount of DNA sequence information 
deposited in public databases, searching for similarity to a 
query sequence has become a basic operation in molecu- 
lar biology. But even today’s fast algorithms reach their 
limits when applied to all-versus-all comparisons of large 
databases. Here we present a new database searching al- 
gorithm called QUASAR (Q-gram Alignment based on Suf- 
fix ARrays) which was designed to quickly detect sequences 
with strong similarity to the query in a context where many 
searches are conducted on one database. Our algorithm ap- 
plies a modification of q-tuple filtering implemented on top 
of a suffix array. Two versions were developed, one for a 
RAM resident suffix array and one for access to the suffix ar- 
ray on disk. We compared our implementation with BLAST 
and found that our approach is an order of magnitude faster. 
It is, however, restricted to the search for strongly similar 
DNA sequences as is typically required, e.g., in the context 
of clustering expressed sequence tags (ESTs). 

1 Introduction 

Numerous and large databases holding DNA and protein 
sequences are now readily available over the WEB and 
are quickly becoming the “lifeblood of molecular biology” 
[Wa195]. This is due to the combination of the power of 
biomolecular sequence comparison with the ease-of-use of 
tools for searching such databases for sequences exhibiting 
similarity to a given query sequence. These searches are 
nowadays routine and vital for molecular biology because 
they serve to “generate new knowledge” [DooSO]. Whenever 
a new gene is cloned and sequenced, visiting the appropriate 
databases is the next step. Different, but equally interesting, 
applications of these databases are the clustering of similar 
sequences into sequence families [KV98], and the assembly 
of sequence fragments in genome sequencing [VAS+98]. 
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Fast programs like the BLAST and FASTA pack- 
ages [AMS+97, PL88] or iterated Smith-Waterman [SW811 
sequence alignments are used for this purpose. Especially 
BLAST is impressively fast. This program performs a linear 
scan of the whole collection of sequences searching for a set of 
words belonging to the neighborhood of some substrings of 
the query string. The result is a list of candidate hits in the 
database. Although this algorithm performs single database 
searches at an amazing speed, today’s applications tend to 
introduce more stringent performance requirements where 
these algorithms reach their limits. Be it in the comparison 
of an EST database to itself for the purpose of clustering or 
in the context of shotgun sequencing, all-against-all compar- 
isons of large amounts of data need to be computed. The 
problem is further augmented by the current exponential 
growth in primary sequence data. Thus, database searching 
tools that read through the entire database may in the near 
future become too slow to cope with the avalanche of data 
(see also [Mye92]). 

In the field of ezact string matching, techniques have 
been developed that preprocess a text in such a way that, 
upon searching a pattern, only small parts of that text ac- 
tually need to be explicitly accessed. Since in the applica- 
tions described above, one imposes a very stringent match 
criterion, the hope is to draw on these techniques in or- 
der to further improve the efficiency of database search- 
ing algorithms. Candidates are sophisticated indexing data 
structures like suffix trees [McC76], suffix arrays [MM93], 
or Patricia trees [Knu73], that allow to perform queries in 
time proportional to the length of the query string while 
being as independent as possible of the size of the searched 
text [McC76]. 

Only few attempts have been made to adapt these tech- 
niques to the similarity searches needed for biological pur- 
poses. Martinez [Mar83], for example, gave the first ap- 
plication of a position tree in molecular biology. This 
data structure requires about 16 times the space needed 
to store the original data which clearly may create seri- 
ous problems when applied to large data collections (see 
also [Heu97, MH95]). The first sublinear expected time al- 
gorithms were proposed by Chang and Lawler [CL941 and 
Ukkonen [Ukk92]. They use a suffix tree of the query se- 
quence but still scan the database. 

Myers [Mye94] suggested a sublinear (in the database 
size) search algorithm that is centered around an index built 
on the database sequences. The query sequence is split into 
small substrings and words from a neighborhood of these 
are located in the index. The IBM product FLASH [CR931 
takes advantage of a large “probabilistic” index where not 
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all q-tuples are considered, but only some of them are ran- 
domly chosen. They report a 18 GB index for a 100 million 
residue database which makes such an approach impractical 
for large databases. 

In this paper we restrict ourselves to the search for se- 
quences that are strongly similar to a given query sequence. 
A typical scenario is searching an EST database for se- 
quences that are derived from the same gene as the query 
sequence. The degree of similarity expected here is high 
because in essence, one only needs to deal with sequencing 
errors. Furthermore, we have in mind an application where 
many searches are run together like, e.g., in an all-versus-all 
comparison of a set of sequences. Thus, we aim at a search 
algorithm that is very fast on each single search at the ex- 
pense of (possibly) diminished sensitivity. Given the low 
performance of current disks compared to internal memory 
(regarding access time and transfer rate), QUASAR is based 
on an index data structure to avoid the linear scan of the 
entire database. 

Following a standard approach (see e.g. [JU91, Ukk92, 
HBD94, PW93, PL88]), we reformulate the problem of 
searching for database sequences which are very close to the 
query sequence to the problem of performing a number of 
ezact searches for short subsequences of length q (called q- 
grams). Our approach is based on the following observation: 
if two sequences have an edit distance below a certain bound, 
one can guarantee that they share a certain number of q- 
grams [JUSl, Ukk92]. This observation allows us to design 
a filter that selects candidate positions from the database 
where the query sequence possibly occurs with a high level 
of similarity. These positions can later be inspected in more 
depth with a standard alignment algorithm. 

The crucial point in the approach we use for QUASAR 
was therefore the design of the filter which combines some 
already known ideas in a new way. We logically partition 
the database into equal length blocks of size, say, b (cf. 
[WM92]). The search of the query sequence S is then de- 
composed into a certain number of “similarity” searches for 
subsequences of S of fired length. Such a search is imple- 
mented by searching for all the occurrences of its q-grams in 
the database, counting for each block the number of searched 
q-grams occuring in it. At this point, a properly chosen 
bound on the number of shared q-grams allows us to de- 
tect blocks which possibly correspond to database portions 
highly similar to the query sequence S (i.e., candidate hits). 
An array of counters-one per block-is used to speed up 
the counting process and a suffix array [MM931 is applied 
as a space-efficient data structure for quickly retrieving the 
positions where the searched q-grams occur in the database. 
We implemented two versions of our data structure and al- 
gorithm: one assuming that the whole data collection is 
resident in the internal memory of the computer, and the 
other assuming that the index data structure is large and 
thus has to reside on disk. 

The results we achieve with this approach show that our 
match criterion and filtering approach are successful, espe- 
cially because our focus is on near-perfect matching for many 
queries. Our evaluations will focus on such situations show- 
ing that our new algorithm is more than one magnitude 
faster than BLAST while maintaining about the same sen- 
sitivity. In the case of an all-against-all comparison, where 
the running time depends quadratically on the number of se- 
quences compared, such an improvement leads to a substan- 
tial increase in overall performance. Similarly, one can en- 
visage that a heavily used web service might take advantage 
of the speed offered by our approach by collecting queries for 

a few seconds and then searching for them in the database. 
The paper is organized as follows. The Algorithm Sec- 

tion starts by introducing the match criterion we want all 
our candidate hits to fulfill and explains how it is applied as a 
filter to select blocks for inspection. It introduces the struc- 
ture of QUASAR, shows how the suffix array was combined 
with q-gram matching, and describes the implementation. 
The Results Section contains the experimental analysis of 
the internal memory and the secondary memory version of 
our algorithm. It will elaborate on running time, sensitivity, 
and also give details on the efficiency of the match criterion 
we use as a filter. 

2 The Algorithm 

We have developed and implemented an approximate 
matching algorithm for determining all sequences in a 
database D that have a local similarity to a query sequence 
S. We say that a sequence d E D is locally similar to S, if 
there exists at least one pair (S[i : i+w- 11, d’) of substrings 
with the following properties: 

l S[i : i + w - l] is a substring of S of length w and d’ 
is a substring of d. 

l The substrings d’ and S[i : i + ‘w - l] have edit distance 
at most k, i.e., d’ can be transformed into S[i : i+w-1] 
by at most k insert, delete and replace operations. 

We call this the approximate matching problem with k differ- 
ences and window length w. For simplicity, we assume that 
D is one single string of length IDI. A pair of substrings 
with the above properties is called an approximate match. 
Starting with S[l : w] we perform the approximate matching 
calculations for all possible substrings of S of length w. 

For simplicity we now consider the first substring S[l : w] 
of length w and describe how to determine all approximate 
matches of S[l : w] with substrings of D. Our general idea 
is the following: We modify an idea introduced by [OM88] 
and [JU91] to solve approximate matching by reducing it 
to exact matching of short substrings of length q (called q- 
grams). It relies on the following lemma: 

Lemma 1 [JU91] Let an occurrence of S[l : w] with at 
most k differences end at position j in D. Then at least 
w + 1 - (k + 1)q of the q-grams in S[l : w] occur in the 
substring D[j - w + 1 : j]. 

This lemma gives a necessary condition for a subsequence 
of D to be a candidate for an approximate match with S[l : 
w]: At least t = w + 1 - (k + 1)q of the q-grams contained in 
S[l : w] occur in a substring of D with length w. Substrings 
of D with this property are potential approximate matches 
and will later be checked with an alignment algorithm. 

2.1 Suffx Array as Index Data Structure 

In order to find the potential approximate matches of S[l : 
.w] in D, for each q-gram Q in S[l : w] we have to efficiently 
retrieve its list of occurrences in D (we call this a hitlist). 
By using an index data structure for all q-grams in D we 
hope to direct the search for Q towards small portions of D 
and thus to avoid scanning the whole database. Since q is 
a parameter in our approach, we decided to use a full-text 
indexing data structure so that it is not necessary to rebuild 
the index if we change q. We use the suffix array as intro- 
duced by Manber and Myers [MM93]. The suffix array A 
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Figure 1: Partition of the database D into overlapping blocks of size b. 

built on database D is an array of length IDI storing the lex- 
icographically ordered sequence of all suffixes of D. Entry 
Ab] contains the text position where the j-th smallest suffix 
of D starts. Therefore A requires storing exactly one pointer 
per text position (usually 4 bytes). The s&ix array for D 
is constructed in a preprocessing step. As we are only in- 
terested in the occurrences of q-grams, it is not necessary to 
use the search procedure introduced by Manber and Myers. 
Instead, we precompute the positions of the hitlists in the 
suffix array A for all possible q-grams and store them in an 
auxiliary search array of size ]C(*, where C is the alphabet. 
For a given query q-gram, this allows us to find the start 
position of its hitlist in constant time. If we want to change 
q, we only have to precompute the start positions again via 
a sequential scan of A. 

2.2 Block Addressing 

In order to find all approximate matches between S[l : w] 
and D, we have to identify all the substrings in D that share 
at least t q-grams with S[l : w]. A simple approach would 
be to assign a counter to each substring of length w in D 
(IDI - w + 1 counters) and to increment all the counters of 
blocks containing q-grams from S[l : w]. After processing 
the hitlists of the query q-grams all substrings with counter 
values greater than or equal to t are potential approximate 
matches. A main drawback of this solution is the space 
required to store the counters. Therefore we combine sev- 
eral substrings of length w into a block and assign only one 
counter to this block [JU91, WM92]. This strategy has two 
effects: it reduces the amount of counters required, but it 
can also lead to more false positives. It therefore introduces 
a tradeoff between space requirements and the number of 
falsely identified candidates. 

In detail our block addressing scheme works as follows: 
The database D is conceptually divided into blocks of fixed 
size b (b > 2~). We assign a counter to each block. This 
counter w?l be incremented whenever a search for a q-gram 
Q reports an occurrence inside the block. After processing 
all q-grams in S[l : w], the counter of a certain block indi- 
cates how many q-grams from S[l : w] are contained in this 
segment of the database. These counter values are stored in 
an array of size ID//b. Using this array we can find all inter- 
esting portions of the database, i.e., all blocks that contain t 
or more occurrences of q-grams from S[l : w] (see Lemma 1). 
These blocks have to be checked for approximate matches 
using an alignment algorithm. 

If we look in more detail at the simple block addressing 
scheme, we see that we will miss candidates for approximate 
matches that cross block boundaries. In a worst case sce- 
nario, the occurrences of q-grams from S[l : w] are spread 
among two adjacent blocks and none of these block coun- 

ters reaches the threshold t. In order to avoid this problem, 
we use a second block decomposition of the database, i.e., 
a second block array. The second block decomposition is 
shifted by half the length of a block (b/2) (see Figure 1). It 
is obvious that, if a situation as described above occurs for 
blocks Br and B3 in Figure 1, then block Bz contains the 
potential candidate. 

At the end of the search procedure for the q-grams of 
S[l : w] the blocks containing approximate matches to S[l : 
w] have a counter value of at least t. 

2.3 Window Shifting and Alignment 

So far we have discussed our approach to find all approxi- 
mate matches for the window S[l : w]. In order to determine 
the approximate matches for the next window S[2 : w + 11, 
we only have to consider the “old” q-gram S[l : q] and the 
“new” q-gram S[w - q + 2 : w + 11. We have to reconsider 
the hitlist of the q-gram S[l : q]. We decrement the counter 
values of all blocks that contain copies of this q-gram and 
that have not reached the threshold t. If a counter for a 
block has already reached t, we leave it unmodified. In this 
way we mark all candidate blocks already found. Then we 
use the suffix array to search for all occurrences of the “new” 
q-gram S[w - q + 2 : w + 1) and increment the corresponding 
block counters. We shift the window of length w over the 
string S until we reach its end. 

After computing the list of blocks containing potential 
hits, BLAST [AGM+SO] is used to scan all these blocks. 
The version we integrated into our code is a modification of 
NCBI BLAST 2.0.3. A database in BLAST format is built 
in main memory which is then passed to the BLAST search 
engine. The construction of this database requires a signifi- 
cant amount of time and introduces unnecessary overhead. 

2.4 Secondary Memory Version 

The size of larger databases may prohibit storing the suffix 
array in internal memory. Therefore we developed a sec- 
ondary memory version of QUASAR where the suffix array 
is stored in secondary memory (hard disk). As hard disks are 
mechanical devices, the time to access data is dominated by 
moving the disk head to the location where the data resides. 
This seek time is not a linear function of distance, i.e., seeks 
over short distances are much faster than seeks over long 
distances [RW94]. Additionally, modern disk drives are op- 
timized to be fast on sequential operations. This is achieved 
by read-ahead strategies and command-buffering. There- 
fore it is necessary to avoid random disk accesses whenever 
possible. The approach described above would introduce 
random disk accesses to read the hitlists of the q-grams out 
of the suffix array. Our simple solution to circumvent this 
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problem is as follows. We group together several query se- 
quences. Then we generate a list of all q-grams contained 
in these sequences and sort them with respect to the start 
positions of their hitlists in the suffix array. This allows us 
to access the suffix array sequentially, reducing the number 
of random disk accesses and taking advantage of read-ahead 
strategies. 

2.5 Complexity 

The preprocessing-step (the construction of the suffix array 
and the precomputation of the search array) can be done 
in O((D( log ID]) time [MM93]. Searching for a specific q- 
gram requires constant time but the number of reported 
occurrences can be linear in ID]. As there are O(]S]) q- 
grams, our approach takes O(]S] . ID]) time. If at the end 
c blocks reach the threshold t, the alignment with BLAST 
takes further O(c . b . IS’]) time. The space complexity of 
our algorithm is dominated by the space used for the suffix 
array. At construction time we need 9(D] space. At run 
time our internal algorithm only consumes 5101 space. 

3 Results 

We evaluated the performance and sensitivity of QUASAR 
and compared it to NCBI BLAST 2.0.3. In the following, 
we describe the setup of our experiments, compare the lists 
of similar sequences found by BLAST and QUASAR, and 
analyze the running times and the efficiency of our filter. 
As QUASAR was designed for processing multiple queries, 
we used test sets of 1000 queries (ESTs from the databases 
themselves). When evaluating BLAST we also used 1000 
queries at a time. This allows BLAST to keep the database 
in main memory, so it only has to load it once at the start 
of the test run. The time for loading was included in our 
calculation for the average time per search because we could 
not measure it separately, but we estimate its impact on the 
measurement to be far below 1 percent. For QUASAR we 
did not include the load time which was 30 seconds for the 
mouse EST data base and 114 seconds for the human EST 
data base. 

3.1 Experiments 

Three data sets were used for the tests. Firstly, the set of 
mouse EST sequences having no homology to known mouse 
mRNAs was used (198323 sequences, 75.2 Million base pairs 
(Mbps)). Since we are also engaged in clustering mouse 
ESTs, we produced a version of this database which was 
modified for clustering purposes (195671 sequences, 73.5 
Mbps). In this set we removed the sequences containing 
typical mouse repeat sequences and preprocessed the data 
to limit the amount of “contextual” repeats. We removed se- 
quence tails containing poly-X (X= {A, C, G, T, N}) which 
are frequently introduced by sequencing inaccuracies and 
are usually “clipped” by the sequencing centers. In fact, 
some sequences contained large poly-X strands of up to 300 
bp. We also clipped the poly-A and poly-T signals at the 
beginning or end of the sequences. The largest data set 
we used for testing is the set of human ESTs as contained 
in the NCBI Human Unigene database (723675 sequences, 
279.5 Mbps). This data set was preprocessed analogously to 
the mouse EST data, of course without removing common 
mouse repeat sequences. 

BLAST was executed with the E-value threshold set to 
E = 10e5, all other parameters were left at their default 

values. We ran QUASAR with a window length of zu = 50 
bps, q-grams of length 11 and a threshold t which guarantees 
to find windows with at most 6% difference (i.e., an edit 
distance of 3). All tests were conducted on one processor 
(SUN Ultra SparcII, 333 Mhz) of a dedicated Sun Enterprise 
10000 with 4 GB of main memory and a local disk array. 

3.2 Sensitivity 

For the comparison between BLAST and QUASAR in terms 
of sensitivity, one would ideally compare E-values. How- 
ever, as pointed out in the Algorithms Section, we postpro- 
cess the matches between the query and selected blocks us- 
ing BLAST. We call this version QUASAR-BLAST to keep 
things apart. QUASAR-BLAST scans only a filtered subset 
of the entire database. Consequently for a pair of sequences, 
QUASAR-BLAST and BLAST E-values are not comparable 
because they refer to databases of different sizes. 

Nevertheless, if a sequence is recorded as a hit by BLAST 
and QUASAR-BLAST it will yield the same alignment and 
the same score in both cases. This allows us to compare 
the lists of matches produced by QUASAR-BLAST and 
BLAST. Two outcomes are possible. If both lists contain 
the same hit-sequences, they will be in the same order with 
the exception of sequences with equal E-values. We report 
this as identical results. If the two lists differ, we report the 
BLAST E-value of the best match that QUASAR missed. 

In the column Identical results in Table 1, one can see 
that in most cases (91.4% and 97.1%), QUASAR finds ex- 
actly the same hits as BLAST (with E = 10e5). When the 
results differ (column False negative), the average E-values 
of the first missed match are lo-l2 and lo-l4 respectively. 
Note that we averaged the logarithms of the E-values, not 
the E-values themselves. The overall minimum E-values for 
false negatives are 1O-34 and 10e31. Given that we are guar- 
anteed to have passed every block containing at least one 
window of more than 94% identity to QUASAR-BLAST 
and that a real match of ESTs typically has near-zero E- 
value, this assures us that we did not miss any sequences 
we intended to find. The cutoff of 10V5 for the BLAST 
E-value is not a value one would use to search for very con- 
servative matches. Thus the large number of cases where 
QUASAR achieves the same sensitivity as BLAST shows 
that QUASAR is also able to find evolutionary divergent 
homologues of a given query. 

The level of sequence identity in some window to which 
QUASAR is guaranteed to find a match was set to 6%. This 
level is for the “worst case”, i.e., a match where differences 
are regularly spaced along the matching sequence. In prac- 
tice we achieve better results: for mouse ESTs the maxi- 
mum percentage of differences reported by QUASAR aver- 
aged over all 1000 queries is 12%. The overall maximum 
is 21%, with these numbers being computed on all matches 
having more than 6% differences. We are aware of the fact 
that theoretical and empirical analyses are necessary to aid 
the user in setting the parameters to achieve the level of 
sensitivity he wants. For mouse ESTs, we also evaluated 
the sensitivity for block sizes between 512 and 4096. The 
comparison with BLAST as described above yielded exactly 
the same results. 

3.3 Performance 

The last three columns of Table 1 summarize the aver- 
age running times in seconds for QUASAR, QUASAR run- 
ning with external memory (QUASAR-E) and BLAST. In 
the mouse and human EST databases, QUASAR searches 

80 



0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

I 

Filtration Ratio + 
Total time -t- 

Alignment Time -o-- 
Filter Time -x-- 

512 1024 2048 
Block size (bp) 

4096 8192 

Figure 2: Running times and filtration ratio for various block sizes. 

DB Size Queries Identical False Neg Filtration CPU times in seconds 
Mbps Size(bps) Results E-value Ratio QUASAR QUASAR-E BLAST 

Mouse 73.5 368 91.4 % lo-IL 0.24% 0.123 0.128 3.37 
Human 279.5 393 97.1 % lo-r4 0.17% 0.38 0.39 13.27 

Table 1: Sensitivity and running times of searches in mouse and human EST databases with block size of 1024bps. From 
left to right: database and its size, average query size, percentage of searches giving identical results, for searches yielding 
different results the minimum and average E-values of the first missed sequence, the filtration ratio and the CPU times of 
QUASAR, QUASAR-E and BLAST. 



through 73.5 Mpbs and 279.5 Mbps in 0.12 respectively 
0.38 seconds. QUASAR-E with the suffix array on the disk 
achieves nearly the same performance with 0.13 and 0.39 sec- 
onds. Both QUASAR and QUASAR-E are approximately 
30 times faster than BLAST. This improvement is especially 
significant because there has already been a lot of work and 
fine-tuning on BLAST. 

The performance of a q-gram based approach like ours 
might be influenced by repeats or low-complexity regions. 
The running times on the original mouse EST database that 
still contains repeats, poly-A, etc. show that this effect is 
moderate. A search on this database required on average 
0.25 seconds which is still considerably faster than BLAST. 
Furthermore, the external memory version QUASAR-E is 
nearly as fast as QUASAR. This is due to the sorting of the 
q-grams before accessing their hitlists on the disk and to 
much smaller data structures in main memory. In practice 
this results in a substantial increase in speed over BLAST 
and allows us to work on larger problems. For instance, we 
were able to run an all-versus-all comparison of the modified 
mouse ESTs (195671 queries) on an Ultra Spare 2 with 1 GB 
of main memory in less than 11 hours. We estimated the 
time required to conduct these searches with BLAST to be 
larger than 10 days on the same machine. 

3.4 Dependency of the filtration ratio on the block size 

To evaluate the quality of our filtration, we measure what 
we call filtration ratio. It is defined as the percentage of the 
database which is selected by the filtration and passed to the 
alignment step. We compute the filtration ratio as follows: 

# filtered sequences 
# sequences in database 

Since the length of ESTs does not vary much, this is approx- 
imately the same as counting numbers of base pairs instead 
of numbers of sequences. For block sizes between 512 and 
8192, Figure 2 shows the total running time of QUASAR, 
the time spent on the filtration and the time spent in the 
alignment phase. In the same graph, we show the filtration 
ratio in percent. 

The filtration ratio increases with the block size: for 
larger block sizes the portion of the database passed to the 
alignment step grows. Since for each interesting block all 
sequences covering that block are searched in the alignment 
phase, the total amount of sequences processed in this phase 
grows roughly linearly with the block size. In contrast to 
this, the time required to filter the database is reduced due 
to the smaller number of counters that have to be incre- 
mented in this phase and to the reduced size of the block 
counter array. It seems surprising that the time required 
for the alignment phase does not grow proportionally to the 
filtration ratio. This is caused by the overhead of calling the 
alignment algorithm and the fixed number of matches that 
are found in the alignment phase which are independent of 
the chosen block size. 

It should be pointed out that the filtration step is ex- 
tremely fast and accounts for less than one third of the total 
running time (for a block size of 2048bps). Thus, the speed 
of QUASAR would benefit most from improvements in the 
alignment phase. We therefore plan to improve the inter- 
face between the filtration and alignment step. The curve 
also shows that the optimal block size lies between 1024 and 
4096 bps. 

4 Discussion 

The work presented here arose from a collaboration concern- 
ing the clustering, assembly, and analysis of EST sequences. 
Our focus on near-perfect matching of many queries stems 
from the interest in this problem. Correspondingly, it is not 
our intention to produce a substitute for BLAST or other 
current database searching methods. Our approach is in- 
tended as a complement to existing methods for applications 
where high similarity is expected and where many searches 
are performed together. 

Our results show that our new approach is more than a 
magnitude faster than BLAST in identifying strongly simi- 
lar sequences. In the case of an all-against-all comparison, 
where the running time is proportional to the squared num- 
ber of sequences in the database, such an improvement leads 
to a substantial increase in overall performance. Similarly, 
one can envisage that a heavily used Web service might take 
advantage of the speed offered by our approach by collect- 
ing queries for a few seconds and then processing them as a 
group. 

The good running times of QUASAR are due to the 
use of the precomputed suffix array. However, the algo- 
rithm to compute the suffix array, although of complexity 
O(n log(n)), requires large amounts of internal memory and 
takes rather long in absolute time. Furthermore, for large 
data sets internal memory is likely to be insufficient for the 
construction and secondary memory versions are required to 
keep its running time within reasonable limits. This is an 
area of future research. 

In further ongoing work we are studying in more depth 
the dependence of the running times of QUASAR on the size 
of the hit lists and the size of the database. We are work- 
ing on the parallelization of our algorithm and investigating 
possibilities to improve the sensitivity. We are currently 
applying QUASAR to run all-against-all comparisons of hu- 
man ESTs, mouse ESTs, and Arabidopsis ESTs. Based on 
this output, mouse ESTs have already been clustered, as- 
sembled, and representative clones have been selected for 
design of expression arrays. 
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