E]

Towards Safe and Secure Autonomous and
Cooperative Vehicle Ecosystems °

Anténio Lima, Francisco Rocha, Marcus Vélp, and Paulo Esteves-Verissimo
SnT — Interdisciplinary Center for Security, Reliability and Trust
University of Luxembourg
firstname.lastname@uni.lu

ABSTRACT

Semi-autonomous driver assists are already widely deployed
and fully autonomous cars are progressively leaving the realm
of laboratories. This evolution coexists with a progressive
connectivity and cooperation, creating important safety and
security challenges, the latter ranging from casual hackers to
highly-skilled attackers, requiring a holistic analysis, under
the perspective of fully-fledged ecosystems of autonomous
and cooperative vehicles. This position paper attempts at
contributing to a better understanding of the global threat
plane and the specific threat vectors designers should be at-
tentive to. We survey paradigms and mechanisms that may
be used to overcome or at least mitigate the potential risks
that may arise through the several threat vectors analyzed.

1. INTRODUCTION

The American National Highway Traffic Safety Admin-
istration (NHTSA) and the European Commission Direc-
torate General for Mobility and Transport define autonomous
vehicles as “those in which at least some aspects of a safety-
critical control function (e.g., steering, throttle, or braking)
occur without direct driver input” [7]. In this sense, many
of our vehicles already have partial autonomy thanks to the
wealth of x-assists (drive, park, lane, etc.) they incorporate.
At the same time, almost all car manufacturers experiment
with fully autonomous vehicles and begin gathering kilome-
ters on roads and highways for their safety cases. But not
less importantly, connectivity has also been increasing, for
reasons like infotainment, traffic assistance, remote mainte-
nance or vehicle location. As this trend consolidates, to-
gether with a growing infrastructure, many opportunities
for cooperation between enabled vehicles arise, not only for
enhancing autonomous functionality, but also, and in fact
mainly, as we explain below, for driving safety.

*This work is supported by University of Luxembourg - Sn'T
and by Fonds National de la Recherche Luxembourg (FNR)
through PEARL grant FNR/P14/8149128.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.

CPS-SPC’16, October 28 2016, Vienna, Austria

ACM ISBN 978-1-4503-4568-2/16/10. .. $15.00
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

DOL: http://dx.doi.org/10.1145,/2994487.2994489

The main thrust of this position paper is twofold: (i) to
propose that we should look holistically at this quickly evolv-
ing problematic, as an ecosystem of autonomous and coop-
erative vehicles; and (ii) to perform an analysis of the global
threat plane that arises from this new reality, and from the
specific threat vectors designers should be attentive to.

By fitting cars with sophisticated sensors and actuators,
and an increasingly powerful network of electronic control
units (ECUs), complexity increases, and so does the like-
lihood of primordial faults, like defects and vulnerabilities.
Adding-up connectivity and cooperation further increases
system complexity and potentially adds new interaction faults,
and overall, all these faults become ezposed to external threats,
such as malicious attacks. This added complexity and open-
ness will amplify the threat plane as seen by vehicles and
other ecosystem components (e.g., road-side units). Further-
more, general connectivity and cooperation will become the
norm, and we predict that, besides cars, it will be extended
to e.g., pedestrians, bicycles, etc., forming a universe of ’sen-
tient’” objects, to use the phrasing of an early vision on this
subject [17]. In that sense, the autonomous and cooperative
vehicles ecosystem may soon emerge as a (virtual) critical
information infrastructure (CII) with great societal impor-
tance. As a consequence, the nature and intensity of threats
themselves is also bound to evolve. Further to accidental
faults and attacks by casual hackers, we should expect ad-
vanced persistent threats and targeted attacks mounted by
highly skilled and well-equipped adversaries.

In this paper, we contribute with a global threat plane def-
inition and a fairly complete set of threat vectors, which go
well beyond isolated cars, including road-side units, trusted
authorities, other enabled cars, and very importantly, the
new kinds of interactions that arise in this ecosystem. Past
literature has made quite important cases about existing
vulnerabilities and their successful exploitation, in specific
sectors of this ecosystem, such as Al-Kahtani [9], Mejri et
al. [47], Al-Sultan et al. [10], di Pietro et al. [22], and Mokhtar
and Azab [49]. Further studies can now draw on those very
useful contributions, in the context of our threat model,
to assess the likelihood and impact of successful attacks
through specific threat vectors, and how these risks can be
mitigated by the solutions we propose, drafted under the
perspective of attacks being performed by both casual and
highly-skilled adversaries.

In Section 2, we make the case for a holistic approach
to, respectively, cooperation and autonomy, and safety and
security, motivating by examples. Section 3 explores the
safety-security gap with insights into recent events. Sec-

http://dx.doi.org/10.1145/2994487.2994489
dori
Lima, Antonio and Rocha, Francisco and Völp, Marcus and Esteves-Verissimo, Paulo. "Towards Safe and Secure Autonomous and Cooperative Vehicle Ecosystems" Proceedings of the Second ACM Workshop on Cyber-Physical Systems Security and PrivaCy. ACM, 2016.

@inproceedings{lima2016ecosystem,
 title={Towards Safe and Secure Autonomous and Cooperative Vehicle Ecosystems},
 author={Lima, Antonio and Rocha, Francisco and Völp, Marcus and Esteves-Verissimo, Paulo},
 booktitle={Proceedings of the Second ACM Workshop on Cyber-Physical Systems Security and PrivaCy},
 year={2016},
 organization={ACM},
 isbn={978-1-4503-4568-2/16/10},
 doi={10.1145/2994487.2994489},
 url={http://dx.doi.org/10.1145/2994487.2994489}
}

tion 4 introduces the autonomous and cooperative vehicles
ecosystem. In Section 5, we present the threat model used,
and the threat vectors it conveys. After we analyze the
threat vectors, we sketch current and possibly future solu-
tions in Section 6. Section 7 concludes this article.

2. THE CASE FOR A HOLISTIC
APPROACH TO THE SAFETY AND
SECURITY OF AUTONOMOUS AND
COOPERATIVE VEHICLES

Imagine a driver seeing a woman on the side walk and
suddenly hitting the brakes to stop before a child runs after
a ball that was rolling onto the street. Did he see the child
or the ball? No. But from the gestures of the woman he
deduced apparent danger and proactively stopped his car.
Likewise, imagine that you are about to slowly enter an in-
tersection with right-of-way (priority-to-the-right) and you
establish eye contact with a faster driver coming from your
left, and from the mutual gestural language both achieve
consensus that you yield to her. Could both scenarios above
be possible if protagonists were current first generation au-
tonomous cars, which are individualistic (non-cooperating)?
Very likely, no. On the contrary, in the recent accident of a
Google car with a bus in a lane change conflict [6], both the
car driving program and the bus driver, acting individually,
decided to occupy the same spot in the lane at the same
time. This further shows that not only may cooperation im-
prove traffic management, but the lack thereof may be an
impediment to safety.

Eventually computer systems will understand these im-
plicit forms of communication. But until then, these and
similar situations will occur, which for the foreseeable fu-
ture are hard to tackle in an individualistic way. The sit-
uation is certainly bound to get worse when (individualis-
tic) autonomous cars of different makes start meeting on
the road. So, we should consider the next best technical
solution, which is to have autonomous vehicles and other
ecosystem entities cooperating through explicit communica-
tion: preceding cars, which might have been able to detect
the kid playing, or better, a smart band around the child’s
wrist, detecting his trajectory and beaconing to the car; or
performing consensus among several cars negotiating an in-
tersection, or changing lane. Naturally, there is a long road
ahead, for example, standardization of exchanged data and
the security of the communication infrastructure are major
challenges to realize this ecosystem vision.

We predict that cooperative driving will soon be inten-
sively in the agenda of autonomous driving stakeholders,
since it is a powerful way to improve safety, and brings an
additional set of functional benefits. However, cooperation
in this context means opening-up cars, road-side units and
other components of the ecosystem (wireless communication
will be a workhorse of this reality), increasing the threat sur-
face of these systems, not only to casual hackers, but also
to highly-skilled and well-equipped adversaries, capable of
perpetrating targeted attacks.

Imagine coordinated attempts to break into autonomous
cars and cause serious accidents, or to use them for blocking
roads for criminal or terrorist actions. Science fiction? No.
In the past, we have already seen successful attacks, and
several researchers [38, 43, 55, 19] have already identified
this kind of horror scenarios. Miller and Valasek [48] already

mounted a successful car attack, compromising the cellular
and Wi-Fi communication to shutdown the engine, disable
brakes and lock the doors. Law enforcement agencies, for
example, have already issued warnings about the increasing
possibility of vehicular cyber attacks [3].

While law initiatives and safety regulations may help pre-
vent a good deal of safety violations and casual attacks, a
subtle issue may contribute to obscure the perception of re-
ality. Traditional safety-case analyses may rightly assume
that the residual probability of faults in a well-designed car
control system leads, under an accidental fault threat model,
to an infinitesimal and acceptable probability of catastrophic
failure. We cannot help recalling the recent (one dead) ac-
cidents with Tesla autonomous cars [5, 4], allegedly due to
safety failures in the autonomous driving control system, and
conjecture that possibly the above-mentioned safety-review
goals have not been met.

However, whatever a defect/fault is, whose activation is
capable, even on very rare occasions, of causing a catas-
trophic failure, such as in the sad events above, then, in the
presence of intentional and malicious adversaries, the known
phrase “if it can happen, it will happen” risks being fulfilled,
defying stochastics. This safety-security gap may explain
why so many successful attacks could have been deployed,
in an extremely solid and dependability /safety concerned in-
dustry. So, in what concerns autonomous and connected or
cooperative vehicles, we argue for a change in the mindset
behind threat models and safety cases, when malicious ad-
versaries are part of the equation: security and safety must
go hand in hand from the first hour, both when analyzing
what may go wrong (safety I) and when ensuring correct
operation despite faults and attacks (safety II).

The threat model must equate simultaneously accidental
and malicious threats, as we propose in this paper, it be-
ing the case that malicious threat vectors will most of the
times superimpose themselves to accidental ones. Likewise,
the likelihood of safety (catastrophic) failures must be an-
alyzed under the perspective of both accidental and inten-
tional causes. For the latter, if systems are not hardened
by construction to proactively achieve resilience despite at-
tackers exploiting safety vulnerabilities, stochastics play a
moderate role in the way of protection.

3. SOME INSIGHTS INTO THE SAFETY-
SECURITY GAP

The many crashes due to unintended acceleration (UA)
of Toyota vehicles, happened lately in the US [18], allegedly
killed almost 90 people in the last decade. They yielded an
extensive investigation and trial [51] and as such became an
interesting case study, providing relevant insights onto our
argumentation. Note that these vehicles are in the lower
step of the autonomy ladder: the higher up we go, the more
important this problem becomes.

Before we start, let us align in abstract the logically pos-
sible causes for each of these accidents:

1. Accidental UA - and then, either: (a) directly due to a
specific mechanical, electrical or electronic/computing
defect; or (b) due to a weakness of fail-safe mech-
anisms, which, once activated by some generic elec-
tronic/computing defect, namely a software bug, would
fail to prevent leading the vehicle into UA. Given the
high repeatability of electronic/computing defects, it

should be relatively easy to find both deviations of
known good behaviour possibly causing 1(a) and the
weakness in 1(b), targeted to the fail-safe mechanisms,
despite possibly initiated by unknown causes.

2. Provoked UA - and then (we confine ourselves to elec-
tronic/computing defects, because of the repeatabil-
ity), either: (a) through the exploitation, by malicious
perpetrators, of a safety-impacting software defect di-
rectly leading to UA; or (b) the exploitation of a (set
of) non-safety-impacting defect(s), by malicious perpe-
trators, which would allow them first access to in-car
networks and/or ECUs and from there, to disturb the
control (and even the fail-safe mechanisms) by a direct
attack either on the buses schedules or on the ECU
code, ultimately leading to UA. Even given the high
repeatability, it might not be easy to find the cause of
2(a). As for 2(b), even without finding concrete at-
tack possibilities, a symptomatic study of the quality
of software might allow assessing the likelihood of this
scenario.

In the context of the trial investigations, some experts
(National Highway Traffic Safety Administration (NHTSA)
and NASA) thoroughly reviewed both hardware and soft-
ware, and concluded that they had found no evidence that
mechanics or electronics were to blame for the alleged UA.
Defects might still be there, but they would have to be ex-
tremely subtle, the kind of "heisenbugs’, or sporadic faults.

In any of the two latter cases anyway, the safety failure
scenario leading to UA should be too improbable to be re-
peatable by accident several dozens of times out of these
primordial causes. This would seem to make 1(a) or 1(b)
of accidental UA less likely. Nevertheless, another group of
experts (Barr) reviewed the source code with static analysis
tooling and diagnosed a relevant possibility of generic defects
existing in the code, without specifically identifying them.
Certainly, this brings back 1(a) or 1(b) as possibilities, due
to an ample conjunction of faults.

However, let us not forget the provoked UA scenario. The
first analyses cited may also seem to make 2(a) less likely.
However, the findings of Barr objectively point to a reason-
ably large degree of vulnerability (in relative terms, with
high safety standards in mind). Even without any safety-
impacting defect in the car under an accidental safety-case
scenario, i.e., in absence of 1(a), 1(b), and even 2(a), the ve-
hicle may still present a risk of provoked safety failure, if a
sufficient number of generic vulnerabilities exist, especially
zero-day vulnerabilities, because they may allow staging tar-
geted attacks to compromise otherwise correct components
of the system and, in the end, ultimately lead to UA.

Note that we are making absolutely no suggestion about
what might have happened, but just making a logical anal-
ysis of the odds and possibilities, destined as to prove our
point about the importance of closing the security-safety gap
in vehicle systems.

4. THE AUTONOMOUS AND
COOPERATIVE DRIVING ECOSYSTEM

We enumerate the components of the autonomous and
cooperative driving ecosystem we envision and briefly de-
scribe their functionality. We consider that all active com-
ponents of the system: (i) are connectivity-enabled with the

protocols agreed by the system; (ii) have in addition, for
those that are autonomy-enabled, incremental levels of ‘sen-
tience’ [17], through higher-level protocols and middleware
endowing them with the capability of acting autonomously
on information acquired from other sentient components or
the environment, directly or indirectly, and eventually co-
operate with other sentient components. The remaining ab-
stract components are considered ‘environment’. They in-
clude for example, legacy, i.e., non-enabled cars, bicycles,
pedestrians, etc. The figures depict the different actors we
describe below.

s-Car. An enabled, sentient
car with own sensors, in-vehicle
communication networks, proto-

(((a‘g;p \\\
cols and actuators enabling the

¢ Y
Al
overall operation of the vehicle.

It interacts with other sentient components via external
communication channels and protocols and with the envi-
ronment via its sensors and actuators. Whilst connected
and sentient, it drives with a level of autonomy that can
range from level zero (no automation) to level four (Full
Self-Driving Automation) in the NHTSA autonomous vehi-
cle level definition [7].

Road-Side Unit (RSU). It bridges
communication between s-Cars, and <(()>>
with further resources, e.g., the Inter-
net, or remote clouds. It can also act
as a SCADA-like system®, coordinating
and acquiring information from sentient
vehicles, in order to build near-real-time
images of the state of traffic or roads in the area.

Trusted Authorities (TA). The
system’s roots-of-trust, certifying di-
rectly, or indirectly, RSUs, s-Cars and
other s-Components. Certification is
achieved by validating member identi-
ties. TAs can be in the hands of public
or private organizations, e.g., NHTSA,
TUV or car manufacturers.

s-Components. As the ecosys-
tem evolves, we predict the appearance o S \ \\\
of other enabled, sentient components, ﬂ
such as bicycles and motorcycles, but

YN
SYrrrrd

also enabled pedestrians. Safety impact
can be enormous, if for example, s-Cars and the former can
Environment. Includes ev-
erything that is not connectivity-

enabled for a start, i.e., which

are not so-called active compo-

nents. In consequence, the phys-

ical environment itself of course

also ’legacy’ cars and other non-enabled, bicycles, pedestri-
ans, etc.

In summary, the active components described above, form
the autonomous and cooperative driving ecosystem, whose
architecture is depicted? in Figure 1. S-Cars connect with
other s-Cars and s-Components through vehicle-to-vehicle

exchange location and motion data.
kS
L
4 Ao
(roads, fixed obstacles, etc.), but
communication (V2V) to exchange information sensed from

!Supervisory Control and Data Acquisition.
2Let us ignore for now the threat vector arrows, whose mean-
ing will be explained in Section 5.

S

-

RSU System Provider

Figure 1. Autonomous and cooperative driving ecosystem architecture (and relevant threat vectors).

the environment and self-learned driving information (e.g.,
the trajectory of a car having overtaken part of the pla-
toon). Vehicle-to-infrastructure communication (V2I) con-
nects mobile s-Cars and s-Components with stationary road-
side units such as intelligent traffic lights, the base stations,
which are also used for mobile phone communication, and
other systems within wireless reach.

RSUs are connected through private networks and to the
Internet, therefore they may bridge between physically apart
ad-hoc vehicle networks (VANETS), and between s-Cars and
central servers. We call this connection between infrastruc-
tures infrastructure-to-infrastructure communication (21).
RSUs may improve situational awareness (bad condition,
debris, or obstacles on the road are typical examples of
SCADA-like state that can be passed from s-Cars detect-
ing them, to all others). The environment is not connected
and hence not shown in the figure: information about the en-
vironment must be sensed or received from other connected
components having sensed the environment. We now turn
to the security analysis of this ecosystem.

S. ANALYSIS OF THREAT VECTORS

In this section we describe general security and safety ex-
pectations, together with our threat model and threat vec-
tors to which the ecosystem in Figure 1 is exposed. To pro-
tect passengers and other traffic participants, autonomous
vehicles must preserve the following six properties in the
presence of both accidental faults and malicious attacks: (i)

correctness of the vehicle’s sensing, processing and actuat-
ing functions; (ii) correct and timely transmission of infor-
mation over several kinds of networks; (iii) integrity of the
control-state related data, generated and stored in the vehi-
cle’s ECUs or in the RSUs’ SCADA systems; (iv) avoidance
of single points of failure and generic tolerance of faults and
intrusions; (v) resilience against partial failures and contin-
ued compromises, as well as prevention of their escalation
through the ecosystem; and (vi) avoidance of over-sensitive
fail-safe shut-down mechanisms.

As with any other information infrastructure dealing with
personally identifiable information (PII), privacy also be-
comes an increasingly important protection goal in the au-
tonomous and cooperative vehicles ecosystem. For example,
regular V2I communication allows RSUs to track the loca-
tion of individual vehicles and their owners, which raises
privacy concerns.

Next we describe the threat model we are using in this
paper, taking into account the considerations made earlier:
autonomy and connectivity/cooperation; accidental faults,
casual hackers, targeted attackers. We derive a list of threat
vectors and superimpose them on the architecture of Fig-
ure 1.

5.1 Threat model

Technically, s-Cars, s-Components, RSUs and, to a lim-
ited degree, central servers, form a distributed real-time sys-
tem [40]. That is, both the correctness of values and their
timeliness have to be preserved. Timing assumptions are

formulated at different scales, from hard real-time x-by-wire
and engine control loops in ECUs with timings at the scale
of a few milliseconds, to near-real-time in the traffic infor-
mation functions of RSUs, which are able to tolerate delays
of a few seconds. We assume correct s-Cars and other s-
Components to follow common security and safety principles
and agreed protocols.

There are several levels of openness in the networks in-
volved, ranging from: the Internet, which is public; the RSU
intranets, which are private, but geographically exposed, ex-
hibiting wireless connections; the V2V networks, which are
public and wireless; in-car wireless networks; and the least
accessible, in-car cable networks, requiring either physical
access, or a first jump through the barrier between the car
wireless network gateway, and the remaining in-car network-
ing infrastructure. We assume threats may be deployed by
four categories of threat agents:

External (X): e.g., computers on the Internet, compro-
mised RSUs, hostile s-Cars or hostile computers near
s-Cars;

Local (L): compromised or hostile computers inside s-Cars,
connected media (e.g., rogue USB sticks).

Physical (P): compromised or hostile computers on main-
tenance sockets, rogue humans replacing or inserting
hardware; supply chain subversion.

Environmental (E): devices interfering with the physical
environment properties (e.g., jammers disturbing wire-
less transmissions or similar devices leading to creating
false sensor images); fake RSUs.

In this paper, we do a holistic analysis that builds the global
threat plane emerging not only from specific components of
the system and the vulnerabilities they may expose, but also
from new, complex interactions originating in a fully-fledged
ecosystem. We also take into account that it can be hit by
accidental faults and attacks by casual hackers, as well as by
advanced persistent threats and targeted attacks. Drawing
from the well-known AVI — attack, vulnerability, intrusion
— composite fault model [73], we decouple the existence and
accessibility of defects and vulnerabilities, from the faults
and attacks that may activate them, and which lead to the
view of the global threat plane. Although we define individ-
ual threat vectors, we are aware that real adversaries may,
and will, conjugate threat vectors and apply multiple agents
to mount intrusion campaigns to achieve their objectives.

In the definition of threat vectors, we do not impose bounds
on the leverage of threat agents, with the exception of com-
putational bounds such as the infeasibility of brute-force at-
tacks against encryption keys. Attackers may eavesdrop on
communication or become active and inject messages when-
ever this is feasible. We believe such an approach generalizes
the analysis. Given the defined threat plane, further studies
can easily investigate how likely and severely specific vul-
nerabilities (e.g., those found in previous studies) can be
hit, through the vectors described below and summarized in
Table 1.

5.2 Threat Vector #1:
Attacks on global communication

External entities and also local ones if compromised, may
be used to attack the global infrastructure for V2I and 121

communication. Attacks include: replaying messages (e.g.,
of an emergency vehicle to gain priority road access); dis-
tributed denial of service (DDoS) attacks or name server
attacks to temporarily bring down or disconnect part of the
infrastructure (e.g., TAs or home nodes used for authenti-
cating cars); and forgery of messages and identity attacks to
create a false perception of the environment [34] or to sim-
ulate different identities [23, 50]. Some of the above effects
can also be achieved through an attack by an environmental
agent jamming the wireless V2I signal.

For attacks to I2I infrastructure, moderate adversarial ef-
fort suffices to e.g., mount DDoS attacks against servers con-
nected via the Internet. V2I attacks are more demanding,
because RSUs are connected through intranets, which re-
quire an indirect attack or tampering with the authentica-
tion mechanisms (see Vector #7) to mimic an RSU.

V2I and I2I attacks may have a simultaneous effect on a
large number of s-Cars and s-Components. Through them,
adversaries may cause immediate disruption in a large region
(e.g., by blocking all access routes to a crime scene).

5.3 Threat Vector #2:
Attacks on local V2V communication

In addition to the infrastructure-based attacks, V2V in-
herits the attack possibilities from ad-hoc networks. Hence,
we have to consider network topology and the ability to
shield individual vehicles from the majority [37]. However,
we consider this attack vector less severe because of the fol-
lowing two reasons: (i) we expect RSU infrastructure to be
present in all critical places where traffic volume dictates
high speed or low distance in difficult road situations — in
these cases, threat vector #1 applies; and (ii) in those sit-
uations where no RSUs are present, traffic is more relaxed
to allow vehicles to travel at a velocity and distance where
autonomous functions have time to take over. Vector agents
can be local or external (e.g. resp., a compromised node in
the vehicular network or a rogue s-Car) or even environmen-
tal.

5.4 Threat Vector #3:
Attacks on in-vehicle communication

In-vehicle communication combines critical and not so
critical messages in the same network, separated through
gateways and fail-over mechanisms. Communication is based
on bus-based systems such as LIN [59] for sensor and ac-
tuator to ECU communication, MOST [2] for multimedia,
FlexRay [20] and CAN [53] for low-speed comfort and high-
speed tasks such as anti-lock breaking, engine control and
gears, and time-triggered Ethernet and wireless connections
(e.g., to signal tire pressure). Networks are typically wired
and attacks require physical access to the car (though un-
fortunately not always its interior [77, 67]) or compromised
local agents. But once inside, we point-out two flavors of this
attack vector: attacks on ECUs (e.g., by injecting messages
to the car’s buses to stop the vehicle or to change the en-
gine’s operation mode); and attacks on message timing. For
high speed buses such as Controller Area Network or time-
triggered Ethernet, late sends and artificial message delays
can be catastrophic as it may break the synchronization be-
tween CPU and network schedules, which in turn may result
in late event processing. Alien local or physical agents can
see their infiltration made possible by insufficient trust and
control access enforcement.

Vector Description Agents
#1 Attacks on global V2I/12I communication infrastructure X, L, E
#2 Attacks on local V2V communication infrastructure X, L, E
#3 Attacks on in-vehicle communication infrastructure L, P
#4 Attacks on vehicle computing nodes’ software L,P
#5 Attacks on road-side units’software X, P, E
#6 Attacks on sensors and control-sensitive data X, L, P, E
#7 Attacks on authentication mechanisms X, L, P
#8 Physical-level attacks P

Table 1. Threat vectors on autonomous and cooperative vehicle ecosystems

This threat vector and the following two form the attack
surface of classical autonomous but non-cooperative cars.
Attacks at this level are a prerequisite in order to control
and/or prevent action from local controls and corresponding
failsafe mechanisms (e.g., as a response to failures/attacks
at the cooperative level (Vector #1 and #2)).

5.5 Threat Vector #4:
Attacks on exposed vehicle software

Computing resources in autonomous cars are single- and
multi-core systems in ECUs, but in order to support the
increasingly complex and demanding autonomous and co-
operative driving tasks, we have increasingly graphics-based
systems (GPUs), FPGAs, high-end multicore systems, and
even standard PC-like platforms for infotainment. Tasks
in the latter systems will run on legacy operating systems
such as Ubuntu Linux and as such inherit all vulnerabilities
from PC systems. Even in the more robust control ECU
systems, vulnerabilities may loom, given the increased com-
plexity and frequent in-field update cycles in the desire to
sell and add new functionality. Likewise, due to the equi-
table access of ECUs to in-car buses, compromise of an ECU
yields arbitrary access to the bus. Once compromised, in-
jecting fake sensor data to a control loop on a remote ECU
is trivial [19, 41], in particular if the identifier is not hard-
coded to allow multiple identifiers and hence transmission
priorities per source. Some of these systems already provide
rudimentary safety-oriented resilience, however, these mea-
sures do not suffice against malicious nodes [60]. Local and
physical agents are those who normally operate through this
threat vector. On the physical side, one should further have
in mind supply-chain subversion, i.e., compromise of a part
before it is inserted in the car (e.g., during fabrication).

5.6 Threat Vector #5:
Attacks on exposed road-side unit software

RSUs serve as access point for V2I communication and
as bridge to the Internet and other infrastructures. As such
they show many similarities to mobile phone base stations
and inherit the threats they are exposed to. External agents
(from the perspective of the RSU) may penetrate RSU-
internal firewalls to gain access to the V2I network, to com-
promise computation code (e.g., of the consolidated traffic
situation) in order to signal false information to connected
vehicles. Furthermore, these threats can be consummated as
well through physical agents accessing the (normally unat-
tended) premises. Environmental agents in the area may
also set up fake RSUs [54].

5.7 Threat Vector #6:
&Attacks on sensors and control-sensitive
ata

This threat vector is concerned with the manipulation of
data needed directly or indirectly for control. Depending
on the position and leverage of the threat agent, it may not
require an active attack on control apparatus or server soft-
ware, but relatively low privileges on data repositories or
producer /transmission devices. It consists in manipulating
control-sensitive data in a way that ‘correct’ algorithms and
software produce ‘incorrect’ results. We foresee in-car data,
such as imaging, or RSU SCADA data, such as traffic state,
as potential targets of this vector. The example described
in [70] is, as the name says, intriguing, since it shows that
manipulated images which are, to the naked eye, no doubt,
vehicles, can fool the machine learning software modules.
This is an excellent illustration of the security vs. safety
gap of automobile safety cases, to which we alerted in Sec-
tion 2: malicious manipulation of autonomous driving image
recognition can cause crashes which emulate accidental fail-
ures; likewise with RSU near-real-time traffic information,
where a skilled manipulation attack may induce operators
or control software to take wrong decisions, wrecking havoc
in traffic. Control data may also be tampered with by en-
vironmental agents interfering with sensors (e.g., LIDAR)
detection [56]. In hindsight, although it seems that the re-
cent Tesla car crash [5] was provoked by an accidental failure
of image processing software, the defect is there, and even
if the probability of activating that defect were much more
reduced, so that the crash would “never” happen by acci-
dent, a motivated and skilled attacker might probably find
a successful attack along this vector.

5.8 Threat Vector #7:
Attacks on authentication mechanisms

Trusted Authorities (TA) are key in establishing trust be-
tween the different vehicles and road-side units. A central-
ized trusted service is a valuable principle since it enables
techniques to become simple and efficient by basing their
trust on the TA. The TA is usually responsible for assigning,
managing and revoking permissions of network members.
Much like in the public-key infrastructure, Trusted Author-
ities become single points of failure. The whole system is
built on trust provided by the TA. One of the problems is
assigning who would be in charge of certification. Govern-
ments, car manufacturers and chip producers are some of
the entities that could be involved in the process.

Like in Vector #1, control of a Trusted Authority and
corresponding secret keys used in authentication protocols

enables adversaries to mount large scale physical attacks by
installing and attesting rogue infrastructure.

5.9 Threat Vector #8:
Physical-level attacks

Hardware-level attacks are a delicate matter and should
be considered in any system that depends on a hardware
layer correctly implementing its specification. Since the soft-
ware in autonomous vehicles and RSUs executes on top of
hardware, compromising that same hardware exposes the
layers that depend and trust on it to execute its operations.
RSUs and autonomous vehicles are likely to be physically
accessible to adversaries that have time to plan and execute
attacks against these entities. Attacks, coming essentially
from physical agents, might range from complex design or
fabrication time attacks to the installation of a malicious
device on a vehicle’s on board unit [79].

6. TOWARDS SAFE AND SECURE
OPERATION

In this section, we summarize solutions and review related
work, in terms of mechanisms and paradigms to mitigate the
potential risks that may arise through the threat vectors
analyzed in the previous section. Table 2 lists the main
vectors covered by each of these solutions, as well as the
security and dependability properties secured or improved.

6.1 Trust Management and Access Control

One if not the major hurdle on the way towards depend-
able autonomous and cooperative driving is the longevity of
vehicles and the implied longevity of built in hardware and
software, whose upgrade gets hampered by certification re-
quirements. To partially mitigate this problem within cars,
manufacturers strive for more dynamic, upgradable systems
granting them the possibility of in-field software upgrades
and, through replacements or plugable extensions, also of
some hardware parts.

Less clear is the trust management of and access control
to data held and processed at RSUs and more remote infras-
tructures. But surely, multiple competing stakeholders have
an interest in accessing partially private information in the
data sets received. We can imagine co-migrating data vaults,
owned by the car’s manufacturer or its owner, who collects,
represents and grants access to data gathered from the ve-
hicle. Alternatively, RSUs could be under the responsibility
of government subcontractors as happens with traffic lights
and similar control systems today. Technical solutions for
policy and trust enforcement and supply-chain control al-
ready partially support these solutions. Any other solution
discussed in this section requires trust management and ac-
cess control policies. That is illustrated in Table 2 with a
special symbol reserved for this type of solutions.

Schlatow et al. [64, 63] define a framework for reconfigur-
ing complex systems while preserving certification through
contracts by validating that replacements fulfill contracted
requirements. Prevelakis et al. [57] describe policies and
mechanisms [29] for controlling resource access and commu-
nication in vehicles.

Future directions include cooperative access control sim-
ilar to crypto currencies, and security-based trust in safety
properties, confining compromised components with safety
emerging from a quorum of proactively self-repairing units.

6.2 Fault and Attack Containment in
Vehicular Networks

Arbitrary access of a compromised ECU to the bus, as
mentioned before in the description of threat vector #3, can
be prevented by a bus guardian [15], which restricts such ac-
cesses to the time window granted to the ECU. Techniques
known from classical IT, such as Network Access Control,
which restrict addition of unauthorized nodes, are worth-
while considering for in-car networks.

Since vehicle bus systems are of broadcast nature, intru-
sion detection mechanisms would have access to all traffic
and could work on detecting anomalies. A main necessity of
such an approach is the clear definition of patterns related
to attacks on vehicle networks that could be translated as
rules to the IDS [33]. An important challenge is to design
these intrusion countermeasures to preserve the timing guar-
antees of bus accessing tasks while recovering compromised
functionality (see Section 6.9 below).

In particular, it is not sufficient to encrypt messages to
protect integrity and confidentiality (c.f., [80]). Given access
to the bus, adversaries may alter the ciphertext of messages
and thereby prevent their timely decryption. Timely deliv-
ery of correct information is a prerequisite for the timely
operation of the control tasks, which depend on these mes-
sages. Redundant communication paths and dependability
enhancing network coding [27] tolerate some localized at-
tacks. Network coding can also be efficient against jamming
attacks to wireless V2V and V2I networks [26]. An interest-
ing question is how modern coding and fail-over techniques
can help survive network-level attacks. The use of a rolling
authentication window can ensure integrity and authenticity
in vehicular networks [39].

6.3 Fault and Attack Containment in ECU and
RSU Computing

For the more control oriented parts, AUTOSAR [1] is
a prominent specification of software stacks with a parti-
tioning kernel to guarantee temporal isolation between soft-
ware components that for many aspects remain black boxes
to the software integrators. AUTOSAR kernels (e.g., Vx-
Works [75], ErikaOS [24]) offer spatial and temporal isola-
tion and an API for inter partition communication. Sysgo’s
PikeOS [69] offers among others an AUTOSAR personal-
ity on top of a separation microkernel. Future challenges
include the integration and predictability of multicore [31,
72], GPGPUs [78, 36] and other heterogeneous computing el-
ements such as FPGAs [30], which are increasingly required
for complex autonomous driving applications such as sense
and avoid. No protection is available against kernel compro-
mise.

The security requirements discussed in the second threat
vector also extend to the software installed in Road-Side
Units. However, since these entities are stationary and an
attractive target for adversaries, they have some specific re-
quirements. A problem that needs special attention is how
to prevent rogue RSUs, because a successful attack com-
promises an important point in the communications scheme
of vehicular networks. A possible solution comprises the
use of mutual authentication and authenticated software in
RSUs. Intel TXT [28] offers remote attestation capabilities
which an autonomous vehicle can use to authenticate the
software executing on a RSU. This allows the vehicle to de-

g & = §
5 & 5 g N 8
Vectors ;5’ 577 5“’ < . 5‘170 f
Solutions (mechanisms, paradigms) covered S F < v ¢ =

Trust mgt. and access control all * R R H3 R R R
Fault/attack containment in-car network #3 X v v v X X
Fault/attack containment, ECU/RSU #3, #4, #5 X v v v X X
Policy /trust enforcement #1, #2, #3, #6 b v v v X v
Security-aware safety-cases #3, #4, #5, #6 X v v X x v
Privacy-preserving design/architecture F#1, #2, #6, #7 v X X X v X
Supply-chain control #4, #5, #8 X v v X X X
Trusted-trustworthy roots-of-trust #3, #4, #5, #7 v v v v v v
Replication, diversity, self-healing #4, #5, #7 X v v X X X

Table 2. Threat vectors, solutions and their fulfillment of security properties.
(* - clear trust management and access control policies are prerequisites for subsequent solutions)

cide whether or not to trust the RSU based on the software
it is executing, which prevents attackers from setting up a
rogue RSU with malicious software. Intel’s Software Guard
Extensions (SGX) [21] build upon and extend TXT to avoid
RSUs having to trust the RSU management operating sys-
tem (OS). Besides offering authenticated boot functionality,
SGX also offers trusted execution environments, which we
discuss in Section 6.8. However, in the presence of an un-
trusted management OS, current versions of SGX cannot
meet the availability guarantees cyber-physical systems re-
quire.

6.4 Policy and Trust Enforcement between
Components

Depending on the sensitivity of data, vehicles might not
need confidentiality or use encryption/decryption mecha-
nisms in their communications, but they always need au-
thentication in order to confirm that they are communicat-
ing with authenticated members of the network. For nor-
mal V2V communication, transmitters need only to hash
messages and sign, while receivers verify those signatures.
This procedure is relatively fast and fulfills the properties
of integrity, authentication and non-repudiation. Sensitive
data should be integrity and/or privacy protected prior to
exposure in communication or storage (for further details,
see also privacy-preserving design and architecture below).

Hamad et al. [29] propose a microkernel-based operating-
system architecture for ECUs and demonstrate how kernel
enforced capabilities can be combined with proxies to en-
force local and global (i.e., cross ECU) communication poli-
cies. The security of their approach relies on a tamperproof
microkernel, proxy and network stack for all in-car commu-
nication networks.

To prevent rogue RSUs and similar communication nodes
in V2V networks, authentication must be coupled with com-
munication as demonstrated by Parno [52]. Edge cloud
solutions in or near RSUs are likely to run software com-
ponents of multiple stakeholders without as clear a notion
of responsibility as inside the car. For example, we ex-
pect driving behavior analyses by insurance companies, traf-
fic management by public authorities responsible for the
road segment and driver or manufacturer specific tasks of-
floading for example part of the autonomous driving stack.

Whereas capabilities and similar access control mechanisms
in the OS suffice to enforce communication policies regu-
lating which component is authorized to communicate with
which other component, additional mechanisms are required
to control which information these components may reveal.
Research in information-flow control (see Sabelfeld and My-
ers [61] for a survey) offers program analyses for prevent-
ing unauthorized disclosure of information. However, fur-
ther research is required to better regulate partial release of
privacy-sanitized data [35].

6.5 Security-aware Safety-case Procedures

Safety-case procedures for autonomous and connected co-
operative vehicles require a change in mindset to not only
accept defects and faults as stochastic events with possibly
rare likelihoods of occurrence, but also as vulnerabilities that
attackers may exploit systematically in a stochastics defy-
ing manner. Extending modern safety-analyses (e.g., [74]),
we must equate accidental and malicious threats and ana-
lyze the likelihood of safety (catastrophic) failures under the
perspective of both accidental and intentional causes. Secu-
rity and safety must go hand in hand from the first hour
and systems must be hardened by construction, in order to
achieve resilience.

For in-vehicle systems, this implies not only considering
ECUs, the mechanical systems they control and the software
they run in isolation, but also their interplay with other
ECUs in the system. For example, it is well known that
exhaust management and engine control have a bidirectional
physical coupling: the higher the speed, the more timing
critical the engine control tasks become, and the higher the
CO- concentration in the converter, which in turn increases
the time-criticality of the injection control tasks regulating
fuel injection and in turn CO2 production.

Sophisticated combinations of attacks on the delicate tim-
ings in such coupled components, which would be minor and
tolerable if accidental and/or in-isolation, may easily bring
down the entire system in a non-detectable manner. Evi-
dence of the difficulty to find timing errors can be derived
from the work in [71], about an error in the timing analysis
of CAN bus message delivery. Bril et al. [14] detected this
error well over 10 years after industry adoption and long af-
ter this broken timing analysis supported the safety case of

cars. Although it remained undetected, adversaries knowing
about such a flaw might well have exploited it to bring down
or take over the system, in a non-detectable manner.

6.6 Privacy-preserving Design and
Architecture

Privacy concerns are a serious problem in the ecosystem
under consideration because, as we have already mentioned,
it handles personally identifiable information (PII). To try
and prevent such problems we need to use privacy-preserving
design strategies: privacy filters can be used to sanitize sen-
sitive data (e.g., by removing faces from the car’s video
stream [46]); regularly updated pseudonyms may be used
to sign messages without revealing the identity and thereby
violating the privacy of their owners; and encryption may
be used to communicate to outside infrastructures, such as
the World Wide Web, or in private communications (e.g.,
between authorities or in emergency vehicles).

For example, Raya et al. [58] combine public key infras-
tructure (PKI) with pseudonyms to handle privacy in vehic-
ular communication while maintaining a reasonable and sta-
ble performance with increasing network size. Sampigethaya
et al. [62] propose group signatures for smaller environments
such as platoons. Several authors [81, 45] link public identity
information (e.g., name and vehicle identification number)
to public keys in identity-based schemes.

6.7 Supply-chain Control

Supply-chain subversion has been heard of in other sec-
tors, and is very difficult to counteract, given the large out-
sourcing nature of the car manufacturing business (see Sec-
tion 6.8). A well-known example of fabrication-time attacks
on hardware is the dopant-level Trojan, which converts be-
nign circuitry into malicious circuitry through dopant ratio
manipulation on input pins [13].

Researchers have proposed two basic approaches to de-
fend against malicious hardware: (i) side-channel informa-
tion such as power and temperature and (ii) additional sen-
sors to measure features of a chip’s behavior (e.g. signal
propagation delay) [8, 44]. Although these defenses seem
to work against large Trojans, they are not effective when
considering recent attacks that require a single logic gate to
change a CPU’s mode [79].

Therefore, a possible approach in this area, is to counter-
act subversion ex-post, by using redundancy and diversity
techniques. For example, by resorting to manycore archi-
tectures where it is possible to obtain core heterogeneity to
limit the impact a particular manufacturer might have in
the system’s final security guarantees [12]. Using such a lay-
out can permit the use of trusted hardware to monitor the
behavior of untrusted hardware. These manycore solutions
also rely on isolation at the network-on-chip level, which can
overcome some of the known attacks against CPUs’ privilege
bits.

6.8 Trusted-trustworthy Root-of-trust
Components

Critical components can, for example, rely on ultra-reliable
hardware modules or microkernels to perform their func-
tions. Intel’s Software Guard Extensions (SGX) is a recent
technology that provides isolated execution environments
where security sensitive operations can be performed in a se-

cure manner. For example, only authorized software execut-
ing in an isolated execution environment can handle control-
sensitive data. This would prevent an attacker from manip-
ulating the data to trick the image processing algorithms.
Microkernels, on the other hand, are able to preserve avail-
ability despite untrusted management OSs, by virtualizing
the latter [68].

Another opportunity for use of such components is for
keeping the signing key of TAs secret. Because this key is
the base of trust in the system, isolating and protecting it is
crucial. They could be stored in extremely controlled phys-
ical environments with specialized security hardened hard-
ware, such as Hardware Security Modules [76]. Researchers
have also worked on providing the basic hardware compo-
nents for the protection of vehicle communications, achiev-
ing confidentiality and integrity at the lower levels. Features
include: an AES-128 bit engine in hardware, a True Ran-
dom Number Generator, Hardware-shielded storage, secure
system timer and a secure debugger [11].

Solutions for safe coordination between smart vehicles trav-
eling in an uncertain environment have also been previ-
ously studied. The generic architecture uses architectural
hybridization, separating components that execute baseline
functionality in a predictable and certified way, like a safety
kernel, from the generic payload components, which albeit
supporting more powerful and versatile functionality, might
be affected by run-time faults and uncertainties [16]. The
system is guaranteed to switch from cooperative to baseline
functionality when data validity is insufficient. This is a
good approach to maintain safety even when, for example,
communication channels are jammed.

6.9 Intrusion tolerance and self-healing

Availability is a must. Without it, cooperative schemes
come to a halt and nodes are forced into a non-cooperative
state. To mitigate this, redundant mechanisms or alterna-
tive communication media, such as GSM, should be avail-
able. Intrusion-resilient software techniques, such as secret
sharing and proactive recovery [65, 32|, have been used in
other sectors, and we advocate their adoption in car systems.
Byzantine fault tolerant solutions, together with proactive
and reactive recovery techniques, can be deployed both in
ECUs and in RSUs in order to achieve a resilient functional-
ity [42, 66]. IT infrastructures based on different technolo-
gies have been proven to bring substantial security gains [25].
We expect the same benefits to follow in an autonomous
and cooperative vehicle ecosystem. Because the structure
of vehicles themselves varies, based on manufacturer, model
and version, the road ecosystem is already quite diverse.
Given their importance to the overall system, TAs and RSUs
should apply similar techniques in order to enhance their in-
trusion resilience. MAFTIA [73] or COCA [82] are examples
of secure, intrusion tolerant architectures, using this kind of
techniques. Both frameworks aim at achieving high levels
of availability while relying in secure back-ends for confi-
dentiality and integrity. This is achieved with the combined
use of threshold cryptography, proactive recovery and secure
replication protocols, introduced above.

7. CONCLUSIONS

In this paper, we have studied the safety and security
challenges impending on current and forthcoming vehicular

systems, under the perspective of fully-fledged ecosystems of
autonomous and cooperative vehicles. We started by argu-
ing about why these systems will in a near future become im-
portant critical information infrastructures, simultaneously
featuring connectivity, autonomy and cooperation, and why
even today, threat analyses and safety cases should encom-
pass both faults and attacks, the latter ranging from casual
hackers to highly-skilled attackers.

By proposing to look holistically at this ecosystem of au-
tonomous and cooperative vehicles, we hope to have made a
contribution to a better understanding of the global threat
plane and of the specific threat vectors designers should be
attentive to. We acknowledge the contribution of prior lit-
erature cited, about specific vulnerabilities in sectors of this
ecosystem, which can now be put in context with our global
threat plane and vector analysis, to assess the likelihood and
impact of successful attacks by agents with different power.

This study was highly biased toward car systems. How-
ever, the latter would perhaps be, from the security/safety
binomial, the richer, most dynamic and most challenging of
the ecosystems where autonomy and cooperation surface in
several combinations. In consequence, we dare conjecture
that many of the challenges encountered by other vehicle
ecosystems, such as drones, for example, as well as some of
the solutions, would fit in the present analysis. We leave a
confirmation, and a possible generalization, for future work.

Further directions of future work include availability and
timeliness of enclave-based security architectures, adaptive
coding and failover for vehicular networks under attack and
security-aware safety-case analysis, both with the aim to
identify risks and to maintain known-safe operation in case
of partial compromise.

8. REFERENCES

[1] AUTOSAR: Automotive open system architecture.
Accessed: 2016-07-22.

[2] Media oriented systems transport.
http://www.mostcooperation.com/.

[3] Motor vehicles increasingly vulnerable to remote
exploits.
https://www.ic3.gov/media/2016/160317.aspx.
Accessed: 2016-03-21.

[4] Second tesla autopilot crash under federal scrutiny.
http://money.cnn.com/2016/07/06/autos/
tesla-autopilot-accident/. Accessed: 2016-07-08.

[5] Tesla’s autopilot has had its first deadly crash.
https://www.wired.com,/2016,/06/
teslas-autopilot-first-deadly-crash/. Accessed:
2016-07-05.

[6] Google self-driving car project. Monthly Report, Feb.
2016.

[7] N. H. T. S. Administration et al. Preliminary
statement of policy concerning automated vehicles.
Washington, DC, 2013.

[8] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi,
and B. Sunar. Trojan detection using ic fingerprinting.
In 2007 IEEE Symposium on Security and Privacy
(SP ’07), pages 296-310, May 2007.

[9] M. S. Al-Kahtani. Survey on security attacks in
vehicular ad hoc networks (VANETS). In 6th
International Conference on Signal Processing and
Communication Systems (ICSPCS), pages 1-9. IEEE,

2012.

[10] S. Al-Sultan, M. M. Al-Doori, A. H. Al-Bayatti, and
H. Zedan. A comprehensive survey on vehicular ad
hoc network. Journal of network and computer
applications, 37:380-392, 2014.

[11] L. Apvrille, R. El Khayari, O. Henniger, Y. Roudier,
H. Schweppe, H. Seudié, B. Weyl, and M. Wolf. Secure
automotive on-board electronics network architecture.
In FISITA 2010 World Automotive Congress,
Budapest, Hungary, volume 8, 2010.

[12] N. Asmussen, M. Vélp, B. Néthen, H. Hirtig, and
G. Fettweis. M3: A hardware/operating-system
co-design to tame heterogeneous manycores. In 21st
Int. Conf. on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’16, pages
189-203, New York, NY, USA, 2016. ACM.

[13] G. T. Becker, F. Regazzoni, C. Paar, and W. P.
Burleson. Stealthy dopant-level hardware trojans. In
Proceedings of the 15th International Conference on
Cryptographic Hardware and Embedded Systems,
CHES’13, pages 197214, Berlin, Heidelberg, 2013.
Springer-Verlag.

[14] R. Bril, J. Lukkien, R. Davis, and A. Burns. Message
response time analysis for ideal controller area network
(CAN) refuted. In Proc. of the 5th International
Workshop on Real-Time Networks (RTNGAZ06), 2006.

[15] G. Buja, A. Zuccollo, and J. Pimentel. Overcoming
babbling-idiot failures in the FlexCAN architecture: a
simple bus-guardian. In 10th IEEFE conference on
Emerging Technologies and Factory Automation
(ETFA), volume 2, 2005.

[16] A. Casimiro, J. Kaiser, E. M. Schiller, P. Costa,

J. Parizi, R. Johansson, and R. Librino. The Karyon
project: Predictable and safe coordination in
cooperative vehicular systems. In /3rd Annual
IEEE/IFIP Conference on Dependable Systems and
Networks Workshop (DSN-W), pages 1-12, 2013.

[17] A. Casimiro, J. Kaiser, and P. Verissimo. An
architectural framework and a middleware for
cooperating smart components. In 1st Conference on
Computing Frontiers, pages 28-39, Ischia, Italy, 2004.
ACM.

[18] CBSNEWS. Toyota "unintended acceleration” has
killed 89. http://www.cbsnews.com/news/toyota-
unintended-acceleration-has-killed-89/. Accessed:
2016-07-22.

[19] S. Checkoway, D. McCoy, B. Kantor, D. Anderson,

H. Shacham, S. Savage, K. Koscher, A. Czeskis,

F. Roesner, T. Kohno, et al. Comprehensive
experimental analyses of automotive attack surfaces.
In USENIX Security Symposium. San Francisco, 2011.

[20] F. Consortium et al. Flexray communications
system-protocol specification. Version, 2(1):198-207,
2005.

[21] V. Costan and S. Devadas. Intel SGX explained.
Technical report, Massachusetts Institute of
Technology, 2016. https://eprint.iacr.org/2016,/086.pdf
(Accessed: 2016-07-22).

[22] R. Di Pietro, S. Guarino, N. V. Verde, and
J. Domingo-Ferrer. Security in wireless ad-hoc
networks—a survey. Comp. Comm., 51:1-20, 2014.

[23] J. R. Douceur. The Sybil attack. In Peer-to-peer

http://www.mostcooperation.com/
https://www.ic3.gov/media/2016/160317.aspx
http://money.cnn.com/2016/07/06/autos/tesla-autopilot-accident/
http://money.cnn.com/2016/07/06/autos/tesla-autopilot-accident/
https://www.wired.com/2016/06/teslas-autopilot-first-deadly-crash/
https://www.wired.com/2016/06/teslas-autopilot-first-deadly-crash/

[31]

[32]

[33]

[37]

Systems, pages 251-260. Springer, 2002.

E. Enterprise. Erika enterprise 3.
http://erika.tuxfamily.org/drupal /content /erika-
enterprise-3. Accessed:

2016-07-22.

M. Garcia, A. Bessani, I. Gashi, N. Neves, and

R. Obelheiro. OS diversity for intrusion tolerance:
Myth or reality? In IEEE/IFIP j1st International
Conference on Dependable Systems € Networks
(DSN), pages 383-394, 2011.

M. Ghaderi, D. Goeckel, A. Orda, and M. Dehghan.
Efficient wireless security through jamming, coding
and routing. In Sensor, Mesh and Ad Hoc
Communications and Networks (SECON), New
Orleans, USA, June 2013. IEEE.

M. Ghaderi, D. Towsley, and J. Kurose. Reliability
gain of network coding in lossy wireless networks. In
IEEE INFOCOM, Phoenix, USA, April 2008.

J. Greene. Intel Trusted Ezecution Technology —
Hardware-based Technology for Enhancing Server
Platform Security, 2010.
http://www.intel.de/content /dam/www /public/us/en/
documents/white-papers/trusted-execution-
technology-security-paper.pdf

(Accessed: 2016-07-22).

M. Hamad, J. Schlatow, V. Prevelakis, and R. Ernst.
A communication framework for distributed access
control in microkernel-based systems. In 12th Annual
Workshop on Operating Systems Platforms for
Embedded Real-Time Applications (OSPERT16),
pages 11-16, Toulouse, France, July 2016.

J. Hauswald, M. A. Laurenzano, Y. Zhang, C. Li,

A. Rovinski, A. Khurana, R. G. Dreslinski, T. Mudge,
V. Petrucci, L. Tang, et al. Sirius: An open end-to-end
voice and vision personal assistant and its implications
for future warehouse scale computers. In Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pages 223-238. ACM, 2015.

J. L. Herman, C. J. Kenna, M. S. Mollison, J. H.
Anderson, and D. M. Johnson. Rtos support for
multicore mixed-criticality systems. In 18th IEEE Real
Time and Embedded Technology and Applications
Symposium, pages 197-208, April 2012.

A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung.
Proactive secret sharing or: How to cope with
perpetual leakage. In Advances in Cryptology -
CRYPTO 95, pages 339-352. Springer, 1995.

T. Hoppe, S. Kiltz, and J. Dittmann. Security threats
to automotive CAN networks—practical examples and
selected short-term countermeasures. In Computer
Safety, Reliability, and Security, pages 235—248.
Springer, 2008.

Y.-C. Hu, A. Perrig, and D. B. Johnson. Wormbhole
attacks in wireless networks. IEEE Jour. on Selected
Areas in Communications, 24(2):370-380, 2006.

J.-P. Hubaux and A. Juels. Privacy is dead, long live
privacy. Commun. ACM, 59(6):39-41, May 2016.

S. Kato, K. Lakshmanan, R. Rajkumar, and

Y. Ishikawa. Timegraph: Gpu scheduling for real-time
multi-tasking environments. In USENIX Annual
Technical Conference (ATC). USENIX, 2011.

S. Khandelwal and A. Abhale. Topology base routing

(38]

(39]

(40]

(41]

42]

(43]

(44]

(45]

[46]

(47]

(48]

(49]

[50]

[51]

[52]

attacks in vehicular ad hoc network — survey.
International Journal of Advanced Research in
Computer Science and Software Engineering, 3(11),
Nov. 2013.

R. Kirk. Cars of the future: the Internet of Things in
the automotive industry. Network Security,
2015(9):16-18, 2015.

P. Koopman and C. Szilagyi. Integrity in embedded
control networks. IEEE Security € Privacy,
11(3):61-63, 2013.

H. Kopetz and P. Verissimo. Distributed Systems,
chapter Real-Time and Dependability Concepts.
ACM-Press, Addison-Wesley, 2nd edition, 1993.

K. Koscher, A. Czeskis, F. Roesner, S. Patel,

T. Kohno, S. Checkoway, D. McCoy, B. Kantor,

D. Anderson, H. Shacham, et al. Experimental security
analysis of a modern automobile. In IEEE Symposium
on Security and Privacy (SP), pages 447-462, 2010.
L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem. ACM Trans. on Progr. Languages
and Systems, 4(3):382-401, 1982.

J. Lewis. A smart bomb in every garage? Driverless
cars and the future of terrorist attacks.
https://www.start.umd.edu/news/smart-bomb-every-
garage-driverless-cars-and-future-terrorist-attacks.
Accessed: 2016-03-21.

J. Li and J. Lach. At-speed delay characterization for
ic authentication and trojan horse detection. In
Hardware-Oriented Security and Trust, 2008. HOST
2008. IEEE International Workshop on, pages 8-14,
June 2008.

H. Lu, J. Li, and M. Guizani. A novel ID-based
authentication framework with adaptive privacy
preservation for vanets. In Computing,
Communications and Applications Conference
(ComComAp), pages 345-350. IEEE, 2012.

P. Ludivig. Detection of faces for mobile robots.
Master’s thesis, Faculty of Science, Technology and
Communication - University of Luxembourg, Aug.
2015. Sec. 5.6: Face Pixelation.

M. N. Mejri, J. Ben-Othman, and M. Hamdi. Survey
on VANET security challenges and possible
cryptographic solutions. Vehicular Communications,
1(2):53-66, 2014.

C. Miller and C. Valasek. Remote exploitation of an
unaltered passenger vehicle. Black Hat USA, 2015.

B. Mokhtar and M. Azab. Survey on security issues in
vehicular ad hoc networks. Alexandria Engineering
Journal, 54(4):1115-1126, 2015.

J. Newsome, E. Shi, D. Song, and A. Perrig. The Sybil
attack in sensor networks: analysis & defenses. In 3rd
International Symposium on Information processing in
sensor networks, pages 259-268. ACM, 2004.

C. of Oklahoma County. Bookout vs toyota.
http://www.safetyresearch.net/Library/
Bookout_v_Toyota_Barr REDACTED.pdf. Accessed:
2016-07-22.

B. Parno. Bootstrapping trust in a “trusted” platform.
In Proceedings of the 3rd Conference on Hot Topics in
Security, HOTSEC’08, pages 9:1-9:6, Berkeley, CA,
USA, 2008. USENIX Association.

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[67]

(68

[69]

K. Pazul. Controller area network (CAN) basics.
Microchip Techn. Inc, 1999.

D. Perez and J. Pico. A practical attack against
GPRS/EDGE/UMTS/ HSPA mobile data
communications. Black Hat DC, 2011.

J. Petit and S. E. Shladover. Potential cyberattacks on
automated vehicles. IEEE Trans. on Intelligent
Transportation Systems, 16(2):546-556, 2015.

J. Petit, B. Stottelaar, M. Feiri, and F. Kargl. Remote
attacks on automated vehicles sensors: Experiments
on camera and lidar. In Black Hat Europe, 2015.

V. Prevelakis and M. Hammad. A policy-based
communications architecture for vehicles. In
International Conference on Information Systems
Security and Privacy, Angers, France, Feb. 2015.

M. Raya and J.-P. Hubaux. Securing vehicular ad hoc
networks. Journal of Computer Security, 15(1):39-68,
2007.

M. Ruff. Evolution of local interconnect network
(LIN) solutions. In 58th Vehicular Tech. Conf. (VTC
2003-Fall), volume 5, pages 3382-3389. IEEE, 2003.
J. Rufino, N. Pedrosa, J. Monteiro, P. Verissimo, and
G. Arroz. Hardware support for can fault-tolerant
communication. In Proceedings of the 5th IEEE
International Conference on FElectronics, Circuits and
Systems, Lisboa, Portugal, September 1998, Sept.
1998.

A. Sabelfeld and A. C. Myers. Language-based
information-flow security. IEEE J.Sel. A. Commun.,
21(1):5-19, Sept. 2006.

K. Sampigethaya, L. Huang, M. Li, R. Poovendran,
K. Matsuura, and K. Sezaki. CARAVAN: Providing
location privacy for VANET. Technical report, DTIC
Document, 2005.

J. Schlatow, R. Ernst, M. Nolte, and M. Maurer.
Contract-based automated integration for complex
component-based systems. Design, Automation and
Test in Europe - Demo, March 2016.

J. Schlatow, M. Moestl, and R. Ernst. An extensible
autonomous reconfiguration framework for complex
component-based embedded systems. In IEEE
International Conference on Autonomic Computing
(ICAC), pages 239-242, July 2015.

A. Shamir. How to share a secret. Comm. of the ACM,
22(11):612-613, 1979.

P. Sousa, A. N. Bessani, M. Correia, N. F. Neves, and
P. Verissimo. Highly available intrusion-tolerant
services with proactive-reactive recovery. IEEE Trans.
on Parallel & Distributed Systems, pages 452—-465,
20009.

J. Staggs. How to hack your mini cooper: Reverse
engineering CAN messages on passenger automobiles.
Institute for Information Security, 2013.

F. Stumpf, C. Meves, B. Weyl, and M. Wolf. A
security architecture for multipurpose ECUs in
vehicles. In 25th Joint VDI/VW Automotive Security
Conference, Ingolstadt, Germany, 2009.

Sysgo. Pikeos.
https://www.sysgo.com/solutions/industry-
solutions/automotive/. Accessed:

2016-07-22.

[70]

[71]

[72]

(73]

(74]

[75]

[76]

[77]

(78]

[79]

(80]

(81]

(82]

C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna,

D. Erhan, I. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

K. Tindell, H. Hansson, and A. J. Wellings. Analysing
real-time communications: Controller area network
(CAN). In Proc. of the 15th Real-Time Systems
Symposium (RTSS’94), 1994.

T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat,

Z. Petrov, C. Rochange, E. Quinones, M. Gerdes,

M. Paolieri, J. Wolf, H. Casse, S. Uhrig, I. Guliashvili,
M. Houston, F. Kluge, S. Metzlaff, and J. Mische.
Merasa: Multicore Execution of Hard Real-Time
Applications Supporting Analyzability. IEEE Micro,
30(5):66-75, 2010.

P. E. Verissimo, N. F. Neves, C. Cachin, J. Poritz,

D. Powell, Y. Deswarte, R. Stroud, and I. Welch.
Intrusion-tolerant middleware: the road to automatic
security. IEEE Security Privacy, 4(4):54-62, July 2006.
E. Villani, N. Fathollahnejad, R. Pathan, R. Barbosa,
and J. Karlsson. Reliability analysis of consensus in
cooperative transport systems. In M. Roy, editor,
SAFECOMP 2013 - Workshop ASCoMS (Architecting
Safety in Collaborative Mobile Systems) of the 32nd
International Conference on Computer Safety,
Reliability and Security, Toulouse, France, Sept. 2013.
Windriver. Vxworks.
http://windriver.com/products/vxworks/. Accessed:
2016-07-22.

M. Wolf and T. Gendrullis. Design, implementation,
and evaluation of a vehicular hardware security
module. In Information Security and
Cryptology-I1CISC 2011, pages 302-318. Springer,
2011.

M. Wolf, A. Weimerskirch, and C. Paar. Secure
in-vehicle communication. In Embedded Security in
Cars, pages 95-109. Springer, 2006.

Y. Xu, R. Wang, T. Li, M. Song, L. Gao, Z. Luan,
and D. Qian. Scheduling tasks with mixed timing
constraints in gpu-powered real-time systems. In
Proceedings of the 2016 International Conference on
Supercomputing, page 30. ACM, 2016.

K. Yang, M. Hicks, Q. Dong, T. Austin, and

D. Sylvester. A2: Analog malicious hardware. In IEEE
Security and Privacy (SP), 2016.

J. Yoshida. Can bus can be encrypted, says trillium.
http:
//www.eetimes.com/document.asp?doc_id=1328081,
Oct. 2015. Accessed: 2016-07-22.

K. Zaidi, Y. Rahulamathavan, and M. Rajarajan.
Diva-digital identity in vanets: A multi-authority
framework for vanets. In 19th IEEE International
Conference on Networks (ICON), pages 1-6, 2013.

L. Zhou, F. B. Schneider, and R. Van Renesse. COCA:
A secure distributed online certification authority.
ACM Transactions on Computer Systems (TOCS),
20(4):329-368, 2002.

http://www.eetimes.com/document.asp?doc_id=1328081
http://www.eetimes.com/document.asp?doc_id=1328081

	Introduction
	The Case for a Holistic Approach to the Safety and Security of Autonomous and Cooperative Vehicles
	Some Insights into the Safety-Security Gap
	The Autonomous and Cooperative Driving Ecosystem
	Analysis of Threat Vectors
	Threat model
	Threat Vector #1:[1mm] Attacks on global communication
	Threat Vector #2:[1mm] Attacks on local V2V communication
	Threat Vector #3:[1mm] Attacks on in-vehicle communication
	Threat Vector #4:[1mm] Attacks on exposed vehicle software
	Threat Vector #5:[1mm] Attacks on exposed road-side unit software
	Threat Vector #6: Attacks on sensors and control-sensitive data
	Threat Vector #7:[1mm] Attacks on authentication mechanisms
	Threat Vector #8:[1mm] Physical-level attacks

	Towards safe and secure operation
	Trust Management and Access Control
	Fault and Attack Containment in[1mm] Vehicular Networks
	Fault and Attack Containment in ECU and RSU Computing
	Policy and Trust Enforcement between Components
	Security-aware Safety-case Procedures
	Privacy-preserving Design and Architecture
	Supply-chain Control
	Trusted-trustworthy Root-of-trust Components
	Intrusion tolerance and self-healing

	Conclusions
	References

