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1. Introduction
We study exact and approximate methods for maximum inner product search (MIPS).
Given a large database of real-valued vectors—called probe vectors—as well as a query
vector, the MIPS problem is to find all probe vectors that have a large inner product
with the query vector. MIPS is a fundamental problem in a number of data mining and
information retrieval tasks, including finding good recommendations in recommender
systems [Koren et al. 2009; Koenigstein et al. 2012], reasoning about extracted facts in
open relation extraction [Riedel et al. 2013], multi-class or multi-label prediction with
hundreds of thousands labels or classes [Dean et al. 2013], and object detection with
deformable part models [Dean et al. 2013; Shrivastava and Li 2014a].

In this article, we consider multiple variants of the MIPS problem, which differ in
what is considered a large inner product, whether the search is exact or approximate,
and whether there is just one or multiple query vectors. We focus on settings in which
the number of vectors is very large (order of millions), the vectors have medium di-
mensionality (say, 10–500), and the vectors vary in L2 norm. This is a common setting
in many MIPS applications.
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A simple way to solve the MIPS problem is to perform naive search, i.e., to com-
pute the inner product between the query vector and all probe vectors and output all
probe vectors with large inner products. Such an approach is generally computation-
ally infeasible. Consider for example a MIPS problem with 10M probe and 10M query
vectors of dimensionality 50. Then naive search conducts 100 trillion inner product
computations. If each inner product computation takes about 100 ns on average (as
in our experimental study), it takes more than 100 days for naive search to complete
(ignoring any other costs such as I/O costs).

To avoid such expensive computations, a number of exact and approximate algo-
rithms for MIPS have been proposed in the literature. These algorithms can gener-
ally be categorized into (i) methods customized for MIPS and (ii) methods that trans-
form MIPS into a single similarity search problem. Customized methods aim to exploit
properties of the MIPS problem in order to build suitable index structures. Examples
include ball and cone tree methods [Ram and Gray 2012; Koenigstein et al. 2012],
cover trees [Curtin et al. 2013; Curtin and Ram 2014], and the LEMP framework pro-
posed in this article. Transformation-based methods are based on the observation that
the MIPS problem can be reformulated as a similarity search problem in a (slightly)
higher dimensional space. These methods transform a given MIPS instance into a
single large cosine similarity search or Euclidean nearest-neighbor search problem,
and then apply a suitable similarity search method. Examples of such approaches in-
clude PCA-Tree [Bachrach et al. 2014], asymmetric LSH [Shrivastava and Li 2014a;
2014b], and simpleLSH [Neyshabur and Srebro 2014]. Our LEMP framework differs
from transformation-based methods because LEMP transforms a given MIPS instance
into multiple search problems, instead of a single one.

In this article, we propose the LEMP framework1 for both exact and approximate
MIPS. LEMP makes use of the fact that both the L2 norms and the directions of two
vectors influence the value of their inner product. LEMP exploits this fact by group-
ing the input vectors into buckets such that the vectors within a bucket have similar
L2 norms. LEMP subsequently solves a smaller cosine similarity search problem for
each bucket to obtain the final result. This procedure allows LEMP (i) to exploit the
L2 norms of query and probe vectors for pruning buckets, (ii) to choose a suitable
search technique individually for each remaining bucket (and query), and (iii) to im-
prove cache locality by keeping buckets small so that they fit into the processor cache.
LEMP supports approximate MIPS by using more aggressive pruning techniques as
well as approximate methods for solving the within-bucket search problems. Our meth-
ods provide approximation guarantees and allow to trade-off result quality and speed.

To process buckets, LEMP is able to leverage any existing method for cosine similar-
ity search or MIPS. We consider a number of such methods, including the well-known
threshold algorithm (TA, [Fagin et al. 2001]) and techniques for cosine similarity
search such as L2AP [Anastasiu and Karypis 2014] or cover trees [Curtin et al. 2013].
We propose two novel methods for exact cosine similarity search, termed COORD (for
coordinate-based pruning) and ICOORD (for incremental coordinate-based pruning);
our methods are tailored for their use within the LEMP framework and, according to
our experimental study, are generally more efficient than alternative methods. We also
propose four novel methods for approximate search: LEMP-ABS and LEMP-REL are
based on ICOORD, LEMP-LSHA is based on an adaptive variant of locality-sensitive
hashing (LSH, [Gionis et al. 1999]), and LEMP-HYB is a hybrid method.

We conducted an extensive experimental study, in which we compared state-of-the-
art techniques—including LEMP—on multiple real-world datasets. Our study aims to

1A preliminary version of this article was published in [Teflioudi et al. 2015]. The name LEMP stems from
finding Large Entries in a Matrix Product, a problem equivalent to MIPS.
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provide insight into the relative performance of customized and transformation-based
methods. For exact search, we found that LEMP consistently outperformed prior meth-
ods and can be multiple orders of magnitude faster than naive search. We also found
that the performance of existing exact methods for MIPS increased when used within
the LEMP framework; the best-performing method overall, however, was a variant
of the ICOORD algorithm. For approximate MIPS, the best-performing method was
dataset-dependent. We found that a combination of the symmetric transformation
of Neyshabur and Srebro [2014] with the high-performance search algorithm Annoy2

generally outperformed all prior methods but LEMP. On two out of the three datasets,
LEMP offered the best trade-off between result quality and speed and was second
only to Annoy on the third one. LEMP provided up to 2x higher recall (for a fixed
execution time) and up to 3.7x speed-up (for a fixed quality level) compared to the
best-performing previous method.

The remainder of this article is structured as follows: Sec. 2 discusses applications of
MIPS and formally defines (multiple variants of) the MIPS problem. Sec. 3 introduces
the LEMP framework. Sec. 4 and 5 focus on exact and approximate MIPS, respectively.
Sec. 6 outlines how LEMP can be parallelized effectively. Sec. 7 summarizes related
work. Sec. 8 describes our experimental study and its results. We conclude the article
in Sec. 9.

2. Preliminaries and Problem Statement
In this section, we introduce the notation used throughout, describe applications of
MIPS, and formally define multiple variants of the MIPS problem.

2.1. Notation
Let [n] = { 1, . . . , n }. We denote matrices by bold uppercase letters, vectors by bold
lowercase letters, and scalars by non-bold lowercase letters. Throughout this article,
we represent a set of vectors using a matrix in which each column holds one of the
vectors. We write M j for the j-th column of matrix M , and v ∈M if v is a column of
M . We denote the i-th element of vector v by vi and the L2 norm of v by ‖v‖ =

√∑
i v

2
i .

Denote by Q and P two sets of r-dimensional vectors with cardinality m and n,
respectively. We assume throughout that m and n are very large (order of millions)
and r is comparably small (say, 10–500). We are interested in finding pairs of vectors,
one from Q and one from P , with large inner product or, equivalently, the indexes of
the large entries in the product matrix QTP . We refer to Q as the query matrix and to
P as the probe matrix. Similarly, we refer to vectors q ∈ Q as query vectors (or simply
queries) and to vectors p ∈ P as probe vectors.

Fix a probe matrix P . We refer to the inner product qTp as the score of p ∈ P
for query q. For expository reasons, we assume throughout that all scores for q are
distinct. Let pq

(1), . . . ,p
q
(n) denote the probe vectors in P sorted by their score for q

in descending order. We refer to Tk(q) = {pq
(1), . . . ,p

q
(k) } as the top-k list of q and to

sq(k) = qTpq
(k) as the top-k score of q. When the query q is clear from context, we omit

argument or superscript q.

2.2. Applications of MIPS
The MIPS problem frequently arises in data mining tasks that employ some form
of low-rank matrix factorization. Such low-rank matrix factorization methods—e.g.,
the singular value decomposition (SVD), non-negative matrix factorization (NMF),

2https://github.com/spotify/annoy
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
Die Hard

Taken
Once Amelie

Titanic

Anna 5 1 2
Bob 5 4 1
Charlie 2 5 4
Debby 1 5 5



(a) Feedback matrix D

(
1.6 1.3 0.7 1 0.4
0.6 0.8 2.7 2.8 2.2

)
P

 3.2 −0.4
3.1 −0.2
0 1.8
−0.4 1.9


4.9 3.8 1.2 2.1 0.4

4.8 3.9 1.6 2.5 0.8
1 1.4 4.9 5.0 4.0

0.5 1 4.9 4.9 4.0


QT QTP

(b) Factor matrices for users (Q) and movies (P ) as well
as corresponding predictions (QTP )

Fig. 1: Example of a simple matrix factorization model for a recommender system

or latent-factor models—have been successfully applied to a number of prediction
tasks [Skillicorn 2007]. In general, the available data is represented as a matrix in
which rows and columns correspond to entities or attributes of interest, and entries
to values. Low-rank matrix factorizations are used for dimensionality reduction and
to reveal hidden structure in the data. Large entries in the obtained low-rank matrix
indicate strong interactions between entities and attributes and are often of particular
interest in applications.

In the context of recommender systems, for example, latent-factor models are a pop-
ular and powerful approach for predicting the preference of users for items from avail-
able feedback; see [Koren et al. 2009] for an excellent overview. Figure 1a shows a
feedback matrix D, which contains ratings of a set of users for a set of movies they
had watched on a 1–5 star scale. To predict the ratings of the movies users did not yet
see (or rate), latent-factor models construct two factor matrices: a user matrix Q and
an item matrix P , in which columns correspond to users and items, respectively, and
rows to latent factors. Figure 1b shows an example with r = 2 latent factors, which in
this case roughly correspond to action and romance. The predicted preference of user
i for item j is given by the (i, j) entry of matrix product QTP or, equivalently, by the
inner product qTp, where q denotes the i-th column of Q and p the j-th column of P .
The goal of a recommender system is to recommend to each user the items with a high
predicted rating (among other criteria); we thus need to determine which entries are
large. In the example of Figure 1b, we marked in bold face the top-3 items for each
user.3 In our terminology, user vectors correspond to queries and item vectors to probe
vectors. We are interested in finding for each user the top-k items vectors with the
largest inner products; we refer to this problem as Top-k-MIPS.

Another prominent application of matrix factorization models is in the area of open
information extraction, which extracts and reasons about statements made in natural
language text and other sources. Riedel et al. [2013], for example, construct a fact ma-
trix, in which columns correspond to verbal phrases or relations (e.g., “was born in”)
and rows to (subject, object)-pairs (e.g., (“Einstein”, “Ulm”)). A nonzero entry indicates
that the corresponding fact—a verbal phrase or relation with its subject and object—
was observed in the available data. Matrix factorization techniques can be used to
predict additional facts, spot unlikely facts, and reason about verbal phrases. As in
recommender systems, these methods create factor matrices using a suitable model
and subsequently determine the large entries in their product; here large entries cor-

3In practice, one may ignore items already seen or bought by a user.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January 2015.



Exact and Approximate Maximum Inner Product Search with LEMP A:5

respond to facts with a high predicted confidence. We refer to the problem of retrieving
all entries above a specified threshold θ as Above-θ-MIPS.

In this article, we focus solely on the MIPS problem and are oblivious to how the
input matrices have been created. In some applications, such as the ones above, MIPS
is applied to the factor matrices obtained from some matrix factorization algorithm.
Fast and scalable matrix factorization algorithms have been extensively studied in the
literature [Makari et al. 2015; Recht and Ré 2011; Niu et al. 2011; Teflioudi et al. 2012]
and the factorization itself is usually not a bottleneck (see Sec. 8.1 for some examples).
Other applications, such as the ones mentioned in the introduction, do not make use
of a prior matrix factorization step.

2.3. Problem Statement
Exact MIPS. We study two variants of exact MIPS. The first one searches for each
vector q ∈ Q, the set of k vectors from P with the largest inner product with q. Here
k is application-defined. As discussed previously, this problem arises in recommender
systems, where we want to retrieve the most relevant items (vectors of P ) for each user
(vector of Q).

Definition 2.1 (Top-k-MIPS). Given an integer k > 0, determine

{ (q, Tk(q)) | q ∈ Q } ,
i.e., the top-k list for every query.

MIPS is often defined in the literature w.r.t. a single query, i.e., Q = (q). The Top-k-
MIPS problem is then equivalent to top-k scoring with a linear scoring function f(p) =
qTp [Fagin et al. 2001]. In this article, we focus on the more general case in which
Q has multiple columns (e.g., when queries arrive in batches). Top-k-MIPS is then
equivalent to multi-query top-k scoring. The methods presented in this article can also
be used in a single-query setting, of course. Finally, note that by reversing the roles of
Q and P , we can also find the top-k queries for each probe vector.

The second problem, termed Above-θ-MIPS, asks to retrieve all pairs of vectors with
inner product above some application-defined threshold θ. This problem is useful, for
example, to determine all high-confidence facts in an open relation extraction scenario.

Definition 2.2 (Above-θ-MIPS). Given a threshold θ > 0, determine the set{
(q,p) ∈ Q× P | qTp ≥ θ

}
of large entries in QTP .

A simple solution to the above problems is to first compute QTP and then select the
entries above the threshold (for Above-θ-MIPS) or the k largest entries per row (for
Top-k-MIPS). We refer to this approach as Naive; it has time complexity O(mnr) and
is infeasible for large problem instances. Recently, a number of algorithms for exact
MIPS have been proposed [Ram and Gray 2012; Curtin et al. 2013; Curtin and Ram
2014]; all of these methods are based on suitable tree-based indexes built on P (see
Sec. 7).

Approximate MIPS. Exact MIPS methods usually offer only limited speedup com-
pared to naive search. Consequently, there has been a significant interest in designing
methods for approximate MIPS [Shrivastava and Li 2014a; Bachrach et al. 2014; Shri-
vastava and Li 2014b; Neyshabur and Srebro 2014]. Such methods trade off quality of
results and speed. In many applications, high-quality approximate results are accept-
able. In recommender systems, for example, finding good recommendations fast may
be preferable to finding the best recommendations slowly.
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Consider an approximate Top-k-MIPS algorithm and fix a query q. Denote by T̂k
the approximate top-k list being produced. We require T̂k ⊆ P and |T̂k| = k, i.e., ap-
proximate algorithms output k probe vectors (per query). For 1 ≤ i ≤ k, denote by
ŝ(i) the approximate top-i score, i.e., the i-th largest score in T̂k. Clearly, we must have
ŝ(i) ≤ s(i); approximate results cannot be better than the exact results.

There are multiple ways to define the quality of the results of an approximate MIPS
algorithm with respect to a query q. Two commonly used metrics are precision (fraction
of true results in output) and recall (fraction of all true results being output). Note that
for Top-k-MIPS, both approximate and exact methods produce exactly k results, so that
recall and precision coincide.

One disadvantage of using precision or recall for Top-k-MIPS is that they do not give
any indication about the quality of the remaining (“false”) vectors in the approximate
top-k list. To see why this might be of importance, consider again the recommender sys-
tem scenario. Generally, we prefer methods that give good “false” results over methods
that give bad “false” results, and recall does not allow to distinguish these two cases. A
measure that captures the difference between the result of the exact and the approxi-
mate method in absolute terms is the root mean square error (RMSE, [Bachrach et al.
2014]), defined as:

RMSE =

√√√√1

k

k∑
i=1

(s(i) − ŝ(i))2.

Alternatively, when all scores are positive (s(k) > 0), we can quantify the difference
relatively using the average relative error (ARE):

ARE =
1

k

k∑
i=1

s(i) − ŝ(i)
s(i)

.

Since ŝ(i) ≤ s(i) for all i, an approximate method performs the better the larger the
ŝ(i)’s.

We define the recall/RMSE/ARE for a set of queries by taking the average of the
recall/RMSE/ARE over all queries (i.e., the macro-average).

An approximate MIPS method that provides approximation guarantees takes as in-
put an error bound on either recall, RMSE, or ARE and produces an approximate result
that satisfies the specified bound (always, with high probability, or in expectation). Un-
fortunately, many of the existing approximate methods do not provide such guarantees
and proceed in a best-effort manner instead. In Sec. 5, we propose a number of novel
approximate methods that do provide error guarantees.

2.4. MIPS, Nearest Neighbor Search, and Cosine Similarity Search
The MIPS problem is closely related to the well-studied problems of nearest neighbor
search in Euclidean space (NNS) and cosine similarity search (CSS). In this section,
we discuss this relationship briefly; see Ram and Gray [2012] for more details.

The NNS problem is to find for a given, fixed query vector q a probe vector p∗ ∈ P
such that

p∗ = argmin
p∈P

‖q − p‖2 = argmax
p∈P

(
qTp− ‖p‖

2

2

)
. (1)

The CSS problem is to find a probe vector p∗ ∈ P such that

p∗ = argmax
p∈P

qTp

‖q‖‖p‖
= argmax

p∈P

qTp

‖p‖
. (2)
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We distinguish two settings based on the L2 norms of the probe vectors:

(1) All vectors in P have equal L2 norm. In this case, the ‖p‖ part in Eqs. (1) and (2)
is constant and does not affect the result. The MIPS problem is then equivalent to
both NNS and CSS.

(2) The vectors in P have different L2 norms. MIPS is then different from both NNS
and CSS.

In what follows, we focus on the case of vectors of unequal norm, i.e., the case where
MIPS is different from NNS and CSS. One major challenge in this setting is that inner
products do not adhere to the triangle inequality, which makes similarity search not
directly applicable.

Two general directions have been proposed to solve the MIPS problem. Customized
methods [Ram and Gray 2012; Curtin et al. 2013; Curtin and Ram 2014] exploit
the structure of MIPS and develop suitable indexing techniques. It has been shown,
however, that we can reformulate the MIPS problem as an NNS or CSS problem
in a slightly higher dimensional space [Shrivastava and Li 2014a; Bachrach et al.
2014; Shrivastava and Li 2014b; Neyshabur and Srebro 2014]; see Sec. 7 for details.
Transformation-based methods perform such a reformulation and subsequently ap-
ply an existing NNS or CSS method, respectively. In Sec. 8, we provide experimental
insight into the relative performance of customized methods (including LEMP) and
transformation-based methods.

3. The LEMP Framework
In this section, we outline the LEMP framework for exact and approximate MIPS. For
presentation purposes, we first focus on the Above-θ-MIPS problem and turn to the
Top-k-MIPS problem in Sec. 4.5.

3.1. L2 Norm and Direction
LEMP makes use of the decomposition of an inner product of two vectors q and p
into an L2 norm and a direction part. Let 0 6= v ∈ Rr and denote by v̄ = v/‖v‖ the
normalization of v, i.e., the unit vector pointing in the direction of v. Then

qTp = ‖q‖ ‖p‖ cos(q,p), (3)

where cos(q,p) = q̄T p̄ ∈ [−1, 1] denotes the cosine similarity between q and p. As
mentioned previously, the inner product coincides with the cosine similarity if q and p
have unit norm. The problem of cosine similarity search is thus a special case of the
MIPS problem.

By rewriting Eq. (3), we obtain for θ ∈ R

qTp ≥ θ ⇐⇒ cos(q,p) ≥ θ

‖q‖ ‖p‖
. (4)

The inner product thus exceeds threshold θ if and only if the cosine similarity exceeds
the modified threshold θ

‖q‖ ‖p‖ , which depends on the L2 norms of q and p. Our goal is
to find pairs (q,p) ∈ Q× P such that qTp ≥ θ. From Eq. 4, we conclude that:

(1) If q and p are short in that ‖q‖‖p‖ < θ, we cannot have qTp > θ since cos(q,p) ∈
[−1, 1] and θ/(‖q‖ ‖p‖) > 1. Such pairs do not need to be considered.

(2) If q and p are of intermediate L2 norm in that ‖q‖‖p‖ ≈ θ, then qTp > θ if the co-
sine similarity cos(q,p) is large. Such pairs are best found using a cosine similarity
search algorithm.

(3) If q and p are long in that ‖q‖‖p‖ � θ, then qTp > θ if their cosine similarity is not
too small. Such pairs are best found using naive search.
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Q

P 1

P 2

P 3

Long
vectors
(l1 = 2)
Medium-
length
vectors
(l2 = 1)

Short
vectors
(l3 = 0.5)

q1

q2

q3

‖q1‖ = 5

‖q2‖ = 1

‖q3‖ = 0.1

Query matrix (QT ) Probe matrix (P T )θ = 0.9 θb(q) P 1 P 2 P 3

q1 0.09 0.18 0.36
q2 0.45 0.90 -
q3 - - -

Local thresholds

Fig. 2: Illustration of LEMP’s bucketization

Our discussion so far indicates that probe vectors with different L2 norms are best
treated in different ways. LEMP exploits this observation as follows. It first groups the
vectors of the probe matrix P into a set of small buckets, each consisting of vectors
of roughly similar L2 norm, and then solves a cosine similarity search problem for
each bucket. In particular, we ignore buckets with short vectors, use a suitable cosine
similarity search algorithm for buckets with vectors of intermediate L2 norms, and
use (a variant of) naive retrieval for buckets with long vectors. This allows us to prune
large parts of the search space and handle the remaining part efficiently. In this article,
we explore how far we can push this basic idea.

In more detail, denote by P 1, P 2, . . ., P s a set of s buckets and assume that the
vectors in each bucket have roughly similar (but not necessarily equal) L2 norms. For
each bucket P b, 1 ≤ b ≤ s, denote by lb = maxp∈P b

‖p‖ the L2 norm of its longest
vector. Under our assumption, lb ≈ ‖p‖ for all p ∈ P b. Figure 2 shows a small example
in which P has been divided into three buckets: P 1 holds long vectors (approximate
and maximum L2 norm 2), P 2 medium-length vectors (1), and P 3 short vectors (0.5).
Although there are only three buckets in this example, LEMP uses a large number of
buckets in practice.

Fix some bucket P b. From Eq. (4), we obtain that a necessary condition for qTp ≥ θ
for p ∈ P b is that

cos(q,p) = q̄T p̄ ≥ θb(q)
def
=

θ

‖q‖ lb
. (5)

We refer to θb(q) as the local threshold of query q for bucket P b. Our goal is thus to find
all vectors p ∈ P b with a cosine similarity to q of at least θb(q). The local threshold al-
lows us to determine how to best process bucket P b, analogous to the discussion above.
If θb(q) > 1, we can prune the entire bucket since none of its vectors can potentially
pass the threshold. If θb(q) ≈ 1, we use a suitable cosine similarity search algorithm
for the bucket. Finally, if θb � 1, we use naive retrieval.

Consider again the example of Figure 2 and assume a global threshold of θ = 0.9.
The figure highlights three query vectors q1, q2, and q3 of decreasing L2 norms and
gives the values of all local thresholds (or “-” if above 1, also indicated by dashed lines).
For q1, which is very long, all local thresholds are small so that naive retrieval is well
suited for all buckets. For q2, which is shorter, the local threshold is small for bucket P 1

(long vectors), large for bucket P 2 (medium-length vectors), and above 1 for bucket P 3

(short vectors). We use naive retrieval for P 1 and a suitable cosine similarity search

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January 2015.
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Algorithm 1 LEMP for the exact Above-θ-MIPS problem
Require: Q,P , θ
Ensure: S =

{
(q,p) ∈ Q× P | qTp ≥ θ

}
1: // Preprocessing phase
2: Partition P into buckets P 1, . . . ,P s of similar L2 norms
3: for all b ∈ 1, 2, . . . , s do // for each bucket
4: Sort, normalize, and index P b

5: lb ← maxp∈P b
‖p‖

6: end for
7:
8: // Search phase
9: S ← ∅

10: for all b ∈ 1, 2, . . . , s do // for each bucket
11: for all q ∈ Q do // for each query
12: θb(q)← θ / (‖q‖ lb) // local threshold
13: if θb(q) ≤ 1 then // prune?
14: Pick a suitable retrieval alg. A based on θb(q)
15: Use A to obtain a set of candidates Cb ⊇

{
p ∈ P b | q̄T p̄ ≥ θb(q)

}
16: S ← S ∪

{
(q,p) | p ∈ Cb and qTp ≥ θ

}
// verify candidates

17: end if
18: end for
19: end for

algorithm for P 2. Bucket P 3 is pruned. Finally, for q3, which is very short, all local
thresholds exceed 1 so that all buckets are pruned.

3.2. Algorithm Description
Alg. 1 summarizes LEMP for exact Above-θ-MIPS. The algorithm consists of a prepro-
cessing phase (lines 1–6) and a search phase (lines 8–19).

The preprocessing phase groups the columns of P into buckets of similar L2 norm
(line 2). There are a number of ways to do this, but we chose a simple greedy strategy
in our implementation. In particular, we first sort the columns of P by decreasing L2
norm,4 scan the columns in order, and start a new bucket whenever the L2 norm of
the current column falls below some threshold (e.g., 90% of lb). We also make sure that
buckets are neither too small nor too large. First, small buckets reduce the efficiency
of LEMP due to bucket processing overheads; we thus ensure that buckets contain at
least a certain number of vectors (30 in our implementation). The bucket processing
overhead of large buckets is negligible. However, when buckets grow larger than the
cache size, processing time is negatively affected. For this reason, we select a maximum
bucket size that ensures that all relevant data structures fit into the processor cache.

After bucket boundaries have been obtained, we represent each vector p by two sepa-
rate components: its L2 norm ‖p‖ and its direction p̄. We also store the vectors’ column
number in the original matrix (denoted id) and in the bucket (denoted lid for “local
id”); see Figure 4a for an example. This layout allows us to access for each p ∈ P b both
‖p‖ and p̄ without further computation. We then create indexes on the contents of each
bucket; we defer the discussion of indexing to Sec. 4. For our choice of indexes (Sec. 4.2
and 4.3), the overall preprocessing time, including index computation, is O(rn log n).

The search phase then iterates over buckets and query vectors. For each query, we
compute the local threshold θb(q) (line 12) and prune buckets based on their L2 norm

4We also sort and normalize query vectors in a manner similar to the bucketization of P .
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(line 13). For each remaining bucket P b, we select a suitable retrieval algorithm (exact
or approximate) based on the local threshold (line 14, cf. Sec. 4). The selected retrieval
algorithm computes a set Cb of candidate vectors, potentially making use of the index
data structures created during the preprocessing phase. We require for exact MIPS
that the candidate set contains all vectors in p ∈ P b that pass the threshold (qTp ≥ θ),
but it may additionally contain a set of spurious vectors (q̄T p̄ ≥ θb(q) but qTp < θ).
If LEMP is used for approximate MIPS, we lift this requirement, i.e., the candidate
set may then miss some vectors that pass the threshold.5 In both cases, a verification
step (line 16) filters out spurious vectors by computing the actual values of the inner
products qTp for all p ∈ Cb.

The order of the two loops in the search phase of Alg. 1 is chosen to be cache-friendly.
Since we process probe buckets in the outer loop and since probe buckets are small,
their content remains in the cache for the entire inner loop. The inner loop itself scans
query vectors sequentially; these vectors may not fit into the cache, but the sequential
access pattern makes prefetching effective.

The power of LEMP to prune entire buckets in line 12 depends on the L2 norm dis-
tribution of the input vectors: generally, the more skewed the L2 norm distribution,
the more probe buckets can be pruned. Even if bucket pruning is not particularly ef-
fective for a given problem instance, however, the organization of the probe vectors
into buckets is still beneficial: it allows suitable cosine similarity search algorithms to
be applied and is cache-friendly.

4. Exact MIPS
In this section, we propose and discuss a number of exact algorithms for the search
phase of LEMP (line 15 of Alg. 1). Each algorithm takes as input a query vector q ∈ Q
and a bucket P b, and outputs a candidate set Cb ⊆ P b using some pruning strategy.
All algorithms first compute ‖q‖ and q̄; cf. Figure 4d.

We discuss two kinds of algorithms: those that make use of only the L2 norm infor-
mation to prune candidate vectors and those that use the normalized vectors as well.
For the first category, we propose the NORM algorithm (Sec. 4.1), which is a simple
variant of the naive algorithm that takes L2 norm information into account. Existing
cosine similarity search algorithms (e.g., [Bayardo et al. 2007]) as well as TA fall in
the second category. We additionally propose two novel methods, which are specially
tailored for vectors of medium dimensionality. The COORD algorithm (Sec. 4.2) ap-
plies coordinate-based pruning strategies. The ICOORD algorithm (Sec. 4.3) is based
on COORD but uses a more effective (but also more expensive) incremental pruning
strategy.

4.1. Norm-Based Pruning
Recall that the vectors in bucket P b are sorted by decreasing L2 norm during prepro-
cessing (see also Figure 4a). Further observe from Eq. (3) that whenever ‖q‖ ‖p‖ < θ,
so is qTp. Putting both together, NORM scans the bucket P b in order. When process-
ing vector p, we check whether ‖p‖ ≥ θ/‖q‖; we precompute θ/‖q‖ to make this check
efficient. If p qualifies, we add it to the candidate set Cb. Otherwise, we stop processing
bucket P b and immediately output Cb.

Consider for example a bucket P b as shown in Figure 4a, query vector q =
(1, 1, 1, 1)T , and threshold θ = 3.8. We have ‖q‖ = 2 and θ/‖q‖ = 1.9 so that we ob-
tain Cb = { 1, 2, 3 }. (Here and in the following, we give Cb in terms of local identifiers
(lid) for improved readability.)

5We instead require the candidate set is “good enough” to satisfy user-specified bounds on recall, RMSE or
ARE.
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Since LEMP already organizes and prunes buckets by L2 norm, we do not expect
NORM to be particularly effective. In fact, NORM degenerates to the naive algorithm
in all but one bucket (the “last” bucket that has not been pruned). Nevertheless, since
NORM has low overhead and a sequential access pattern, it is an effective method
when buckets are small or the local threshold is low (i.e., when coordinate-based prun-
ing is not effective).

4.2. Coordinate-Based Pruning
We now proceed to pruning strategies based on the direction (but not L2 norm) of the
query vector. The key idea is to retain only those vectors from P b in Cb that point
in a similar direction as q. In particular, we aim to find all p ∈ P b with high cosine
similarity to q, i.e.,

q̄T p̄ = cos(q,p) ≥ θb(q). (6)
Note the usage of normalized vectors here; L2 norm information is not taken into

account.
Let q̄ = (q̄1, . . . , q̄r)

T and p̄ = (p̄1, . . . , p̄r)
T . Note that q̄T p̄ achieves its maximum

value for p̄ = q̄ since then q̄T p̄ = q̄T q̄ = ‖q̄‖2 = 1. In other words, q̄T p̄ is maximized
when both vectors agree on all their coordinates. Based on this observation, the key
idea of the COORD algorithm is to prune p̄ if one of its coordinates deviates too far from
the respective coordinate in q̄. In more detail, we obtain for each coordinate f ∈ [r] a
lower bound Lf (q̄) and an upper bound Uf (q̄) on p̄f . If Lf ≤ p̄f ≤ Uf , we say that
p̄f is feasible; otherwise p̄f is infeasible. The bounds are chosen such that whenever
a coordinate f of p is infeasible, then q̄T p̄ < θb(q) so that p can be pruned from the
candidate set.

In what follows, we provide lower and upper bounds, discuss their effectiveness, and
propose the COORD algorithm that exploits them.

Bounding Coordinates. Pick some coordinate f ∈ [r]; we refer to f as a focus co-
ordinate. Denote by q̄-f = { q̄1, . . . , q̄f−1, q̄f+1, . . . , q̄r } the vector obtained by removing
coordinate f from q̄, similarly p̄-f . Note that q̄-f and p̄-f generally have L2 norms less
than 1. Now we rewrite Eq. (6) as follows

θb(q) ≤ q̄T p̄

= q̄f p̄f + q̄T-f p̄-f

= q̄f p̄f + ‖q̄-f‖ ‖p̄-f‖ cos(p̄-f , q̄-f )

≤ q̄f p̄f + ‖q̄-f‖ ‖p̄-f‖

= q̄f p̄f +
√

1− q̄2f
√

1− p̄2f , (7)

where we used Eq. (3), the fact that the cosine similarity cannot exceed 1, and the
property ‖q̄‖ = ‖p̄‖ = 1.

We now solve the resulting inequality θb(q) ≤ q̄f p̄f + (1− q̄2f )1/2(1− p̄2f )1/2 for p̄f and
obtain solutions

p̄f ∈ [LAf , U
A
f ] =

{
[θb(q)/q̄f , 1] q̄f > 0

[−1, θb(q)/q̄f ] q̄f < 0
(8)

p̄f ∈ (LBf , U
B
f ) =

(
q̄fθb(q)−

√
(1− θb(q)2)(1− q̄2f ), q̄fθb(q) +

√
(1− θb(q)2)(1− q̄2f )

)
(9)

p̄f ∈ [LCf , U
C
f ] = [−1, 1], if q̄f = 0, θb(q) ≤ 0. (10)
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Fig. 3: Usage of feasibility bounds.

Here Eq. (8) is only a valid solution to Eq. (7) when LAf ≤ UAf , i.e., we ignore it when-
ever LAf > UAf . In addition Eq. (10) provides no pruning power to our algorithm. We
therefore directly skip query coordinates of zero value whenever θb(q) ≤ 0. The feasible
region is thus given by:

Lf =

{
min(LAf , L

B
f ) if LAf ≤ UAf

LBf otherwise
(11)

Uf =

{
max(UAf , U

B
f ) if LAf ≤ UAf

UBf otherwise
(12)

Note that if the L2 norms of the vectors within a bucket vary strongly, we are forced
to use a low local threshold θb(q), which in turn results in looser bounds. This unde-
sirable behavior is avoided by LEMP since it constructs (small) buckets that contain
vectors with similar L2 norms. The effectiveness of our bounds—and of using nor-
malization and subsequent coordinate-based pruning in general—is thus particularly
effective in the context of our LEMP framework.

Effectiveness of Bounds. To gain some insight into the effectiveness of LEMP’s
bounds, we plot the feasible region [Lf , Rf ] for various choices θb(q) in Figure 3a. The
x-axis corresponds to the value of q̄f , the y-axis to the lower and upper bounds, and
the various oval-shaped gray regions to feasible regions. Note that −1 ≤ q̄f , p̄f ≤ 1.

The pruning power of the bounds depends on both the value of θb(q) and on the
properties of matrices Q and P . First, the larger the local threshold θb(q), the smaller
the feasible region and the more vectors can be pruned. In fact, for large values of θb(q),
the feasible region is small across the entire value range of q̄f . Second, the size of the
feasible region decreases as the absolute value of q̄f increases. This decrease is more
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pronounced when the local threshold is small. Note that a small feasible region may
or may not lead to effective pruning; the value distribution of P b is also important.
Nevertheless, the smaller the feasible region, the more effective the pruning can be.

Based on the observations above, we conclude that the bounds can effectively prune
a vector p̄ with q̄T p̄ < θb(q) when θb(q) is large or when there is some coordinate f
for which only one of q̄f or p̄f takes a large value. Since all vectors are L2-normalized,
the latter property holds if q̄ or p̄ is sufficiently sparse or has a skewed value distribu-
tion. If neither holds and θb(q) is small, an algorithm such as NORM or ICOORD (see
Sec. 4.3) may be a more suitable choice.

To make pruning more effective, we may consider multiple focus coordinates and
require probe vectors to be feasible for all these coordinates. Fig. 3b illustrates this
idea for r = 2 dimensions and θb(q) = 0.8. The normalized query vector is depicted
in black. All normalized probe vectors in the bucket (potential candidates) lie on the
unit sphere. The dotted vertical and horizontal lines mark the feasible regions for
coordinates 1 and 2, respectively. The green (solid) part of the unit circle corresponds
to probe vectors that are feasible for both focus coordinates. These vectors will not be
pruned by COORD. The orange (dashed) part corresponds to probe vectors that are
infeasible in one and only one of the two coordinates. These vectors are pruned by
COORD when this coordinate is included in the set of focus coordinates. Finally, the
red (dotted) part corresponds to probe vectors that are infeasible with respect to both
coordinates; they will always be pruned by COORD. The figure indicates that we obtain
the highest pruning power when we test for feasibility on both coordinates because
only then both orange (dashed) regions are pruned. In the following, we describe in
more detail how COORD makes use of this observation.

Exploiting Bounds. The COORD algorithm makes use of the feasible region derived
in the previous section to prune unpromising candidates. To do so, LEMP creates in-
dexes for each probe bucket P b during its preprocessing phase. In the case of COORD,
we create r sorted lists I1, . . . , Ir, one for each coordinate of the vectors in P b. Each
entry in list If is a (lid, p̄f )-pair, where as before lid is a bucket-local identifier for
the corresponding vector p̄. As in Fagin et al.’s threshold algorithm (TA, [Fagin et al.
2001]), from which our index is inspired, the lists are sorted in decreasing order of
p̄f . Figure 4c shows the sorted-list index for the example bucket given in Figure 4a.
Although index construction is generally light-weight and fast, LEMP constructs in-
dexes lazily on first use to further reduce computational cost. Buckets with very short
vectors, for example, may always be pruned and thus do not need to be indexed.

COORD is summarized as Alg. 2. It takes as input a bucket P b, a query q, the
global and local thresholds (θ, θb(q)), the bucket indexes I1, . . . , Ir, and a set of focus
coordinates F ⊆ [r]. We discuss the algorithm using the example of Figure 4 with
θ = 0.9. Consider the query q shown in Figure 4d as well as the corresponding inner
products shown in Figure 4b. We have θb(q) = 0.9/(0.5·2) = 0.9, coincidentally agreeing
with the global threshold. Observe that vectors 1 and 5 pass the local threshold q̄T p̄ ≥
θb(q), but only vector 1 additionally passes the global threshold qTp ≥ θ.

COORD does not compute and enforce the bounds for each coordinate, since this
can be expensive, but uses a suitable subset F ⊆ [r] of focus coordinates; see below.
For each focus coordinate f ∈ F , COORD computes the feasible region [Lf , Uf ] (line 3)
and determines the start and end of the corresponding scan range in sorted list If
via binary search for Uf and Lf , respectively (line 4). Vectors outside the scan range
violate the bound on coordinate f . In the example of Figure 4, we used F = { 1, 4 }.
The bounds are shown in Figure 4d and the corresponding scan ranges in I1 and I4 are
shown in bold face in Figure 4c.
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lid id ‖p‖ p̄
1 23 2.0 0.58 0.50 0.40 0.50
2 43 1.9 0.98 0 0 0.20
3 12 1.9 0.53 0 0 0.85
4 54 1.8 0.35 0.93 0 0.10
5 18 1.8 0.58 0.50 0.40 0.50
6 20 1.8 0.30 -0.40 0.81 -0.30

(a) Organization of bucket P b

q̄T p̄ qTp
0.97 0.97
0.79 0.75
0.80 0.76
0.56 0.52
0.97 0.87
0.26 0.23
(b) Results for

query q of (d)

I1
lid p̄1
2 0.98
1 0.58
5 0.58
3 0.53
4 0.35
6 0.30

I2
lid p̄2
4 0.93
1 0.50
5 0.50
2 0
3 0
6 -0.40

I3
lid p̄3
6 0.81
1 0.40
5 0.40
2 0
3 0
4 0

I4
lid p̄4
3 0.85
1 0.50
5 0.50
2 0.20
4 0.10
6 -0.30

(c) Sorted-list index (bold rows show scan range for q)

‖q‖ q̄
0.5 0.70 0.3 0.4 0.51

[Lf , Uf ][0.32, 0.94] - - [0.09, 0.83]

(d) Query q and feasible region for focus coordinates

lid c
1 2
2 1
3 1
4 2
5 2
6 0

Cb = { 1, 4, 5 }
(e) CP array

lid c q̄TF p̄F ‖pF ‖2 u θp(q)
1 2 0.66 0.59 0.32 0.9
2 1 0.10 0.04 0.49 0.95
3 1 0.37 0.28 0.43 0.95
4 2 0.30 0.13 0.47 1
5 2 0.66 0.59 0.32 1
6 0 - - - 1

Cb = { 1 }
(f) Extended CP array

Fig. 4: Illustration of LEMP as well as the COORD and ICOORD retrieval algorithms
for θ = 0.9 and F = { 1, 4 }

COORD subsequently scans the scan range of each sorted list If , f ∈ F , in sequence
(line 5) and maintains a candidate-pruning array (CP array, line 6). The CP array
contains for each vector p̄ ∈ P b with local identifier lid a counter c[lid] that indicates
how often the vector has been seen so far. The CP array of our running example is
shown in Figure 4e (with an additional lid column for improved readability). After
completing all scans, COORD includes into Cb all those vectors p̄ ∈ P b that qualified
on all focus coordinates, i.e., for which c[lid] = |F | (line 9). In our example,Cb = { 1, 4, 5 }
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Algorithm 2 The COORD algorithm
Require: q,P b, θ, θb(q), F ⊆ [r], I1, . . . , Ir
Ensure: Cb ⊇

{
pj ∈ P b | q̄T p̄j ≥ θb(q)

}
1: c← empty CP array
2: for all f ∈ F do
3: Calculate feasible region [Lf , Uf ]
4: Determine corresponding scan range in sorted list If
5: for all lid in scan range of If do
6: c[lid]← c[lid] + 1 // maintain CP array
7: end for
8: end for
9: Cb = { lid | c[lid] = |F | } // filter

since only those three vectors occurred in both scan ranges. In particular, vectors 2,3
and 6 are (correctly) excluded because they appear in only one or none scan range.

We now turn to the question of how to choose the focus set F . One option is to simply
set F = [r]. However, processing sorted lists can get expensive if F is large or contains
coordinates for which pruning is not effective, i.e., for which a large fraction of the
corresponding sorted lists needs to be scanned. We make use of a focus-set size param-
eter φ, typically in the range of 1–5; we discuss the choice of φ in Sec. 4.4. COORD
then uses the φ coordinates of q̄ with largest absolute value as focus coordinates. The
reasoning behind this choice is that large coordinates will lead to the smallest feasible
region (cf. Sec. 4.2); the hope is that they also lead to a small scan ranges and a small
candidate set.

To summarize, COORD builds indexes only if needed and uses only a subset of the
entries in a subset of the sorted-list indexes. The index scan itself is light-weight; it
accesses solely the lid part of the lists and increases the counters of the CP array. Also
note that the bounds we use for determining the scan range of the lists are simple and
relatively cheap to compute. This is important since these bounds need to be computed
per query, per bucket, and per focus coordinate. Implementation details also matter;
see online Appendix A.

4.3. Incremental Coordinate-Based Pruning
COORD scans the sorted-list indexes to find the set of vectors that qualify in each
coordinate f ∈ F , i.e., fall in region [Lf , Uf ]. Other than checking feasibility, the actual
values in the scanned lists are ignored. In contrast, the incremental pruning algorithm
ICOORD makes use of the p̄f values as well: It maintains information that allows it to
prune additional vectors. Such an approach is generally more expensive than COORD,
but the increase in pruning power may offset the costs.

When we derived the bounds of a coordinate f of COORD, we assumed that
cos(q̄-f , p̄-f ) = 1. This is a worst-case assumption; in general, cos(q̄-f , p̄-f ) will be less
(and often much less) than 1. Intuitively, a vector p̄ that qualifies barely in all co-
ordinates often does not constitute an actual result. Recall our ongoing example of
Figure 4. Here vector 4 barely qualifies in both indexes I1 and I4 and is thus included
into the candidate set of COORD. Vector 4 does not pass the local threshold, however,
since q̄T p̄4 = 0.56 < 0.9. COORD is blind to this behavior.

Another potential drawback of COORD is that it does not (and cannot) take into
consideration the L2 norm distribution of the vectors in each bucket. In the example
of Figure 4, normalized vectors 1 and 5 are identical and both pass the local threshold.
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However, since vector 1 is has slightly larger L2 norm than vector 5, only vector 1
passes the global threshold and thus the verification step of LEMP .

Similar to COORD, ICOORD scans the scan ranges of the sorted lists of the focus
coordinates. To address the above issues, however, ICOORD additionally maintains
a partial inner product for each of the vectors that it encounters. Generalizing our
previous notation, denote by q̄F (q̄-F ) the values of the focus coordinates (of all other
coordinates) of the query vector; similarly, p̄F and p̄-F . We obtain

q̄T p̄ = q̄TF p̄F + q̄T-F p̄-F ≤ q̄TF p̄F + ‖q̄-F ‖ ‖p̄-F ‖.
Since vectors are normalized, the right-hand side can be computed from q̄F and p̄F
only. Denote the resulting upper bound on the “unseen” part q̄T-F p̄-F of the inner product
q̄T p̄ by

u(q̄F , p̄F ) = ‖q̄-F ‖ ‖p̄-F ‖ =
√

1− ‖q̄F ‖2
√

1− ‖p̄F ‖2.
Then q̄T p̄ ≤ q̄TF p̄F + u(q̄F , p̄F ). In order to compute this bound, ICOORD uses an
extended CP array, which maintains for each probe vector in addition to the frequency
counters of COORD (line 6 of Alg. 2) the quantities q̄TF p̄F and ‖p̄F ‖2 =

∑
f∈F p̄

2
f . After

the extended CP array has been computed, ICOORD includes into the candidate set
only those vectors p̄ that satisfy

q̄TF p̄F + u(‖q̄F ‖, ‖p̄F ‖) ≥ θp(q)
def
=

θ

‖p‖‖q‖
. (13)

Here θp(q) is an improved, probe vector-specific local threshold; it holds θp(q) ≥ θb(q).
This improved local threshold cannot be used by the COORD algorithm.

Figure 4f shows the extended CP array for our running example (to the left of the
double vertical lines) as well as the quantities involved in the above pruning condition
(to the right; here we write u for u(‖q̄F ‖, ‖p̄F ‖)). For example, for vector 1, q̄TF p̄F =

0.58 ·0.70+0.50 ·0.51 = 0.66 and u =
√

1− (0.582 + 0.502) ·‖q̄-F ‖. The quantity ‖q̄-F ‖ (not
shown in Figure 4f) is independent of the probe vectors and thus only computed once.
In our example, ‖q̄-F ‖ =

√
1− (0.702 + 0.512) = 0.5. As can be seen in the example,

filter condition q̄TF p̄F + u ≥ θp(q) is passed only by vector 1; thus Cb = { 1 }. Note that
the rows of vector 5 and vector 1 agree in the extended CP array; our improved local
threshold (0.9 for vector 1 vs. 1 for vector 5), however, allows us to correctly prune
vector 5 but retain vector 1.

4.4. Algorithm Selection
Before processing a bucket P b, LEMP needs to decide which retrieval algorithm to
use. We have already given some guidance for this choice above: Norm-based pruning
is suitable for buckets with a skewed L2 norm distribution, whereas coordinate-based
pruning is suitable for large local thresholds and/or data with a skewed value distri-
bution. In general, the choice of a suitable algorithm is data-dependent.

LEMP uses a simple, pragmatic method for algorithm selection: it samples a small
set of query vectors and tests the different methods for each bucket. We observe the
wall-clock times obtained by the various methods and select a threshold tb for each
bucket: whenever θb(q) < tb, LEMP will use NORM, otherwise it uses coordinate-
based pruning. For setting tb, we simply pick the value that minimizes the runtime on
the sampled query vectors.

We proceed similarly to select for each bucket b the parameter φb for the number
of focus coordinates in coordinate-based pruning. We generally explore φb values in
increasing order, i.e., starting with 1 and ending with some upper bound (e.g., 10). To
speed up this process, we employ two heuristics. First, we stop exploring larger values

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January 2015.



Exact and Approximate Maximum Inner Product Search with LEMP A:17

for φb if the performance with the currently tested φ value is more than 10% worse than
the best performance so far. Second, we use the best φ-value of bucket b as a starting
point for tuning bucket b + 1. We then start exploring the performance for values of φ
left and right to this initial value, using the same stopping criterion as above.

The cost of this sample-based profiling step is negligible since the number of query
vectors is large; the overall running time is dominated by the time required to process
Q in its entirety.

More elaborate approaches for algorithm selection are possible, e.g., some form of
reinforcement learning. Our experiments suggest, however, that even the simple se-
lection criterion outlined above gives promising results.

4.5. Solving the Top-k-MIPS Problem
Our discussion so far has focused on the Above-θ-MIPS problem; we now proceed to the
discussion of the Top-k-MIPS problem. Recall that given a query vector q, the Top-k-
MIPS problem asks for the vectors p ∈ P that attain the k largest inner products qTp.
Top-k-MIPS can be used in recommender systems, for example, to retrieve the best k
item recommendations for each user.

The Top-k-MIPS problem is related to the Above-θ-MIPS problem as follows. Fix
a query vector q and denote by s(k) its top-k score. The solution of the Top-k-MIPS
problem coincides with the solution of the Above-θ∗-MIPS algorithm with threshold
θ∗ = s(k). We do not know s(k) and thus θ∗, however, and instead make use of a running
lower bound θ̂ ≤ θ∗. The value of θ̂ increases as the algorithm proceeds.

In more detail, we take the k longest vectors of P (all located at the beginning of
bucket P 1) and compute their inner product with q. The smallest so-obtained value is
our initial choice of θ̂. We then run the Above-θ-MIPS algorithm with threshold θ̂ on
the first bucket, determine the top-k answers in the result, and update θ̂ accordingly.
In more detail, we set θ̂ to the value of the k-th largest inner product found so far. This
process is iterated over the subsequent buckets until θ̂ becomes so large that LEMP
prunes the next bucket. At this point, we output the current top-k vectors as a result.
This strategy is effective because (1) LEMP organizes buckets by decreasing L2 norm
so that we expect the top-k values to appear in the top-most buckets, and (2) bucket
sizes are small (cache-resident) so that the threshold θ̂ is increased frequently. The
above algorithm is guaranteed to produce the correct result because θ̂ ≤ θ∗ = s(k) by
construction. If a bucket contains a vector p with qTp ≥ θ∗, then qTp ≥ θ̂ and we are
guaranteed to add p to the candidate set (and retain it).

Note that the L2 norm of q does not affect the result of the Top-k-MIPS problem. We
thus simplify the bounds used by the algorithms by normalizing q upfront.

5. Approximate MIPS
We now turn attention to approximate MIPS with LEMP, which allows us to realize
further performance gains. We propose four different algorithms. The LEMP-LSHA
algorithm (Sec. 5.2) is based on locality-sensitive hashing and offers a probabilistic
guarantee on recall for both Above-θ-MIPS and Top-k-MIPS. The LEMP-ABS and
LEMP-REL algorithms (Sec. 5.3) offer (non-probabilistic) bounds on the RMSE and
ARE, respectively, and can be used with arbitrary exact bucket algorithms. Finally,
the LEMP-HYB algorithm combines these approaches for further performance gains,
and provides a weaker form of quality guarantee.
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5.1. Preliminaries: Locality-Sensitive Hashing for Cosine Similarity Search
We start with a brief, high-level review of locality-sensitive hashing (LSH, [Gionis et al.
1999]) for approximate cosine similarity search. LSH is a popular and highly efficient
technique for this problem; we are thus interested in adapting it to process each of
LEMP’s buckets (Sec. 3).

The key idea of LSH is to use a random hash function to assign probe vectors to
bins. The hash function is chosen such that vectors with high cosine similarity are
more likely to end up in the same bin than vectors with low cosine similarity. LSH
is used as follows: we first group probe vectors into bins according to their hash val-
ues in a preprocessing phase. For each query vector q, we determine q’s bin using the
same hash function, and consider as candidates each of the probe vectors in the cor-
responding bin; all other bins are ignored. Since vectors with high cosine similarity
are (more) likely to end up in the same bin, the so-retrieved candidate set is biased
towards vectors that are similar to q.

In more detail, we use hash functions based on random hyperplanes [Charikar
2002], which work as follows. We first independently obtain r samples from the stan-
dard Normal distribution to form an r-dimensional vector u. We view u as the normal
vector of a random hyperplane. We then assign each probe vector to a bucket depending
on which “side” of the hyperplane it lies, i.e.,

hu(p) =

{
1 uTp ≥ 0

0 otherwise.

One can show that for all pairs of vectors x,y ∈ Rr [Charikar 2002]:

Pru[hu(x) = hu(y)] = 1− arccos(x̄T ȳ)

π
(14)

Note that the right-hand side s(x,y) = 1 − arccos(x̄T ȳ)/π is not identical to the co-
sine similarity x̄T ȳ. It is, however, a monotonically increasing function of the cosine
similarity, which is sufficient for cosine similarity search.

To make LSH effective, we use l independent hash functions, where l > 0 is a param-
eter. For each vector p, we concatenate its hash values into an l-bit binary code, called
signature. Each of the 2l potential signatures corresponds to a bin. The parameter l
controls both cost and recall: If l is increased, more hash values need to be computed
(increasing computational cost), fewer vectors are stored in each bin in expectation
(reducing computational costs), and finally two similar vectors are less likely to be
mapped to the same bin (reducing recall). To combat the loss in recall, the entire pro-
cess can be repeated L times, where L > 0 is another parameter. We then process each
query on each of the L repetitions and union the results. Note that LSH is only effec-
tive when the number of probe vectors is larger than lL (because otherwise we need to
compute more inner products to obtain hash values than naive search needs to obtain
the exact result).

The most effective combination of l and L is generally data-dependent. If l is fixed,
however, we can determine a suitable value for L according to the following theorem.

THEOREM 5.1 ([XIAO ET AL. 2011; SATULURI AND PARTHASARATHY 2012]). Let
l > 0, θ > 0 and 0 < R < 1. Consider an LSH data structure constructed on P using
signatures of length l and

L(θ) =

⌈
log(1−R)

log(1− [1− arccos(θ)/π]l)

⌉
(15)
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repetitions. For any query q ∈ Rr, LSH outputs each probe vector p ∈ P such that
q̄T p̄ ≥ θ with probability at least R.

The theorem immediately implies an expected recall of at least R.
Note that LSH has recently been applied in transformation-based methods for the

MIPS problem [Shrivastava and Li 2014a; Neyshabur and Srebro 2014; Shrivastava
and Li 2014b]. We discuss these methods in Sec. 7 and study their performance in
Sec. 8.

5.2. LEMP with Adaptive LSH
In this section, we introduce the LEMP-LSHA algorithm, which makes use of LSH
in each of LEMP’s buckets. We first discuss the approximate Above-θ-MIPS problem
and then proceed to Top-k-MIPS. In both cases, LEMP-LSHA takes as input a desired
recall parameter R and guarantees to output each true result vector with probability
at least R. The key idea of LEMP-LSHA is to use an adaptive—i.e., query- and bucket-
dependent—number of LSH repetitions to ensure recall R with as low computational
cost as possible.

LEMP-LSHA for Above-θ-MIPS. Assume for now that the length l of the hash code
is fixed. Recall that LEMP solves many small cosine similarity search problems, one for
each of its buckets, and that LEMP uses a query- and bucket-dependent local threshold
θb(q) for cosine similarity search. Since the local threshold θb(q) is not constant, we
cannot simply use Eq. (15) to determine the number L of repetitions to use to achieve
recall R. The main problem is thus to obtain a suitable choice of L within the LEMP
framework.

The idea of LEMP-LSHA is as follows. We store with each bucket b a number cb of
LSH repetitions; cb = 0 initially for all buckets. When processing query q on bucket
b, we compute the local threshold θb(q) as before. We then determine the necessary
number L = L(θb(q)) of LSH repetitions needed for this bucket and query according
to Eq. (15). If cb < L, we create L − cb additional LSH repetitions by reindexing probe
vectors and subsequently increase cb accordingly. In other words, the construction of
LSH repetitions is done lazily as needed. After this step, it holds cb ≥ L, i.e., we have a
sufficient number of repetitions stored with bucket b. We now pick the first L of these
repetitions to obtain the candidate set using LSH; this step involves computing lL hash
values of the query vector. Note that we may use less than the cb repetitions stored
with bucket b in this step: Since L repetitions are sufficient to achieve the desired
recall, using more than L repetitions would be wasteful. In addition, we use the same
hash functions for all buckets. This allows us to cache and re-use the signatures of the
query vector when processing different buckets.

As with most methods for cosine similarity search, LSH is only effective if θb(q) is
large. Thus we use LSH only when θb(q) is large and L(θb(q)) does not exceed a pre-
specified space budget. Otherwise, we use the exact NORM method. To decide whether
or not to use LSH, we use the tuning method described in Sec. 4.4. We subsequently
refer to the adaptive version of LSH in combination with NORM as LSHA.

The correctness of LEMP-LSHA follows immediately from its construction. We ei-
ther use NORM on each bucket (providing exact results) or use a sufficient number of
LSH repetitions (providing recall R).

THEOREM 5.2. Consider the approximate Above-θ-MIPS problem and fix a recall
threshold R. For each query q ∈ Q and each probe vector p ∈ P it holds:

(1) If qTp ≥ θ, LEMP-LSHA outputs (q,p) with probability at least R.
(2) Otherwise, if qTp ≤ θ, LEMP-LSHA does not output (q,p).
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PROOF. Fix (q,p). Let b be the bucket that contains p. Suppose that qTp ≥ θ. If
LEMP uses NORM on bucket b, p is included into the candidate set because NORM is
an exact method. If LEMP uses LSH on bucket b, p is included with probability at least
R since we use sufficiently many repetitions according to Th. 5.1. This establishes the
first assertion. The second assertion holds because LEMP verifies all candidate vectors,
i.e., it outputs (q,p) only if qTp ≥ θ.

It remains to select the length parameter l of the hash code as well as the space
budget for storing repetitions. Parameter l is usually tuned in a dataset-specific way. In
our setting, however, buckets contain few vectors by construction (so that they fit into
the cache). Since computing hash values requires l inner products per LSH repetition,
we cannot afford to use a large value of l; otherwise, NORM would be more efficient
than LSH. We thus keep l small. For similar reasons and to keep space consumption
acceptable, we set the per-bucket budget of LSH repetitions to a relatively small value.
In particular, our implementation fixes l = 8 and uses a budget of 200 repetitions; these
choices provided good results across all datasets in our experimental study.

LEMP-LSHA for Top-k-MIPS. Recall from Sec. 4.5 that Top-k-MIPS for a given
query vector q is equivalent to Above-θ∗-MIPS for θ∗ = s(k). Observe that θ∗ depends on
both q and P and may vary wildly across queries. When LSH is used for top-k search,
θ∗ is unknown, which poses severe difficulties. One way to support top-k processing
is to perform a grid search to select suitable values of l and L empirically. Another
way is to use a sequence of LSH structures with decreasing threshold values; the last
LSH structure should use a threshold smaller than the smallest top-k inner product
value for any query.6 The first option does not provide any quality guarantees and is
generally cumbersome and inefficient (esp. when queries have wildly varying values
of θ∗). This problem has also been observed in our experimental study; see Sec. 8. The
second approach is costly because the cost of signature construction is determined by
the worst-case query. There is also an inherent risk of constructing too many (high
preprocessing cost) or too few (lower recall than desired) of these LSH structures.

In the context of LEMP, we can avoid the problems mentioned above and derive
an efficient LSH-based algorithm for Top-k-MIPS. Our algorithm uses the techniques
of Sec. 4.5 on LEMP for Top-k-MIPS, but employs LSHA instead of an exact search
method in each bucket. In more detail, we maintain a top-k list of the probe vectors
with the largest inner products found so far; this top-k list also allows us to obtain a
lower bound θ̂ on θ∗ = s(k). The top-k list is initialized with the k longest probe vectors
(all at the start of bucket P 1). We then process buckets in order of decreasing L2 norm.
We use θ̂ to obtain the local threshold θ̂b(q) for the next bucket b; this local threshold is
then used to obtain the candidate set from bucket b with LSHA. After candidates have
been obtained, we update the top-k list and θ̂ and proceed to the next bucket (now with
the modified value of θ̂). Using this approach, LEMP-LSHA avoids the problems of the
plain LSH methods by frequently estimating and updating the threshold value to use.

THEOREM 5.3. Consider the approximate Top-k-MIPS problem and fix a recall
threshold R. For each query q ∈ Q and each probe vector p ∈ P such that p ∈ Tk(q),
LEMP-LSHA outputs (q,p) with probability at least R.

PROOF. Fix (q,p) and suppose that p ∈ Tk(q). We know that qTp ≥ θ∗ by definition
of θ∗ = s(k). Let b be the bucket that contains p, and let θ̂ be the (random) threshold
value that LEMP-LSHA uses to run LSHA on bucket b. Since θ̂ is based on the (ap-

6http://www.mit.edu/∼andoni/LSH/manual.pdf
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proximate) top-k list found so far, we must have θ̂ ≤ θ∗ = s(k). By Th. 5.2, LEMP-LSHA
then includes (q,p) into the candidate set with probability at least R. Since p ∈ Tk(q),
p will be immediately added to the approximate top-k list and not be removed later
on.

Bayesian LSH. It is conceivable to replace the basic LSH algorithm by more ad-
vanced techniques. A recent approach is BayesLSH-Lite [Satuluri and Parthasarathy
2012], which uses a Bayesian approach for candidate pruning. After gathering the
candidates from the LSH bins, but before verifying them, BayesLSH-Lite employs an
additional filtering step. In more detail, it determines via Bayesian inference a high-
probability lower bound on the number of hash matches between the signatures of the
query and a probe vector. Since inference can be costly, these bounds are precomputed
for each bucket, based on a worst-case choice of θb(q). The additional filtering step of
BayesLSH-Lite also induces some runtime overhead so that it is not immediately clear
whether filtering improves performance overall. We expect to see an improvement es-
pecially when the inner product computations required for candidate verification are
expensive (i.e., the dimensionality r is large). In our experimental study, we inves-
tigated the performance of BayesLSH-Lite within LEMP and found that the cost of
filtering was often larger than its benefits.

5.3. LEMP-ABS and LEMP-REL for Approximate Top-k-MIPS
In this section, we describe the LEMP-ABS and LEMP-REL methods for approximate
Top-k-MIPS, which provide RMSE and ARE quality guarantees, respectively. Both
LEMP-ABS and LEMP-REL can be used with any exact bucket algorithm.

To see how we can use LEMP for approximate Top-k-MIPS, recall the recommender
system use case and fix a user (query vector). We are interested in retrieving the top-k
recommended items (probe vectors) for that user. Suppose that the ratings of these
items (inner products) lie on a scale from 1 (bad) to 5 (great). The key idea of our
algorithms is as follows: if the best top-k list of the user contains items with ratings
between, say, 4.9–5, then an approximate top-k list with items rated, say, 4.8–5 is
almost as good. If the approximate list can be be retrieved significantly faster, then this
small loss in quality is acceptable: a fast good result may be preferable to a slow perfect
result. This observation is exploited by LEMP-ABS and LEMP-REL: Both algorithms
augment the threshold computation of LEMP so that LEMP retrieves good, but not
perfect, results. In more detail, we use threshold values that are larger than the ones
needed for exact Top-k-MIPS, which in turn leads to faster processing times.

The difference between LEMP-ABS and LEMP-REL lies in how the augmentation of
the threshold is performed. Recall that LEMP maintains a running lower bound θ̂ on
the optimal threshold θ∗ for Top-k-MIPS. Before processing each bucket, we augment
θ̂ based on an error parameter ε ≥ 0:

— LEMP-ABS augments θ̂ by an additive error term, i.e., we set

θ̂abs(ε) = θ̂ + ε. (16)

— LEMP-REL augments θ̂ by a relative error term, i.e., we set

θ̂rel(ε) =

{
θ̂/(1− ε) θ̂ ≥ 0

θ̂ θ̂ < 0,
(17)

for 0 ≤ ε < 1. Note that we do not augment θ̂ if it is negative (in which case the ARE
may not be a meaningful measure).
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We then compute the local thresholds based on θ̂abs(ε) or θ̂rel(ε), respectively, and pro-
ceed as in exact LEMP for Top-k-MIPS. Note that each augmented threshold value
is larger than the non-augmented threshold when ε > 0; both values are equal when
ε = 0.

The error parameter directly corresponds to quality guarantees on the obtained re-
sult. The following theorem establishes that for LEMP-ABS, ε is an upper bound on
the RMSE of the approximate result.

THEOREM 5.4. For any query q ∈ Q, the RMSE of LEMP-ABS for Top-k-MIPS with
error parameter ε ≥ 0 is at most ε.

PROOF. Denote by ŝ(i) the i-th largest score in the approximate top-k list obtained
by LEMP-ABS. Assume for the moment that

ŝ(i) + ε ≥ s(i) (18)

for 1 ≤ i ≤ k. Then

RMSE =

√√√√1

k

k∑
i=1

(s(i) − ŝ(i))2 ≤

√√√√1

k

k∑
i=1

((ŝ(i) + ε)− ŝ(i))2 = ε,

as desired.
It remains to show that (18) holds for all i. To see this, observe that for each of its

buckets, LEMP-ABS uses a threshold θ̂ that satisfies θ̂ ≤ ŝ(k). This is because LEMP-
ABS takes θ̂ to be the lowest inner product value in the current top-k list, which is
upper bounded by its final value ŝ(k). This implies that θ̂abs(ε) = θ̂ + ε ≤ ŝ(k) + ε for all
buckets. Denote by p(1), . . . ,p(k) the exact result of Top-k-MIPS; we have s(i) = qTp(i).
Let u ≤ k be the largest index such that s(u) > ŝ(k) + ε (if such an index exists). Pick
any i, 1 ≤ i ≤ u, and denote by b the bucket that contains p(i). Since θ̂abs(ε) ≤ ŝ(k)+ε for
all buckets, including bucket b, and since s(i) > ŝ(k) + ε by our choice of i, LEMP-ABS
will include p(i) into its candidate list when processing bucket b. Since s(i) is among the
k-th largest scores overall, p(i) will subsequently be added to the running top-k list and
not be evicted later on. Thus vectors p(1), . . . ,p(u) are included in the final top-k list of
LEMP-ABS. For i ≤ u, we thus have s(i) = ŝ(i) so that Eq. (18) holds. Now consider any
index i > u. We have s(i) ≤ ŝ(k) + ε by our choice of u. Since ŝ(k) ≤ ŝ(i), it follows that
s(i) ≤ ŝ(i) + ε, i.e., Eq. (18) holds.

The error bound on the RMSE obtained by LEMP-ABS is absolute, i.e., it does not
depend on the scale of the values in the actual result. In cases where the top-k values
can differ wildly across different queries, it may be more appropriate to use relative
error bounds instead. This means that we require small error for results with small
top-k values, but allow for larger error for results with large top-k values. Such bounds
are achieved by LEMP-REL.

THEOREM 5.5. For any query q ∈ Q, the ARE of LEMP-REL for Top-k-MIPS with
error parameter 0 ≤ ε < 1 is at most ε.

PROOF. Using the notation above, suppose that ŝ(k) < 0 when LEMP-REL termi-
nates. Then for all buckets, we must have had θ̂ < 0 (since θ̂ ≤ ŝ(k) by definition) and
thus θ̂rel(ε) = θ̂. This implies that whenever ŝ(k) < 0, LEMP-REL did not augment the
threshold and thus produced exact results. The ARE is thus 0 and the assertion holds.
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Now suppose that ŝ(k) ≥ 0. Then we can show using arguments as in the proof of
Th. 5.4 that

ŝ(i)/(1− ε) ≥ s(i) (19)

for 1 ≤ i ≤ k. The ARE satisfies

ARE =
1

k

k∑
i=1

s(i) − ŝ(i)
s(i)

=
1

k

k∑
i=1

1−
ŝ(i)

s(i)
≤ 1

k

k∑
i=1

1−
ŝ(i)

ŝ(i)/(1− ε)
= ε (20)

as asserted.

To further improve the performance of LEMP-ABS and LEMP-REL, we use the aug-
mented thresholds θ̂abs(ε) and θ̂rel(ε) only for candidate generation but not during veri-
fication. That is, we update the top-k list by taking into the consideration all candidate
vectors.

5.4. Hybrid Methods for Approximate Top-k-MIPS
In this section, we explore hybrid methods that combine LEMP with both LSHA
(Sec. 5.2) and threshold augmentation (Sec. 5.3) for further efficiency gains.

Recall that LEMP-ABS and LEMP-REL augment the local thresholds in order to
both (1) reduce the candidate set for each each processed bucket and (2) to achieve early
termination, i.e., stop processing further buckets even though they may contain probe
vectors that improve the top-k list obtained so far. In LEMP-LSHA, on the other hand,
we use LSHA to reduce the candidate set, but we do not employ early termination. Our
hybrid methods combine both ideas, i.e., they use LSHA for reducing the candidate set
and threshold augmentation for early termination. We refer to the resulting methods
as LEMP-HYB-ABS and LEMP-HYB-REL, depending on whether we use absolute or
relative threshold augmentation, respectively.

We now turn attention to the quality guarantees provided by the hybrid methods.
We focus on LEMP-HYB-ABS, which uses the threshold augmentation of Eq. (16). The
analysis for LEMP-HYB-REL is similar and omitted.

Fix a query q and an error parameter ε ≥ 0. As outlined in Fig. 5, we conceptually
divide the probe vectors into “very good” (score≥ s(k)+ε), “good” (score in [s(k), s(k)+ε)),
“quite good” (score in [s(k) − ε, s(k))), and “bad” (score < s(k) − ε), where as before s(k)
denotes the top-k score for q. Observe that ε controls which probe vectors are consid-
ered good. Denote by the ε-reduced top-k list T−k,ε(q) the set of all probe vectors with a
score of at least s(k) + ε (very good), and by the ε-extended top-k list T+

k,ε(q) the set of
probe vectors with a score of at least s(k) − ε (not bad). Note that T−k,ε ⊆ Tk ⊆ T

+
k,ε.

Given a recall threshold 0 < R < 1, Th. 5.3 asserts that (1) LEMP-LSHA outputs
each vector in the top-k list with probability at least R and implies that (2) the ex-
pected number of probe vectors from the true top-k list output by LEMP-LSHA is least
Rk. The approximation guarantee of LEMP-HYB-ABS is similar to but—due to early
termination—somewhat weaker than the ones of LEMP-LSHA. The following theorem
provides some guidance about when the hybrid method is expected to work well.

THEOREM 5.6. Consider the approximate Top-k-MIPS problem and fix a recall
threshold R and an error parameter 0 ≤ ε < 1. For each query q,

(1) LEMP-HYB-ABS outputs each probe vector p ∈ T−k,ε(q) with probability at least R.
(2) The expected number of probe vectors p ∈ T+

k,ε(q) output by LEMP-HYB-ABS is at
least Rk.
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Fig. 5: Illustration of top-k list (gray), ε-reduced top-k list T−k,ε and ε-extended top-k list
T+
k,ε (after fixing some query q)

The theorem asserts that (1) LEMP-HYB-ABS works just as well as LEMP-LSHA in
retrieving very good vectors and (2) retrieves few bad vectors in expectation. For the
remaining vectors, LEMP-HYB-ABS and LEMP-LSHA give different guarantees. The
smaller the ε-extended top-k list T+

k,ε(q), the higher the chances that the hybrid method
produces a result as good as LEMP-LSHA. Put differently, if the top-k probe vectors
are well separated in score from the remaining vectors, LEMP-HYB-ABS is expected
to work well.

PROOF. Fix an arbitrary query q. Our proof relates the output of LEMP-HYB-ABS
to the output of LEMP-LSHA. We will analyze LEMP-HYB-ABS in terms of its preci-
sion w.r.t. to the various top-k lists. Given the output for query q of an approximate Top-
k-MIPS algorithm X, denote by the random variables P−X , PX , and P+

X the set of probe
vectors from T−k,ε, Tk, and T+

k,ε, resp., in the approximate answer. Since T−k,ε ⊆ Tk ⊆ T
+
k,ε,

we have
P−X ⊆ PX ⊆ P

+
X . (21)

We show below that when LEMP-LSHA and LEMP-HYB-ABS use the same set of
LSH signatures, it holds

P−HYB = P−LSHA (22)
and

|P+
HYB | ≥ |PLSHA|. (23)

Recall that according to Th. 5.3, LEMP-LSHA outputs each of the probe vector in Tk
with probability at least R. Using this result, and since Eq. (22) states that both algo-
rithms output the same set of vectors from T−k,ε ⊆ Tk, our first assertion follows. Since
Th. 5.3 implies E[|PLSHA|] ≥ Rk, and since E[|P+

HYB |] ≥ E[|PLSHA|] by Eq. (23), we
obtain E[|P+

HYB |] ≥ Rk, our second assertion.
It remains to show that Eqs. (22) and (23) indeed hold. Fix arbitrary LSH signatures

for all probe vectors as well as for q. Given these signatures, LEMP-LSHA and LEMP-
HYB-ABS are deterministic. Suppose that LEMP-LSHA terminates after processing
l buckets. LEMP-HYB-ABS may terminate earlier, i.e., after l′ ≤ l buckets. Observe
that after processing buckets 1, . . . , l′, both algorithms agree in their result so far, but
only LEMP-LSHA may process further buckets and thus improve the result. There are
three cases:
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— l′ = l: Both methods produce the same result. Eq. (22) holds trivially. Eq. (23)
follows from Eq. (21) since PLSHA = PHYB ⊆ P+

HYB .
— l′ < l and buckets l′ + 1, . . . , l do not contain a vector from Tk: LEMP-LSHA and

LEMP-HYB output the same set of vectors from Tk, i.e., PLSHA = PHYB . Eqs. (22)
and (23) follow using similar arguments as above.

— l′ < l and and buckets l′+ 1, . . . , l contain at least one vector from Tk. Denote by ŝ(k)
the smallest score output by LEMP-HYB-ABS. First observe that all probe vectors
in buckets l′+ 1, . . . , l have a score of less than ŝ(k) + ε, since otherwise LEMP-HYB-
ABS would not have terminated early. In other words, all vectors that enter the
approximate top-k list of LEMP-LSHA when processing buckets l′ + 1, . . . , l must
have a score in [ŝ(k), ŝ(k) + ε). Since buckets l′ + 1, . . . , l contain a vector from Tk,
and since this vector has score at least s(k), we conclude that s(k) ∈ [ŝ(k), ŝ(k) + ε)
and thus ŝ(k) > s(k)− ε. Since ŝ(k) is so large, all vectors output by LEMP-HYB-ABS
belong to T+

k,ε. We have |P+
HYB | = k ≥ |PLSHA|, establishing Eq. (23). Furthermore,

buckets l′ + 1, ..., l cannot contain a vector from T−k,ε, since such a vector would have
score at least s(k) + ε, but buckets l′ + 1, ..., l contains vectors with score less than
ŝ(k) + ε and thus less than s(k) + ε. Thus LEMP-LSHA and LEMP-HYB-ABS agree
on the vectors output from T−k,ε, establishing Eq. (22).

6. Parallelizing LEMP
In this section, we show how to take advantage of multithreading and instruction level
parallelism for MIPS. When multiple queries are considered, the MIPS problem be-
comes embarrassingly parallel: queries can be partitioned among threads; each thread
can run its own instance of the problem. All algorithms described in this article (LEMP,
naive, cover trees [Curtin et al. 2013], TA [Fagin et al. 2001], simpleLSH [Neyshabur
and Srebro 2014], PCA-Tree [Bachrach et al. 2014], etc.) can be parallelized in this
way. Here we show how to apply such ideas to LEMP in an efficient way that scales to
many processors.

Multithreading. When multithreading is used, it is important for scalability to a
large number of cores to avoid synchronization and cache misses to the extent possi-
ble. We avoid cache misses by enforcing during bucketization the restriction that each
bucket should fit into the available cache per core. Synchronization, on the other hand,
can in general take place in LEMP in three places: (i) when a thread writes its results
to memory, (ii) when a thread needs to obtain the next query to work on, and (iii) when
a thread needs to access an index which is not yet created. To handle (i), we assign to
each thread a separate memory area to write its results. The final result is then given
by the union of these memory areas. To handle (2), we partition the queries among
the threads during the preprocessing phase. Thus each thread knows upfront which
queries it is responsible for and no further synchronization is needed. To ensure a sim-
ilar workload among threads, queries are assigned to partitions randomly. We handle
(iii) as follows. When a thread needs to access an index which is not yet created during
the search phase, it needs to obtain exclusive access to the index in order to build it.
While the index is being built, all other threads that try to read this index need to wait;
we want to minimize such waiting times. For the Above-θ-MIPS problem, in which we
know θ upfront, we compute in advance which buckets can contribute to the result in
the worst case (longest query vector). The indexes of these buckets are created in par-
allel during the preprocessing phase. Thus no synchronization is needed during the
search phase. For Top-k-MIPS, for which the set of required indexes is not known up-
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front, synchronization is inevitable. However, we can reduce synchronization overhead
during search phase as follows. Recall that during tuning, we run a sample of queries
against the probe buckets, so that their performance w.r.t. the NORM algorithm and
other direction-based algorithms (for which we need indexes) is assessed. After we as-
sess the performance of the sample w.r.t. NORM, we have a first crude estimate of how
many buckets are contributing to the result. At this point, we pause the tuning phase,
build the estimated number of required indexes for these buckets in parallel and then
continue tuning. In this way, a large part of the required indexes is created before the
search phase starts. If additional indexes are needed during the search phase, we build
them on demand and require synchronization. Our experiments suggest that the com-
bination of these techniques allows LEMP to scale almost linearly to a large number
of processors.

Instruction-level parallelism. LEMP’s performance (as well as the one of some
other methods) can benefit from the use of instruction-level parallelism. As a proof of
concept, we extended LEMP to use SSE instructions to speedup (i) the inner-product
calculation during the verification phase, and (ii) the maintenance of the extended
CP -array. Recall that while ICOORD is scanning the sorted lists, it maintains for each
encountered probe vector both a partially seen inner product and an upper bound on
the remaining unseen part. Maintaining these quantities involves two multiplications,
which we parallelize using SIMD instructions.

7. Related Work
We first review related literature for exact MIPS and cosine similarity search, and
subsequently proceed to approximate methods. In general, LEMP differs from existing
methods in that it bucketizes vectors by their L2 norm, uses inexpensive bucket-level
and within-bucket pruning strategies (instead of more powerful but also more expen-
sive ones), and provides approximation guarantees for approximate MIPS.

The LEMP framework was first introduced by Teflioudi et al. [2015], who study exact
retrieval in a sequential setting. This article extends the original LEMP framework as
follows: (1) We study approximate MIPS and propose as well as analyze multiple novel
approximate methods within the LEMP framework. (2) We discuss how to parallelize
LEMP using multithreading and/or instruction-level parallelism. (3) We significantly
expanded the experimental study and included results on approximate algorithms, the
impact of factorization rank on the algorithms, and the effectiveness of parallelization
on a large number of processors.

7.1. Exact Methods
Algorithms for MIPS. Ram and Gray [2012] address the problem of Top-k-MIPS, by
organizing the probe vectors in a metric tree, in which each node is associated with
a sphere that “covers” the probe vectors below the node. Given a query vector, the
spheres are exploited to avoid processing subtrees that cannot contribute to the result.
The metric tree itself is constructed by repeatedly splitting the set of probe vectors into
two partitions (based on Euclidean distances). In subsequent work [Curtin et al. 2013],
the metric tree is replaced a cover tree [Beygelzimer et al. 2006]. Both approaches ef-
fectively prune the search space, but they suffer from high tree-construction costs and
from random memory access patterns during tree traversal. The latter problem was
investigated more closely by Curtin and Ram [2014], who proposed a dual-tree algo-
rithm that additionally arranges query vectors in a cover tree and processes queries in
batches. The dual-tree method loosens the bounds for pruning the search space, how-
ever, and was found to be ineffective in practice [Curtin and Ram 2014; Teflioudi et al.
2015].
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LEMP differs from these tree-based techniques in that it separates the L2 norm
and direction information, makes use of multiple, light-weight indexing and search
methods, and has more favorable memory access patterns. Note that the tree-based
approaches can also be used within the LEMP framework as a bucket algorithm. We
expect that such a combination will have positive effect w.r.t. indexing time and cache
locality. We explored this approach in our experimental study.

An alternative approach is taken by Zhang et al. [2014] in the context of recom-
mender systems: the matrix factorization method used to produce the input matrices
is modified such that all vectors are (approximately) unit vectors. Then inner products
between user and item vectors can be approximated by their cosine similarity, which
enables the use of existing methods for cosine-similarity search. This modification may
affect the quality of the recommendations, however, and is not suitable for all appli-
cations. In contrast, LEMP makes no assumption on the source or method used to
compute the input matrices.

Threshold algorithm. Some of the indexing techniques used in LEMP are inspired
by the popular threshold algorithm (TA) of Fagin et al. [2001] for top-k query process-
ing for monotonic functions. TA arranges the values of each coordinate of the probe
vectors in a sorted list, one per coordinate. Given a query, TA repeatedly selects a suit-
able list (e.g., round robin or heap-based), retrieves the next vector from the top of
the list, and maintains the set of the top-k results seen so far. TA uses a termination
criterion to stop processing as early as possible. The effectiveness of this criterion de-
pends on the data; if TA is able to stop early, it can be very efficient. Note that TA
usually focuses on vectors of low dimensionality (say up to 10), whereas we focus on
vectors of medium sizes (say 10 to 500). TA can be used for finding vectors with large
inner products almost as is; the only difference is that sorted lists need to be processed
bottom-to-top when the respective coordinate of the query vector is negative.

LEMP improves over TA in multiple ways: First, bucket pruning eliminates early
all short probe vectors, which otherwise TA would have to consider. Second, TA scans
lists from top-to-bottom, whereas LEMP considers only the feasible region. Third, TA
immediately computes the inner product of each vector selected from one of the lists in
the index; i.e., candidate verification is triggered by individual coordinates. LEMP does
not immediately calculate an inner product when it encounters a vector: it first scans
multiple lists and prunes the vectors before verification based on the so-obtained infor-
mation. Finally, index scan and verification is interleaved in TA, resulting in a random
memory access pattern and a potentially high cache-miss rate. LEMP ensures that all
bucket-related data (original vectors and indexes) fits into cache, thereby reducing the
cache-miss rate.

In our experimental study we investigated the performance of TA in comparison to
LEMP. We also experimented with TA in combination with LEMP, i.e., we used TA
as a bucket algorithm. This addresses the first and the final point in the discussion
above. Our experimental results indicate that a combination of TA and LEMP can be
up to 25x faster than just using TA. Generally, LEMP can improve TA’s performance
for top-k problems with linear scoring functions (i.e., inner products).

Cosine similarity search. Exact cosine similarity search algorithms, like all-pairs
similarity search (APSS, [Bayardo et al. 2007; Chaudhuri et al. 2006; Lee et al. 2010;
Xiao et al. 2008]), cannot be used directly for the MIPS problem. However, these meth-
ods can be used (with some modifications) as search methods for LEMP’s buckets or
together with transformation-based MIPS methods.

Typical APSS algorithms and applications involve sparse vectors of high dimension-
ality (tens or hundreds of thousands of coordinates). In such settings, sparsity must be
retained during indexing to keep the index size manageable. Thus APSS algorithms
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generally index only the non-zero values of each coordinate (in contrast to LEMP). In
addition, coordinates are often permuted such that dense coordinates (called prefix)
appear before sparser coordinates (suffix); only the suffix is indexed. The index is used
to obtain candidate vectors, which are further pruned based on properties of prefixes
and suffixes [Xiao et al. 2008; Lee et al. 2010; Anastasiu and Karypis 2014]. Finally,
full similarity scores are computed for each candidate.

L2AP [Anastasiu and Karypis 2014] is a state-of-the-art APSS algorithm for exact
cosine similarity search targeting vectors with real-valued coordinates. It exploits the
Euclidean norms of suffixes and prefixes for index compression and candidate filter-
ing. L2AP can be used as a bucket algorithm for LEMP after a few modifications. In
particular, we create a separate L2AP index for each bucket. In L2AP, like in most
APSS algorithms, a lower bound on the cosine similarity threshold of the query needs
to be fixed a priori. In our setting, we pick the lower bound θb(qmax), where qmax is the
query vector with the largest L2 norm.

L2AP follows a similar pruning technique to ICOORD during candidate generation
and verification: it accumulates q̄TF p̄F and precomputes u(q̄F , p̄F ). ICOORD differs in
the following ways: (i) L2AP scans all indexed lists corresponding to non-zero query
coordinates, whereas ICOORD scans only φ of them and only their feasible regions,
(ii) L2AP uses sophisticated filtering conditions both during and after scanning. These
filtering techniques eliminate the majority of the candidates, but are generally expen-
sive. In contrast, ICOORD filters candidates only once and after index scanning, which
is cheap but may result in a larger number of candidates. See Sec. 8 for an experimen-
tal comparison of the two methods.

7.2. Approximate Methods
Hardness. Ahle et al. [2016] studied the complexity of the MIPS problem and some
of its variants. One of their main results is that Above-θ-MIPS and Top-k-MIPS are
both hard to approximate in subquadratic time, assuming the strong exponential time
hypothesis. In practice, however, experiments suggest that approximate methods often
do work well.

Query clustering. Koenigstein et al. [2012] approached the approximate Top-k-
MIPS problem by clustering the query vectors and solve the Top-k-MIPS problem only
for the cluster centroids. The results for the centroids are taken as approximate results
for all the queries in the respective cluster. The authors derive relative error bounds
(ARE) on the results, based on the cosine similarity of the query and the centroid. If
this bound is larger than a desired value, the algorithm falls back to exact search for
that specific query. Query clustering can be directly applied in combination with LEMP
(or any other Top-k-MIPS algorithm). We do not consider such an approach here be-
cause it was outperformed by PCA-Trees in previous studies (see below), the clustering
phase may be expensive, the method’s performance heavily depends on the quality and
number of the clusters, and the approach is not suitable for online processing (since all
queries need to be known in advance).

Transformation-based methods. Recently, a number of novel methods have been
proposed that perform transformations of the query and/or probe vectors such that
Top-k-MIPS is reduced to NNS [Bachrach et al. 2014; Shrivastava and Li 2014a] or
to CSS [Shrivastava and Li 2014b; Neyshabur and Srebro 2014] on the transformed
vectors. The existence of such transformations is promising because they enable the
direct use of existing methods for NNS or CSS. All transformations slightly increase
the dimensionality of the data vectors, either by one [Bachrach et al. 2014; Neyshabur
and Srebro 2014] or two [Shrivastava and Li 2014a; 2014b]. The additional coordi-
nates generally hold information related to the L2 norm of the vector. LEMP differs
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from these methods in that it exploits L2 norm information directly via bucketization
into many small problems, rather than indirectly via transformation into one large
problem. This approach allows LEMP to perform quick initial norm-based pruning for
many buckets and to select suitable search algorithms for the remaining buckets.

Transformation to NNS. Bachrach et al. [2014] showed how to reduce the Top-k-
MIPS to an equivalent nearest-neighbor problem in Euclidean space by introducing
the following asymmetric transformations for the query and probe vectors, respec-
tively:

tNNS(q) =
(
0 qT

)T
tNNS(p) =

(√
(maxi ‖pi‖)2 − ‖p‖2 pT

)T
.

Note that the added coordinate in tNNS(p) is large (and often dominant) for short probe
vectors and small for long probe vectors.

After the vectors get transformed with tNNS , Bachrach et al. [2014] propose the use
of a so-called PCA-Tree, an approximate method, for NNS. The PCA-Tree is a binary
tree of depth d � r + 1, which is formed by splitting probe vectors based on their
first d principal components. Probe vectors are partitioned across the leaves of the
tree. During query processing, the tree is traversed to find a set of d leaves (and the
corresponding probe vectors) which best match the transformed query. The input pa-
rameter d controls the trade-off between speedup and quality: The larger d, the fewer
total number of candidates, the larger the speedup, and the lower the quality of the
result. The PCA-Tree method does not provide any error bounds, but was empirically
shown to outperform the clustering method of Koenigstein et al. [2012].

An alternative to the PCA-Tree is to use prior state-of-the-art methods for approxi-
mate nearest neighbor search such as Annoy,7 a popular library developed at Spotify.
To the best of our knowledge, this direction has not been explored experimentally be-
fore (but we do so in our experimental study). Annoy builds a forest of binary trees,
each using random hyperplanes for splitting. During query processing, Annoy main-
tains a priority queue with the most promising leaves (based on heuristics) to be vis-
ited, and verifies the vectors in those leaves. The number of trees and the number
of leaves to be visited are parameters that control the speedup-quality tradeoff. No
approximation guarantees are provided.

Another direction to approach approximate MIPS is via LSH-based methods. It is
known that LSH cannot be used to solve MIPS on the original vectors [Neyshabur
and Srebro 2014; Shrivastava and Li 2014a]. Shrivastava and Li [2014a] derived a
transformation related to tNNS and applied LSH methods for Euclidean NNS.

Transformation to CSS. In their subsequent work, Shrivastava and Li [2014b] pro-
posed an alternative asymmetric transformation to CSS for use with LSH, which pro-
vided better results. Neyshabur and Srebro [2014] proposed another, experimentally
superior transformation from Top-k-MIPS to CSS given by:

tCSS(q) =
(
0 q̄T

)T
tCSS(p) =

(√
1− ‖p‖2/maxi ‖pi‖

2
pT /maxi ‖pi‖

)T
.

Note that tNNS and tCSS are closely related. In fact, if we rescale P by 1/maxi ‖pi‖
upfront and normalize all query vectors, tNNS and tCSS agree, and the result of
Top-k-MIPS remains unaffected. Ahle et al. [2016] suggested to use tCSS with the

7https://github.com/spotify/annoy
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LSH method FALCONN8 of Andoni et al. [2015]—instead of the random hyperplanes
method used by Neyshabur and Srebro [2014]—for improved results.

In Section 8, we experimentally investigate the performance of transformation-
based methods using tNNS or tCSS in combination with various state-of-the-art simi-
larity search methods.

8. Experimental Study
We conducted an extensive experimental study using multiple real-world datasets. The
goals and results of our experimental study are summarized below:

— We investigated the performance of various state-of-the-art methods for exact
MIPS: naive search (Naive), LEMP-based methods, the threshold algorithm (TA),
and the single and dual cover tree approaches (Tree, D-Tree). We found that LEMP
consistently outperformed alternative exact methods and was the best-performing
method overall. In particular, LEMP was up to multiple orders of magnitude faster
than Naive and between 2x and 20x faster than the best-performing alternative
method.

— We studied the relative performance of different bucket-search methods for exact
MIPS with LEMP, including NORM, COORD, ICOORD, TA, cover trees, and L2AP.
We found that a combination of NORM and ICOORD was the most efficient bucket-
search method overall.

— We investigated the effect of the dimensionality r of the input vectors on each algo-
rithm’s performance for exact MIPS. Our results suggest that LEMP maintains its
performance advantage across all dimensionalities we considered.

— We investigated the quality-speed trade-off of the LEMP-based methods as well
as various transformation-based methods paired with state-of-the-art similar-
ity search algorithms. We found that the best-performing method was dataset-
dependent. On the three real-world datasets we considered for approximate MIPS,
the best-performing methods were LEMP-HYB-REL, LEMP-REL, and the tCSS-
transformation with Annoy for similarity search, respectively. LEMP was up to
roughly 4x faster than the closest alternative method not based on LEMP (for the
same quality level).

— Finally, we studied the scalability of our parallel LEMP variants. We observed
nearly linear speedups up to 32 processors (the largest number considered in our
experiments) and a runtime decrease of up to 23% when SIMD instructions were
used.

8.1. Experimental Setup
All datasets and our source code can be found at http://dws.informatik.uni-mannheim.
de/en/resources/software/lemp.

Hardware. Our experiments were run on a machine with 48 GB RAM and an Intel
Xeon 2.40GHz processor. Unless stated otherwise, our experiments were carried out
on a single thread and no SIMD instructions were used.

Datasets. We used real-world datasets from collaborative filtering and informa-
tion extraction applications (cf. Section 2.2) as well as a word-vector dataset previ-
ously used for benchmarking approximate NNS algorithms. Table I summarizes our
datasets. The table gives the sizes of the input data and for various choices of rank r,
the coefficient of variation (CoV) of the L2 norms of the input vectors, the percentage
of non-zero entries and the time required by Naive.

8https://github.com/FALCONN-LIB/FALCONN
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Table I: Overview of datasets

Dataset m n r CoV of L2 norms % Non- Naive
Q P Zero (min)

IE-NMF 771K 132K 10 2.05 5.49 28.2 27.1
50 1.56 5.53 36.2 113.6
100 1.34 4.45 50.8 244.4

IE-SVD 771K 132K 10 2.04 5.46 100 27.1
50 1.51 4.44 100 113.6
100 1.28 3.64 100 244.4

Netflix 480K 17K 10 0.12 0.16 100 2.0
50 0.16 0.22 100 8.5
100 0.19 0.22 100 20.4

KDD 1000K 624K 51 0.38 0.40 100 838.3
GloVe 100K 1.09M 100 0.20 0.20 100 290.4

For our experiments with collaborative filtering data, we used factorizations of the
popular Netflix [Bennett and Lanning 2007] and KDD [Dror et al. 2012] datasets.9
Both datasets consist of ratings of users for movies (Netflix) or musical pieces (KDD).
For Netflix, we performed a plain matrix factorization with DSGD++ using L2 regu-
larization with regularization parameter λ = 50, as in [Teflioudi et al. 2012]. For KDD,
we used the factorization of Koenigstein et al. [2011],10 which incorporates the music
taxonomy, temporal effects, as well as user and item biases; this dataset has been used
in previous studies of the Top-k-MIPS problem. Since we were ultimately interested
in retrieving the top-k movies/songs for each user, we used the collaborative filtering
datasets to study the performance of the various methods for the Top-k-MIPS problem.

For the open information extraction scenario, we extracted around 16M subject-
pattern-object triples from the New York Times corpus,11 which contains news arti-
cles, using the methods described in Nakashole et al. [2012]. We removed infrequent
arguments and patterns, and constructed a binary argument-pattern matrix: An entry
in the matrix was set to 1 if the corresponding argument (subject-object pair) occurred
with the corresponding pattern; otherwise, the entry was set to 0. We factorized this bi-
nary matrix using the truncated singular-value decomposition (SVD) and non-negative
matrix factorization (NMF); we denote the resulting datasets as IE-SVD and IE-NMF,
respectively. For SVD, which produces factorization U rΣrV

T
r , we set QT = U r

√
Σr

and P =
√

ΣrV
T
r . For the IE datasets, we studied Above-θ-MIPS and Top-k-MIPS,

which are both relevant in applications. Above-θ-MIPS aims to find all high-confidence
facts, whereas Top-k-MIPS retrieves the k most probable arguments of a pattern (as
in Riedel et al. [2013]). For the latter problem, we make use of the transposed matrices
IE-SVDT and IE-NMFT .

We factorized Netflix, IE-SVD and IE-NMF with ranks 10, 50 and 100. Unless stated
otherwise, we use rank r = 50. We investigate the effect of other choices in Section 8.3.
As stated previously, fast and scalable matrix factorization algorithms have been pro-
posed in the literature so that the time for matrix factorization is often not a bottleneck
in applications. For example, we obtained IE-SVD (r = 50) and IE-NMF (r = 50) in less

9The KDD (Yahoo! Music) dataset corresponds to Track 1 of the 2011 KDD-Cup.
10We zeroed out all subnormal numbers.
11http://catalog.ldc.upenn.edu/LDC2008T19
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than four minutes each using Matlab. As another example, Makari et al. [2015] reports
that the KDD dataset (r = 50) can be factored in roughly seven minutes. In all three
cases, the factorization time is significantly smaller than the time required to perform
MIPS using Naive so that MIPS is the main bottleneck.

The GloVe12 dataset contains 100-dimensional vector representations of words [Pen-
nington et al. 2014]. We randomly chose 100K vectors as queries and used the remain-
ing vectors as probe vectors. GloVe has been used in the past as a benchmark dataset
for approximate NNS and CSS.13. Here we use the dataset for experimentally explor-
ing Top-k-MIPS methods, i.e., for a different problem.

Exact algorithms. We considered the following exact MIPS algorithms: naive
search (Naive), LEMP-based methods, the threshold algorithm (TA), and the single
(Tree) and dual (D-Tree) cover tree approaches. We implemented Naive, LEMP, and
TA in C++. A C++ implementation of Tree and D-Tree was provided to us by the au-
thors of [Curtin et al. 2013; Curtin and Ram 2014].14

For TA, we experimented with two different list-selection schedules: a round robin
(RR) on the lists corresponding to non-zero query coordinates and one that selects
the sorted list i that maximized qipi, where pi refers to the next coordinate value in
list i. The latter strategy selects the “most-promising” coordinate; we implemented
it efficiently using a max-heap. We additionally improve the performance of TA by
allowing multiple steps on the same list if all these steps access probe vectors that
are already explored. Finally, we report the best results achieved by TA (RR or heap-
based).

We ran six “pure” versions of LEMP for exact MIPS, in which only one method was
used within a bucket. We denote these methods as LEMP-X, where X is: N (for NORM),
C (for COORD), I (for ICOORD), TA, L2AP or Tree. Here TA, L2AP, and Tree are prior
methods. We integrated the state-of-the-art CSS method L2AP into LEMP by adjusting
the publicly available C code.15

We also ran the two mixed versions LEMP-NC (for NORM and COORD) and LEMP-
NI (for NORM and ICOORD), in which the bucket-search method is automatically
chosen as described in Section 4.4.

Unless stated otherwise, we use LEMP-NI as our default method and denote it by
LEMP.

Approximate algorithms. We considered various transformation-based methods
paired with state-of-the-art NNS or CSS algorithms for approximate MIPS. We consid-
ered the tNNS-transformation with PCA-Trees, the tCSS-transformation with Annoy16,
and the tCSS-transformation with FALCONN.17 We implemented PCA-Trees in C++.
We also experimented with alternative transformations for Annoy and FALCONN, but
consistently obtained worse results than with tCSS . Similarly, FALCONN (using cross-
polytope LSH and multi-probing) performed better than random hyperplane LSH.

Additionally, we used the following LEMP-based methods: LEMP-LSHA, LEMP-
LSHA(B) (using BayesLSH-Lite), LEMP-REL, LEMP-HYB-REL, LEMP-HYB(B)-REL
(using BayesLSH-Lite). We also experimented with LEMP-ABS and LEMP-HYB-ABS,
but we omit the results here, because they were qualitatively similar to those of LEMP-
REL and LEMP-HYB-REL, respectively.

12http://nlp.stanford.edu/projects/glove/
13https://github.com/erikbern/ann-benchmarks
14http://mlpack.org/
15 http://glaros.dtc.umn.edu/gkhome/l2ap/overview
16https://github.com/spotify/annoy
17https://github.com/FALCONN-LIB/FALCONN

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January 2015.



Exact and Approximate Maximum Inner Product Search with LEMP A:33

Methodology. We considered both Above-θ-MIPS and Top-k-MIPS. For Above-θ-
MIPS, we selected θ such 103, 104, 105, 106, or 107 entries were retrieved from QTP .
We subsequently refer to the number of results as the retrieval level and report the
retrieval level instead of the actual value of θ. For Top-k-MIPS, we experimented with
k ∈ { 1, 5, 10, 50 }.

Unless otherwise stated, we compare all methods in terms of overall wall-clock time,
which includes preprocessing, tuning, and retrieval time. Preprocessing involves the
construction of indexes and, for LEMP only, the time required for the normalization,
sorting, and bucketization of the input vectors. Tuning refers to the time required to
automatically select suitable values for the parameters φ and tb of LEMP.

Choice of parameters. LEMP’s parameters (φ and tb) were tuned on a small sam-
ple of the datasets as explained in Section 4.4; tuning time is included in the runtime.
The base parameter of the cover trees was set to 1.3 as suggested by Curtin and Ram
[2014]. For all LEMP algorithms, we used a fine-grained bucketization such that all
data structures of a bucket fit into the available processor cache. For LEMP-L2AP, we
used the same combination of filters and bounds that Anastasiu and Karypis [2014]
report as most efficient w.r.t. execution time. For LEMP-LSHA, we set the signature
length to 8 bits and maximum number of signatures to be used to 200.

8.2. Exact MIPS
In this section, we compare LEMP with previous methods for exact MIPS. Figures 6
and 7 show the relative performance of LEMP (using the NI bucket algorithm), TA,
Tree and D-Tree for the Above-θ-MIPS and Top-k-MIPS problems, respectively. The
speedup of LEMP with respect to the best-performing method other than LEMP is
printed in the figures. We use Naive as a baseline; its running time is independent of
θ for Above-θ-MIPS and only slightly affected by k for Top-k-MIPS. To keep our study
manageable, we only ran Naive for the Top-1-MIPS problem; this is a fair comparison
because running times for larger k may be slightly above, but not below the times
reported here. The wall-clock times for this and additional experiments, as well as
average candidate set sizes, can be found in Tables IV and V in the online Appendix B
accessible in the ACM Digital Library.

In the following, we discuss the performance of the algorithms in terms of overall
running time, preprocessing time and pruning power.

Overall performance. In general, LEMP was the fastest method, reaching up to
17000x speedup over the Naive baseline and up to 24x speedup over the next best
method. The second fastest method in the majority of cases was Tree, followed by TA
and D-Tree. LEMP, Tree, and TA appear to have best performance on datasets with
large skew in their L2 norm distribution, like the IE datasets (high CoV in Table I)
and also on datasets with sparse vectors (IE-NMF). On datasets with little skew in
their L2 norm distribution, like Netflix, GloVe and KDD, all methods had difficulties
in providing large speedups over Naive. However, for KDD, some methods were still
able to offer significant savings in terms of running time: e.g., LEMP took 9.4 hours
less time than Naive. Tables IV and V show that the performance of all methods but
Naive deteriorates as the result size or k increases (θ decreases), since the output size
increases and pruning opportunities decrease. Generally, there is a break-even point
at which any method will be slower than Naive. This is the case, for example, for all
methods other than LEMP on Netflix/GloVe/KDD for k ≥ 1.

Preprocessing time. Table II shows the preprocessing time for the different
datasets and methods.

For Tree and D-Tree, we give the wall-clock time of producing the cover tree(s) and
for TA the time to create the sorted lists. The preprocessing costs of these methods are
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Fig. 6: Total wall-clock times (incl. indexing and tuning) for exact Above-θ-MIPS on
different datasets for θ values resulting to 1K and 1M results
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fixed and depend on the size of probe matrix (and additionally of the query matrix for
D-Tree).

For LEMP, we report the sum of maximum indexing and the maximum tuning time
(normally the preprocessing times vary from problem to problem since LEMP con-
structs indexes lazily). On the one hand, LEMP suffers from tuning overhead, but on
the other hand, it benefits from lazy index construction, especially for datasets with
skewed L2 norm distribution. The larger the L2 norm skew and the size of the probe
matrix, the larger the preprocessing savings of LEMP over the other methods, and the
higher the chances of outweighing the tuning overhead. For example, for IE-NMFT ,
which has n = 771K, LEMP needed 0.84s vs. 2.98s for TA and 31.84s for Tree.

The highest costs appeared for the Tree and D-Tree methods because the tree con-
struction involves many Euclidean distance calculations between vectors. Preprocess-
ing costs can be one of the major bottlenecks for these methods: Tables IV and V show
that preprocessing can be a large part of the overall running time. For example, D-Tree
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Table II: Maximum preprocessing times (in seconds) including indexing and tuning

Dataset LEMP TA Tree Dual Tree
IE-NMF 0.78 0.46 5.33 38.5
IE-SVD 1.18 0.76 7.1 46.2
IE-NMFT 0.84 2.98 31.84 38.5
IE-SVDT 1.51 4.88 37.5 46.4
Netflix 1.63 0.10 1.10 3510.9
KDD 63.32 4.47 208.7 2880.0
GloVe 7.92 13.86 35881.2 36373.4

took longer to index Netflix (80% of overall time) and GloVe (45%) than Naive needed
to retrieve the Top-1-MIPS per query. Similarly, on the IE datasets with retrieval levels
≤ 106 or k ≤ 10, LEMP terminated before Tree finished preprocessing.

Pruning power. Tables IV and V show how many candidates remain on average af-
ter pruning for each of the different methods. For the Top-k-MIPS problem, LEMP had
the highest pruning power for the IE datasets and Netflix. Note that LEMP was the
only method outperforming Naive on Netflix. In fact, it is difficult to improve on Naive
on this dataset: Netflix has the smallest L2 norm skew, which makes pruning less ef-
fective, and a relatively small probe matrix, which makes Naive perform reasonably
well.

TA ranked often third in terms of pruning power. Especially for datasets with low
L2 norm skew, TA tended to perform poorly. For example, for Netflix, k = 1, TA had
almost no pruning power (16K candidates per query, out of a total of 17.7K). We also
see the effect of TA’s random memory access pattern here. Although TA verified almost
the same number of candidates as Naive, it was 5.8x slower (1961.8s vs. 335.8s). Its
behavior on GloVe was similar. Also note that sparsity affects the behavior of TA: It
checked 3.2x less candidates for the sparse IE-NMFT dataset, k = 1, than for IE-SVDT

(1899 vs. 6090 candidates per query). The main reason for the relatively low prun-
ing power of TA for dense datasets is that it is L2 norm-oblivious, i.e., it checks short
probe vectors if they have a single, sufficiently large coordinate; these vectors are dis-
carded by LEMP. On the other hand, for sparse datasets, large values for individual
coordinates correlate well with the L2 norm of the vectors so that essentially TA ex-
plores long vectors first. We expect that a combination of LEMP and TA can address
the problems of L2 norm-obliviousness and random memory accesses; this approach is
explored in Section 8.5.

D-Tree’s query grouping generally helped to reduce the frequency of visits of the
probe-tree nodes (and thus the time for candidate checking). D-Tree pruned more can-
didates than any other other method for Above-θ-MIPS. For Top-k-MIPS, grouping was
less effective because the bounds depend on the lower bound θ̂ among all queries of the
group, which may vary wildly and thus reduces pruning power.

Cache exploitation. Recall that LEMP does not create buckets that exceed the
cache size. To study the effect of this approach, we experimented with a cache-oblivious
version of LEMP in which bucket sizes were unrestricted. We found that for datasets
with large L2 norm skew, runtime differences were marginal: LEMP creates small
buckets anyway when L2 norms are skewed. For datasets with less L2 norm skew,
such as KDD, there was a significant difference in runtime: LEMP created roughly
15x more buckets than its cache-oblivious version (26 vs. 403), and was almost 40%
faster (7.9h vs. 4.56h).
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Fig. 8: Total wall-clock times for different ranks for exact Top-k-MIPS

8.3. Influence of Dimensionality
In our next experiment, we investigated the impact of the dimensionality r of the input
vectors (the rank of the factorization) on the performance of exact MIPS algorithms.18

We experimented with ranks 10, 50 and 100. The properties of the resulting datasets
are summarized in Table I.

Figure 8 shows the performance (in log scale) of Tree, D-Tree, TA, LEMP (again, us-
ing LEMP-NI) and Naive for the Top-k-MIPS problem for r ∈ { 10, 50, 100 } and various
values of k. We omit results for each method when it performed worse than Naive. As
expected, all methods became slower when the rank was increased. Also note that the
lower the rank the more competitive Naive becomes. This is because lower rank im-
plies less expensive inner product computations and thus less work for Naive. LEMP

18We omit the KDD and GloVe datasets from this set of experiments because they were not available to us
with dimensionality r = 10
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was the best performing method for IE-SVDT and IE-NMFT regardless of the rank.
TA behaved better for low ranks than for larger ranks (recall that TA is designed for
vectors of low dimensionality), especially for sparse datasets (IE-NMFT ). Tree ranked
almost always in between LEMP and TA, whereas D-Tree was the worst performing
method.

For Netflix, all methods perform poorly, mainly because the Netflix dataset is rela-
tively small. However, LEMP was the only method able to offer speedup over Naive.

8.4. Approximate MIPS
In this section, we study the performance of various methods for approximate Top-k-
MIPS. Figure 9 summarizes our results for the Netflix, GloVe, and KDD datasets for
k = 10. The runtime of the best exact method (LEMP-NI) is marked as a comparison
point in the plots.

Methods. In addition to the LEMP-based methods, we study the following
transformation-based methods, each paired with a state-of-the-art similarity search
algorithm: the tNNS transformation with PCA-Trees, the tCSS transformation with
the cross-polytope LSH method FALCONN, and tCSS with Annoy. As mentioned previ-
ously, we also experimented with different combinations of transformations and search
methods, as well as with hyperplane LSH, but the results were always worse that the
combinations given above. To ensure fair comparison, we disabled SIMD instructions
for all methods and used always a single core. For LEMP-REL, we used NI as the exact
bucket-search algorithm.

Parameterization. Each considered method provides parameters to control the
speed-quality tradeoff. Each data point in Figure 9 corresponds to one setting of these
parameters and indicates the resulting speedup over Naive (y-axis) as well as the value
of one of our error measures (x-axis). For PCA-Trees, we varied the depth parameter
d in the range 2–10. For Annoy, we performed a grid search for the best performing
parameters (number of trees and number of leaves to be searched) following the ex-
ample of https://github.com/erikbern/ann-benchmarks. For FALCONN, we used num-
ber of hash functions per repetition close to log2 n as suggested, and performed a grid
search on the number of hash tables and on the number of probes (the library allows
for multiprobe). We present the Annoy and FALCONN results for the best combination
of their parameters per dataset and recall value. Note that our dataset-dependent pa-
rameterization gives Annoy and FALCONN an advantage over all other methods. For
LEMP-LSHA, we varied the recall parameter R in a range from 0.9–0.1 in steps of 0.1.
For LEMP-REL, we varied ε in the range 0.2–0.7 with steps of 0.05. For LEMP-HYB-
REL, we varied simultaneously R in a range from 0.9–0.1 with steps of 0.1 and ε in the
range 0.2–0.6 with steps of 0.05.

The tCSS transformation. The LSH-based approach tCSS+FALCONN did not pro-
vide competitive results in our study. On Netflix and GloVe, the method was among
the slowest alternatives. For Netflix, the probe matrix is small and Naive quite fast al-
ready. To be competitive, LSH cannot afford a large number of repetitions (best choice:
5–10) in order to compute query signatures fast (still 45% of the total time at around
55% recall). To gain further insight, we determined the average cosine similarities
between 1000 randomly selected transformed probe vectors. For Netflix and GloVe,
the average similarity was ≈ 0.9, for KDD it was ≈ 0.8. High values indicate that
transformed probe vectors tend to be closer, which makes top-k similarity search more
difficult. Thus transformation-based methods tended to perform better on KDD than
on the other two datasets.
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Fig. 9: Speedup over Naive for approximate Top-10-MIPS (higher is better).
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Annoy generally outperformed LSH-based similarity search with tCSS . In fact, on
KDD, tCSS+Annoy is the best-performing method overall. The performance drops on
Netflix and GloVe for the similar reasons as above.

The tNNS transformation. PCA-Trees make use of the tNNS transformation. We
found that tNNS+PCA-Trees were among the slowest methods. For small depths (large
leaves), recall was high but speedup limited because PCA-Trees do not perform prun-
ing within leaves. For larger depths, recall dropped and speedup improved, particu-
larly on the KDD dataset.

LEMP-LSHA. LEMP-LSHA satisfied the recall bound in all cases, and often gave
better results than guaranteed. The left-most points in the figures corresponds to R =
0.1, the right-most points to R = 0.9. For R = 0.9, we obtained recall 0.99 on Netflix and
0.96 on KDD. One reason for this behavior is that LEMP-LSHA uses the exact NORM
method on buckets where it considers LSH to be too expensive; this increases recall.
LEMP-LSHA performed equally well with respect to ARE, although no guarantees are
provided.

In our experiments, LEMP-LSHA performed equally well with tCSS and the LSH-
based FALCONN method on KDD, and outperformed it on Netflix and GloVe. One
reason for this behavior is that LEMP-LSHA is more lightweight with respect to pre-
processing: LSH signatures are created as needed for each bucket. Moreover, the un-
transformed probe vectors used by LEMP are less clustered: the average cosine simi-
larity on a random sample was ≈ 0.1 for GloVe, ≈ 0.6 for Netflix, ≈ 0.3 for KDD. This
makes LSHA more effective. LEMP-LSHA is currently based on random hyperplanes
and it does not use multi-probing, whereas FALCONN uses cross-polytope LSH and
multiprobing. An integration of FALCONN into LEMP along the lines of LSHA is a
promising direction for further exploration.

LEMP-REL, LEMP-HYB-REL. LEMP-REL and LEMP-HYB-REL were the best-
performing methods on Netflix and GloVe. On GloVe, LEMP-REL had up to 2x better
recall than the closest non-LEMP method (tCSS+Annoy) for the same computational
cost, and was up to roughly 4x faster for the same recall level.

We observed that LEMP-REL can be orders of magnitude faster than LEMP, i.e.,
threshold augmentation was extremely beneficial. To understand why, we found that
the vast majority of the true top-k results were found in roughly the first 25% of the
probe buckets (largest L2 norms). At the time LEMP had processed all relevant buck-
ets to retrieve the correct top-k list, it entered a “plateau” in the L2 norm distribution of
the probe vectors. For this reason, it did not terminate and continued to process (many)
further buckets. We observed the same behavior with LEMP-LSHA, which also was not
able to prune these “excessive” buckets. In such a situation, threshold augmentation
will lead to early termination without large losses in result quality. This observations
also explains why a combination of threshold augmentation together with LSHA, like
LEMP-HYB-REL, performed well.

On GloVe, LEMP-REL outperformed LEMP-HYB-REL for recall levels below 0.9.
This is largely because the NI bucket-search method has significantly smaller prepro-
cessing cost then the LSHA method used by LEMP-HYB-REL. On Netflix, this effect
is less pronounced due to its lower dimensionality.

On KDD, the situation was the other way around: LEMP-REL was among the slow-
est methods, whereas LEMP-HYB-REL was second only to tCSS+Annoy. The drop of
performance in LEMP-REL results seems to stem from a more difficult coordinate dis-
tribution for the ICOORD bucket-search method. When analyzing the decisions of our
tuner on the buckets that contained 75% of the results for ε = 0.4, we observed that
ICOORD scanned on average 7 coordinates (out of 51) on KDD. On GloVe, in compari-
son, it often only scanned a single list (out of 100). Thus an LSH-based bucket-search
algorithm seems to be a better choice for KDD.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January 2015.



A:40 C. Teflioudi and R. Gemulla

LEMP-LSHA(B), LEMP-HYB(B)-REL. We observed that using BayesLSH-Lite
with LEMP-LSHA and LEMP-HYB-REL did not improve performance on Netflix and
KDD. The reason is that the cost of BayesLSH advanced pruning techniques offset
their benefits when inner products are cheap (small dimensionality, here r = 50).
Notice that LEMP-HYB(B)-REL was slower than LEMP-HYB-REL on KDD, possibly
because early termination eliminated the buckets where BayesLSH-Lite would have
been most effective. On the other hand, vectors have higher dimensionality on GloVe
(r = 100), and the pruning of BayesLSH-Lite started to pay off (up to 1.6x faster).

Discussion. To summarize, LEMP-REL and LEMP-HYB-REL were the best-
performing methods on two out of the three datasets, whereas tCSS+Annoy was the
best-performing for the third one. This indicates that there is no single algorithm that
works best in all settings.

8.5. Relative Performance of Bucket Algorithms
In the preceding experiments, we used NI as the bucket algorithm for LEMP because
it provided the best overall performance. In this section, we consider and compare
various alternative choices. Our results for exact MIPS are summarized in Figure 10.
Wall-clock times for all experiments and average candidate set sizes can be found in
Tables VI, VII and VIII in the online Appendix B (accessible in the ACM Digital Li-
brary). In the following, we discuss the performance of each algorithm in turn.

LEMP-N. For the IE datasets, LEMP-N was able to reduce the average candidate set
size around 98% (13211 candidates per query vs. 771611 for Naive, IE-SVDT , k = 50),
whereas for datasets with less L2 norm skew the reduction ranged between 40% and
64% (Netflix) and 14% and 24% (KDD). Overall, LEMP-N was able to provide sig-
nificant speedup over Naive: up to 17000x (670x) for IE-SVD and 15900x (440x) for
IE-NMF for Above-θ-MIPS (Top-k-MIPS). In fact, the simple LEMP-N method out-
performed all other methods for the IE datasets and small result sizes. I.e., bucket
pruning was very effective for the datasets with large L2 norm skew. This indicates
that LEMP’s separate treatment of short and long vectors is beneficial. The perfor-
mance of LEMP-N acts as a baseline for the performance of other bucket algorithms:
LEMP-N’s main filtering mechanism is bucket-level pruning, which is common to all
LEMP methods.

LEMP-C, LEMP-I. COORD created up to 7x less candidates per query than LEMP-
N (e.g., 271 vs. 1915 for IE-NMFT , k = 1) and its speedup over LEMP-N ranged be-
tween 2.7x and 4.7x. ICOORD reduced the candidates even further (34 candidates for
IE-NMFT , k = 1, 46x less than LEMP-N), with up to 7x speedup. The difference in the
pruning power of COORD and ICOORD was more prevalent in the case of the KDD
dataset (145K vs. 377K candidates per query). In the absence of large L2 norm skew or
sparsity, ICOORD accumulates as much information as possible for the probe vectors.
COORD, on the other hand, is not able to take full advantage of all the available infor-
mation. For this reason, ICOORD was the best performing method (when LEMP was
used together with only 1 bucket-algorithm) in terms of running time for the majority
of datasets and configurations.

LEMP-NI. As discussed above, LEMP-N was the best performing method for
datasets with high L2 norm skew on small retrieval levels. On the other hand, LEMP-I
showed superior behavior in all other cases. LEMP-NI, for a small extra tuning cost,
combines the strong points of both methods. In the majority of cases, it was the fastest
method overall. In the remaining cases, the performance of LEMP-NI was similar to
that of the best-performing method.

LEMP-TA. LEMP-TA was also able to offer speedup over LEMP-N for the sparse
datasets: up to 3.5x for the Above-θ-MIPS (@ retrieval level 10M) and up to 6x for Top-
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Fig. 10: Comparison of LEMP bucket-algorithms in terms of total wall-clock times
(incl. indexing and tuning) for exact MIPS
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Table III: Performance (in terms of total wall-clock times) of LEMP-NI with and with-
out using SIMD instructions on the KDD dataset for exact Top-k-MIPS. Time in min-
utes.

k = 1 k = 5 k = 10 k = 50

No SIMD 273.3 348.8 386.9 474.5
SIMD-verify 239.6 294.5 318.6 383.7
SIMD-verify&scan 230.9 283.5 309.4 364.2

1-MIPS. However, it was usually outperformed by COORD and ICOORD: e.g., LEMP-I
was up to 3x faster. The reason for ICOORD’s superior behavior is that TA is usually
not possible to identify good candidates by observing the value of only one coordinate.
ICOORD avoids this problem by gathering information about the vectors from multiple
coordinates (lists); based on this information, it prunes as many candidates as possible
before actually calculating an inner product. Also note that LEMP-TA was significantly
faster (up to 17x for IE-SVDT , k = 50) than the standard TA algorithm, since the L2
norm-obliviousness and cache-misses problems are addressed by LEMP. This indicates
that a method like LEMP might improve the performance of TA when linear scoring
functions are used.

LEMP-L2AP. LEMP-L2AP was the method with the most aggressive pruning for all
datasets (e.g., only 18 candidates per query for KDD, k = 1). However, this extensive
pruning has a high cost: L2AP scans all the lists in the index that correspond to non-
zero query coordinates and checks the filtering conditions during and after scanning.
Also, the actual threshold used when querying the index can be far away from the
lower bound used during index creation, which affects scanning time. For these rea-
sons, ICOORD consistently outperformed L2AP (1.3x to 6.2x faster). Actually, L2AP
was slower than Naive for both Netflix and KDD.

LEMP-Tree. LEMP-Tree creates one tree per bucket (lazy construction), instead of
one tree for the entire probe dataset. This explains why LEMP-Tree had much bet-
ter performance than Tree (up to 10x faster) for the datasets for which preprocessing
was Tree’s bottleneck (see Above-θ-MIPS experiments, small result sizes). In terms of
pruning power, LEMP-Tree did not have a consistent behavior w.r.t. Tree. For datasets
with large L2 norm skew (IE-NMFT , IE-SVDT ), LEMP-Tree checked less candidates
per query, whereas for datasets for small skew (e.g., KDD) it checked more. However,
even in these cases, LEMP-Tree was faster than Tree, due to the better cache utiliza-
tion provided by the bucketization.

8.6. Parallel LEMP
In our final set of experiments, we investigated the performance and scalability of our
parallel versions of LEMP.

Instruction-level parallelism. Table III shows the performance of LEMP-NI on
our largest dataset (KDD) without SIMD, with SIMD in verification, and with SIMD
in verification and scanning. We observed that for large values of k, for which less
opportunities for pruning exist (low value of θ̂) and more candidates need to be veri-
fied, the speedup due to SIMD in verification reaches 19%. For small values of k, the
speedup is lower (12% for k = 1). Using instruction-level-parallelism for scanning in
addition, further improved the runtime by 6%.

Multi-threading. Figure 11 shows the performance of LEMP-NI in terms of wall-
clock time for a number of processors varying between 1 and 32. For each setting,
we also give the speedup compared to sequential processing. The figure shows results
for Top-1-MIPS on the KDD dataset on an Intel(R) Xeon(R) CPU E7-4870 @ 2.40GHz
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Fig. 11: Scalability of LEMP-NI for KDD, exact Top-1-MIPS

with 40 cores and 512GB RAM. Note that even for embarrassingly parallel problems
such as multi-query MIPS, linear speedups are rarely achieved when a large number
of processors is used. This is mainly because memory bandwidth and synchronization
quickly become a bottleneck. Figure 11 shows that LEMP was able to achieve near lin-
ear speedups even for large numbers of processors. This indicates that LEMP’s careful
cache utilization and avoidance of synchronization is effective.

9. Conclusion
We proposed LEMP, a novel framework for exact and approximate MIPS. At its heart,
LEMP bucketizes probe vectors by their L2 norm. During query processing, LEMP
prunes buckets and selects suitable search strategies for the remaining buckets. Buck-
ets are small, so that they fit into the cache, and indexed in a light-weight, data-
dependent, and lazy way.

For exact MIPS, LEMP prunes buckets only when they cannot contribute to the re-
sult and uses exact search strategies within buckets. We proposed two novel search
strategies—COORD and ICOORD—that worked particularly well in LEMP’s setting.
For approximate MIPS, LEMP may also prune “unpromising” buckets and/or use ap-
proximate search within buckets. We proposed multiple approaches to do so, each pro-
viding different quality guarantees and speed-quality trade-offs.

We investigated the performance of many state-of-the-art approaches and found that
LEMP-based methods consistently (and with only one exception) provided the best
overall performance.
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A. Implementation Details
In this section, we give some guidance on how to implement the COORD, ICOORD,
and LSHA algorithms efficiently.

COORD. In our implementation, we store the sorted-list indexes column-wise to re-
duce memory bandwidth: the data values are accessed only during binary search to
determine the scan range, and the local identifiers are accessed only during the actual
scan phase. For efficiency reasons, we also avoid clearing the CP array when moving
from one query vector to the next. Instead, we keep the array uninitialized and pro-
ceed as follows. When scanning the first sorted list, we set to 1 instead of incrementing
the corresponding entry of the CP array and increment while scanning the remaining
sorted lists. After all lists have been scanned, we scan the first sorted list again and
only consider the corresponding entries of the CP array for inclusion into the candi-
date set. Since the first sorted list is scanned twice (for CP array initialization and
filtering), we take the focus coordinate with the smallest scan range as the first one.

ICOORD. Since ICOORD needs access to both coordinate values and local identifiers
during scanning, we store the sorted lists row-wise. The extended CP array is initial-
ized and accessed in the same way as the CP array of COORD. In order to reduce
memory bandwidth and avoid excessive checking, we do not keep the counter informa-
tion of COORD in the extended CP array: the filtering condition of Eq. (13) is usually
pruning vectors more aggressively than the simple check of COORD. Since Eq. (13)
contains expensive floating-point operations (such as divisions and square roots), we
rewrite the conditions and accept a vector p̄ if

q̄TF p̄F ‖p‖ > θ/‖q‖,
for which the right-hand side needs to be computed only once. If this test fails, we
accept p̄ if and only if

‖p‖2‖q‖2(1− ‖p̄F ‖2)(1− ‖q̄F ‖2) ≥ (θ − q̄TF p̄F ‖p‖‖q‖)2.
ICOORD’s strength lies in accumulating partial inner products from many lists. If

we decide to use φb = 1 for some bucket b, ICOORD and COORD will produce the same
candidate set, but COORD does so faster. We thus use COORD instead of ICOORD
whenever φb = 1.

LSHA. To create the random vectors u from the standard Normal distribution, we fol-
low the approach of Satuluri and Parthasarathy [2012], which allows for compressed
storage. In addition, using Eq. (15) for each query-bucket pair can be expensive. In
our implementation, we precompute and cache the smallest local threshold that cor-
responds to each one the 200 signatures in the budget. During query processing, we
perform binary search on these values to find L for each θb(q).

B. Additional Experiments
Tables IV - VIII show running times for exact Above-θ-MIPS and Top-k-MIPS exper-
iments for different retrieval levels and values of k (including those presented in the
figures of Sec. 8).
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