
An Iterative and Toolchain-Based Approach to Automate
Scanning and Mapping Computer Networks

Stefan Marksteiner
DIGITAL - Institute for

Information
and Communication

Technologies
JOANNEUM RESEARCH

Graz, Austria
stefan.marksteiner

@joanneum.at

Harald Lernbeiß
DIGITAL - Institute for

Information
and Communication

Technologies
JOANNEUM RESEARCH

Graz, Austria
harald.lernbeiss
@joanneum.at

Bernhard Jandl-Scherf
DIGITAL - Institute for

Information
and Communication

Technologies
JOANNEUM RESEARCH

Graz, Austria
bernhard.jandl-

scherf@joanneum.at

ABSTRACT
As today’s organizational computer networks are ever evolv-
ing and becoming more and more complex, finding potential
vulnerabilities and conducting security audits has become a
crucial element in securing these networks. The first step in
auditing a network is reconnaissance by mapping it to get
a comprehensive overview over its structure. The growing
complexity, however, makes this task increasingly effortful,
even more as mapping (instead of plain scanning), presently,
still involves a lot of manual work. Therefore, the concept
proposed in this paper automates the scanning and map-
ping of unknown and non-cooperative computer networks in
order to find security weaknesses or verify access controls.
It further helps to conduct audits by allowing comparing
documented with actual networks and finding unauthorized
network devices, as well as evaluating access control meth-
ods by conducting delta scans. It uses a novel approach of
augmenting data from iteratively chained existing scanning
tools with context, using genuine analytics modules to allow
assessing a network’s topology instead of just generating a
list of scanned devices. It further contains a visualization
model that provides a clear, lucid topology map and a spe-
cial graph for comparative analysis. The goal is to provide
maximum insight with a minimum of a priori knowledge.

CCS Concepts
•Security and privacy → Network security; Systems
security; •Networks → Network monitoring; Logical
nodes;

Keywords
Network Scanning; Security; Network Mapping; Networks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SafeConfig’16, October 24 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4566-8/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2994475.2994479

1. INTRODUCTION AND MOTIVATION
Scanning and mapping a computer network is the crucial

part of network reconnaissance [10]. As such, it is usually
one of the first steps performed by an attacker[21]. There-
fore, it is also useful for auditors or people in charge of
network security to use the same techniques to examine
their network in order to identify potential security weak-
nesses [22]. This overview differentiates in this context also
network scanning and mapping. While the former gener-
ates solely a list of network devices, the latter generates a
map, providing additional information about the network’s
structure, building the fundament to measuring security in
the form of attack graphs [13]. To support this mapping
task, this paper from an ongoing research project presents
a widely automated approach for mapping non-cooperative,
previously unknown computer networks and an expressive
visualization of the obtained data. Within this paper, un-
known means that there is only minimal a priori knowledge
of the network, in particular the target network range to
be scanned (or even only parts of it, like a single machine’s
address, from that range). Non-cooperative in this context
means that the scanner does not have any administrative
access (such as credentials).

Similar to testing applications with unknown internals,
these conditions can also be subsumed as black box scanning
[27, 1]. The benefit of black box scanning non-cooperative
networks in security auditing and ethical hacking is three-
fold: firstly, it allows comparing the network documentation
with the actual reality in a company’s network. Secondly,
undocumented, unauthorized and possibly malicious devices
may be discovered [23]. And thirdly, as mentioned above, it
provides an attacker’s view [2]. All three of the above points
(but especially the last one) benefit from an approach with
only minimal a priori information (black box), as it prevents
the security staff from taking paved roads in their analysis
and, thus, from gaining the same results they already ob-
tained beforehand by more white box oriented security eval-
uation forms. Also, network topology is among the needed
information for creating an attack graph [24]. There is a
broad variety of network and port scanners available (for
instance nmap1 or amap2), as well as specific vulnerability

1www.nmap.org
2www.thc.org/thc-amap

ar
X

iv
:1

71
0.

01
02

6v
1

 [
cs

.C
R

]
 3

 O
ct

 2
01

7

http://dx.doi.org/10.1145/2994475.2994479
www.nmap.org
www.thc.org/thc-amap

scanners (like Nessus3 or OpenVAS4) or tools for further
information gathering (as for example snmpwalk5). Unfor-
tunately, the process of performing a thorough network re-
connaissance (that results in a topology map) is, presently,
rather manual and time-consuming.

Therefore, this paper addresses the problem of how afore-
mentioned network scanning tools can be most effectively
combined and their scanning results analyzed and graphi-
cally represented. In order to fulfill this objective, the fol-
lowing questions need to be clarified:

• How can the scanning process be automated and con-
trolled?

• How can the results be automatically analyzed?

• How can the results be best graphically represented in
a scalable and lucid form?

The third question has the additional constraint that large
networks should be presented in an aggregated manner, but
still leave the basic topology visible at a glance , which ex-
isting solutions (see Section 2) have proven not to meet.

Also, as one of the most relevant aspects in analyzing com-
puter networks is discovering and visualizing the network’s
structure, the second question contains the major problem
of augmenting the obtained data with structural informa-
tion. Modern computer networks consist of nodes (hosts
and routers) and edges (links) that are structured in a hier-
archy, which means that their structure can be represented
as a tree (that is, as a directed acyclic graph with a single
root) as defined by graph theory [11]. Therefore, the pivotal
element of determining a node’s place within that structure
is finding the edge to its parent node or, in computer net-
working terms, its default gateway. This leads to the follow-
ing subquestion that defines the step from list-like network
scanning to actual network mapping by adding hierarchical
context to the scans:

• How can a node’s default gateway be determined?

This problem statement applies, in principle, to all com-
puter networks. However, the presented solution is shaped
to fit to modern day’s organizational (in other words: classi-
cal) information and communication technology (ICT) net-
works. Specific requirements for other types of networks (for
instance within industrial control systems or the Internet of
things) are out of scope of this work. A main concept used
to automatize the scanning process is chaining these pop-
ular network scanning tools (see Section 3). Tool chaining
is a well-known concept in information technology and also
(although less commonly) used in approaches to network
scanning in order to yield better results than there could be
gained from a single scanning tool (see Section 2). The pre-
sented solution further develops this technique by enhancing
the versatility of the scanning process introducing scanning
policies. These policies contain customizable toolchains im-
proved with an iterative scanning model, allowing each pass
of the said toolchain to benefit from the results obtained
by its predecessor (see Section 3.4). Although such a con-
cept is used in white box network mapping (often called
network discovery in this context), the approach is quite

3www.tenable.com/products/nessus-vulnerability-scanner
4www.openvas.org
5www.net-snmp.org/docs/man/snmpwalk.html

novel to black box network mapping (see Section 2). Scan-
ning policies further integrate external scanning tools and
genuine analytics to automatically interpret the scanning
results, yielding a mostly automatically generated topology
model (see Section 3). Furthermore, as the analysis and
subsequent graphical representation still are less well elabo-
rated parts in mapping non-cooperative computer networks
in general, this approach also includes a visualization con-
cept for the data obtained through scanning and the contex-
tual enhancements generated by the analytics modules (see
Section 4). The visualization concept includes automatic
grouping of the data (grouped by operating systems or net-
work segments), while leaving network infrastructure nodes,
and therefore the overall topology, visible. It also features
a comparative view, allowing documenting network evolve-
ment over time and testing of access rules. Apart from an
approach to solving the questions stated above, this work
also provides a proof of concept in the form of a software
prototype of the presented concept (see Section 5) and scan
results of real-world networks (Section 6). Section 7, even-
tually, gives a conclusion and outlook to further research.

2. RELATED WORK
There is a known approach to toolchaining in black box

scanning that has some similarities in terms of using adapter
plugins for scanners and splitting normalization and aggre-
gation [9]. That work focuses on building an integrated
scanning tool and merging the obtained information in a
common structure, while the presented research, in contrast,
does not merge the information but displays each scan re-
sult distinctly in order to distinguish which module found
which information. The main difference, however, is that
this paper’s approach focuses on network mapping (includ-
ing scanner analytics and visualization) instead of the scan-
ning part and uses an iterative model. The visualization
concept in this paper is the result of an evaluation (see Sec-
tion 4) of a variety of commonly known algorithms [28, 15,
25, 14, 17, 7, 12], as commonly used graphical scanner inter-
faces (such as Zenmap6) have proven to be insufficient for
network mapping. Using an iterative model, on the other
hand, is common in commercial and open source solutions
for credential-based white box network mapping7, but rarely
used in black-box scanning. In fact, only one approach came
to the authors’ attention [3], which again does merely scan
but not map unknown networks.

3. TOOLCHAINS
This section describes a concept for tool chaining in the

context of computer network scanning and mapping. In this
approach, the building blocks of such toolchains are, in prin-
ciple, scanner modules and analyzer modules. The two differ
mostly in two points: their purpose and their input method.
Firstly, while scanner modules represent existing network
scanning tools, the purpose of analyzer modules is to pro-
vide context for the scanned data. Secondly, scanner mod-
ules get external input from their respective scanning tools,
while analyzer modules merely operate on the present data
without external input. As seen in Figure 1, these two el-
ements are the building blocks of a scanning policy which,

6www.nmap.org/zenmap
7often called network discovery in this context, particularly
in solutions for network management

www.tenable.com/products/nessus-vulnerability-scanner
www.openvas.org
www.net-snmp.org/docs/man/snmpwalk.html
www.nmap.org/zenmap

Figure 1: Schematic example toolchain with itera-
tions

within this approach, represents a toolchain and the num-
ber of iterations the chain is passed through (see Section
3.4). Using policies, toolchains are not static and can be
adjusted according to specific needs, as different toolchains
might yield different results (even the same tools used in a
different order). The same applies to starting options for
both scanner and analyzer modules. This flexibility allows
choosing the most effective policy for each case (for instance,
different chains for small and big networks).

3.1 Scanner Modules
A scanner module controls an external network scanner.

Its tasks are therefore handling the scanning tool’s input
(tool call) and output (result collection), converting the out-
put into a common format (normalization) and storing it
in a database (storage). This process is the same for ev-
ery module; only the details differ (except for the storage,
see Figure 2). Calling a tool could happen either through
command line calls, an API or by incorporating the tool’s
source code directly into the module’s. Either way, a mod-
ule is responsible for enabling all sensible (in the context of
a toolchain) options its tool provides, for defining additional
ones (mostly optimizations for better interlocking of tools
within a toolchain) and for using some options per default
(for example output formatting options). Consequentially,
the next step is collecting the results delivered by the scan-
ner software, either through a return value (if called by code
or API) or (if otherwise) by reading a file or console output.
These results then must be normalized to correspond to each
other. As it provides a broad range of already present at-
tributes, this solution uses the nmap xml output as a basis
[19]. Attributes not present in this format are incorporated
as needed by other modules. For storage reasons stated in
Section 5, the normalized data is subsequently transferred
into the JavaScript Object Notation (JSON) [5]. The com-
bination of obtained data consists of two components: nor-
malization (see above) and aggregation (linking the different
modules’ results together). In this approach, the aggrega-
tion is a matter of the visualization engine. The data model
creates a separate object per tool for each found node in
order to make it clearly distinguishable which scanning tool
yielded which results. This is the reason why scanner mod-
ules only handle the normalization and not the aggregation.
In general, newer results take precedence over older ones
(except for manual edits). The storage, eventually, basically
consists of writing the obtained results into a database.

3.2 Analyzer Modules
In contrast to scanner modules, analyzer modules do not

Tool Call Result
Collection Normalization Storage

per Tool

Figure 2: Execution trail of a scanner module

use external data, but only information provided by scan-
ner modules. Therefore, a toolchain containing only ana-
lyzer modules will not produce any results. The purpose
of analyzer modules is interconnecting information and pro-
viding context. These modules generate database entries
containing the analysis results, which again can be used by
subsequent modules, in later iterations or by the visualiza-
tion engine. The main reason not to incorporate the ana-
lytical logic within scan modules is that data from several
scanners might be used as input for a specific analysis. For
instance, network trace information might come from an ar-
bitrary traceroute implementation, as well as an nmap (or
other trace-capable) scanner module. The following subsec-
tion gives an example for an analyzer module.

3.3 Estimating Default Gateways
Estimating default gateways is the necessary stepping sto-

ne to overcome the gap between network scanning and net-
work mapping. As the required data to achieve this goal
might be present within the acquired data but has to be in-
terpreted correctly, this task poses an archetype for an ana-
lyzer module in the sense of the presented concept. To fulfill
this task, this work proposes three methods to determine a
host’s default gateway DGW (H):

• Estimation by trace: Determining predecessor infor-
mation in a network trace[4];

• Estimation by singleton router : Assessing if only one
router is present in a scanned network;

• Estimation by usual suspects: Watching for addresses
frequently used for gateways.

The first method naturally requires a list of hops (h) ob-
tained through traceroute from a scanner in the toolchain.
If the host is in the same subnet (hopcount n = 1), the host
will be attached to the scanning host’s own default gate-
way DGW (X), which is determined using system functions.
Otherwise, the default router of the host is set to the last
hop before the host (hi−1, see Formula 1).

i : {1, .., n};DGW (H) =

{
DGW (X) . . . n = 1
h(i−1) . . . n > 1

(1)

As the path towards the target network holds no informa-
tion about its topology and is therefore of less interest, an
algorithm identifies the last common gateway of the network.
This network entry point (from the scanner’s perspective) of
all hosts NEP (H) serves as a central connection node that
links different parts of a graph together (for an example, see
Section 6). Said algorithm traverses all of the trace paths
hi(Hj) in parallel from their beginning and compares if they
are all equal at the respective hop position. The last com-
mon router is the router at one position (hi−1) before they
begin to diverge, which means that at least one path differs

at a hop position (hi(Hj) 6= hi(Hj+1). Therefore, if not all
paths contain the same address value at hop position x, the
last common gateway is x-1. If hosts from the scanner’s net-
work are present in the target (with n = 1), the result is the
scanning machine’s default gateway (see Formula 2).

i : {1, .., n}, j : {1, ..,m};
NEP (H) = hi−1 ↔ hi(Hj) 6= hi(Hj+1)

(2)

The second method yields a positive result if exactly one de-
vice of some router type is present in the dataset. This re-
quires operating system (OS) detection and classification ca-
pabilities by a scanner in the toolchain. For instance, nmap
provides this feature in its nmap-os-db. The analyzer mod-
ule examines this data for router devices. The third method
is similar to the second one in terms that it also needs the
same information to be present and searches for router -type
devices. In contrast to the latter, it uses the first three dotted
decimal groups of IPv4 target addresses and adds commonly
used router addresses (e.g. .1 and .254) as final part. These
composites form the addresses that are evaluated to be a
router. Further, for multiple targets, duplicates are elimi-
nated. If such a usual gateway address is in fact a router
according to OS detection, there is a distinct probability of
being a default gateway for the scanned network.

The first method is more reliable (as a traceroute prede-
cessor is more likely a default gateway router than an ar-
bitrary one found on the same network), but the success of
these methods obviously depends on the present information
and, thus, ultimately on the target network’s configuration.
As the latter is unknown beforehand, it cannot be known
a priori which method is more successful. As none of the
estimation methods provides assured detection, the oppor-
tunity for manual assignment and correction (through user
interaction, superseding automated scan results) is included
in this concept.

3.4 Iterative Scanning
The basic idea described in this section is to let the results

of one iteration determine the input for the next one [3].
To do so, every module within the toolchain implements its
own method for gaining seed data to be used in the next
iteration. This method can differ greatly between modules.
For instance, one tool might use network trace data, while
another scanning module might use data gained via SNMP
or ARP (Section 6 shows a practical example). The default
gateway estimation module (see Section 3.3), for instance,
adds identified intermediate hops that are not yet scanned
to the seed database. This usually yields an expanded scan
area, for intermediate hops frequently feature IP addresses
from outside the target scope. Subsequently, all newly found
hosts will serve as targets for the next scan iteration, thus
being processed by all tools within the chain (see Figure
1). Together with the respective toolchain, the number of
iterations forms a scanning policy.

4. NETWORK VISUALIZATION
Due to the potential of visualizations [6] and the speed

of visual perception [18], it seems appropriate to present
a computer network in graphical form. Various solutions
for automatically generating a graphical view of a network
hierarchy through a computer program have been proposed
(see Section 2). In order to find the appropriate algorithm

Figure 3: Compare view showing gateway change
and node removal

for computing the graph’s layout the following requirements
have to be considered:

• Suitability for typical organizational network sizes;

• Economic space usage, even for unbalanced hierarchies;

• Edges shall contain as few bends as possible;

• Change tolerance regarding the overall layout.

Using the Tulip graph analysis program, layout algorithms
for hierarchies were evaluated on these requirements with
data collected from a scan of a part of the Joanneum Re-
search computer network, as well as with generated and
manually edited data. Most promising candidates were:

• The Tree Radial algorithm [14];

• The Balloon algorithm [17, 7];

• The Bubble Tree algorithm [12].

The first algorithm’s adequacy depends on the parameters
for node spacing and layer spacing, while the second works
well for rooted trees if not enforcing equal angles, but has
deficiencies in usage of available space. The Bubble Tree al-
gorithm shows the best overall results, for the graph is laid
out with good usage of screen space, edges contain at most
one bend and the overall layout proved to be quite insus-
ceptible to minor changes. All of these layouts, however,
do not set focus on a network’s structure as they value the
structure-defining intermediate nodes (routers) the same as
the usually vastly outnumbering leaf nodes (hosts). To em-
phasize the former, similar leaf nodes are aggregated and
depicted only by one representative symbol (bubble) with
a single edge. This aggregation could fund on similar char-
acteristics (like the same OS) or on a threshold of the size
of leaf node groups (see Figure 6 for a practical example).
Further, leaf nodes could be hidden completely and only dis-
played on demand. For auditing and evaluating a network,
not only a snapshot but also displaying deltas of a network
is useful in order to document its evolvement or evaluate the
effectiveness of network access control. To do so, an adapted
version of the network graph view is used, highlighting the
changes (red for removals and green for additions, see Figure
3 for a concrete example).

Figure 4: Diagram of the module interaction

5. SOFTWARE PROTOTYPE
This section describes a software prototype implementing

the concepts illustrated above in C++, resulting in a tool for
Kali Linux8. This software, called Tactical Network Mapper
(TNM) uses MongoDB9 and the Tulip graph library10 for
storage and visualization purposes, respectively. The main
libraries of the software contain only a framework, while the
plug-ins provide the functionality, resembling the structure
of the Eclipse11 software development environment. All the
data exchange between the components (scanner and an-
alyzer modules, and user interface including policy editor
and the visualization engine) happens via the database (see
also Figure 4). This couples these components very loosely,
allowing a very flexible plug-in structure. As a result, the
built solution allows integrating rather heterogeneous mod-
ules, making it an adequate testbed for both the current
and future concepts. As the scanning process is iterative
and a user might also manually revise the results and make
changes, not only the most recent information might be rel-
evant. A user could want to view changes between itera-
tions and possibly roll back to a previous state, as well as
to manually correct data (e.g. in case of wrongly assigned
default gateways). These requirements point towards ver-
sioning as used in Revision Control Systems [26]. There are
two main approaches to versioning: snapshot and change-
set (delta) [16]. The former method stores a complete copy
of the data set for each version. The latter saves storage
space, but requires the construction of data sets in order to
get a certain version. The changeset group can be further
classified into forward delta and reverse delta. With reverse
delta, always the latest version serves as reference for dif-
ferences [29]. Despite earlier versions might be needed for
comparing, it is reasonable to assume that most users will
be interested in the most recent version of the data. There-
fore, the presented solution tries balancing the benefits of
both approaches by using snapshots for single objects, but
reverse delta storage for the data set as a whole. This can
be easily implemented by storing full snapshots of changed
objects (and only those), with the most recent data set as
reference. Through using MongoDB, which uses a binary-
encoded JSON format (BSON) for storing the data [20], no
additional conversion of the normalized data is needed.

8www.kali.org
9www.mongodb.com

10tulip.labri.fr/TulipDrupal/
11www.eclipse.org/ide/

10.0.14.170
10.0.23.2 10.0.15.17

10.0.21.85

192.168.253.243

172.16.150.149

172.16.150.54

192.168.253.242

Figure 5: Graph of an anonymized external actual
scan

6. RESULTS
As the concept (in form of the TNM implementation) is

put to test, the results expectably differ according to dif-
ferent target settings. Obviously, the obtained results are
more detailed when scanning from inside a network. This is
a practical scenario for internal audits. Despite some natu-
ral restrictions (access rules enforced by firewalls), TNM was
able to perform on external networks too. Figure 5 shows an
anonymized example of a scan executed on an external, un-
known (that is with only the target range known) network
using an nmap module with traceroute and OS detection
and the default gateway analyzer. The scanning machine
was attached to a router not shown in the graph (according
to the algorithm described in Section 3.3). Through the iter-
ative model, TNM also discovered parts of the network that
where originally not part of the target specification, which
causes the different network portions of the IP addresses
seen in Figure 5.

Another example for the use of iterations can be seen in
Figure 6, which shows three iterations of an internal scan
starting with a single machine. The bigger graph in the
middle shows the third iteration, while the adjunct graphs
in the bottom right and top left corners show the first and
second iterations, respectively. This scan used a module that
implements an snmpwalk scanner. The toolchain contains
a TCP nmap scan containing traceroute and OS detection,
the default gateway analyzer, a second nmap, scanning for
the SNMP port (UPD/161) and the snmpwalk module that
is executed on found snmp hosts. As many products are
shipped with a public community, this could be used to dis-
cover devices reading out a device’ ARP table, which was
assumed in this example [8] (simulated by using a known
write-only community). Clearly visible, each of the three
iterations discovers significantly more devices than the last
one (2, 7 and 856 nodes, respectively), eventually resulting

www.kali.org
www.mongodb.com
tulip.labri.fr/TulipDrupal/
www.eclipse.org/ide/

10.0.7.254

10.0.15.254

10.0.7.254

10.0.7.254

Figure 6: Comparison of three iterations of an
anonymized actual scan result graph

Table 1: Runtimes per module and iteration in sec-
onds compared to found nodes

Iteration 1 2 3
NmapScanner(-A) 7 27 1114
DefaultGatewayAnalyzer <1 <1 <1
NmapScanner2 (UDP:161) <1 2 8
SnmpwalkScanner <1 43 797
Modules 7 43 1920
Total 7 44 1996

Number of found nodes 2 15 856
Nodes per second 0.29 0.34 0.43

in a tree of depth three. An additional scan on a public
/19 network conducted with TNM (same policy as above)
yielded 673 reachable hosts, 16 open SNMP devices, but no
communities could be found.

Naturally, the number of discovered items has an impact
on an iteration’s runtime. The first iteration of said test took
seven seconds to finish, the second already took forty-four,
while the last iteration took over half an hour (1996 sec-
onds). Table 1 shows an example table for test results (dis-
crepancies between module and total runtimes are mostly
database-induced delays). It can also be seen that, the ratio
of time consumption and results (found nodes per second)
improves significantly at each iteration. An iteration’s scope
allows a rough estimation of the upper boundary of its run-
time, assuming no unforeseen events (for example network
congestion) occur. More precise estimations on the runtime
of an iteration are not possible a priori, as it depends on the
result (the same applies for the overall process).

7. CONCLUSION
The presented results demonstrate the successful auto-

mated topology mapping of given computer networks (both
internal and external12), without information beyond the

12Although there are be limits by filter mechanisms and NAT

target range. Especially, no credentials are needed (although
utilized, for example in SNMP scanning). They further in-
corporate additional information about these nodes (oper-
ating system, open ports, et cetera) into the produced inter-
active map. This combination means a significant advance-
ment compared to drawing topology maps and maintaining
the result lists of unknown networks manually, using scan-
ning tools and their result lists. It is also a novel approach,
as no other known concept combines iterative toolchaining
with analytics to conduct black box network mapping and
tailored state-of-the-art visualization. By doing so, the pre-
sented concept could not only be used in practice to perform
security audits and discover differences between documen-
tation and reality as well as map undocumented networks,
but also as a documentation tool by itself. The test results
show that the concept is capable of not only mapping a net-
work, but also discovering areas not found using less sophis-
ticated methods. Furthermore, they demonstrate that using
more iterations yields a more effective scanning performance
(more found nodes per second of runtime).

Despite promising results, there is room for improvement.
Apart from additional scanning modules, one possible up-
grade is a module that allows the software to reconfigure
the network address of the scanning machine by using data
from passive scanners (or network sniffers). This way, the
solution is capable of mapping a network it is directly at-
tached to completely without prior knowledge (eliminating
the need for a scan target). Useful for this improvement
(but also for other cases) is a (yet work in progress) mod-
ule, that tries to guess network boundaries (partially by us-
ing publicly available data like whois databases). Another
work in progress module is an extension that fetches data
from vulnerability databases, like the National Vulnerability
Database (NVD)13, and automatically compares the con-
tained vulnerable services and operating systems with data
from the scan results to facilitate vulnerability analysis. An-
other module could use graph theoretical methods to gain
knowledge about the network’s structure. Further, the con-
cept could be tested in and adjusted to other environments
like industrial control and Internet of things networks.

Finally, the resulting TNM software itself could also serve
as a research tool. Possible studies carried out using TNM
include the evaluation of the performance of different com-
binations of scanning tools under different conditions (for
example with different network sizes). A prerequisite for
such studies is the definition of sensible key performance in-
dicators (KPIs) for network scanning and using respective
toolchains under different conditions. Also, surveys on net-
works suggest themselves, like typical structures depending
on network sizes or the rate of open snmp communities in
average structures.

8. ACKNOWLEDGEMENTS
This research has been conducted on behalf of the Aus-

trian Federal Ministry of Defense and Sports (BMLVS), Joi-
nt Command Support Centre (FüUZ), section ICT technol-
ogy, department ICT security and funded by the Depart-
ment for Science, Research and Development (WFE). We
want to thank all partners, especially Lambert Scharwitzl,
Christina Buttinger, Michael Pfister and Clemens Edlinger
for their support.

13nvd.nist.gov

nvd.nist.gov

9. REFERENCES
[1] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. State

of the art: Automated black-box web application
vulnerability testing. In 2010 IEEE Symposium on
Security and Privacy, pages 332–345, May 2010.

[2] E. Bou-Harb, M. Debbabi, and C. Assi. Cyber
scanning: a comprehensive survey. Communications
Surveys & Tutorials, IEEE, 16(3):1496–1519, 2014.

[3] B. Boyter, R. Engelbach, and R. Taylor. System and
method for network security scanning, Nov. 13 2003.
US Patent App. 10/249,666.

[4] S. Branigan, H. Burch, B. Cheswick, and F. Wojcik.
What can you do with traceroute? IEEE Internet
Computing, 5(5):96–, Sep 2001.

[5] B. Bray. The JavaScript Object Notation (JSON)
Data Interchange Format. RFC 7159, Internet
Engineering Task Force, 2014.

[6] R. A. Burkhard. Learning from architects: the
difference between knowledge visualization and
information visualization. In Information
Visualisation, 2004. IV 2004. Proceedings. Eighth
International Conference on, pages 519–524, July
2004.

[7] J. Carriere and R. Kazman. Research report.
interacting with huge hierarchies: beyond cone trees.
In Information Visualization, 1995. Proceedings.,
pages 74–81, Oct 1995.

[8] P. Chatzimisios. Security issues and vulnerabilities of
the snmp protocol. In 1st International Conference on
Electrical and Electronics Engineering, pages 74–77,
2004.

[9] F. Cheng, S. Roschke, and C. Meinel. An integrated
network scanning tool for attack graph construction.
In Advances in Grid and Pervasive Computing, pages
138–147. Springer, 2011.

[10] S. Convery and B. Trudel. Cisco safe: A security
blueprint for enterprise networks. Technical report,
Cisco Systems, 2000.

[11] V. Fuller and T. Li. Classless Inter-domain Routing
(CIDR): The Internet Address Assignment and
Aggregation Plan. RFC 4632, Internet Engineering
Task Force, 2006.

[12] S. Grivet, D. Auber, P. J. Domenger, and
G. Melancon. Computer Vision and Graphics:
International Conference, ICCVG 2004, Warsaw,
Poland, September 2004, Proceedings, chapter
BUBBLE TREE DRAWING ALGORITHM, pages
633–641. Springer Netherlands, Dordrecht, 2006.

[13] K. Ingols, R. Lippmann, and K. Piwowarski. Practical
attack graph generation for network defense. In 2006
22nd Annual Computer Security Applications
Conference (ACSAC’06), pages 121–130, Dec 2006.

[14] T. J. Jankun-Kelly and K.-L. Ma. Moiregraphs: radial
focus+context visualization and interaction for graphs
with visual nodes. In Information Visualization, 2003.
INFOVIS 2003. IEEE Symposium on, pages 59–66,
Oct 2003.

[15] B. Johnson and B. Shneiderman. Tree-maps: a
space-filling approach to the visualization of
hierarchical information structures. In Visualization,
1991. Visualization ’91, Proceedings., IEEE
Conference on, pages 284–291, Oct 1991.

[16] A. Koc and A. U. Tansel. A survey of version control
systems. In The 2nd International Conference on
Engineering and Meta-Engineering: ICEME 2011,
Orlando, 2011. International Institute of Informatics
and Systemics.

[17] C.-C. Lin and H.-C. Yen. Graph Drawing: 13th
International Symposium, GD 2005, Limerick,
Ireland, September 12-14, 2005. Revised Papers,
chapter On Balloon Drawings of Rooted Trees, pages
285–296. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006.

[18] H. Liu, Y. Agam, J. R. Madsen, and G. Kreiman.
Timing, timing, timing: Fast decoding of object
information from intracranial field potentials in
human visual cortex. Neuron, 62(2):281 – 290, 2009.

[19] G. Lyon. Nmap Network Scanning: Official Nmap
Project Guide to Network Discovery and Security
Scanning. Insecure.Com, LLC, 2008.

[20] P. Membrey, E. Plugge, and D. Hawkins. The
definitive guide to MongoDB: the noSQL database for
cloud and desktop computing. Apress, 2011.

[21] J. Mirkovic and P. Reiher. A taxonomy of DDoS
attack and DDoS defense mechanisms. ACM
SIGCOMM Computer Communication Review,
34(2):39–53, 2004.

[22] C. Muelder, K.-L. Ma, and T. Bartoletti. Interactive
visualization for network and port scan detection. In
Recent advances in intrusion detection, pages 265–283.
Springer, 2005.

[23] A. Orebaugh and B. Pinkard. Nmap in the enterprise:
your guide to network scanning. Syngress, 2011.

[24] C. Phillips and L. P. Swiler. A graph-based system for
network-vulnerability analysis. In Proceedings of the
1998 workshop on New security paradigms, pages
71–79. ACM, 1998.

[25] E. M. Reingold and J. S. Tilford. Tidier drawings of
trees. IEEE Transactions on Software Engineering,
SE-7(2):223–228, March 1981.

[26] N. B. Ruparelia. The history of version control. ACM
SIGSOFT Software Engineering Notes, 35(1):5–9,
2010.

[27] D. A. Shelly. Using a web server test bed to analyze
the limitations of web application vulnerability
scanners. Master’s thesis, Virginia Polytechnic
Institute and State University, 2010.

[28] M. Ward, G. G. Grinstein, and D. Keim. Interactive
data visualization : foundations, techniques, and
applications. CRC Press, Boca Raton, 2015.

[29] R. K. Wong and N. Lam. Managing and querying
multi-version xml data with update logging. In
Proceedings of the 2002 ACM symposium on
Document engineering, pages 74–81. ACM, 2002.

	1 Introduction and Motivation
	2 Related Work
	3 Toolchains
	3.1 Scanner Modules
	3.2 Analyzer Modules
	3.3 Estimating Default Gateways
	3.4 Iterative Scanning

	4 Network Visualization
	5 Software Prototype
	6 Results
	7 Conclusion
	8 Acknowledgements
	9 References

