
HAL Id: hal-01362500
https://hal.science/hal-01362500

Submitted on 13 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Behavioral Drift Estimation of Ubiquitous
Computing Systems in Partially Known Environments

Gérald Rocher, Jean-Yves Tigli, Stéphane Lavirotte

To cite this version:
Gérald Rocher, Jean-Yves Tigli, Stéphane Lavirotte. On the Behavioral Drift Estimation of Ubiquitous
Computing Systems in Partially Known Environments. 13th Annual International Conference on
Mobile and Ubiquitous Systems: Computing, Networking and Services, Nov 2016, Hiroshima, Japan.
�hal-01362500�

https://hal.science/hal-01362500
https://hal.archives-ouvertes.fr

On the Behavioral Drift Estimation of Ubiquitous
Computing Systems in Partially Known Environments

Gérald Rocher1,2

gerald.rocher@gfi.fr
Jean-Yves Tigli2

Jean-Yves.Tigli@unice.fr
Stéphane Lavirotte2

Stephane.Lavirotte@unice.fr
1GFI Informatique, Groupe Innovation, Saint-Ouen, France

2Université Côte d’Azur, CNRS, Laboratoire I3S, UMR 7271, France

ABSTRACT
Background. With the recent advent of the so-called con-
nected objects, today largely present in our surroundings,
software applications have an open door to the physical
world through sensors and actuators. However, although it
offers huge opportunities in many areas (e.g., smart-home,
smart-cities, etc. . .), it poses a serious methodological chal-
lenge. Indeed, while classical software applications operate
in the well known and delimited digital world, the so-called
ambient applications operate in and through the physical
world, open and subject to uncertainties that cannot be
modeled accurately and entirely. These uncertainties lead
the behavior of the ambient applications to potentially drift
over time against requirements. In this paper, we propose
a framework to estimate the behavioral drift of the ambient
applications against requirements at runtime.
Methodology. We rely on the Moore Finite State Ma-
chines (FSM) modeling framework to specify the ideal be-
havior an ambient application is supposed to meet, irre-
spective of the operating environment and the underlying
software infrastructure. We then appeal on the control the-
ory and propose a framework to transform the Moore FSM
to its associated Continuous Density Hidden Markov Model
(CD-HMM) state observer. By accounting for uncertainties
through probabilities, it extends Moore FSM with viability
zones, i.e. zones where the behavioral requirements of the
ambient applications are acceptable. The observation of the
execution of a concrete ambient application together with
the statistical modeling framework underlying its associated
state observer allow to compute the likelihood of an obser-
vation sequence to have been produced by the application.
The likelihood then gives direct insight into the behavioral
drift of the concrete application against requirements.
Results. We validate our approach through a concrete use-
case in the field of school lighting. The results demonstrate
the soundness and efficiency of the proposed approach for
estimating the behavioral drift of the ambient applications
at runtime. In light of these results, one can envision us-

Mobiquitous 2016, November 28–December 1, 2016, Hiroshima, JAPAN

ing this estimation to support a decision-making algorithm
(e.g., within a self-adaptive system).

Keywords
Cyber-physical systems, ubiquitous computing, service com-
position, uncertainties, Hidden Markov Model, drift estima-
tion

1. INTRODUCTION
In recent years, achievements in computer hardware minia-

turization and power consumption reduction have enabled
the proliferation of communicating devices integrated in ev-
eryday life physical objects (a.k.a. connected objects) and
physical environments (e.g., houses, buildings, cities, etc. . .).
By means of software services, these so-called ambient de-
vices now provide software applications with interfaces to
interact with our physical surroundings through sensors and
actuators at the heart of the Cyber-Physical Systems (CPS)
[1]. The proliferation of ambient devices results in the si-
multaneous presence of a large number of software services
offered to the users. Their composition allows to imagine
as many applicative scenarios as relevant interconnections.
The primary objective of these so-called ambient applica-
tions is to smartly and seamlessly assist users in their every-
day lives, by off-loading them with the constraining physi-
cal and cognitive tasks [15]. This software paradigm, known
as ubiquitous computing, pervasive computing or ambient
computing, is at the heart of the smart-* systems (namely
smart-city, smart-building, smart-home, etc. . .) [12].
In this context, the interaction logics between ambient de-
vices are not hardwired and become more complex to man-
age. Indeed, ambient devices interact with each other within
an application through the physical environment but also
with the other surrounding devices and physical processes.
This complexity requires ambient applications designers to
ensure that the coherency and the relevancy of the inter-
action logics between ambient devices within the ambient
applications are going to be maintained over time, irrespec-
tive of the evolutions of the environment (stochastic dynam-
ics) and the interactions with the other surrounding devices
(interferences) [7, 26]. To this end, they appeal on Model-
Driven Engineering (MDE) techniques relying on: (1) mod-
els of the systems (often deterministic), their operational
environments, etc. . . , and (2) formal verification techniques.
These techniques are meant to predict the behavioral com-
pliancy of the applications against requirements on the long
run [19] and their effectiveness depends on the accuracy of

the models or the intervention of the designers or the users
on a regular basis.

However:

1. Models are abstractions of the real world and
are, by definition, incomplete. Models flaws and
runtime uncertainties [9] lead models to be continuously
made consistent with the evolutions of the systems and
their environments (e.g., models@runtime [5]). However,
these approaches assume controlled environments whose
dynamics can be anticipated and modeled offline (e.g.,
Dynamic Software Product Lines[6]) and evolutions fully
observable during operation (e.g., Model Identification
Adaptive Control (MIAC) and Model Reference Adap-
tive Control (MRAC)).

2. Models lack integration of stochastic dynamics.
Most of the modeling frameworks have discrete dynamics.
Quantitative models allow, to some extent, accounting for
uncertainties. However, it is still far from what would be
necessary in the context of ubiquitous computing systems
operating in physical environments whose dynamics is in-
trinsically stochastic[13].

Ubiquitous computing introduces a methodological break that
challenges the classical MDE techniques. Indeed, these tech-
niques are efficient for critical systems whose environments
are whether known or at least controlled over time [14].
However, this is clearly not the case for many smart-* sys-
tems operating in partially known physical environments,
subject to unpredictable changes and where indirect inter-
actions through the physical environment may yield unex-
pected applications behaviors[27].

These uncertainties lead the behavior of the am-
bient applications to potentially drift over time
against requirements and one need to provision
ubiquitous computing systems with the ability to
quantify this behavioral drift.

In this context, the main idea behind our approach is to use
an empirical statistical modeling framework to model the be-
havior an ambient application must meet, irrespective of the
physical environment it operates in and the underlying am-
bient devices it is composed with. At runtime, the concrete
ambient application is seen as a black box. The observa-
tion of its direct and indirect impacts on the physical envi-
ronment is then applied against the statistical model from
which the likelihood of the observation is computed. The
likelihood estimate gives direct insight into the behavioral
deviation of the concrete application against requirements.

The contributions of this paper are the following:

1. We appeal on the control theory and the notion of state
observer (Section.4.2). Given a system whose underly-
ing states are not directly observable, the role of a state
observer is to estimate the underlying states of the real
system during execution (a.k.a. state estimation prob-
lem). This is typically done by means of a dynamical
model of the system, the observation of its inputs and
the indirect effects of its execution on the operational en-
vironment. In this paper, we consider an ambient applica-
tion as being the system whose operational environment

is the physical environment. We assume that the physical
environment dynamics is non-linear and possibly subject
to non-Gaussian noises. Based on these assumptions, we
propose to model the state observers of the ambient ap-
plications as Continuous Density Hidden Markov Model
(CD-HMM)[17]. We then leverage the ability of this sta-
tistical modeling framework to estimate the likelihood of
an observation sequence gathered from sensors buried in
the physical environment to have been produced by the
model. While the proposed approach is not meant to
predict the behavior of the ambient applications on the
long run, it provides a mechanism for estimating their
behavioral drift against requirements.

2. We model the ideal expected behavior of the ambient ap-
plications as Moore Finite State Machines (Moore FSM).
As such, we use Moore FSM modeling framework as a
means to specify the set of possible states and transi-
tions in which applications are not compromised, that is,
the set of states and transitions where the behavioral re-
quirements are satisfied (Section.4.1). Moreover, Moore
FSM modeling framework allows designers to specify the
expected observations for each state (i.e., the expected
state output emissions). Then, we consider this formal-
ism from a probabilistic point of view (Section.5.1) and
provide a framework to transform these machines to their
associated CD-HMM state observers (Section.5.2). By
accounting for uncertainties through probabilities, CD-
HMM extends Moore FSM with viability zones [2], i.e.
zones where the behavioral requirements are satisfied,
without necessarily being perfect.

3. We validate our approach through a concrete use-case
in the field of school lighting (Section.2). The results
demonstrate the soundness and efficiency of the proposed
approach at estimating the behavioral drifts of the am-
bient applications at runtime in the presence of environ-
mental disturbances (Section.6.2). In light of these re-
sults, one can envision using this estimate to support a
decision-making algorithm, enabling it to react smartly
to unexpected environmental events.

2. CASE STUDY: LIGHTING IN SCHOOLS
Lighting, and particularly daylighting, is of importance

in the context of classrooms. It plays a significant role
on students well beings and numerous studies show a di-
rect correlation between cognitive abilities and a good vi-
sual environment[16]. Thus, architects rely on standards
(e.g. Illuminating Engineering Society of North America
(IESNA1)) and physical models to design classrooms satis-
fying luminosity requirements while maximizing daylighting
(Figure.2). However, classrooms occupancy and unexpected
physical phenomena (Figure.1) could compromise the model
(e.g., due to weather conditions, stickers or drawings on the
windows, furniture, etc... the luminosity is not distributed
in the classroom as planned by the models). Although class-
rooms are provisioned with a bunch of hardwired switches
allowing to independently illuminate rows of school desks,
blackboards, etc. . . , managing lighting in such conditions re-
quires teachers and students to mobilize cognitive resources
and, in fine, lights are never switched off. This results in a
huge waste of energy. According to the International Energy

1http://www.ies.org/

Agency (IEA):
”Lighting accounts for about 20% of global building electricity
consumption. The latest scenarios show the total electricity
savings potential in building lighting by 2030 could be equiv-
alent to all the electricity consumed in Africa in 2013” 2.

Figure 1: Examples of classrooms where the
luminosity is not homogeneously distributed

Through this simple example, we show that environmen-
tal dynamics and associated uncertainties are hardly pre-
dictable and incorporable into models designed offline. More-
over, relying on users to manage these uncertainties does not
allow to ensure systems effectiveness both from users and en-
ergy savings perspectives.

Figure 2: Simulation of the luminance distribution
within a classroom based on a 3D model3

On the basis of these facts, let’s imagine an ambient ap-
plication whose role, in the presence of the teacher and/or
students, is to maximize, on their behalf, the luminosity of
a particular point in space of a classroom.
Stochastic dynamics. For instance, thanks to some se-
mantically annotated ambient devices, the application get
composed of actuators (e.g., light bulbs, shutters, etc. . .)
on which it acts to get the required luminosity at the speci-
fied point in space. From that point, numerous unexpected
events may occur in the classroom and outside leading the
luminosity to decrease: (1) the weather turns cloudy, (2)
the shade of a tree is projected on the blackboard, (3) a fur-
niture recently placed in the classroom prevents luminosity
to meet the expected level at some point in space, (4). . . At
any time, the behavior of the application may drift against
requirements due to incomplete models (e.g., semantics an-
notations formally describe ambient devices functionalities,
irrespective of the environmental interferences which could
compromise the model).
Systems multiplicity and interferences. A second am-
bient application runs in the same environment whose role

2http://www.iea.org/topics/energyefficiency/subtopics/
lighting/
3Source:http://lightinglab.fi/IEAAnnex45/publications/
Technical reports/lighting in schools.pdf

is to minimize the lighting power consumption. Depending
on the lighting power consumption, measured on a regular
basis, time slots and classrooms occupancy, this application
may suddenly prevent some ambient devices to be used (e.g.,
light bulbs). By doing so, the integrity of the first applica-
tion may be compromized.
Such scenarios are uncountable in the context of ubiquitous
computing. The lack of comprehensive models of the sys-
tems and the physical environments dynamics calls the need
for a mechanism aiming at estimating, from observations,
the behavioral drifts of the ambient applications against re-
quirements at runtime. Thereby, ubiquitous computing sys-
tems could act smartly against requirements and ambient
devices availability to disqualify some ambient applications
made ineffective by the evolution of the environment and
deploy some others, more relevant.

3. RELATED WORKS
To the best of our knowledge, the estimation of the behav-

ioral drift of ambient applications at runtime in the context
of ubiquitous computing has not been studied before. The
HMM-based technique presented in this paper to support
the calculation of the likelihood that an ambient application
satisfies the required behavior at runtime given observation
sequences is new.
In this section, we discuss related work on self-adaptation,
providing ubiquitous computing systems with so-called self-
* properties. Indeed, when operating in open and uncertain
environments, self-adaptation becomes a must-be require-
ment. Self-adaptation poses new challenges in term of as-
surance, i.e., the ability to provision evidence that the sys-
tem satisfies its behavioral requirements, irrespective of the
adaptations over time. This is witnessed by the recent re-
search on the subject [8, 24], namely:
Runtime verification. Is a verification technique con-
cerned by detecting at runtime, from observations, whether
certain properties of a system hold. For instance, close to
our work in the sense that the HMM modeling framework
is used, in [21], Stoller et al. model a program as a HMM
where the hidden states are the states of the program. The
problem addressed concerns the program execution traces
whose, in order to reduce the verification overhead, are often
sampled by a monitor. This potentially leads some events
to be missed. In this context, HMM modeling framework
demonstrated good results at estimating the probability a
property holds, given a potentially incomplete trace of the
program execution.
Bayesian surprise. Close to the problem addressed in the
present paper, in [3], Bencomo is concerned by the quantifi-
cation of the deviation gap from the original specified be-
havior of a Self-Adaptive System (SAS) due to uncertainties
and propose future research agenda to tackle this problem.
At the base of this work is the notion of Bayesian surprise
[4]. Design-time beliefs for specific decisions are specified
using Bayesian Dynamic Decision Networks (DDNs) [4]. A
Bayesian surprise then quantifies how observations affect be-
liefs at runtime by measuring the distance between poste-
rior and prior belief distributions. The distance is calcu-
lated by using the Kullback-Leibler divergence (KL). This
work in progress mainly focuses on the non-functional re-
quirements. The approach we propose in the present paper
addresses both functional (what an application is supposed
to do, described with Moore FSM modeling framework) and

http://www.iea.org/topics/energyefficiency/subtopics/lighting/
http://www.iea.org/topics/energyefficiency/subtopics/lighting/
http://lightinglab.fi/IEAAnnex45/publications/Technical_reports/lighting_in_schools.pdf
http://lightinglab.fi/IEAAnnex45/publications/Technical_reports/lighting_in_schools.pdf

non-functional requirements (how an application is supposed
to be, specified through the expected observations).
Viability zones The viability zone of a system is the set of
possible states in which the system operation is not compro-
mised (here a parallel can be done with the solutions space
of a dynamical system). In other words, this is the set of
states where the system behavior is satisfied [2]. Viability
zones are characterized in terms of relevant attributes and
associated values measured from the system or the environ-
ment. Managing viability zones at runtime is crucial for the
assurance of SAS and is still an open problem [22]. Along
with Moore FSM and HMM modeling frameworks, our ap-
proach allows, to some extent, defining viability zones of
an ambient application through state transition probabili-
ties and state output emission probability density functions
(pdf). Specifically, the HMM parameters can be learnt dur-
ing operation [21], allowing the viability zones to be refined
at runtime.

4. BACKGROUND
The theoritical fundations of this paper are based on two

modeling frameworks, namely Moore Finite State Machines
(FSM) and Hidden Markov Models (HMM). We provide
hereafter a brief overview of these modeling frameworks.

4.1 Moore Finite State Machine (FSM)
In this paper we consider ambient applications whose ideal

expected behavior can be modeled as Moore Finite State
Machines (Moore FSM). Moore FSM models systems dy-
namics as deterministic processes where each state is asso-
ciated with an output emission [23].
More formally, a discrete-time Moore FSM is defined by the
tuple M = 〈S, S0, I, Y,Γ, G〉 where:

• S = {x1, x2, . . . , xN} is the finite set of states. A state x
visited at time k is denoted x(k),

• S0 ∈ S is the initial state the machine starts with,

• I = {u1, u2, . . . , uM} is the finite set of input vectors; u(k)

denotes the input vector at time k,

• Y = {y1, y2, . . . , yL} is the finite set of expected outputs
vectors; y(k) denotes the output vector at time k,

• Γ is the state transition function mapping a state and an
input vector to the next state (x(k+1) = Γ(x(k), u(k))),

• G is the output function mapping each state to an ex-
pected output vector (y(k) = G(x(k))). The outputs of a
Moore FSM depend only on the underlying states. Thus,
as it executes, a Moore FSM produces an observation se-
quence y1:K = {y1, y2, . . . , yK}.

Moore FSM equations can be stated as follow (Figure.3):{
x(k+1) = Γ(x(k), u(k)) (State equation)
y(k) = G(x(k)) (Observation equation)

(4.1.1)
The state transition function Γ and the state space S reflect
the paths an ambient application can go through as it ex-
ecutes. The function G defines the outputs one can expect
while being in a particular state.

4.2 Hidden Markov Model (HMM)
The absence of reliable models of the underlying ambi-

ent devices the ambient applications are composed with and
the physical environment they interact with, requires am-
bient applications to be observed during operation in order
to quantify their potential behavioral drift against require-
ments. To this end, we appeal on the control theory and the
notion of state observer. In most practical cases, a system
underlying state x(k) cannot be completely determined by
direct observations (system states are said hidden). Instead,
a state observer is used to estimate the underlying state x̂(k)

of the real system by means of its dynamical model, the
observation of its inputs and the indirect effects of its ex-
ecution on the operational environment (Figure.4). In this

Figure 3: Moore Finite State Machine (FSM) in a
nutshell

paper, we consider an ambient application as being the sys-
tem whose operational environment is the physical environ-
ment. The physical environment dynamics is intrinsically
stochastic and physical phenomena are most of the time
nonlinear. Ambient applications, therefore, when operating
within the physical environment through sensors and actua-
tors, are driven by random processes (non-Gaussian noises,
uncertainties and non-anticipated interactions) potentially
yielding unexpected behaviors. So, from an observer point
of view, a given ambient application buried in the physical
environment, can be described by the following discrete-time
stochastic dynamical model [11]:{

x(k+1) = Φ(x(k), ω(k)) (State process)
y(k) = ψ(x(k), v(k)) (Observation process)

(4.2.1)
where ω(k) and v(k) are respectively denoting the system and
the measurement noises (that can be assimilated to unknown
inputs affecting both states and observations).

{
ω(k)

}
and{

v(k)

}
are random processes, sequences of independent and

identically distributed (iid) random variables. Φ and ψ de-
note any non-linear functions. The system defined by Eq.4.2.1
is said stochastic because it is driven by the random pro-
cesses

{
ω(k)

}
and

{
v(k)

}
. In this context, and assuming

that the expected behavior of the ambient application can
be modeled over a discrete and finite state space, the only
state observer modeling framework allowing to optimally es-
timate the underlying states from environmental noisy ob-
servation sequences is the Hidden Markov Model (HMM)
modeling framework [11]. HMM belongs to the Dynamic
Bayesian Network (DBN) class. It is a Stochastic Finite
State Machine (SFSM) assuming modeled systems to have
the Markovian property, i.e., the state x(k+1) only depends
on the previous state x(k). The model is called hidden be-
cause the underlying stochastic process (i.e., a sequence of
states) affecting the observed output sequence is not com-

Figure 4: Discrete-time Stochastic Dynamical
System Observer

pletely observable.
More formally, a discrete-time finite-state HMM is defined
by the tuple H = 〈S, π,A,B〉 where:

• S = {x1, x2, . . . , xN} is the finite set of hidden states.

• π = {π1, π2, . . . , πN} is the initial state distribution vec-

tor.
N∑
i=1

π(i) = 1, where π(i) denotes the probability of the

state i to be the first state of a state sequence.

• A is the state transition matrix (N×N) of the underlying
Markov chain. Aij = P(x(k+1) = j|x(k) = i), 0 ≤ Aij ≤ 1,
denotes the probability of being in state xj at time k+ 1

given we are in state xi at time k;
N∑
j=1

Aij = 1.

• B is the observation probability density function matrix.
In this paper we consider multivariate continuous obser-
vations, where the emission probabilities are expressed,
without loss of generality, as multivariate normal density
functions.

B = diag(p(y(k)|x(k) = 1), . . . , p(y(k)|x(k) = N) (4.2.2)

Indeed, in the context of ubiquitous computing systems,
states are characterized by observations inherently multi-
dimensional and continuous. This type of HMM is often
referenced as Continuous Density HMM (CD-HMM). We
denote bx(k)

(y(k)) the probability of being in the state
x(k) and observing y(k).

The model equations can be stated as follow (Figure.5):{
x(k+1) = P(x(k+1)|x(k)) ⇒ Ax(k+1),x(k)

y(k) = p(y(k)|x(k)) ⇒ Bx(k)
(y(k))

(4.2.3)

HMM is mainly used to solve the following problems:

1. Hidden state estimation problem. Given a CD-HMM
with parameters Θ = 〈A,B, π〉 and an observation se-
quence y1:K = {y1, y2, . . . , yK}, evaluate the probability
that the HMM ended in a particular state (P(x(K)|y1:K)).
In other words, one obtains the likelihood of a given ob-
servation sequence y1:K to have been produced by the
model. In the CD-HMM context, this computation is
achieved by the classical recursive forward algorithm [21].
Let α(K)(i) = P(y1:K , x(K) = i) the probability that
x(K) = i given the observation sequence y1:K . Then,
given

α(1)(i) = π(i)b(i)(y(1)), 1 ≤ i ≤ N (4.2.4)

where α(i) is the joint probability of starting in state i
and observing y(1), the recursive computation

α(k+1)(i) = (

N∑
j=1

α(k)Aji)b(i)(y(k+1) (4.2.5)

for 1 ≤ k ≤ K − 1, 1 ≤ i ≤ N , gives the joint probability
of reaching the state i and emitting y(1:K).

2. Hidden state sequence decoding. Given a CD-HMM
with parameters Θ = 〈A,B, π〉 and an observation se-
quence y1:K = {y1, y2, . . . , yK}, decode the most prob-
able underlying hidden state sequence Q that has been
ran through to produce y1:K . Viterbi algorithm is mainly
used for this purpose.

Figure 5: Multivariate Continuous Density HMM
(CD-HMM) in a nutshell

3. Model parameters learning. Given an observation
sequence y1:K = {y1, y2, . . . , yK}, estimate the CD-HMM

parameters Θ̂ =
〈
Â, B̂, π̂

〉
. This can be done by using

either supervised algorithms which expect the underlying
state sequence to be associated with each observation se-
quence (e.g., Maximum Likelihood Estimate (MLE)), or
unsupervised algorithms (e.g., Baum-Welch algorithm)
which expect the number of hidden states and the state-
transition topology (e.g., ergodic, forward, etc. . .).

5. PROPOSED APPROACH
In this paper, Moore FSM modeling framework is used

to model the ideal expected behavior of the ambient appli-
cations, irrespective of the physical environment uncertain-
ties and the underlying software infrastructure. As such,
Moore FSM specifies the set of possible states and transi-
tions where the behavioral requirements are satisfied, along
with the expected observations for each state. A step fur-
ther, CD-HMM modeling framework is used to model the
corresponding state observers. CD-HMM adds a probabilis-
tic dimension on both state observations and state transi-
tions to account for uncertainties and thereby extends Moore

FSM with viability zones [2], i.e. zones where the behavioral
requirements are satisfied, without necessarily being perfect
(Figure.11). Therefore, Moore FSM dynamics ⊂ CD-HMM
dynamics. The problem is then, given an ambient applica-
tion whose ideal expected behavior is specified through a
Moore FSM, to transform this model to its associated CD-
HMM state observer further used to estimate the behavioral
drift of the concrete application against requirements from
observations.

5.1 Moore FSM: A Probabilistic point of view
The state transition function Γ maps a state x(k) ∈ S and

an input vector u(k) ∈ I to a next state x(k+1) ∈ S. This can
be traduced by (1) the probability of the input u(k) occur-
rence and (2) the probability that this occurrence leads ef-
fectively the state transition (joint probability). The output
function G maps each state to an output vector. Here again,

Figure 6: DFSA from a probabilistic point of view.
uhold(k)

is the input leading the state to loop back on itself,
and utrans(k)

is the input leading a transition from the
state x(k) to the state x(k+1)

this can be traduced by the probability of observing an out-
put vector given the system is in a particular state (Figure6).
Taking into account the input occurrence probability leads
the apparition of a transient state where the output vector
y(k) is partitioned with the input vector (Y(k) = (y(k), u(k))).
It means that inputs have to be observed as part of the state
output vector. For a given Moore FSM, the probabilities dis-
cussed above are implicit and values constrained as follow:

1. Input occurrence probability. Moore FSM doesn’t
define an input occurrence function. The occurrence of an
input is exogenous to the model. So, from a probabilistic
point of view, given a state x(k) ∈ S any input u(k) ∈ I
may occur at time k. This can be formulated as follow:

∀x(k) ∈ S,
uM∑

u(k)=u1

Poccurrence(x(k), u(k)) = 1 (5.1.1)

2. State transition probability. The state transition
function Γ maps a state x(k) ∈ S and an input u(k) ∈ I
to the next state x(k+1) (x(k+1) = Γ(x(k), u(k))). From
a probabilistic standpoint, the Moore FSM implicit con-
straint on state transitions can be stated as follow:
∀x(k) ∈ S, u(k) ∈ I :

∃!x(k+1) ∈ S\Ptrans(x(k), x(k+1)|u(k)) = 1, (5.1.2a)
xN∑

x(k+1)=x1

Ptrans(x(k), x(k+1)|u(k)) = 1, (5.1.2b)

xN∑
x(k+1)=x1

Ptrans(x(k), x(k+1)) = 1 (5.1.2c)

Eq.5.1.2a is the probability for a transition to occur from
the state x(k) ∈ S at time k to the state x(k+1) ∈ S at time
k+1, given the occurrence of the input u(k) ∈ I at time k
(joint probability). Eq.5.1.2a and Eq.5.1.2b put together
stipulate that a couple x(k), u(k) at time k is associated
with a unique state x(k+1) at time k + 1 (determinism).
This constraint can be represented by a tri-dimensional
matrix N × N × L. Interestingly, the probabilistic ap-
proach describes all state transitions, even those not ex-
plicitly described in the model (i.e., state transitions with
probability set to 0 in the N ×N × L matrix are implic-
itly not accepted by the model). Eq.5.1.2c stipulates that
state outgoing transitions are equiprobable. Indeed, in-
puts being exogenous to the model, one cannot presume
the probability of the inputs occurrence to each other.

3. Output emission probability. Each state output vec-
tor is given by y(k) = G(x(k)). From a probabilistic stand-
point, the Moore FSM implicit constraints on outputs can
be stated as follow:
∀x(k) ∈ S :

∃!y(k) ∈ Y \Pemission(y(k)|x(k)) = 1, (5.1.3a)
yN∑

y(k)=y1

Pemission(y(k)|x(k)) = 1, (5.1.3b)

Eq.5.1.3a is the probability to emit y(k) ∈ Y given we are
in the state x(k) ∈ S at time k. Eq.5.1.3a and Eq.5.1.3b
put together stipulate that each state is associated with
a unique output vector.

5.2 Moore FSM to CD-HMM projection
Based on the case-study described in section 2, let’s con-

sider an ambient application whose required behavior is de-
fined by the Moore FSM depicted in Figure.7. The model
describes the ideal behavior of the ambient application that
can be stated as follow:
”While a human is present in the classroom, the luminosity
of a point in space in the classroom must be maintained at
30 lux. Otherwise, the luminosity must be maintained at 2
lux”.

input u(k) Low luminosity
(State 0)

High luminosity
(State 1)

No presence (u = 0) Conform Non-conform
Presence (u = 1) Non-conform Conform

Figure 7: Moore FSM Example.The luminosity of a
point in space must be set to 30 lux if human presence is

detected, 2 lux otherwise

This behavior can be modeled with two states: (1) while
being in the first state, i.e., no human presence is detected
(u = 0), the expected luminosity is 2 lux (low luminosity,

represented by the output vector (00010)); (2) while be-
ing in the second state, i.e., human presence is detected
(u = 1), the expected luminosity is 30 lux (high luminosity,
represented by the output vector (11110)). Let’s transform
these requirements to a CD-HMM state observer (defined
by Θ = 〈A,B, π〉).

Construction of the state transition matrix (A). We
consider the FSM model depicted in Figure.7 from a prob-
abilistic point of view. First, we only consider the state
transitions probabilities and apply the constraints given by
Eqs.(5.1.2a, 5.1.2b and 5.1.2c). The resulting model is given
in Figure.8. For the time being, the state transitions are de-
fined irrespective of the input. Without input information,
the non-conform situations described in Figure.7 (i.e., (1)
human presence is detected but the luminosity remains at a
low level, (2) no human is detected but the luminosity is at a
high level) cannot be detected because both states (i.e., low
and high luminosity) are defined by the model. Although
both states are defined by the model, they are conditioned
by an input value. So, let’s now consider the input occur-
rences probabilities as depicted in Figure.6. The resulting

Figure 8: Moore FSM from a probabilistic point of
view taking into account only the state transitions

probabilities

Figure 9: Moore FSM from a probabilistic point of
view taking into account both state transitions and

inputs occurrence probabilities

model is given in Figure.9. Transient states denote the fact
that state transitions given in Figure.8 are conditioned by
an input occurrence represented by the transient states in
Figure.6.
Note that in Figure.9, the state transitions from states 1→ 2
and 4→ 0 are supposed to be instantaneous. Depending on
the observation sampling rate, there is a non-negligible prob-
ability for a transient state to loop back on itself (i.e., the
observation values lead CD-HMM to consider that the appli-
cation is still in the same state due to the observation prob-

ability density functions defined in matrix B). One need to
integrate this probability in the model, computed based on
the sensor data acquisition sampling rate. Also, some states
being equivalent (states 2/3 and 0/5), a model reduction can
be applied. The resulting model is given in Figure.10.
Construction of the observation probabilities (B).
Recall the definition of the matix B given by 4.2.2 where
p(y(k)|x(k)) are probability density functions expressed, with-
out loss of generality, as multivariate normal density func-
tions. Based on Figure.6, the observation vector is given by

Figure 10: Moore FSM from a probabilistic point of
view after states reduction

Y(k) = (y(k), u(k)), where y(k) is the luminosity sensor value
∈ N and u(k) the human presence sensor value ∈ [0, 1]. Thus
for each x(k):

bx(k)
(Y(k)) = p(Y(k)|x(k)) (5.2.1a)

=
1√

(2π)n
1√
detΣ

e
1
2

(Y(k)−µ)
′
Σ−1(Y(k)−µ)

(5.2.1b)

where n = 2 (Y(k) comprises two random variables, y(k) and
u(k)), µ = E(Y(k)) an n-dimensional vector and Σ is the
n×n positive definite variance-covariance matrix of Y(k). µ
can directly be retrieved from the Moore FSM model output
vectors. Variance and covariance values cannot be retrieved
from the Moore FSM model directly and have to be defined
offline by the designer of the ambient application.
Construction of the initial state distribution vector
(π). The initial state distribution vector π is initialized with
equiprobable values (πi = 1

N
, 1 ≤ i ≤ N). Without setting

equiprobable values, the CD-HMM initial state distribution
vector obtained from the Moore FSM depicted in Figure.10
would be π = (π0 = 1.0, π1 = 0.0, π2 = 0.0, π3 = 0.0). Then,
based on Eqs.(4.2.4 and 4.2.5), any observation sequence
whose initial state is not x0 would yield P(x(K)|y1:K) ≈ 0.0.
Actually, one do not know the initial state of an observa-
tion sequence gathered at any time from sensors. In other
words, the starting state of an observation sequence can be
any state x ∈ S.
CD-HMM through parameters Θ = 〈A,B, π〉 adds a proba-
bilistic dimension on both state emissions and state transi-
tions to account for uncertainties and thereby extends Moore
FSM with viability zones [2], i.e. zones where the behavioral
requirements of the ambient application are satisfied, with-
out necessarily being perfect (e.g., the Figure.11 depicts via-
bility zones defined from the observation probability density
functions defined in matrix B).

Figure 11: The CD-HMM observation matrix B
defines viability zones through pdf

6. EVALUATION

6.1 Evaluation Methodology
The following methodology has been used to evaluate the

validity of our approach:

1. Specify the ideal expected behavior of an ambient
application as a Moore FSM. To this end, the finite
state machine designer tool Qfsm4 has been used.

2. Simulate the Moore FSM to obtain a set of traces.
From the model, we developed Verilog test benches to
produce a set of traces as Value Change Dump (VCD)
files (Figure.12). The length of the generated traces is
limited to 350 events.

Figure 12: Example of a Moore FSM simulation
waveforms

3. Apply an additive random noise to the set of traces.
We wrote a program that reads the set of traces obtained
from the simulation (.vcd) and transforms it to a Comma-
Separated Values (.csv) dataset. A user defined addi-
tive pseudo-random noise uniformly distributed has been
added to the traces.

4. Transform the Moore FSM to its associated CD-
HMM state observer, defined by Θ = 〈A,B, π〉. We
implemented the algorithm described in section 5.2 to
transform the Moore FSM model to its associated CD-
HMM state observer. We used Accord.NET framework
[20] to implement the CD-HMM engine.

5. Verify the CD-HMM state observer dynamics. From
the CD-HMM parameters Θ = 〈A,B, π〉, we generated

a probable observation sequence Ŷ1:K (Figure.13). This

4urlhttp://qfsm.sourceforge.net/

step is necessary to ensure, offline, that the observer dy-
namics is conform to the behavioral requirements of the
ambient application. Some parameters are then adjusted
as necessary (variance-covariance matrix values and tran-
sient states probabilities given the inputs acquisition sam-
pling rate).

Figure 13: Observation sequence generated from the
CD-HMM state observer depicted in Figure.10

6. Apply the set of traces as input to the CD-HMM
state observer. Given a CD-HMM state observer with
parameters Θ = 〈A,B, π〉 and an observation sequence
Y1:K = {Y1, Y2, . . . , YK}, one get the probability that the
CD-HMM ended in a particular state (P(x(K)|y1:K)). In
other words, one obtains the likelihood of a given input
sequence Y1:K to have been produced by the model Θ =
〈A,B, π〉.

6.2 Experimental Results
We applied the aforementioned methodology to the use-

case described in the Figure.7. We used MQTT (Message
Queuing Telemetry Transport) [10], a lightweight messag-
ing protocol, to transmit each event of the set of traces to
the CD-HMM state observer on a regular basis (we set the
emission rate to one event per second). We added a pseudo-
random noise uniformly distributed between 0 and 0.2 to the
traces. Then, we set the observation window of the state ob-
server to 10 events (Y1:K = {Y1, Y2, . . . , YK}, where K = 10
and Y(k) = (y(k), u(k)), where y(k) is the luminosity sensor
value ∈ N and u(k) the human presence sensor value ∈ [0, 1].
The CD-HMM state observer is generated with a probability
for transient states to loop back on themselves set to 0.1. µ
values (Eq.5.2.1) are set from the Moore FSM output vec-
tors for each state while the variance values of the matrix
Σ are set to 0.02 and the covariance set to 0.0 (We consider
independent variables).
We modified the set of traces to randomly introduce some
violations: (1) the luminosity in the classroom is degraded
by some stochastic dynamics, (2) a second system prevents
the utilization of some devices (systems multiplicity and in-
terferences).
(1) Stochastic dynamics. In the first case, we simulated
a situation where, while the observed ambient application
is running, the weather turns cloudy. The drop in luminos-
ity is detected by the luminosity sensor. The behavior of
the ambient application starts drifting against requirements
(blue curve in Figure.14). As the CD-HMM state observer
receives the observation sequence Y1:K = {Y1, Y2, . . . , YK}
where K = 10, it detects the drift and returns negative log-
likelihood values (red curve).

Figure 14: While the application is running, the
weather turns cloudy. This leads a luminosity drop

Figure 15: Although a human is detected in the
classroom, the luminosity remains at a low level

(2) Systems multiplicity and interferences. In the sec-
ond case we simulated a situation where, although a human
presence is detected in the classroom (green curve in Fig-
ure.15), the luminosity remains at a low level (blue curve).
For instance, the ambient devices used in the first situation
(some light bulbs) are disqualified by a second application
managing the lighting power consumption. Here again, the
non-conformity of the behavior of the ambient application
against requirements is detected by the CD-HMM state ob-
server (red curve).

The magnitude of the quantification of the behavioral drift
against the required behavior depends on the HMM param-

eters Θ = 〈A,B, π〉. Typically, if we compare the behavioral
violations previously depicted and associated drift quantifi-
cations, in the first case (stochastic dynamics) the behavior
is not expected at all by the model while in the second case
(Systems multiplicity and interferences), the behavior is ex-
pected but with low probability.

7. CONCLUSION AND FUTURE WORK
The proliferation of ambient devices in our physical sur-

roundings (a.k.a. connected objects) results in the simul-
taneous presence of a large number of software services of-
fered to the users. Their composition yields the so-called
ambient applications whose primary objective is to smartly
and seamlessly assist users in their everyday lives, by off-
loading them with the constraining physical and cognitive
tasks. However, this vision, at the heart of smart-* sys-
tems, is seriously hampered by the physical nature of the
operational environment the ambient applications operate
in. Indeed, ambient devices interact in and through the
physical environment whose nature is intrinsically stochastic
and subject to uncertainties that cannot be modeled entirely
offline. Hence, apart from the case where the operational en-
vironment is controlled or its future evolutions are known,
any unforeseen environmental change (i.e., not modeled) can
jeopardize the models and lead the behavior of the ambient
applications to drift over time.
In this context, we have presented an approach providing
smart-* systems with the ability to quantify, at runtime,
the behavioral drift of the ambient applications against re-
quirements. The main idea of the proposed approach is
twofold: (1) We modeled the ideal behavior of the ambient
applications as deterministic Moore Finite State Machines
(Moore FSM). This modeling framework allows ambient ap-
plications designers to specify: (i) the set of possible states
and state transitions in which the behavior of the ambi-
ent applications is not compromised and (ii) the expected
observations for each state. (2) We considered the Moore
FSM modeling framework from a statistical point of view,
and presented a framework to transform Moore FSM mod-
els to their associated Continuous Density Hidden Markov
Model (CD-HMM) state observers. As such, HMM model-
ing framework allows to take into account unertainties and
extends Moore FSM with viability zones in which the be-
havior of the ambient applications is not compromised. We
then leveraged the ability of this modeling framework to
estimate the likelihood of an observation sequence gathered
from sensors buried in the physical environment to have been
produced by the model (i.e., the quantification of the behav-
ioral drift against requirements).
We validated our approach through a concrete use-case in
the field of school lighting. The results obtained demon-
strate the soundness and efficiency of the proposed approach
for estimating the behavioral drifts of the ambient applica-
tions at runtime in the presence of environmental distur-
bances. In light of these results, we envision using this es-
timation to support a decision-making algorithm within a
self-adaptive system.
To extend the application areas of the proposed approach,
we plan to investigate cases where behavioral requirements
have to integrate temporal properties. For instance, we tar-
get situations where ambient devices interactions could be
subject to some temporal inertia (e.g., (1) in order to re-
duce energy consumption, recent light bulbs reach their op-

timal luminosity after a given period of time; (2) a user re-
quiring ambient temperature to be increased cannot expect
this requirement to be instantaneously executed). On that
front, we plan to specify the required behaviors of the ambi-
ent applications as discrete-time Finite State Time Machine
(FSTM) [18] further transformed to Hidden Semi-Markov
Model (HSMM) state observer [25]. HSMM is said semi-
Markov because the transition from a state x(k) to a subse-
quent state x(k+1) does not only depend on the state x(k)

but also on its duration.
Finally, the lack of experimental datasets covering the func-
tional and non-functional behavioral aspects of the ambient
applications, makes difficult the benchmarking of different
approaches. To fill the gap, we plan to gather datasets from
multiple fields ranging from assisted living to industry 4.0.

8. ACKNOWLEDGMENTS
This research was supported by GFI Informatique, Innova-
tion Group.

9. REFERENCES
[1] R. Alur. Principles of cyber-physical systems. MIT

Press, 2015.

[2] J.-P. Aubin, A. Bayen, and P. Saint-Pierre. Viability
Theory: New Directions. Springer, 2011.

[3] N. Bencomo. Quantun: Quantification of uncertainty
for the reassessment of requirements. In 23rd
International Requirements Engineering Conference
(RE), pages 236–240. IEEE, 2015.

[4] N. Bencomo and A. Belaggoun. A world full of
surprises: Bayesian theory of surprise to quantify
degrees of uncertainty. In Companion Proceedings of
the 36th International Conference on Software
Engineering, pages 460–463. ACM, 2014.

[5] N. Bencomo, R. France, B. Cheng, and U. Aßmann.
Models@runtime: foundations, applications, and
roadmaps, volume 8378. Springer, 2014.

[6] R. Capilla, J. Bosch, P. Trinidad, A. Ruiz-Cortès, and
A. Hinchey. An overview of dynamic software product
line architectures and techniques: Observations from
research and industry. Journal of Systems and
Software, 91:3 – 23, 2014.

[7] W. Chipman, C. Grimm, and C. Radojicic. Coverage
of uncertainties in cyber-physical systems.
GMM-Fachbericht-ZuE, 2015.

[8] R. de Lemos, D. Garlan, C. Ghezzi, and H. Giese.
Software engineering for self-adaptive systems:
Assurances (dagstuhl seminar 13511). Dagstuhl
Reports, 3(12), 2014.

[9] H. Giese, N. Bencomo, L. Pasquale, A. J. Ramirez,
P. Inverardi, S. Wätzoldt, and S. Clarke. Living with
uncertainty in the age of runtime models. In
Models@runtime, pages 47–100. Springer, 2014.

[10] U. Hunkeler, H. L. Truong, and A. Stanford-Clark.
MQTT- S A publish/subscribe protocol for wireless
sensor networks. In 2008 3rd International Conference
on Communication Systems Software and Middleware
and Workshops (COMSWARE’08).

[11] V. Krishnamurthy. Partially Observed Markov
Decision Processes. Cambridge University Press, 2016.

[12] J. Krumm. Ubiquitous computing fundamentals. CRC
Press, 2016.

[13] M. Kwiatkowska. Advances in quantitative verification
for ubiquitous computing. In International Colloquium
on Theoretical Aspects of Computing, pages 42–58.
Springer, 2013.

[14] M. Kwiatkowska. From software verification to
’everyware’ verification. Computer Science-Research
and Development, 28(4):295–310, 2013.

[15] J. Nehmer, M. Becker, A. Karshmer, and R. Lamm.
Living assistance systems: an ambient intelligence
approach. In Proceedings of the 28th international
conference on Software engineering, pages 43–50.
ACM, 2006.

[16] M. Pinto, R. Almeida, P. Pinho, and L. Lemos.
Daylighting in classrooms-the daylight factor as a
performance criterion. In ICEH-3rd International
Congress on Environmental Health, 2014.

[17] L. Rabiner. A tutorial on hidden markov models and
selected applications in speech recognition. Proc.
IEEE, 77(2):257–286, 1989.

[18] K. Sacha. Translatable finite state time machine. In
International SDL Forum, pages 117–132. Springer,
2007.

[19] I. Sarray, A. Ressouche, D. Gaffé, J.-Y. Tigli, and
S. Lavirotte. Safe composition in middleware for the
internet of things. In Proceedings of the 2nd Workshop
on Middleware for Context-Aware Applications in the
IoT, pages 7–12. ACM, 2015.

[20] C. R. Souza. The accord.net framework, Dec 2014.
http://accord-framework.net. São Carlos, Brazil.

[21] S. D. Stoller, E. Bartocci, J. Seyster, R. Grosu,
K. Havelund, S. A. Smolka, and E. Zadok. Runtime
verification with state estimation. In International
Conference on Runtime Verification, pages 193–207.
Springer, 2011.

[22] G. Tamura, N. M. Villegas, H. A. Müller, J. P. Sousa,
B. Becker, G. Karsai, S. Mankovskii, M. Pezzè,
W. Schäfer, L. Tahvildari, et al. Towards practical
runtime verification and validation of self-adaptive
software systems. In Software Engineering for
Self-Adaptive Systems II, pages 108–132. Springer,
2013.

[23] F. Wagner, R. Schmuki, T. Wagner, and
P. Wolstenholme. Modeling software with finite state
machines: a practical approach. CRC Press, 2006.

[24] D. Weyns, N. Bencomo, R. Calinescu, J. Camara,
C. Ghezzi, V. Grassi, L. Grunske, P. Inverardi, J.-M.
Jezequel, S. Malek, et al. Perpetual assurances in
self-adaptive systems. In Assurances for Self-Adaptive
Systems, Dagstuhl Seminar, volume 13511, 2014.

[25] S.-Z. Yu. Hidden semi-markov models. In Journal of
Artificial Intelligence, volume 174, pages 215–243,
2010.

[26] M. Zhang, B. , Selic, S. Ali, T. Yue, O. Okariz, and
R. Norgren. Understanding uncertainty in
cyber-physical systems: A conceptual model. In
ECMFA, 2016.

[27] X. Zheng, C. Julien, M. Kim, and S. Khurshid. On the
state of the art in verification and validation in cyber
physical systems. The University of Texas at Austin,
The Center for Advanced Research in Software
Engineering, Tech. Rep. TR-ARiSE-2014-001, 2014.

http://accord-framework.net

	Introduction
	CASE STUDY: Lighting in Schools
	Related Works
	Background
	Moore Finite State Machine (FSM)
	Hidden Markov Model (HMM)

	Proposed Approach
	Moore FSM: A Probabilistic point of view
	Moore FSM to CD-HMM projection

	Evaluation
	Evaluation Methodology
	Experimental Results

	Conclusion and Future Work
	Acknowledgments
	References

