
Teaching Recursion in a Procedural Environment -

How much should we emphasize the Computing Model?

David Ginat
Science Teaching Department

Weizmann Institute of Science

Rehovot, Israel

ntginat@weizmann.weizmann.ac.il

1. Abstract
Recursion is a powerful and essential computational
problem solving tool, but the concept of recursion is
difficult to comprehend. Students that master the
conventional programming construct of iteration in
procedural programming environments, find it hard to
utilize recursion.

This study started as a test of CS College students’
utilization of recursion. It was conducted after they have
completed CSl, where they studied recursion with the C
programming language. The test revealed that students
adhere to the iterative pattern of “forward accumulation”,
due to their confidence with the iteration construct, but lack
of trust of the recursion mechanism. These results
motivated us to get more insight into the nature of recursion
difficulties and ways to overcome them.

In this paper we describe the difficulties we observed, and
present a declarative, abstract, approach that contributed to
overcome them. We question the emphasis that should be
put on the basic computing model when presenting
recursion, and argue for emphasis on the declarative
approach for teaching recursion formulation in a procedural
programming environment.

1 .I Keywords
Recursive formulation, problem decomposition.

2. Introduction
Recursion is an essential and unique tool for computational
problem solving - it encapsulates decomposition of a
problem into subproblems of the same kind.

Permission to make digital or hard copies of all or pert of this work for
personal or classroom use is granted without fee provided that
copies ere not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to ksts, requires prior specific permission and/or e fee.
SIGCSE ‘99 3/99 New Orleans, LA, USA
0 1999 ACM l-58113-085-6/99/0003...$5.00

Eyal Shifroni
Tel-Hai College and

Center of Educational Technology

16 Klausner St. Tel-Aviv, Israel 61394
eyal-s@cet.ac.il

Although such decomposition is logically sound, it is not
easily comprehended - the problem solver has to carefully
specify decomposition to subproblems and composition of
the subproblem solutions.

In the CSl course with procedural programming, recursion
is often taught at a fairly late stage, in a rather concrete
level, where an attempt is often made to base
comprehension on the students’ conception of the
computer’s basic computing model. The progress along the
course includes an evolving picture of the basic computer
mechanism - the role and scope of variables, assignment,
conditionals, and branching. As the picture evolves, the
students learn to trace program execution, and develop a
conception of the basic computing model. When recursion
is introduced, teachers tend to capitalize on that conception
and establish comprehension via understanding of the
process of recursion execution. This is often done at the
expense of de-emphasizing the declarative, abstract,
formulation of recursion.

In this paper we present a study that questions this trend.
Various studies in recent years concentrated in tracing and
animating recursion execution, as we briefly describe
below. But, how important is it to emphasize the recursion
execution mechanism, in order to enhance the ability to
formulate recursive programs?

We observed that emphasis on the concrete level
(mechanism) yielded only limited understanding of the
computing model with respect to recursion, and caused
confusion. On the other hand, emphasis on the declarative,
abstract, level considerably improved recursive program
formulation.
Considerable research was conducted to study the cognitive
difficulties of recursion comprehension. Kahny and
Eisenstadt [2] examined novices’ judgments of given
recursive programs and concluded that they developed one
of several mental models of recursion, which they named
“copies”, “loop”, “odd”, “null”, and “syntactic magic”. All
of these models except for the “copies model” are regarded
as incorrect models of recursion. Kurland and Pea [S]
observed programmers that viewed recursion as iteration.

127

http://crossmark.crossref.org/dialog/?doi=10.1145%2F299649.299718&domain=pdf&date_stamp=1999-03-01

Anazi and Uesato [l], and Kessler and Anderson [4]
studied transfer abilities from iteration to recursion and vice
versa. They concluded that it is more sensible,
pedagogically, to base understanding of recursion on
iteration (than iteration on recursion).

But should recursion be taught along the same lines by
which iteration is taught - with the picture of the computing
model in mind? Iteration is rather simple to trace. It can be
viewed as “an accumulation process”, where a “pass” starts
after its preceding “pass” ends. Recursion, however, is
much harder to trace. It is a process where an instantiation
starts, and ends, before its preceding instantiation ends.

Segal [6] identified the misconception of “base-case as
stopping condition (of execution)” and argued for the
importance of recursive function evaluation. Wilcocks and
Sanders [7], and Kann et al [3], showed that animation
which illustrate the “copies model” of recursion can
enhance comprehension and recursive function evaluation.
But, to a questionnaire given by Wilcocks and Sanders,
most students indicated that the animator did not assist in
“being able to develop recursive algorithms to solve
problems”.

We believe that the key emphasis in enhancing recursion
formulation should be at the abstract level of problem
decomposition. That is, divide-and-conquer at “the problem
level”, irrespective of the machine implementation.

In the next section we describe our study of two attempts
with recursive formulation. The study started as a test of CS
College students’ utilization of recursion at the beginning of
the CS2 course. The students have completed CSI where
they studied recursion with the C programming language.
The test revealed a surprising number of errors in recursive
formulation for a simple task - multiplication by
consecutive additions. These errors stemmed from the
limited understanding of the concrete level with respect to
recursion.
We divided the students into two groups. The first group
continued studying with emphasis on the concrete level, and
the second - with emphasis on the declarative, abstract
level. Six weeks later we conducted a second test, in which
the task was to compute the various ways to climb a ladder.
The test results showed considerable improvement among
the second (“declarative”) group students, but continued
difficulty among the first group students.

3. Study Description
The subjects of this study were 42 computer science college
students beginning their second year. The study was
conducted in the CS2 course, which includes elaboration of
the concept of recursion.
The study was conducted in two phases. Phase A was the
test given at the beginning of the course. This test reflected
the students’ difficulties in recursive formulation. Phase B
took place during the following six weeks, and was aimed
at examining the success of the declarative approach. In the

beginning of phase B we divided the students into group-l,
with 22 students, and group-a, with 20 students.
Group-l was used as a control group - its students
continued studying recursion with emphasis on the
mechanism of the recursive process. Group-2 was taught by
one of us, with emphasis on the declarative level.
In what follows, we present the two phases of the study in
more details, and describe our findings.

3.1 Phase A: First Attempt with Recursion
The following twofold task was given to the students in the
first class of the CS2 course:

Task1 : Multiplication

la: Write an iterative Cfinction int mult(int m, int n)fir
multiplying two natural numbers by consecutive additions.
The function should return the product m*n.

1 b: Repeat task I a, but with recursion instead of iteration.

The multiplication task was chosen because it is a simple
task with a straightforward iterative and recursive solutions.
It is not one of the classical examples (like factorial) that
are used to introduce recursion. As such, it could serve to
show how the students can apply the concept of recursion in
a simple novel task. The iterative part was added to check
the students’ mastery of basic programming constructs (like
assignment, alternation and iteration).
A proper solution for task 1 b is:

int mult(int m, int n)
1

if (n == 0)
return 0;

else return m + mult(m, n-l);
>

This solution includes the decomposition of mult(m, n) to
the simpler instance mult(m, n-l), and the incorporation of
the solution of the simpler instance via the addition
operation. The base case is defined for “n equals 0”.

3.1 .I Results
The surprising results were that although most of the
students provided proper solutions for part la, the majority
(32 of the 42) provided erroneous solutions for part lb (the
recursive part). Examples l-3 below, illustrate difficulties
that seem to stem from attempts to formulate recursion
based on limited understanding of the computing model
with respect to recursion.

In example 1 the recursive call is embedded in a while
loop. The loop has no effect here because the only
statement it contains is the return statement. This student
was probably unsure about the effect of the recursion, and
hence preferred to use the familiar iterative construct:

128

Example 1
int mult(int m, int n)
{
while (n != 0)

return (m + mult(m, n-l));
1

A considerable amount of the solutions show the tendency
to use the procedural programming patterns of counting and
accumulation:

Examde 2
int mult(int m, int n) /* Iterative solution */
1

int sum=O;
while (--m > 0)

sum += n;
return(sum);

>

int mult(int m, int n) /*Recursive solution */
{

int sum=O;
if (m == 0)

return(sum);
else mult(sum+n, --m);

I

Note how the counting (--m) and the accumulation (sum
+=n) operations are transferred to the recursive solution.
The recursive call is not really a decomposition of the
problem, but rather a different way to express counting and
accumulation.

In the recursive solution above, the accumulation will not
work because sum is a local variable; this can be handled
using static or global variables:

ExamDIe 3
int counf=O, sum=O; (global)
int mult(int m, int n)
{

if (count < n) {
sum = m + sum;
count++;
mult(m, n);

1
else return (sum);

1

The function defined in example 3 produces the correct
result; technically it is a recursive function, but there is no
recursive decomposition at all, and the value returned from
the recursive call is not used. In fact, this recursive call is
used here merely as a goto statement, which handles the
repetition.
In examples 2 and 3, the accumulation is done during the
nested recursive invocations (forward accumulation), and

not during the return (reverse accumulation). This suggests
that the students view the base case as a stopping condition
of iteration ([6]).

The solutions to task la demonstrate that the students were
familiar with the computing model, to the extent of the
basic programming constructs. But, they could not apply it
with respect to recursion formulation. Unfortunately, many
of them adhered to the iterative pattern of forward
accumulation (often with global variables) in solving task
lb.

3.2 Phase B: Second Attempt with Recursion
In the twice-a-week lab hours of CS2, the class was divided
into two groups: group-l, which continued studying
recursion with emphasize on the computing model, and
group-2, which studied recursion with emphasize on
declarative formulation. The students of group-2 were
encouraged to explicitly formulate a solution, using their
own words, before attempting to program it. They were
instructed to use divide-and-conquer according to the
following guidelines:

1. Define what an instance of the problem is, and how can
it be decomposed into simpler instances of the problem.

2. Suppose you already have a solution(s) for an
instance(s), define how to incorporate it in the solution
of the more general instance.

3. Verify that consecutive simplifications of the general
instance yield a basic instance(s) that can be solved
directly.

In the sixth week of the semester, we assigned the students
the following task, which we refer to here as Task2:

Task2: Wavs to climb a ladder

Compute how many different ways are possible to climb an
N stage ladder, If one can climb 1 or 2 stages in each step.
For example, a 3-stage ladder can be climbed using the
three following ways: I-1-1, 1-2 and 2-1. Write a recursive
Cfunction int ways(int n) thatperforms this computation.

The ladder problem is not trivially solved with iteration.
But it has an inherently divide-and-conquer solution, which
yields a natural recursive formulation.

The reasoning required is as follows: in order to climb an N
stage ladder it is possible to climb an N-l stage ladder and
then the remaining stage; or to climb an N-2 stage ladder
and then the remaining two stages in one step. A declarative
recursive formulation would be:

Ways(N)= iays(N-l)+ways(N-2)
if N=l or N=2
if N>2

3.2.1 Results
The most notable difference between the two groups was
the number of students that did not supply an answer: in

129

group-l - 11 students out of 22; in group-2 - only 5 out of
20.

Out of the 11 students from group-l that provided answers,
only 4 provided proper recursive decomposition. The rest
showed difficulties similar to those observed in the solution
to Task 1 b. We present below some typical examples.

Example 4 below is similar to Example 1 in which the
recursive call is embedded in a loop:

Example 4
int ways(int n)
{

int x=2;
if (n == 1) return 1;
if (n == 2) return 2;
else while (++x c n)

return ways(x-1) + ways(x - 2);
>

Clearly, this student did not trust the recursion to do the job
and preferred to use the more familiar iterative construct.

Example 5 is similar to examples 2 and 3, because the value
returned from the recursive call is not incorporated in the
result and the returned value is accumulated in a static
variable:

Example 5
int ways(int n)
{

if (n==O) { // end of ladder
static int w=O;
++w; II one more way
return w;

>
if (n-2 >= 0) // more than one stage

ways(n-2);
ways(n-I);

1

The function defined above returns the correct value,
because the statement ++w is executed at each “leaf’
instantiation of the recursion. The author of this code
probably visualizes recursion as a process that is capable of
triggering new instantiations of itself (Kahney’s “copies
model”), but he does not demonstrate ability to formulate
recursive decomposition - a limitation that will probably
hinder his ability to solve more complex problems.

Out of the 15 students from group-2 that provided answers
to the problem, 8 provided proper solutions. The solutions
of the remaining students included minor errors and
inaccuracies. A typical example is the following:

Example 6
int ways(int n)
{

if (n == 0) return 0;
if (n == 1) return 1;
else return ways(n-1) + ways(n-2);

1

In this example the value returned for the base case “n
equals 0” is incorrect.

In spite of the minor error, the above typical example
reveals improved ability of recursion formulation. This
shows that the declarative approach contributed in
overcoming difficulties that were encountered in phase A.

4. Discussion
We presented a study of students’ difficulties in recursion
formulation that stemmed from limited comprehension of
the basic computing model with respect to recursion. We
also showed that teaching recursion with an emphasis on
the declarative, abstract, level of recursion considerably
improved the student’s ability.

The difficulties revealed in our study demonstrate that
students adhere to the iterative pattern of “forward
accumulation”, due to their confidence with the iteration
construct, but lack of trust and full understanding of the
recursion mechanism. This phenomenon is enhanced
particularly in a procedural programming environment, as
with the C language in our study, since teachers of this
environment tend to emphasize the basic computing model
in teaching the various programming constructs.

Various studies in recent years concentrated in enhancing
recursion evaluation ability, by deepening student
understanding of recursion tracing. Although significant for
understanding the recursion execution process, this
emphasis seems to contribute rather little to recursion
formulation.

We demonstrated that emphasis on the declarative, abstract,
level significantly improved recursion formulation ability.
In our study, we outlined the divide-and-conquer guidelines
that we offered the students learning with the declarative
approach. The students who followed these guidelines
managed to avoid the difficulties they encountered earlier,
when they adhered to the concrete level of the recursion
mechanism. Thus, although we did not address their
misconceptions of the computing model with respect to
recursion, we managed to bypass difficulties and to
considerably improve the students’ ability of problem
solving with recursion.
Although experts are hypothesized to posses the mental
“copies model” of recursion ([2]), there is no evidence that
this is the only model they posses with respect to recursion.
Experts may possess other mental models of recursions and
apply each one according to the task at hand. For example,
it is possible that experts apply the “copies model” when
debugging recursive programs, but apply a different model
when formulating a recursive solution.

It is generally agreed that problem solving requires
abstraction. While abstraction is rather natural in functional
and logic programming, it is less inherent in procedural
programming, since procedural languages are conceptually
closer to the basic computing model. We believe that in the
attempt to alleviate novices to the level of experts, teachers

130

of recursion in procedural programming should firstly
emphasize the declarative, abstract, level of
divide-and-conquer, and beware of the tendency to strongly
relate to the basic computing model in teaching recursion
formulation.

5. References
[l] Anazi, Y. and Uesato, Y. “Learning Recursive

Procedures by Middle-School Children”, Proceedings
of the Fourth Annual Conference of the Cognitive
Science Society, pp. 100-102, 1982.

[2] Kahney, H. and Eisenstadt, M., “Programmers’ mental
Models of their Programming Tasks: The Interaction of
Real World Knowledge and Programming
Knowledge”, Proceedings of the Fourth Annual
Conference of the Cognitive Science Society, pp.
143-145, 1982.

[3] Kann, C., Lindeman ,R. and Heller, R, “Integrating
Algorithm Animation into a Learning Environment”,
Computers Educ. Vol28, No 4, pp 223-228, 1997.

[4] Kessler, A. and Anderson, J., “Learning Flow of
Control: Recursive and Iterative Procedures”,
Human-Computer Interaction, 2, pp. 135-166, 1986.

[5] Kurland, D. M. and Pea, R. D., “Children’s mental
Models of Recursive Logo Programs”, Proceedings of
the Fifth Annual Conference of the Cognitive Science
Society, pp. 1-5, 1983.

[6] Segal, J. “Empirical Studies of Functional
Programming Learners Evaluating Recursive
Functions”, Instructional Science 22:385-4 11, 1995.

[7] Wilcocks, D. and Sanders, I. “Animating Recursion as
an Aid to Instruction”, Computers Educ. Vo123, No 3,
pp. 221-226, 1994.

131

