
Client View First: An Exodus From Implementation-Biased
Teaching

Timothy Long, Bruce Weide,
Paolo Bucci

Computer and Information Science
The Ohio State University

Columbus, OH 43210-1277
{long,weide,bucci}Qcis.ohio-

state.edu

Abstract
When teaching certain CS topics (e.g., abstract data types,
operating systems), the instructor tries to make clear the
distinction between the “client” perspective and the “im-
plementer” perspective. But when teaching some pro-
gramming language features and related programming tech-
niques, this dichotomy often is not respected as strongly as
it should be. We illustrate this with a discussion of how to
teach recursion, comparing a traditional approach with one
that is careful not to blur the distinctions between client
view and implementer view. The latter better supports new
learners in the creation of a sound and consistent mental
model for developing and reasoning about programs that
involve recursion.
Keywords
Programming languages, recursion

1. Introduction
Systems thinking offers a worldview that underlies all
component-based engineering, including software engineer-
ing. By systems thinking, we mean viewing or under-
standing things as units that can be viewed from the outside
- the client view - as indivisible, or from the inside
- the implementer view - as compositions of other
systems, a.k.a. subsystems [2]. A client is one who uses a
system purely via an understanding of a “cover story” that
purports to explain what the system acts like without m-
vealing precisely how it achieves that behavior. An im-
plementer is one who needs to know precisely how the sys-

PermissIon to make digltal or hard coptes of all or part of this work for
personal or classroom use IS granted without fee provided that
copies are not made or distributed for proflt or commercial advan-
tage and that copies bear thts notwze and the full cvtatnn on the fwst page.
lo copy othervase, to republish. to post on servers or to
redistribute to Itsts, reqwes pnor speaflc permtssion and/or a fee.
SIGCSE ‘99 3/99 New Orleans. LA, USA
0 1999 ACM l-58113.085.6/99/0003...$5.00

Murali Sitaraman
Computer Science and Electrical

Engineering
West Virginia University
Morgantown, WV 26506

muraliQcsee.wvu.ed

tern actually works through composition of its subsys-
tems.

Systems thinking is at the heart of many technical com-
puter science topics, such as software development (e.g.,
abstract data types) and computer architecture and operating
systems (e.g., virtual machines). It should be reflected in
computer science pedagogy as well. From the perspective
of a learner being introduced to a topic, an explanation that
blurs the distinction between the client view and the im-
plementer view would seem to promote confusion in the
learner’s mind. The student must separate the two views in
order to act and think appropriately, depending on whether
his or her role is that of client or implementer. This same
confusion can serve to inhibit development of clear mental
models of the two viewpoints, and negatively impacts the
student’s client and implementater skills.

1.1 Programming Language Features
A particularly interesting situation where systems thinking
is appropriate involves programming languages. On the
surface, a programming language seems like a classical
virtual machine for which the client-side explanations of
most constructs should be much simpler than how they am
implemented. But consider how we usually teach topics
such as procedures and functions, parameter passing, recur-
sion, iteration, and inheritance. What cover stories do we
offer students who are acting as clients of specific pro-
gramming language features when we teach the associated
techniques for using these features? Here it is not clear that
systems thinking has impacted pedagogy to the extent it
might or should. The standard cover stories are entirely
operational.

Perhaps this is acceptable. Many instructors believe stu-
dents find operational explanations easier to grasp than
purely abstract ones. And because the cover story must be
sound -that is, it has to be an undetectable lie from the
client’s point of view - it is easy for us as instructors to
explain a feature by describing, in operational terms, how it.
actually works in a language implementation. The main *
problem with this approach is that it surely blurs the client

136

http://crossmark.crossref.org/dialog/?doi=10.1145%2F299649.299734&domain=pdf&date_stamp=1999-03-01

and implementer perspectives, because understandability of
language implementation is not a prime objective for com-
piler writers, who generally seek speed. The “real story” is
not designed to promote client understanding.

So, for such programming language features and associated
programming techniques as those just listed, we should
consider the following fundamental questions:
. What cover story best enables someone to use, and to

reason about, programs that involve the feature?
. How is the feature implemented?

The first question ought to have answers independent of
answers to the second. Yet, as teachers, how often do we
achieve this independence? Can we step back from our own
knowledge of how programming language features arc im-
plemented and create “cleaner” cover stories for students?

1.2 An Example: Recursion
In this paper we use recursion as a working example of a
topic whose standard introductory explanation, in our opin-
ion, has been overly influenced by the typical instructor’s
knowledge of how the underlying programming language
feature is implemented. We assume the perspective of a
learner who is being introduced to recursion, and start by
considering the first question above: What cover story best
enables a student to use, and to reason about, programs that
involve recursion? Once this question has been answered,
and only then, do we consider teaching students an answer
to the second question: How is recursion implemented? We
present an approach to teaching recursion in which the cli-
ent-side explanation is not implementation-biased, yet from
which students can formulate and internalize a sound and
consistent mental model of recursion that continues to
make sense even after they learn how recursion is imple-
mented. Our primary contributions are:
l explaining the advantages of presenting the client view

first and making sure students understand it, before pre-
senting the implementer view; and

l illustrating some ways of introducing recursive think-
ing, and reasoning about why and how recursion
works, which reflect the client-implementer dichotomy.

We do not retrace ground aheady covered well elsewhere: a
review of various approaches to teaching recursion [3], an
explanation of the reasons why recursion is usually consid-
ered to be a difficult topic to teach [l], and a list of other
background references [1,3].

Throughout this paper, when we refer to students or learn-
ers, we always mean students or learners at the introductory
level, such as CSlKS2 students. Also, we assume a spiral
approach to teaching and learning. In a spiral approach,
topics are revisited several times, usually with separation in
time between successive visits. Subsequent visits develop
a topic in greater depth.

2. Recursive Thinking
A recursive implementation of an operation typically sepa-
rates the processing of base-case from non-base-case values.
Here we consider only processing of non-base-case values,
which for simple situations has this familiar structure:

1. From incoming parameter values, extract one or more
“smaller” values of the “same” kind.

2. Apply the operation (recursively) to each of the smaller
values to obtain solutions for the smaller values.

3. Use the solutions for these smaller values to obtain a
solution for the original incoming parameter values.

Inductively defined mathematical functions, such as facto
rial, Fibonacci numbers, and exponentiation, are popular
first examples of recursion because their inductive defini-
tions are easily translated into recursive operation bodies.
However, these inductive definitions essentially are almady-
completed steps l-3, so exclusive use of such examples
might lead students to believe that successful use of recur-
sion amounts to translation of inductive definitions into
code. Instead, what students really need to understand is
that successful use of recursion involves discovering ap-
propriate inductive structure for themselves, and that such
discovery can benefit from using specific strategies to ex-
amine the data to be processed.

Thus, we need to equip students with methods and strategies
for discovering the answers to, and developing code that
accomplishes, steps l-3. Step 1 is the crucial step; once it
is done properly, steps 2 and 3 are often quite routine.
How, then, should a student go about identifying appropri-
ate smaller values “within” incoming parameter values; that
is, how should he or she go about identifying the recursive
or inductive structure of incoming values? For an initial
exposure to recursion, we recommend using pictures so
there is a strong visual suggestion of recursive structure, as
opposed to a merely symbolic connotation.

As a working example, we use the problem of reversing a
text string. Here is a specification of the operation:

operation Reverse-A-Text-String (t: Text)
emsures t = REVERSE (#t)’

To avoid the pitfalls associated with factorial, etc., we spe-
cifically do not want to tell the student the following fact
(theorem) about the mathematical REVERSE function:

REVERSE (s * XX>) = <x> * REVERSE (s)
that is the basis for one of several possible recursive im-
plementations.

’ In this specification, the ensures clause t = REVERSE(#) is
the postcondition. #t denotes the incoming value of t while t
denotes the outgoing value of t. REVERSE is a mathematical
function on mathematical strings, i.e., the mathematical
model of the programming type Text. REVERSE has the ob-
vious meaning, e.g., REVERSE(“abc”) = “cba”.

137

So, what do we say? One view of the recursive structure of
the incoming value for parameter t is illustrated in Figure
1, where the larger, outer box represents the entire text
string t to be reversed. Within this larger, outer box, the
circle denotes the first character of t, and the smaller, inner
box represents the rest oft. This use of boxes and circles is
a powerful visualization of one way to identify recursive
structure in strings: a non-empty string consists of a first
character followed by the rest of the string, which is itself a
string that is merely shorter than the original.

+ rest of t -+

t= @I,1,,,...

Visualizing Recursive/Inductive Structure

Figure 1

To decide whether such a view of recursive structure is po-
tentially useful, the student should next answer the useful-
ness question: If I had access to an operation that provided
solutions for each of the smaller values, would this help me
obtain a solution for the original incoming value? For the
view in Figure 1, a “yes” answer should be fairly obvious.

I+ rest oft + 1

t= I@fjlilI
1:
remove

WI

I

2:
reverse rest of t
by calling Reverse-
A-Text-String to
do it

I t[n] - . - t[2] t[l] 1 t101 1
’ 4

I

3:
add t[O] to rest of t

reversed
Visualizing a Recursive Process

Figure 2

To answer the usefulness question positively, the student
should have conceived a strategy for using solutions to
smaller values to arrive at a solution for the original incom-
ing value. We suggest that the student illustrate the strat-
egy by annotating the picture of recursive structure. For
the sample problem, one obvious annotation appears in
Figure 2, where we have told the student that the name of
the operation provided to reverse the smaller, inner box is
Reverse-A-Text-String, the very operation to be imple-

mented. It is a relatively small step from the annotated
strategy in Figure 2 to this recursive operation body for
Reverse-A-Text-String:

procedure Reverse-A-Text-String (t: Text)
begin

if (Length (t) /= 0)
variable ch: Character
Remove (t, 0, ch)
Reverse-A-Text-String (t)
Add (t, Length (t), ch)

end if
end Reverse-A-Text-String*

Notice that this presentation respects the client-implementer
dichotomy and treats the client view first. There is no men-
tion of how recursion is implemented.

3. Why Recursion Works
For a typical student given the above introduction to recur-
sive thinking, understanding why a recursive operation body
is correct is at least as difficult as developing a recursive
operation body. He or she usually is unsure of the result-
ing solution and lacks confidence that it is correct. The
student, it seems, is searching for a simple, sound, proba-
bly operational cover story about what happens when an
operation calls itself. But we recommend temporarily m-
sisting the urge to sate the student’s appetite for an opera-
tional explanation of how recursion works, concentrating
instead on an explanation of why it works.

For this approach to succeed, the instructor has to under-
stand the subtle difference between the two issues: why vs.
how. This is non-trivial because standard explanations of
why and how a recursive operation body works often am
intertwined with the single idea of “unrolling” recursive
calls. Figure 3 is a typical textbook treatment, showing
the sequence of calls and returns resulting from a call to
Reverse-A-Text-String. Depictions of calls and returns
are but slightly simplified descriptions of the call-stack
mechanism that languages use to implement recursion.

Supposedly, by learning how recursion works a student can
use the mechanism to try to understand why a particular
recursive operation body is correct. But this approach is
troublesome in several ways. First, the traditional explana-
tion in Figure 3 is complicated, involving the idea of sus-
pended calls to Reverse-A-Text-String; of those calls m-
suming execution in a specific way and in a specific order;
and of variables coming into and out of scope. There
should be a simpler cover story about how recursion works.
Second, if a student’s first exposure to recursive thinking is
from the client perspective, then reasoning about the effects

’ Informally, operation Remove (t, 0, ch) removes the left-
most character from t, and that becomes the value of ch. Add
(t, Length (t), ch) appends the character ch onto the right end
of t.

138

of recursive operations should be independent of the fine
details of call stacks and variable scopes used to implement
recursion. Third, and most importantly, the pattern of m-
cursive calls and returns presents a model of recursion that,
on the surface, is inconsistent with inductive thinking.
This could have a negative impact on the student’s ability
to formulate a consistent mental model of recursion and
therefore on the ability to discover recursive solutions to
new problems.

Client: t = “ab”
I t

R E
T
U
R

Sequence of Recursive Calls and
Returns for Reverse-A-Text-String

Figure 3

The last concern just raised may not seem compelling yet,
but it gets to the heart of the difference between why recur-
sion works and how it works, so we explore it further. The
mental processes that a student needs to master in develop-
ing recursive operations are, of course, closely related to the
mental processes involved in proofs by mathematical induc-
tion. In the usefulness question, the assumption that an
operation is available to find solutions for the smaller val-
ues is but a thinly-disguised form of an inductive hypothe-
sis, and the processing of non-base-case values in the form
of steps l-3 is but a thinly-disguised proof of the inductive
step, where step 2 involves application of the inductive
hypothesis. Thus, when we think of a student searching for
an explanation of why a recursive solution is correct, we
can reinterpret this as the student searching for an explana-
tion of why a proof by mathematical induction is valid.

The inductive step of proof by induction is both extremely
powerful and highly abstract. Yet, it merely captures, in a
clever way, a simple pattern of reasoning. For the natural
numbers, this pattern of reasoning goes as follows: Estab-
lish truth at 0; then establish that truth at 0 implies truth at
1 and thereby conclude truth at 1; then establish that truth
at 1 (or, at 0 and at 1) implies truth at 2 and thereby con-
clude truth at 2; and so on. In the case of a recursive opera-
tion body, the pattern of reasoning might be similar: Estab-
lish the code’s correctness at 0; then establish that correct-
ness at 0 implies correctness at 1 and thereby conclude cor-

rectness at 1; then establish that correctness at 1 (or, at 0
and at 1) implies correctness at 2 and thereby conclude cor-
rectness at 2; and so on.3 This is a pattern of reasoning
that students can grasp, and it points the way to an appro-
priate cover story about recursion that stops well short of
the complications of Figure 3.

To explain why the implementation of Reverse-A--
Text-String is correct, this pattern of reasoning would be
applied as follows: Reverse-A-Text-String is first traced
on the base-case value of t being the empty string. Then
Reverse-A-Text-String is traced on a text string of length
1. In this trace, the effect of the recursive call is known by
the previous trace where the value of t was the empty
string. Reverse-A-Text-String is then traced on a text
string of length 2. Again, the effect of the recursive call in
this trace is known by the previous trace. Tracing can con-
tinue like this (Figure 4) until the student is completely
comfortable with the pattern of reasoning and is confident
that Reverse-A-Text-String will work correctly for all text
strings. Notice how this tracing-smallest-values-first ex-
planation captures the essence of inductive reasoning, and
that the student can do this form of reasoning without
knowing how recursion actually works.

Figure 4

We can now compare the explanation in Figure 3 with the
tracing-smallest-values-first explanation. The latter is not
couched in implementation terms; there is no hint of a call
stack of suspended executions and no need for an explana-
tion of execution resuming in a particular way and in a par-
ticular order. Also notice that the sequence of calls in Fig-
ure 3 goes in exactly the opposite direction of inductive
reasoning; it is the sequence of returns that go in the same

3 Here 0, 1, 2, etc., represent the “sizes of the incoming val-
ues” and depend on the kind of problem, e.g., for Re-
verse-A-Text-String size would be the length of t.

139

direction as inductive reasoning. Having an explanation of
recursion that explicitly reveals dynamic behavior in two
opposing directions must surely be more difficult to inter-
nalize than a non-dynamic explanation that is completely
consistent with induction and thus completely consistent
with the method described in Section 3 for discovering re-
cursive structure and developing recursive operation bodies.

A student with enough experience with recursion to under-
stand the inductive model can next try to make a convincing
case for the correctness of a recursive implementation by
explicitly using proof by induction. In particular, this can
involve appealing to the inductive hypothesis, as specified
in the postcondition of an operation, for the result of a re
cursive call. This approach removes the need to trace recur-
sion, either by unrolling recursive calls as in Figure 3 or by
tracing in the direction of smaller values to larger values.

4. How Recursion Works
Even after using the above approach to make a convincing
case that a recursive operation body is correct, the typical
student still wants an operational picture of how recursion
works. Nearly all explanations of this involve the call-
stack mechanism. Details in textbooks vary widely, from
informal treatments as in Figure 3 to thorough discussions
of activation records and the run-time stack.

We recommend a particularly understandable yet sound ex-
planation that leverages the idea of tracing tables (e.g., Fig-
ure 4). Consider a client call to Reverse-A-Text-String,
say with the incoming value of t = “abc”. The student can
begin filling in a tracing table for Reverse-A-Text-String
up to the recursive call. At this point, the current tracing
table is temporarily set aside on a pile of partially-
completed tracing tables and a new tracing table is started
with the incoming value of t = “bc”. As this continues, the
student creates a “stack” of temporarily-set-aside tracing
tables with incoming values t = “abc”, t = “bc”, t = “c”,
until the current tracing table has t = ““. This last tracing
table can be completed and the result copied back to the
point of the recursive call in the top tracing table for t =
“c”, and so on. This explanation of how recursion works is
simple and clean, with each recursive call resulting in a
temporary suspension of the current tracing table and the
beginning of a new tracing table. The explanation addresses
a new aspect of recursion - how it works - but it does so
in a way that is consistent both with the previously-
presented client view of recursion, and with how recursion
is actually implemented in most programming languages.

The tasks of discovering recursive structure and using it to
develop a recursive operation body, of understanding why a
given use of recursion is correct, and of understanding how
recursion works, are three separate intellectual activities. It
seems reasonable that a student should be exposed to the
first two activities either simultaneously or to the second

activity just after the first. On the other hand, from the
perspective of the learner, a separation in time would seem
desirable between the first two activities and the last. A
first exposure to recursion should culminate in the student
using recursion from the client’s perspective and becoming
comfortable with the inductive reasoning that underlies re
cursion. Internalizing these ideas alone will take time, and
should not be unnecessarily complicated by the immediate
introduction of additional aspects of recursion. More acC
vanced applications of recursion and new ideas (such as how
recursion works) can be introduced later in the spiral of vis-
its to the topic of recursion.

5. Conclusions
When the history of CS instruction is written, one theme is
sure to emerge, and that is the steady liberation of our
thinking, our understanding, and our teaching from the sti-
fling confines of underlying programming languages. Yet,
as we currently and typically teach certain important pro-
gramming language features and related programming tech-
niques that use them, the client perspective appears to m
main compromised. It is overly influenced by our knowl-
edge of how language constructs are realized by compilers
and by the historical baggage of our past teaching practices.
We need to take seriously the two fundamental questions
from the introduction and begin anew searching for client
perspectives. As our reconsideration of recursion has
shown, this search can lead us to new ways of thinking
about and teaching the traditional topics and to additional
ways of comparing alternative pedagogical approaches.

6. Acknowledgments
We gratefully acknowledge financial support from our own
institutions, from the National Science Foundation under
grants DUE-9555062 and CDA-9634425, from the Fund for
the Improvement of Post-Secondary Education under project
number P116B60717, from the Defense Advanced Projects
Agency under project number DAAH04-96-l-0419 moni-
tored by the U.S. Army Research Office, and from Micro-
soft Research. We also appreciate the assistance of the
many other people who are involved in this project, espe-
cially Steve Fridella, Joe Hollingsworth, David Mathias,
Bill Ogden, Elley Quinlan, and Scott Pike.

7. References
[l] Gal-Ezer, J., and Harel, D. What (Else) Should CS

Educators Know? Comm. ACM 41, 9 (Sept. 1998),
77-84.

[2] Long, T. J., et al. Providing Intellectual Focus to
cs l/CS2. In Proc. 1998 ACM SIGCSE Symp.,
ACM, February 1998, pp. 252-256.

[3] Wu, C., Dale, N.B., and Bethel, L.J. Conceptual
Styles and Cognitive Learning Styles in Teaching Re-
cursion. In Proc. 1998 ACM SIGCSE Symp., ACM,
February 1998, pp. 292-296.

140

