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ABSTRACT
The software-as-a-service (SaaS) market is growing very fast,
but still many clients are concerned about the confidential-
ity of their data in the cloud. Motivated hackers or mali-
cious insiders could try to steal the clients’ data. Encryption
is a potential solution, but supporting the necessary func-
tionality also in existing applications is difficult. In this
paper, we examine encrypting analytical web applications
that perform extensive number processing operations in the
database. Existing solutions for encrypting data in web ap-
plications poorly support such encryption. We employ a
proxy that adjusts the encryption to the level necessary for
the client’s usage and also supports additively homomor-
phic encryption. This proxy is deployed at the client and all
encryption keys are stored and managed there, while the ap-
plication is running in the cloud. Our proxy is stateless and
we only need to modify the database driver of the applica-
tion. We evaluate an instantiation of our architecture on an
exemplary application. We only slightly increase page load
time on average from 3.1 seconds to 4.7. However, roughly
40% of all data columns remain probabilistic encrypted. The
client can set the desired security level for each column using
our policy mechanism. Hence our proxy architecture offers
a solution to increase the confidentiality of the data at the
cloud provider at a moderate performance penalty.

Keywords
encrypted database; encrypted web application; homomor-
phic encryption; stateless proxy

1. INTRODUCTION
When outsourcing software to the cloud, clients are con-

cerned about the confidentiality of their data, but they still
want to process as much data as possible in the cloud. Mo-
tivated hackers or malicious insiders could try to steal the
clients’ data. Furthermore, governments now have two op-
tions to seize the clients’ data – at the cloud provider and
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at the client – which may cause problems for the clients in
case of cross-border investigations.

Encryption is a commonly proposed countermeasure to
this problem, but processing data while it is encrypted is
difficult. Fully homomorphic encryption [19] is the panacea;
highly secure, but currently too slow for practical adoption
and difficult to integrate into existing cloud applications.
Commercial vendors [1, 2, 3, 4] offer (format-preserving) de-
terministic and order-preserving encryption as an alterna-
tive. This solution has the advantage that the application
does not need to be modified and the performance penalty is
small. Yet, the security of the solution is questionable, since
the encryption must not interfere with any possible func-
tion of the application or the application’s functions must
be restricted. For example, if the application displays a ta-
ble of results that can be sorted according to any column,
by default all columns must be order-preservingly encrypted
whether the sorting is used or not. Encryption for process-
ing numbers – as limitedly offered in additive homomorphic
encryption – is not supported at all by these solutions.

Mylar by Popa et al. [40] uses (multi-key) searchable en-
cryption. This allows stronger (than deterministic) encryp-
tion, but requires to implement a different database and
search interface in the application. Moreover, searchable
encryption only offers limited search capabilities (equality
in the case of Mylar) and processing of encrypted numbers
is not supported.

In this paper, we present another solution approach to
this problem. We adjust the encryption to the function-
ality needed by the application and allowed by the data
owner. The idea of onion encryption was first popularized by
CryptDB [39], but only the databases can be outsourced to
the cloud while remaining protected. We extend the protec-
tion to cloud based web application by introducing a proxy.
The end users only have to utilize their web browser to access
the web application. While our solution provides extended
protection, it achieves a couple of architectural advantages:

• Encryption is adjusted to the application’s control-flow.
Only those database fields that are being used for search
are encrypted deterministically (or order-preservingly).
The other fields remain on a stronger encryptions.

• Additively homomorphic encryption is supported for
processing numbers as prevalent in many analytical
applications.

• Although our encryption scheme is stateful the proxy
performing the encryption and decryption at the client



is stateless. The proxy encrypts the requests and de-
crypts the responses in adjustment to the application’s
control flow and functions, but it only has to store the
keys. This implies that the proxy can be easily repli-
cated, administered and scaled for performance. The
proxies even can be deployed at spatially separated lo-
cations of multi-national clients.

• Only the applications’ database driver of the appli-
cation server – a standard component – is modified.
The web application can continue to query using the
full functionality of SQL. The database – including its
search algorithms – is not modified.

We are aware that when handling plaintext data in the
web browser cross-site scripting attacks may reveal this data
to adversaries. ShadowCrypt [22] offers a solution to this
problem, but our solution is orthogonal to their approach
enhancing the encryption for protection against the cloud
server. Nevertheless, as we will discuss later, our proxy is
able to partially process database queries which may pose
a problem for computationally weak devices, such as smart-
phones, when implemented in the browser (as ShadowCrypt
is).

The remainder of the paper is structured as follows: In the
next section, we review related work for systems operating
on encrypted data in the cloud. We then present the archi-
tecture, system components and threat model of the web ap-
plications we support in Section 3. In Section 4 we describe
the algorithms implementing the encryption, decryption and
database operations in this architecture. We present the
evaluation results of our implementation in terms of perfor-
mance, networking overhead and security in Section 5. In
Section 6 we give the conclusions of work.

2. RELATED WORK
We distinguish three types of related technologies: en-

cryption between application server and database, encryp-
tion using a proxy, encryption in the browser.

2.1 Database Encryption
Several technologies exist for end-to-end encryption of a

database. Hacigümüs et al. introduced processing SQL di-
rectly over a deterministically (DET) encrypted data in [20].
In their scheme search is very efficient, since the database
does not need to be modified and search operates as on plain-
texts. Still, range queries were problematic in their original
proposals. Order-preserving encryption (OPE) [8] solved
range queries also with plaintext search. OPE was later
formalized by Boldyreva et al. in [10, 11]. Still, static OPE
cannot achieve optimal security and later schemes with ideal
security were presented [31, 38].

Popa et al. built the CryptDB system [39] on top of this
research. It uses onion (adjustable) encryption and modifies
the database driver for encryption and decryption. We ad-
vance over this approach by extending the encryption to the
web application running on an application server. This fits
the common software-as-a-service (SaaS) model better than
solely database encryption. The encryption keys reside at
the client and the cloud servers cannot access plaintext data.
Thereby, the database server and the application server can
be deployed in the cloud, while the total control of the plain-
text data is solely in the hands of the client.

Song et al. introduced searchable encryption as a stan-
dard semantically secure encryption scheme that only leaks
the search and access pattern of queries [43]. A number of
schemes were introduced later with sublinear search time
[12, 15, 21, 23]. Yet, all of the approaches based on search-
able encryption suffer from limited search capabilities. Many
functions, such as grouping, joins or aggregations – as com-
monly used in any SQL database – are not supported. Hence
using searchable encryption requires significantly changing
the application and is not suited at all for our targeted an-
alytical applications.

Another approach of securing databases in the cloud is to
separate the database between two cloud providers. Ag-
garwal et al. first introduced this concept in [7]. Later
approaches extended this to multiple databases and cloud
providers [14, 18, 33].

While this is a very suited approach in terms of perfor-
mance, since little to no encryption is required, it is some-
what questionable from a security perspective. It rests on
the assumption that the cloud providers offer a common ser-
vice, i.e., they collaborate, but do not exchange data, i.e.,
they do not collude. This seems somewhat paradoxical given
that the working assumption for all of these approaches is
that the cloud provider is untrusted. Our approach works
with a single cloud provider. We see this as a clear advan-
tage.

There exist also a large number of encrypted database and
web applications which have been developed with specific
protocols for the application, e.g., benchmarking [24, 25, 32,
13, 28], RFID tracking [30] or reputation systems [26].

2.2 Encryption By A Proxy
Diallo et al. presented CloudProtect [16] in 2012. The

idea is to introduce a proxy that encrypts data before send-
ing it to the cloud and decrypt it in responses. However,
complex operations – such as aggregations – require to de-
crypt the involved data at the cloud, because these opera-
tions are not possible with (deterministic) encryption. Data
is re-encrypted after the operation was performed.

As with all of these approaches (until our proxy), the func-
tionality supported by the proxy is quite limited. CloudPro-
tect supports Google Calendar and Google Docs. The proxy
needs to be adapted to these or new applications, i.e., when
the application changes the proxy might need to change.
We anticipate that this model of operation does not scale,
since thousands if not millions of applications need to be
supported in the future. We therefore built our proxy into
an architecture that is independent of the application.

HPISecure [42] was later introduced and is similar to Cloud-
Protect. It does not support adaptive decryption and re-
encryption and hence has a simpler, easier-to-deploy design,
but does not support the same functionality or security.
Nonetheless, it is still dependent on the functionality of the
application and needs to adapt its configuration to applica-
tion changes.

There are several commercial systems that follow the proxy
encryption model, e.g. [1, 2, 3, 4]. All of these suffer the same
problems as the two approaches described before. A func-
tionality and security feature supported by our architecture
is not even mentioned in any of these solutions: the ability
to process encrypted numbers using additively homomorphic
encryption.



2.3 Encryption In The Browser
Popa et al. also developed Mylar [40], a system to build

web applications using searchable encryption. As mentioned
before, any system based on searchable encryption requires
modified search functions. A novel feature of Mylar is its
support for data sharing by proxy re-encryptable searchable
encryption. Proxy re-encryption [9] supports changing an
encryption key without intermediate decryption. Hence each
user can have its own key and still the cloud provider does
not learn plaintexts, but can perform (simple) searches. My-
lar employs several features, such as code signing, in order
to protect the data in the browser from malicious client-side
application code. A browser extension is required for this
functionality.

Our architecture works independent of the browser and
does not require any modification to it. It is not incor-
porated in our current implementation, but it is straight-
forward to add a code signature verification at the proxy.
Thereby, even weaker devices can benefit from this security
feature and several dedicated browser extension for differ-
ent operating system are unnecessary. We also require less
change to the application. Further, we support more opera-
tions than simple search, such as grouping, joins and aggre-
gations that are typical for analytical applications.

ShadowCrypt [22] is also installed as a browser extension.
It uses the browser’s Shadow DOM to perform encryption
and decryption. This has the strong advantage that mali-
cious application code cannot access the data. This is in-
deed a viable alternative technology to our proxy encryp-
tion approach once the Shadow DOM is generally available
in all browsers. Still, the ShadowCrypt approach so far
only supports the protection of textual data and no calcula-
tions at all. It is orthogonal to our approach and therefore
would benefit from extension with the type of technologies
we present in this paper.

3. ARCHITECTURE
In this section, we describe the application architecture

our implementation supports and the threats we protect
against. We emphasize that our implementation is only one
instance of the general architecture that supports a wider
range of technologies than we could support in our imple-
mentation.

3.1 System Components
Figure 1 gives an overview of the components involved in

our design. The end users utilize a web browser on their
preferred device to connect to a web application. The web
application is deployed on a server at the SaaS provider and
it is backed by a database on at a DBaaS provider. The
SaaS and DBaaS providers and the servers are not necessar-
ily different. The main component we introduce is a proxy
component between the end user’s browser and the appli-
cation server that is able to intercept every message. We
additionally modify the database driver at the application
server.

On end user interaction, the browser downloads the client-
side application resources (e.g. HTML file, images, Java-
Script files) and separately loads the content data after-
wards. We target our implementation to this two-tier web
application architecture that cleanly separates content data
requests from other application resources. We found such an
architecture in SAP’s UI5 framework for web applications.

SaaS Provider DBaaS Provider

Resources

OData 
Service

Database 
DriverProxy DatabaseBrowser

Client

Internet GatewayEnd User SaaS Servers DBaaS Servers

Figure 1: Architectural Components

Another example is the Meteor JavaScript web application
framework. However, the separation is no strict prerequisite
for our concept. The proxy could also scan every transferred
message for relevant information, but this has negative per-
formance implications and it is error-prone.

In SAP’s UI5, the application resources are downloaded
and most of the client-side application code is executed as
JavaScript in the web browser. The JavaScript issues con-
tent data requests via OData requests, which are processed
by the HANA XS Engine on the application server. OData
[36] is a data access protocol that allows resources, identi-
fied using URLs and defined in a data model, to be pub-
lished and edited by web clients using simple HTTP mes-
sages. It shares some similarity with JDBC and ODBC, but
OData is not limited to relational databases. The HANA
XS translates these OData requests into SQL queries for
the HANA database back end. The client-side application
code processes the OData responses and displays them using
dynamically created HTML.

Our proxy intercepts every message that is passed through
it. Then, it decides if further processing is necessary based
on a special HTTP header. This approach allows client-side
application code that is not written explicitly for our design.
Only the special header must be added at all messages that
contain sensitive information. This allows great flexibility,
because applications that use our protection and others can
be used in parallel without explicit routing.

In our implementation, only the OData content data re-
quests and responses contain this header, because only these
messages contain sensitive information. The proxy encrypts
data values in requests and decrypts them in responses. As
a result, the application and database operate only on en-
crypted data. The OData service transforms the incoming
OData requests to SQL queries and transforms the SQL re-
sult sets to OData responses. We modify the database driver
that performs this transformation to match to the adjustable
encryption in the database.

The main task of our proxy is to encrypt and decrypt val-
ues. However, we explain in Section 4.2.5 that the proxy
additionally supports post-processing of queries. This is re-
quired if a part of the SQL query that was created by the
OData service is not supported on encrypted data. Loosely
speaking, the database driver splits the database query into
two parts in this case: the first one that can be executed on



encrypted data and the second one that – in combination
with the first one – cannot be executed on encrypted data.
The second one, however, can be executed after decryption.
The first and the second query composed sequentially de-
liver the same result as the original query. The result of
the first database query – along with the second query – are
sent to the proxy. The proxy decrypts the result, stores the
plaintext values in a local database and executes the second
query on the plaintexts. Only the result of the second query
is sent to the browser.

Our proxy also supports TLS requests and responses (i.e.,
HTTPS connections) by introducing a man-in-the-middle:
The proxy pretends to be the server towards the client and
pretends to be the client towards the server. Commonly,
TLS would prevent this “attack”, because the session key is
tied to the public key of the server. This public key in turn
is part of the server’s certificate, which is signed by a trusted
certificate authority (CA). The proxy has no access to the
server’s private key and thus could not access the session
key and read the encrypted contents. The workaround is to
register the proxy as a trusted CA by installing a root cer-
tificate on the client’s device (works as long as HTTP Public
Key Pinning (HPKP) [17] is not employed). The new CA
is then used by the proxy to create dummy certificates for
each TLS protected site that the client visits. The proxy
changes the actual public key to a key for which it knows
the corresponding private key and is then able to decrypt
the messages. It is important to note that this introduces a
man-in-the-middle for every connection routed through the
proxy, i.e., the proxy is able to read every message exchanged
with every HTTPS protected website. However, this may be
an acceptable approach, especially in an enterprise setting,
because the proxy is trusted by the clients and most enter-
prises like to control all clients. Further security implications
depend on the deployment of the proxy. In the remainder
of this paper, we assume an unprotected connection.

3.2 Threat Model
The dotted line in Figure 1 shows the trust boundary. The

components on the left are assumed to be trusted. Our sys-
tem is designed to increase the burden for accessing sensitive
data at the cloud provider’s site (right). The threat entails
hackers or malicious insiders trying to access the client’s
data.

We do not, however, protect against a malicious appli-
cation programmer. Since a significant portion of the ap-
plication is executed in JavaScript on the plaintext at the
browser, the application could siphon the plaintext to any
untrusted destination. Our design is compatible with code
signing approaches for the code executed at the browser, but
these also only introduce a level of indirection, since the ap-
plication provider (programmer) needs to sign the code and
is inherently trusted. Our proxy is ideally suited to verify
the signatures and hence no modifications to the browsers,
such as a browser extension, are necessary.

Currently, we also do not protect against malicious at-
tackers that exploit vulnerabilities in the application’s code.
Cross-site scripting attacks may introduce (unsigned) JavaScript
code that can again siphon the decrypted query results to
any destination. As mentioned before, our approach can
be combined with ShadowCrypt [22] to protect against this
threat.

Besides the encryption of the client’s data, we implement
a policy mechanism for key release (see Section 4.2.3). In
order to adjust the encryption, the database driver needs to
receive the key for the higher layers of the onion encryption.
We implement a policy mechanism, such that the client’s
proxy will not release arbitrary keys to the cloud provider.
Instead, the proxy checks against a policy for an allow or
deny decision defined by the client. The application’s per-
formance may be adversely affected in case of deny, but the
security settings are preserved. This prevents key exfiltra-
tion attacks by the cloud provider.

Our encryption is designed to provide the maximum secu-
rity given the functionality and performance needed to exe-
cute the application. We only encrypt those columns deter-
ministically that the client actually used for search. Hence
we anticipate several columns to remain under a stronger
than deterministic encryption. Furthermore, we integrate
additively homomorphic encryption for restricted number
processing. Using proxy post-processing we support the full
functionality of SQL and the application programmer can
resort to this standard interface.

4. ALGORITHMS

4.1 Encryption Schemes
We employ several different encryption schemes that sup-

port different operations in SQL. We use probabilistic en-
cryption (standard AES encryption in GCM mode), deter-
ministic encryption (Pohlig-Hellman encryption [37] over the
elliptic curves), order-preserving (Boldyreva et al.’s encryp-
tion scheme [10]) and additively homomorphic encryption
(Paillier encryption [35]). We briefly explain the features
of each encryption scheme (except AES, which we consider
well-known).

4.1.1 Deterministic Encryption
Deterministic encryption maps each equal plaintext to a

single ciphertext. Hence equality comparisons can be per-
formed between ciphertexts as well as between plaintexts.
This enables the database in the cloud to perform equality
comparisons using the same algorithm as used for plaintexts
– no change to the database is required.

By default, we encrypt each database column with a dif-
ferent key. This allows comparison between the column-
values and a constant supplied in the query (encrypted with
the same key), but comparison between columns are not
possible. Proxy re-encryption is used to also allow these
comparisons: the cloud provider transforms ciphertexts en-
crypted with key KA to ciphertexts encrypted with KB

without revealing the plaintext and without downloading
the data. Changes are made persistent to save costs for fu-
ture queries. Our database driver loads the current state out
of the database and follows the algorithm by Kerschbaum et
al. [29] for choosing which column to adjust. This algorithm
converges to a stable state and it achieves the best possible
worst case bound of necessary re-encryption.

4.1.2 Order-Preserving Encryption
In order-preserving encryption, the order of the plaintext

is preserved in the ciphertexts. Hence greater-than com-
parisons can be performed between ciphertexts as between
plaintexts. This enables the database in the cloud to per-



form greater-than comparisons using the same algorithm as
used for plaintexts.

We encrypt each database type with its own key, since
we assume that comparisons between different types are the
rare exception and no proxy re-encryption scheme for (se-
cure) order-preserving encryption is known. Furthermore,
our order-preserving encryption scheme needs to be deter-
ministic, because the onion layering of the encryptions that
we use: the order-preserving layer is surrounded by a deter-
ministic encryption layer. Every lower layer has to support
functionality of higher layers.

Naveed et al. [34] presented attacks on deterministic and
especially on order-preserving encryption. Our solution ap-
plies a policy checking mechanism (see Section 4.2.3) that
provides protection against these attacks, because the client
is able to prohibit the decryption of columns with low fre-
quency. Furthermore, the weaknesses are orthogonal to our
approach and recently presented OPE schemes [27, 41] that
counter these attacks, can be used.

4.1.3 Additively Homomorphic Encryption
In additively homomorphic encryption, a specific opera-

tion on the ciphertexts maps to addition of the plaintexts.
Hence, additions can be performed using the ciphertexts.
Yet, the result of the addition is still encrypted in the ho-
momorphic encryption scheme. This can be used to imple-
ment aggregations in the database. One needs to replace
plaintext addition by the homomorphic operation (in our
case modular multiplication). In many databases this can
be done using user-defined functions (UDF), although a na-
tive implementation is usually more efficient. Multiplication
between encrypted columns is not supported by our homo-
morphic encryption scheme, but we support multiplication
by a plaintext (e.g. a value added tax rate).

4.2 Encryption Adjustment

4.2.1 Encryption Layers
Every value in the database is encrypted by multiple onions

with layered encryption schemes. The database operations
in SQL queries are matched to specific layers. One onion
initially stores a 3-layer ciphertext for each data item x in a
column. x is first encrypted using order-preserving encryp-
tion: EOPE(x). This ciphertext is then secondly encrypted
using deterministic encryption: EDET (EOPE(x)). Finally
this already layered ciphertext is encrypted using probabilis-
tic encryption: ERND(EDET (EOPE(x))). Another onion
stores x surrounded by additively homomorphic encryption:
EHOM (x).

All keys for the encryption schemes are maintained only

at the proxy. Let KRND|DET |OPE
X be the secret key for col-

umn X for the respective encryption scheme RND, DET or
OPE. In order to simplify key management, we derive all
keys from a master key using a secure key derivation scheme.

4.2.2 Adjusting Decryption
The onions are designed in a way that the lower layers

support strictly more operations than the higher layers. Fur-
thermore, we can safely assume that probabilistic encryption
is more secure than deterministic, which is more secure than
order-preserving encryption. We follow the basic idea of Cr-
pytDB [39] and adjust the encryption as needed by removing
encryption layers.

The database driver maintains the state of the encryption
of each column. Whenever the client-side application issues
a query the database driver determines the database oper-
ations executed by the query, maps those to the respective
encryption schemes and compares them to the state of the
encryption. An adjusting decryption is performed, if the
column is encrypted using a higher layer than required. The
proxy sends the required key(s) along with the request to
the database driver, which then removes the higher layer(s)
by decryption. If the column is already encrypted in appro-
priate layer, no action is necessary.

The adjustment is never reversed except by administra-
tor intervention. The assumption is that once the cloud
provider has learned a ciphertext, it can use it for cryptanal-
ysis. Since it may be difficult to determine when exactly a
successful attack has occurred, we operate under the worst-
case assumption that the cloud provider is always subverted
by the adversary.

4.2.3 Policy Checking
On the one hand, an advantage of adjustable onion en-

cryption is the flexibility that the executed queries do not
need to be known in advance, but the encryption is adjusted
to the queries actually executed. Thus, only the actually
taken execution paths influence the level of encryption. On
the other hand, the application may perform queries that re-
quire encryption levels, which are unacceptable to the client.
To cope with this problem, we implement a policy checking
mechanism in addition to the key management in the proxy.

A policy may specify which encryption schemes are al-
lowed for a database column. Usually it only makes sense
to specify policies according to the encryption layers, i.e.,
whether a column may be exposed in deterministic or order-
preserving encryption, although our policy language allows
arbitrary specifications.

Consider the following examples: Medical images can be
stored in a cloud database. Let this column be named xray.
In most applications there is little need to search these in the
database. Therefore, the data can remain encrypted with
probabilistic encryption. This corresponds to the encryption
level desirable by data protection legislation. The client can
set a policy that the only allowed encryption layer for column
xray is RND implying that the keys KRND

xray and KDET
xray are

never revealed to the cloud servers.
In order to compress the policy specification to the most

important security settings, we assume a default policy of
exposing all encryption layers except the plaintext, i.e., the
keys KOPE and KHOM are retained at the client at all times.
The client then only needs to specify those columns that de-
viate from the regular behavior of adjustable onion encryp-
tion.

4.2.4 Stateless Adjustment
Compared to [39], we do not only protect the database.

Instead, we additionally protect the web application. This
introduces a challenge: the database driver maintains the
state of the database whereas the keys are held and the
encryption of the query parameters is performed by the
proxy. Hence the proxy, which also must perform (syntactic)
query analysis in order to determine the necessary encryp-
tion scheme and keys, must operate without knowledge of
the state of the database. We solve this challenge in the fol-
lowing manner: The proxy determines the necessary encryp-



tion scheme based on the OData query. The proxy assumes
that the layered encryption is at the highest layer, i.e., the
initial state. The proxy determines all necessary decryption
keys for adjusting decryption from the highest layer to the
necessary layer. Afterwards, it checks the configured policy-
restrictions regarding encryption keys. If no rule denies, it
sends the keys along with the query. The database driver
analyses the resulting SQL query, determines the necessary
encryption scheme and compares them to the database state.
If an adjustment is necessary, it uses the supplied keys for
decryption and caches the keys. Otherwise, it discards the
keys.

The proxy also encrypts the constant parameters of the
queries to match the encryption of the database. It assumes
that the layered encryption is at the highest layer necessary
for the operation and encrypts the parameters correspond-
ingly. The database driver then compares the assumed layer
against the actual layer. If the actual layer is lower, it uses
the cached keys to adjust the encryption of the parameter
by decrypting the higher layer. Then the query is executable
on the ciphertexts.

We illustrate this algorithm by an example. Assume we
start with a freshly uploaded database and all columns are
encrypted using randomized encryption. Furthermore, as-
sume the client starts by issuing the following OData query
(we show the corresponding SQL as a footnote):

http://host/service/people?

$select=name&$filter=age ge 21∗

The result of this query contains the names of all people
21 and older. Two columns appear in the query – name

and age. Only projection is used for name, so it can remain
encrypted with probabilistic encryption whereas a range se-
lection is performed over age. Hence the constant 21 must
be encrypted using order-preserving encryption. Addition-
ally, the age column at the database has to be on this layer,
which might require the removal of encryption layers.

The proxy encrypts the constant in the OData query and
forwards the query to the application server in the cloud.
The necessary keys for layer removal are added to this query
(if no policy-restriction denies):

http://host/service/people?

$select=name&$filter=age ge EOPE(21)†

KEYS: KRND
age , KDET

age

The database driver in the cloud adjusts the encryption of
the database column age to order-preserving encryption by
decryption using the two supplied keys. The query can now
be performed on the encrypted database using standard
database operators. The keys are stored at the database
driver for later layer removals.

Assume now that the client next issues the following OData
query:

http://host/service/people?

$select=name&$filter=age eq 65‡

The result of this query contains the names of all people aged
65. The same two columns as above appear in the query, but

∗SELECT name FROM ppl WHERE age >= 21
†SELECT name FROM ppl WHERE age >= EOPE(21)
‡SELECT name FROM ppl WHERE age = 65

this time an equi-selection over age is performed. Hence age

must (only) be encrypted using deterministic encryption.
The proxy in this case forwards the following query mes-

sage to the cloud.

http://host/service/people?

$select=name&$filter=age eq EDET (EOPE(65))§

KEYS: KRND
age

The database driver does not need to perform any adjust-
ment of the database, since the column is already encrypted
using order-preserving encryption (a lower layer). However,
the parameter is surrounded by a deterministic encryption
layer, which does not match the current database state. For
that reason, the database driver uses the cached key KDET

age

to decrypt the query parameter to EOPE(65). It then per-
forms the query on the encrypted database using standard
database operators.

In case of joins the proxy may not be able to precisely
determine the necessary keys for re-encryption (or adjust-
ment), since the current key of the column may be different
depending on the sequence of previous queries. We there-
fore offer a callback interface in the proxy for the database
driver to request such keys. We apply strict policy checking
to these requests (see Section 4.2.3).

4.2.5 Post-Processing
Not all encryption schemes support all database opera-

tions. For instance, OPE does not support aggregations.
Hence, it may be the case that operators follow each other
that require incompatible encryption schemes. Common ex-
amples are sorting or selecting of aggregate values. Consider
the following query:

http://host/service/people?$select=zipcode,

totalIncome&$orderby=totalIncome&$top=3¶

This query returns the zip codes with the top 3 aggregate
incomes among all people. In order to execute this query the
database first needs to compute the aggregate income for all
zip codes via additively homomorphic encryption scheme.
Then the database needs to sort the rows by this homomor-
phically encrypted values. Yet, it cannot do this, because
the values are randomized. Hence this query cannot be en-
tirely executed on the database server.

We solve this problem by splitting such queries into two
or more parts at the application server. Our proxy sends
the entire query including the keys that are required for ad-
justment (KRND

zipcode in the example) to the application and
consequently to the database driver. The database driver
then builds the operator tree in relational algebra. It pro-
cesses the tree from the leaves to the root. For each node it
maintains the list of supported encryption schemes. Once it
encounters a parent that does not support any of the cur-
rent encryption schemes it splits the query. This might hap-
pen multiple times. The database server executes the lower
part(s), which leads to one or multiple temporary results.
Additionally, the driver synthesizes the upper part of the
SQL query that combines the temporary results to the final
result. The temporary table(s) and the upper part are re-
turned to the proxy. It is always possible to create an SQL

§SELECT name FROM ppl WHERE age = EDET (EOPE(65))
¶SELECT TOP 3 zipcode, SUM(income) FROM ppl GROUP
BY zipcode ORDER BY SUM(income)



query split that lead to sequential processing at the server
and then at the proxy. However, there might exist several
split alternatives by rearranging the SQL query to transfer
less data. More optimal split mechanisms are subject to
on-going research.

In the running example, the part executed on the server
is:

SELECT zipcode, SUM(income) FROM ppl GROUP BY

zipcode INTO temp

The database server uses the key KRND
zipcode to decrypt zip

codes in the database to deterministic encryption if nec-
essary. The aggregation is possible with additively homo-
morphic encryption without any adjustments. The resulting
temp table contains all zip codes and the aggregated income
of people at a specific zip code. This table along with the
upper part of the query is returned to the proxy:

RESULT: temp[zip,sum(income)]

UPPER PART: SELECT TOP 3 * FROM temp ORDER BY

sum(income)

The proxy loads the temporary table(s) into a local caching
database, decrypts all values, executes the upper part of the
query returned by the database driver and creates a OData
response that is forwarded to the browser. The result set
returned from the local database after performing the upper
part SQL query exactly matches the result of the original
query. Since all queries can be executed on plaintext data,
this algorithm allows to execute all SQL queries.

We note that – even in the running example – the tempo-
rary table(s) may be larger than the final result table. In the
running example, the temporary database contains a row for
each zip code whereas the result table contains three rows.
This is inevitable given the expressive power of SQL. How-
ever, the number of zip codes is normally a lot smaller than
the number of people, which means that the aggregation of
values – the computation intensive work – is performed in
the cloud.

In our evaluation we also measure the expansion of mes-
sage sizes due to our encryption and post-processing (see
Section 5.5). We show that the potential increase in data
transfer can be managed. Despite the fact that it can be very
critical, encryption of numerical values is not supported at
all in the commercial solutions available on the market. For
instance, a credit card application where numerical values
represent personally identifiable data requires this type of
encryption. We emphasize that during our evaluation, using
real-world applications, we encountered that all queries re-
quire a split of the SQL query. For analytical applications it
is typical to sort aggregated values. We conclude that with-
out our splitting algorithm encrypting the numerical values
would not be possible in analytical applications.

5. EVALUATION

5.1 Test Setup
We implemented our architecture for evaluation. The

proxy component was implemented using mitmproxy – a
Python proxy – and a Java application for query processing
(including post-processing) and encryption/decryption. The
modification to the database driver was done directly inside
the HANA XS application server. We ran our experiments
using the setup as in Table 1.

Client Proxy Cloud Server
Operating
system

Windows 8.1
64-Bit

SUSE Linux ES
11 64-Bit

SUSE Linux ES
11 64-Bit

Software Chrome 44
mitmproxy &

Java 7 Server VM
SAP HANA SP7

CPU
Intel Core
i5-5300M
@ 2.6GHz

Intel Xeon
E5-2670

@ 2.6GHz

Intel Xeon
E5-2670

@ 2.6GHz
Memory 8GB 256GB 256GB
Network
connection

1 Gb/s 1 Gb/s 1 Gb/s

Table 1: Test Environment

5.2 Example Application
We evaluate our proxy’s ability to support the query func-

tionality that is required by the SHINE Sales Dashboard.
SHINE is a part of a standard SAP HANA deployment and
intends to demonstrate the breadth of functionality of native
SAP HANA applications [5].

The SHINE Sales Dashboard is a comprehensive analyt-
ical application developed for sales managers. It comprises
several charts and tables in three tabs containing the sales of
a company. Our architecture supports all tabs, but we only
describe the the first tab, because it contains the most com-
plex requests. It provides representations of important sales
information (see Figure 2). More specifically, four charts are
displayed at this tab that represent the following:

• Top left: The sales distribution per region (AFR,
APJ, AMER, EMEA).

• Top right: The sales distribution per country (e.g.,
DE, US, FR).

• Bottom left: Companies with a discount greater than
zero for a selected region (sales manager can select the
region).

• Bottom right: The top ten customers ordered by
total sales.

Figure 2: SHINE dashboard screenshot

The four charts are implemented using four OData queries.
We emphasize that all four queries require post-processing
and hence no number encryption could have been integrated
without our novel proxy architecture. We briefly describe
the specific queries.



Top left chart (Ch1): The query triggered by this
chart is quite complex. The main task of the query is to join
several tables with sales order information. Eight distinct
tables are involved and about 10,000 unique data rows are
selected during the join. Finally the SQL query adds up the
net amount for each region in the join result and sorts the
total results.

Our architecture is able to perform the complex joins and
the sum of sales for each region directly on the encrypted
table. Thereby the client’s infrastructure saves the computa-
tion intensive part of the query. However ordering aggregate
values leads to a conflict of encryption schemes and requires
post-processing: the proxy sorts the total results after de-
cryption.

Top right chart (Ch2): The query is very similar to
the one of the top left chart except that the sum is calculated
over each country instead of each region.

Bottom left chart (Ch3): This chart triggers the
most complex query in the application. The join operation is
equal to the join operation required in the two upper charts.
However, the results are not just totalized for this chart.
Instead, four additional calculations are executed:

• All sales from a specific region (chosen by the sales
manager) within a period of time are selected and the
total is computed per company.

• The ten companies with the highest total sales are se-
lected.

• The discount of these companies is evaluated based on
the region, number of orders, order rank, total sales
and sales rank. The order and sales ranks are clas-
sifications that are based on a comparison to other
companies in the selected region and time period.

• All companies with a discount greater than zero are
selected.

Again, our architecture is able to perform the complex
joins directly on encrypted data at the cloud provider. The
first additional step requires equality matches and range
queries and can also be executed directly on the database.
Unfortunately, already the second step requires post-processing,
because it uses an order of total values. Therefore, the third
and fourth steps can also not be performed in the cloud and
have to be done by post-processing at the proxy.

In the example data shipped with the application we had
45 rows in the temporary table. This is still significantly
smaller than the thousands of individual sales entries.

Bottom right chart (Ch4): The query of this chart is
very similar to the one of the bottom left chart except that
only the total sales are returned (without calculation of the
discount).

5.3 Performance
The most important performance metric we measure is

page load time, since it influences the user’s perception of
the application. As page load time we understand the time
from the beginning of the first HTTP request (triggered by
the end user) until the last HTTP response is received and
displayed. We use Chrome’s DevTools to measure the page
load time and only one page load at a time was measured.
We compare the page load time for three different setups:

• Plaintext version: plaintext data is used and the con-
nection is directly from browser to application without
a proxy.

• Proxied plaintext version: plaintext data is used and
every message is routed through mitmproxy but only
forwarded.

• Encrypted version: encrypted data is used and every
message is routed through mitmproxy. The content
data messages are processed by the Java application.

We assume that all necessary layer removals and re-encryptions
were already done, because they are only a one time over-
head.

Figure 3 depicts the mean page load time of ten exper-
iments including the 95% confidence intervals. Our archi-
tecture increases the page load time by an average factor of
1.5 including post-processing in our test setup. This is an
absolute value of 1.58s.
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Figure 3: Page load time (ms)

The increase of 1.58s is composed of two parts. Firstly,
the time introduced by the (mitm)proxy to decide which
messages have to be processed and which are only forwarded.
Secondly, the time introduced by the en- and decryption in
the (Java) proxy and the processing of encrypted values at
the database. The first part is independent of our design,
but only due to the used proxy software. The second part
is additional time introduced by the design.

Our measurement of the proxied plaintext version in Fig-
ure 3 depicts that already the interception is responsible for
a factor of 1.4 and 1.17s absolute. This means that the in-
troduction of a proxy into the architecture and especially
the not overly efficient processing of mitmproxy is responsi-
ble for the largest part of the increased time consumption.
This is unfortunate, since it is not the focus of our research,
but may falsify our otherwise impressive results. We con-
clude that a dedicated, fast proxy could vastly reduce the
difference between the plaintext and the encrypted version.
However, we can assume the proxied plaintext version as a
baseline to show the impact of our encryption scheme. The
factor between the proxied plaintext and the encrypted ver-
sion – the factor introduced by data protection – is only 1.1
(410 ms absolute).

We then identify in detail where the additional time is
spent by measuring the time for each individual HTTP re-
quest by the browser. An HTTP request can be either for
application resources (web pages, images, etc.) or for con-
tent data (OData data requests). We add the times of all
HTTP requests for the three different versions. The results
are depicted in Figure 4.

We see in Figure 4 that the sum of the request times in-
creases from 1.9 seconds in the plaintext version to 5.3 sec-
onds in the proxied plaintext version and to 6.1 seconds in
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Figure 4: Request overhead (ms)

the encrypted version. This is much larger than the increase
of the page load time. The explanation is that we mea-
sure a distributed, partially parallel system and the browser
can sent multiple requests in parallel and render the dis-
play while handling further requests. Hence the impact of
prolonged HTTP request is not immediately impacting the
user. Furthermore, we see that the time spend for simply
forwarded application resources increases by introducing a
(slow mitmproxy) proxy. This again substantiate the argu-
ment that mitmproxy takes time to process messages and a
faster proxy would improve the performance. The time dif-
ference at the resources between the proxied plaintext and
the encrypted version accounts for the header identification
to decide if a message has to be processed. This time would
also be reduced with a fast proxy. We emphasize that the
content data – i.e., the encryption related – increase in the
requests only accounts for less than 0.5 seconds.

We then examine in detail where the time introduced by
encryption – the content data part of Figure 4 – is spent.
For each request we measure:

• Time spent in the Java component of the proxy, i.e.,
the time for (post-) processing the query, encrypting
parameters and decrypting results.

• Time spent at the application and database server.

• Time spent for network transfer and the processing in
mitmproxy (other category).

We measure for each of the four queries – Ch1 to Ch4 – of
our application. The results are depicted in Figure 5.
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Figure 5: Content data processing time (ms)

We see in Figure 5 that query Ch3 has the highest pro-
cessing time. This is not surprising, since it is the most
complex query. We furthermore see that the most time is
spent by the servers processing the encrypted values in the
cloud. This is also not surprising, since the database needs
to perform modular multiplications for the additive homo-
morphic encryption. The differences between the queries are

mostly accounted for by the processing time in the crypto
part of the proxy. We explain the difference by the following
two observations. First, for the second part of the queries
– Ch3 and Ch4 – the proxy needs to decrypt more entries.
Second, it needs to perform more complex post-processing.

Furthermore, we examined the scalability of our approach
via an artificial test application. The only functionality of
this application is to show a table with data values. The
data values are loaded through an OData service and the
corresponding SQL query requests data from a single table
containing five columns (without any calculations or joins).
We present the content data processing time for six different
versions of this application in Figure 6. The “DetX” versions
request data from tables that contains deterministically en-
crypted values, i.e., all plaintext values are surrounded by
a DET layer. The “ProbX” versions request data from ta-
bles with probabilistic encrypted values. More specifically,
all values are surrounded by a DET and an RND layer. Be-
sides the encryption, the versions differ in the number of
data rows: 10, 100 and 1000.
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Figure 6: Content data processing time for different query
sizes (ms)

The figure shows that the processing time per row does
not increase. Instead, the processing time average per row is
12.5ms, 2.4ms and 1.2ms for 10, 100 and 1000 deterministi-
cally encrypted rows, respectively (95% confidence interval:
+− 0.191ms, +− 0.036ms and +− 0.013). This shows that the
amortized time per data row quickly decreases when increas-
ing the number of transferred data rows. Another observa-
tion is that takes roughly 1.3s to query, transmit and decrypt
5000 values encrypted with DET and RND. However, the
proxy only requires 0.59s to perform the decryption. This
shows that the decryption only adds a moderate overhead.

We summarize the encrypted processing of analytical ap-
plication adds little overhead in general and in particular
little overhead noticeable by the end user. The processing
of encrypted data in the proxy adds comparable overhead as
the processing of encrypted data in the cloud. Hence we do
not introduce a major performance bottleneck by our archi-
tecture. We conclude that encrypted processing using the
proxy architecture is a viable alternative in terms of perfor-
mance from an end user perspective.

5.4 Concurrent requests
The performance measurements in the last sections were

based on the assumption that only one end user accesses a
protected application and this end user loads the next page
only after the last requested page was fully loaded. We now



relax this assumption and analyze how our design handles
multiple end users that access a page at the same time.

We again use the artificial test application for this test.
More specifically, we utilize Prob100, i.e., a table with 100
data rows and 5 columns whereas each values is surrounded
by a DET and an RND layer. 100 rows were used, because
SAP UI5 only loads 100 rows by default (independently of
the rows in the database). Therefore, this can be assumed
as a good indicator for many SAP UI5 based applications.

We used the Apache JMeter framework [6] to perform the
performance measurements with multiple requests. JMeter
is not able to parse JavaScript and the relevant requests are
based on JavaScript calls. Therefore, we directly executed
the content data call. We configured JMeter to start 55
concurrent threads and to perform a fixed amount of content
data requests per second (RPS).

The graph in Fig. 7 depicts the peak load test. It shows
that the implementation scales well for 1 to 29 RPS: only
a small increase in the content data load time is observ-
able. However, the system measurement breaks at 30 RPS
with our hardware configuration. We call this point the sys-
tem overload point in the following. It depends on the used
hardware and it cannot be prevented (if only one machine is
used). The reason for overload is that the load time of one or
multiple requests exceed the one second time interval. Nev-
ertheless, JMeter again starts the same amount of requests
in the next second (30 in our example). At this point, one or
multiple requests are still in the queue, because the process-
ing was not finished in the last second. This leads to even
more requests that cannot be processed within this second.
In theory the request load time would increase without a
limit. It is clear that every hardware reaches its system
overload point at one specific RPS value.
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Figure 7: Average load times for multiple content data re-
quests per second

This peak load test also located the bottleneck of the de-
sign in our test setup: the CPU of machine with the proxy
was fully occupied. This is presumably caused by the de-
cryption operations. In contrast, only around 800 KB/s were
transferred from the proxy to the application server and ap-
proximately 1 GB memory were used even at 29 RPS. We
used high end hardware, but this shows that a far slower net-
work connection and far less memory would have delivered
comparable results.

It is important to note that the RPS at the system over-
load point does not equal the number of users that can use
the system simultaneously. The maximal supported user
amount corresponds to the average time (in seconds) be-
tween requests per user multiplied with the maximal sup-
ported RPS value. For instance, around 400 end users could
use the system simultaneously (assuming an equal load dis-

tribution) if they on average trigger one request every 16
seconds and the hardware infrastructure supports 25 RPS.

Our measurement reveals the specific system overload point
in our experimental setup. However, our solution is espe-
cially well suited to shift this point, because the proxy is
stateless. The proxy can be replicated to as many applica-
tion servers as required and a load balancer could distribute
the requests to satisfy the requested load.

5.5 Message Size
We measure the expansion of messages sizes due to our

encryption and post-processing. The application resources,
which actually account for the majority of network traffic
(see Figure 4), are excluded as they aren’t changed. Table
2 shows the messages sizes and the increase factor between
plaintext and encrypted processing in data request and re-
sponse. We see a significant increase in response – around
a factor of 4 – already for queries Ch1 and Ch2 where no
additional data is transferred as part of the temporary re-
sult (before post-processing). Queries Ch3 and Ch4 show
larger increases – around a factor of 13 –, since they require
to transfer additional data entries for post-processing. Still,
the overhead seems manageable as also underpinned by our
performance evaluation.

Content data request Content data response
Plain. Enc. Incr. factor Plain. Enc. Incr. factor

Ch1 756 805 1.06 811 2801 3.45
Ch2 758 807 1.06 1091 5323 4.88
Ch3 858 1475 1.72 951 13812 14.52
Ch4 732 781 1.07 1076 12511 11.63

Table 2: Message sizes (in bytes)

5.6 Security
We first evaluate the level of encryption of a database

while running our example application. Of course, order-
preserving encryption allows better cryptanalysis than de-
terministic encryption, which allows better cryptanalysis than
randomized encryption. Still, all columns remain encrypted
– at least at the order-preserving layer – and we can also
encrypt numbers for aggregation using additively homomor-
phic encryption.

Phase 3 in Figure 8 shows the encryption state after exe-
cuting all features of the SHINE application. We count the
number of columns encrypted in probabilistic (RND), de-
terministic (DET) and order-preserving (OPE) encryption.
Due to its analytical nature and the high number of joins
in the application we indeed expected a high number of de-
terministic and order-preserving encryptions. Still, approx-
imately 40% of all columns are either used only for analytic
processing or retrieval and thus can remain on randomized
encryption. None of the columns used in this application
contain personally identifiable data. Therefore, the clients
have to decide if this protection level is sufficient or if they
need to deploy a stricter policy via our key policy mecha-
nism. Here we achieve a clear security benefit over other
solutions that limit the encryption of aggregate values.

Furthermore, Figure 8 shows the evolution of the encryp-
tion layers over multiple executions of the application. The
phases 1, 2 and 3 correspond to the successive execution of
features as encountered during test runs. In phase 1, we only
viewed the application pages. The initially triggered content
data request still require joins and sorts, which leads to the
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17 columns on deterministic encryption and 2 columns on
order-preserving encryption. In phase 2, we used compar-
ison filters on the UI to select certain entries, which let to
more DET encrypted columns (20). Finally in phase 3, we
used a typical feature of our application: sorting by user-
specified columns. Columns were decrypted to the order-
preserving layer only after this sorting was explicitly trig-
gered. Thereby, 6 DET columns were decrypted to OPE
encryption. This shows that architecture can adjust the en-
cryption to the features of the application that are actually
used and executed

Opposed to other approaches – that require the applica-
tion to be deployed in a trusted environment – our design is
well suited to dynamically meet the clients’ security require-
ments, even if the application is deployed at an untrusted
cloud provider. Especially our policy checking mechanism
provides a great flexibility for the clients. For instance, they
can forbid any key publishing in the beginning and evalu-
ate the behavior of the system. The application is still fully
functional, but this leads to bad performance, because al-
most all content data requests lead to post processing. How-
ever, the clients can dynamically reduce the restrictions to
find their ideal trade-off between security and performance.

6. CONCLUSIONS
In this paper we examine encrypting web applications that

use significant number processing on the database. Both, the
web application and the database, can be deployed in the
cloud. Nevertheless, the client remains in full control over
the encryption keys. They even can configure fine-grained
key publishing rules to achieve the security guarantees they
want. We employ additively homomorphic encryption and
a client-server split in order to post-process data after de-
cryption on the proxy. Our architecture introduces a very
moderate performance penalty despite complex analytical
processing. We significantly enhance encryption to roughly
40% probabilistic encrypted data columns.

We conclude that even encrypted number processing in
web-based cloud applications – a typical SaaS offering – is
technically feasible. The integration effort on client-side as
well as on application provider side is small. The client
only needs to install (and configure the policy for) a proxy.
The application provider only needs to modify the database
driver. For most applications no application specific config-
uration in the proxy is necessary and hence the application
can change without a necessary modification at the proxy.
This is a further advantage compared to many existing –
including commercial – solutions. Our proxy architecture
is stateless and can hence be easily replicated for further
performance scaling.
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