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Abstract 
When teaching certain CS topics (e.g., abstract data types, 
operating systems), the instructor tries to make clear the 
distinction between the “client” perspective and the “im- 
plementer” perspective. But when teaching some pro- 
gramming language features and related programming tech- 
niques, this dichotomy often is not respected as strongly as 
it should be. We illustrate this with a discussion of how to 
teach recursion, comparing a traditional approach with one 
that is careful not to blur the distinctions between client 
view and implementer view. The latter better supports new 
learners in the creation of a sound and consistent mental 
model for developing and reasoning about programs that 
involve recursion. 
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1. Introduction 
Systems thinking offers a worldview that underlies all 
component-based engineering, including software engineer- 
ing. By systems thinking, we mean viewing or under- 
standing things as units that can be viewed from the outside 
- the client view - as indivisible, or from the inside 
- the implementer view - as compositions of other 
systems, a.k.a. subsystems [2]. A client is one who uses a 
system purely via an understanding of a “cover story” that 
purports to explain what the system acts like without m- 
vealing precisely how it achieves that behavior. An im- 
plementer is one who needs to know precisely how the sys- 
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tern actually works through composition of its subsys- 
tems. 

Systems thinking is at the heart of many technical com- 
puter science topics, such as software development (e.g., 
abstract data types) and computer architecture and operating 
systems (e.g., virtual machines). It should be reflected in 
computer science pedagogy as well. From the perspective 
of a learner being introduced to a topic, an explanation that 
blurs the distinction between the client view and the im- 
plementer view would seem to promote confusion in the 
learner’s mind. The student must separate the two views in 
order to act and think appropriately, depending on whether 
his or her role is that of client or implementer. This same 
confusion can serve to inhibit development of clear mental 
models of the two viewpoints, and negatively impacts the 
student’s client and implementater skills. 

1.1 Programming Language Features 
A particularly interesting situation where systems thinking 
is appropriate involves programming languages. On the 
surface, a programming language seems like a classical 
virtual machine for which the client-side explanations of 
most constructs should be much simpler than how they am 
implemented. But consider how we usually teach topics 
such as procedures and functions, parameter passing, recur- 
sion, iteration, and inheritance. What cover stories do we 
offer students who are acting as clients of specific pro- 
gramming language features when we teach the associated 
techniques for using these features? Here it is not clear that 
systems thinking has impacted pedagogy to the extent it 
might or should. The standard cover stories are entirely 
operational. 

Perhaps this is acceptable. Many instructors believe stu- 
dents find operational explanations easier to grasp than 
purely abstract ones. And because the cover story must be 
sound -that is, it has to be an undetectable lie from the 
client’s point of view - it is easy for us as instructors to 
explain a feature by describing, in operational terms, how it. 
actually works in a language implementation. The main * 
problem with this approach is that it surely blurs the client 
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and implementer perspectives, because understandability of 
language implementation is not a prime objective for com- 
piler writers, who generally seek speed. The “real story” is 
not designed to promote client understanding. 

So, for such programming language features and associated 
programming techniques as those just listed, we should 
consider the following fundamental questions: 
. What cover story best enables someone to use, and to 

reason about, programs that involve the feature? 
. How is the feature implemented? 

The first question ought to have answers independent of 
answers to the second. Yet, as teachers, how often do we 
achieve this independence? Can we step back from our own 
knowledge of how programming language features arc im- 
plemented and create “cleaner” cover stories for students? 

1.2 An Example: Recursion 
In this paper we use recursion as a working example of a 
topic whose standard introductory explanation, in our opin- 
ion, has been overly influenced by the typical instructor’s 
knowledge of how the underlying programming language 
feature is implemented. We assume the perspective of a 
learner who is being introduced to recursion, and start by 
considering the first question above: What cover story best 
enables a student to use, and to reason about, programs that 
involve recursion? Once this question has been answered, 
and only then, do we consider teaching students an answer 
to the second question: How is recursion implemented? We 
present an approach to teaching recursion in which the cli- 
ent-side explanation is not implementation-biased, yet from 
which students can formulate and internalize a sound and 
consistent mental model of recursion that continues to 
make sense even after they learn how recursion is imple- 
mented. Our primary contributions are: 
l explaining the advantages of presenting the client view 

first and making sure students understand it, before pre- 
senting the implementer view; and 

l illustrating some ways of introducing recursive think- 
ing, and reasoning about why and how recursion 
works, which reflect the client-implementer dichotomy. 

We do not retrace ground aheady covered well elsewhere: a 
review of various approaches to teaching recursion [3], an 
explanation of the reasons why recursion is usually consid- 
ered to be a difficult topic to teach [l], and a list of other 
background references [ 1,3]. 

Throughout this paper, when we refer to students or learn- 
ers, we always mean students or learners at the introductory 
level, such as CSlKS2 students. Also, we assume a spiral 
approach to teaching and learning. In a spiral approach, 
topics are revisited several times, usually with separation in 
time between successive visits. Subsequent visits develop 
a topic in greater depth. 

2. Recursive Thinking 
A recursive implementation of an operation typically sepa- 
rates the processing of base-case from non-base-case values. 
Here we consider only processing of non-base-case values, 
which for simple situations has this familiar structure: 

1. From incoming parameter values, extract one or more 
“smaller” values of the “same” kind. 

2. Apply the operation (recursively) to each of the smaller 
values to obtain solutions for the smaller values. 

3. Use the solutions for these smaller values to obtain a 
solution for the original incoming parameter values. 

Inductively defined mathematical functions, such as facto 
rial, Fibonacci numbers, and exponentiation, are popular 
first examples of recursion because their inductive defini- 
tions are easily translated into recursive operation bodies. 
However, these inductive definitions essentially are almady- 
completed steps l-3, so exclusive use of such examples 
might lead students to believe that successful use of recur- 
sion amounts to translation of inductive definitions into 
code. Instead, what students really need to understand is 
that successful use of recursion involves discovering ap- 
propriate inductive structure for themselves, and that such 
discovery can benefit from using specific strategies to ex- 
amine the data to be processed. 

Thus, we need to equip students with methods and strategies 
for discovering the answers to, and developing code that 
accomplishes, steps l-3. Step 1 is the crucial step; once it 
is done properly, steps 2 and 3 are often quite routine. 
How, then, should a student go about identifying appropri- 
ate smaller values “within” incoming parameter values; that 
is, how should he or she go about identifying the recursive 
or inductive structure of incoming values? For an initial 
exposure to recursion, we recommend using pictures so 
there is a strong visual suggestion of recursive structure, as 
opposed to a merely symbolic connotation. 

As a working example, we use the problem of reversing a 
text string. Here is a specification of the operation: 

operation Reverse-A-Text-String (t: Text) 
emsures t = REVERSE (#t)’ 

To avoid the pitfalls associated with factorial, etc., we spe- 
cifically do not want to tell the student the following fact 
(theorem) about the mathematical REVERSE function: 

REVERSE (s * XX>) = <x> * REVERSE (s) 
that is the basis for one of several possible recursive im- 
plementations. 

’ In this specification, the ensures clause t = REVERSE(#) is 
the postcondition. #t denotes the incoming value of t while t 
denotes the outgoing value of t. REVERSE is a mathematical 
function on mathematical strings, i.e., the mathematical 
model of the programming type Text. REVERSE has the ob- 
vious meaning, e.g., REVERSE(“abc”) = “cba”. 
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So, what do we say? One view of the recursive structure of 
the incoming value for parameter t is illustrated in Figure 
1, where the larger, outer box represents the entire text 
string t to be reversed. Within this larger, outer box, the 
circle denotes the first character of t, and the smaller, inner 
box represents the rest oft. This use of boxes and circles is 
a powerful visualization of one way to identify recursive 
structure in strings: a non-empty string consists of a first 
character followed by the rest of the string, which is itself a 
string that is merely shorter than the original. 

+ rest of t -+ 

t= @I,1,,,... 

Visualizing Recursive/Inductive Structure 

Figure 1 

To decide whether such a view of recursive structure is po- 
tentially useful, the student should next answer the useful- 
ness question: If I had access to an operation that provided 
solutions for each of the smaller values, would this help me 
obtain a solution for the original incoming value? For the 
view in Figure 1, a “yes” answer should be fairly obvious. 

I+ rest oft + 1 

t= I@fjlilI 
1: 
remove 

WI 

I 

2: 
reverse rest of t 
by calling Reverse- 
A-Text-String to 
do it 

I t[n] - . - t[2] t[l] 1 t101 1 
’ 4 

I 

3: 
add t[O] to rest of t 

reversed 
Visualizing a Recursive Process 

Figure 2 

To answer the usefulness question positively, the student 
should have conceived a strategy for using solutions to 
smaller values to arrive at a solution for the original incom- 
ing value. We suggest that the student illustrate the strat- 
egy by annotating the picture of recursive structure. For 
the sample problem, one obvious annotation appears in 
Figure 2, where we have told the student that the name of 
the operation provided to reverse the smaller, inner box is 
Reverse-A-Text-String, the very operation to be imple- 

mented. It is a relatively small step from the annotated 
strategy in Figure 2 to this recursive operation body for 
Reverse-A-Text-String: 

procedure Reverse-A-Text-String (t: Text) 
begin 

if (Length (t) /= 0) 
variable ch: Character 
Remove (t, 0, ch) 
Reverse-A-Text-String (t) 
Add (t, Length (t), ch) 

end if 
end Reverse-A-Text-String* 

Notice that this presentation respects the client-implementer 
dichotomy and treats the client view first. There is no men- 
tion of how recursion is implemented. 

3. Why Recursion Works 
For a typical student given the above introduction to recur- 
sive thinking, understanding why a recursive operation body 
is correct is at least as difficult as developing a recursive 
operation body. He or she usually is unsure of the result- 
ing solution and lacks confidence that it is correct. The 
student, it seems, is searching for a simple, sound, proba- 
bly operational cover story about what happens when an 
operation calls itself. But we recommend temporarily m- 
sisting the urge to sate the student’s appetite for an opera- 
tional explanation of how recursion works, concentrating 
instead on an explanation of why it works. 

For this approach to succeed, the instructor has to under- 
stand the subtle difference between the two issues: why vs. 
how. This is non-trivial because standard explanations of 
why and how a recursive operation body works often am 
intertwined with the single idea of “unrolling” recursive 
calls. Figure 3 is a typical textbook treatment, showing 
the sequence of calls and returns resulting from a call to 
Reverse-A-Text-String. Depictions of calls and returns 
are but slightly simplified descriptions of the call-stack 
mechanism that languages use to implement recursion. 

Supposedly, by learning how recursion works a student can 
use the mechanism to try to understand why a particular 
recursive operation body is correct. But this approach is 
troublesome in several ways. First, the traditional explana- 
tion in Figure 3 is complicated, involving the idea of sus- 
pended calls to Reverse-A-Text-String; of those calls m- 
suming execution in a specific way and in a specific order; 
and of variables coming into and out of scope. There 
should be a simpler cover story about how recursion works. 
Second, if a student’s first exposure to recursive thinking is 
from the client perspective, then reasoning about the effects 

’ Informally, operation Remove (t, 0, ch) removes the left- 
most character from t, and that becomes the value of ch. Add 
(t, Length (t), ch) appends the character ch onto the right end 
of t. 
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of recursive operations should be independent of the fine 
details of call stacks and variable scopes used to implement 
recursion. Third, and most importantly, the pattern of m- 
cursive calls and returns presents a model of recursion that, 
on the surface, is inconsistent with inductive thinking. 
This could have a negative impact on the student’s ability 
to formulate a consistent mental model of recursion and 
therefore on the ability to discover recursive solutions to 
new problems. 

Client: t = “ab” 
I t 

R E 
T 
U 
R 

Sequence of Recursive Calls and 
Returns for Reverse-A-Text-String 

Figure 3 

The last concern just raised may not seem compelling yet, 
but it gets to the heart of the difference between why recur- 
sion works and how it works, so we explore it further. The 
mental processes that a student needs to master in develop- 
ing recursive operations are, of course, closely related to the 
mental processes involved in proofs by mathematical induc- 
tion. In the usefulness question, the assumption that an 
operation is available to find solutions for the smaller val- 
ues is but a thinly-disguised form of an inductive hypothe- 
sis, and the processing of non-base-case values in the form 
of steps l-3 is but a thinly-disguised proof of the inductive 
step, where step 2 involves application of the inductive 
hypothesis. Thus, when we think of a student searching for 
an explanation of why a recursive solution is correct, we 
can reinterpret this as the student searching for an explana- 
tion of why a proof by mathematical induction is valid. 

The inductive step of proof by induction is both extremely 
powerful and highly abstract. Yet, it merely captures, in a 
clever way, a simple pattern of reasoning. For the natural 
numbers, this pattern of reasoning goes as follows: Estab- 
lish truth at 0; then establish that truth at 0 implies truth at 
1 and thereby conclude truth at 1; then establish that truth 
at 1 (or, at 0 and at 1) implies truth at 2 and thereby con- 
clude truth at 2; and so on. In the case of a recursive opera- 
tion body, the pattern of reasoning might be similar: Estab- 
lish the code’s correctness at 0; then establish that correct- 
ness at 0 implies correctness at 1 and thereby conclude cor- 

rectness at 1; then establish that correctness at 1 (or, at 0 
and at 1) implies correctness at 2 and thereby conclude cor- 
rectness at 2; and so on.3 This is a pattern of reasoning 
that students can grasp, and it points the way to an appro- 
priate cover story about recursion that stops well short of 
the complications of Figure 3. 

To explain why the implementation of Reverse-A-- 
Text-String is correct, this pattern of reasoning would be 
applied as follows: Reverse-A-Text-String is first traced 
on the base-case value of t being the empty string. Then 
Reverse-A-Text-String is traced on a text string of length 
1. In this trace, the effect of the recursive call is known by 
the previous trace where the value of t was the empty 
string. Reverse-A-Text-String is then traced on a text 
string of length 2. Again, the effect of the recursive call in 
this trace is known by the previous trace. Tracing can con- 
tinue like this (Figure 4) until the student is completely 
comfortable with the pattern of reasoning and is confident 
that Reverse-A-Text-String will work correctly for all text 
strings. Notice how this tracing-smallest-values-first ex- 
planation captures the essence of inductive reasoning, and 
that the student can do this form of reasoning without 
knowing how recursion actually works. 

Figure 4 

We can now compare the explanation in Figure 3 with the 
tracing-smallest-values-first explanation. The latter is not 
couched in implementation terms; there is no hint of a call 
stack of suspended executions and no need for an explana- 
tion of execution resuming in a particular way and in a par- 
ticular order. Also notice that the sequence of calls in Fig- 
ure 3 goes in exactly the opposite direction of inductive 
reasoning; it is the sequence of returns that go in the same 

3 Here 0, 1, 2, etc., represent the “sizes of the incoming val- 
ues” and depend on the kind of problem, e.g., for Re- 
verse-A-Text-String size would be the length of t. 

139 



direction as inductive reasoning. Having an explanation of 
recursion that explicitly reveals dynamic behavior in two 
opposing directions must surely be more difficult to inter- 
nalize than a non-dynamic explanation that is completely 
consistent with induction and thus completely consistent 
with the method described in Section 3 for discovering re- 
cursive structure and developing recursive operation bodies. 

A student with enough experience with recursion to under- 
stand the inductive model can next try to make a convincing 
case for the correctness of a recursive implementation by 
explicitly using proof by induction. In particular, this can 
involve appealing to the inductive hypothesis, as specified 
in the postcondition of an operation, for the result of a re 
cursive call. This approach removes the need to trace recur- 
sion, either by unrolling recursive calls as in Figure 3 or by 
tracing in the direction of smaller values to larger values. 

4. How Recursion Works 
Even after using the above approach to make a convincing 
case that a recursive operation body is correct, the typical 
student still wants an operational picture of how recursion 
works. Nearly all explanations of this involve the call- 
stack mechanism. Details in textbooks vary widely, from 
informal treatments as in Figure 3 to thorough discussions 
of activation records and the run-time stack. 

We recommend a particularly understandable yet sound ex- 
planation that leverages the idea of tracing tables (e.g., Fig- 
ure 4). Consider a client call to Reverse-A-Text-String, 
say with the incoming value of t = “abc”. The student can 
begin filling in a tracing table for Reverse-A-Text-String 
up to the recursive call. At this point, the current tracing 
table is temporarily set aside on a pile of partially- 
completed tracing tables and a new tracing table is started 
with the incoming value of t = “bc”. As this continues, the 
student creates a “stack” of temporarily-set-aside tracing 
tables with incoming values t = “abc”, t = “bc”, t = “c”, 
until the current tracing table has t = ““. This last tracing 
table can be completed and the result copied back to the 
point of the recursive call in the top tracing table for t = 
“c”, and so on. This explanation of how recursion works is 
simple and clean, with each recursive call resulting in a 
temporary suspension of the current tracing table and the 
beginning of a new tracing table. The explanation addresses 
a new aspect of recursion - how it works - but it does so 
in a way that is consistent both with the previously- 
presented client view of recursion, and with how recursion 
is actually implemented in most programming languages. 

The tasks of discovering recursive structure and using it to 
develop a recursive operation body, of understanding why a 
given use of recursion is correct, and of understanding how 
recursion works, are three separate intellectual activities. It 
seems reasonable that a student should be exposed to the 
first two activities either simultaneously or to the second 

activity just after the first. On the other hand, from the 
perspective of the learner, a separation in time would seem 
desirable between the first two activities and the last. A 
first exposure to recursion should culminate in the student 
using recursion from the client’s perspective and becoming 
comfortable with the inductive reasoning that underlies re 
cursion. Internalizing these ideas alone will take time, and 
should not be unnecessarily complicated by the immediate 
introduction of additional aspects of recursion. More acC 
vanced applications of recursion and new ideas (such as how 
recursion works) can be introduced later in the spiral of vis- 
its to the topic of recursion. 

5. Conclusions 
When the history of CS instruction is written, one theme is 
sure to emerge, and that is the steady liberation of our 
thinking, our understanding, and our teaching from the sti- 
fling confines of underlying programming languages. Yet, 
as we currently and typically teach certain important pro- 
gramming language features and related programming tech- 
niques that use them, the client perspective appears to m 
main compromised. It is overly influenced by our knowl- 
edge of how language constructs are realized by compilers 
and by the historical baggage of our past teaching practices. 
We need to take seriously the two fundamental questions 
from the introduction and begin anew searching for client 
perspectives. As our reconsideration of recursion has 
shown, this search can lead us to new ways of thinking 
about and teaching the traditional topics and to additional 
ways of comparing alternative pedagogical approaches. 
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