
Web Labs for the Standard Template Library and the Java Generic
Library in a CS2 Course

William J. Collins
Computer Science Department

Lafayette College
Easton, PA 18042

610.330.5228
collinsw@lafayette.edu

1. Abstract
This paper describes a suite of laboratory experiments for a
CS2 course. The main thrust of the experiments is to
promote an understanding of a container-class library: the
Standard Template Library for C++ or the Java Generic
Library for Java. All of the experiments are stored on the
World Wide Web, and students have considerable latitude on
when each experiment must be completed.

2. Introduction
The CS2 course has traditionally focused on data structures, a
term which, in an object-oriented context, refers to container
classes. In the CS2 course at Lafayette College, the lecture
section introduces such container classes as linked lists,
stacks, priority queues, red-black trees and hash tables.

In the laboratory section, students perform
experiments related to each container class. In each
experiment, there are subsections for Observing,
Hypothesizing, Testing and Concluding. Computing as a
Discipline (Denning [19891) promotes the use of such labs to
help students “learn to distinguish careful experiments from
casual observations”. Similarly, Computing Curricula 1991
(Tucker [19911) recommends laboratory experiences
involving hypothesis formation and testing because they
“increase student problem solving ability, analytical skill, and
professional judgment”.

One of the goals of the course is for students to
carefully study code written by professionals. After all, we
expect that some of these students will eventually become

Permission to make digital or hard copies of all or part of this work for
ParSOnal 01 ClaSSrOOm use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that coplas bear this notice and the full citation on the first page.
To COPY otherwse. to republish, to post on servers or to
redistribute 10 IIStS. ra~~uwes prior specific permission and/or a fee.
SIGCSE ‘99 3/99 New Orleans, LA, USA
0 1999 ACM l-58113-085~6/99/0003...$5.00

Yi Sun
Computer Science Department

Stanford University
Stanford, CA 94305

650.497.6221
yisun@cs.stanford.edu

professionals and write highly efficient (but readable) code.
A standard library of container classes is utilized instead of a
“home-grown” version of these classes. The code in these
classes is somewhat inscrutable, and a laboratory
environment is an ideal setting for line-by-line analysis. A
standard library has the added advantage of portability, so
students can be confident that their applications will still
work in other locales.

The Standard Template Library (see Musser
[19961) is part of ANSI Standard C++. There are three
major components: container classes, generic algorithms that
can be called by container objects, and iterators. Iterators
provide a consistent interface to the container classes so that
the generic algorithms can work without relying on details of
those classes.

The Java Generic Library, from Objectspace, Inc., is
the Java analog of the Standard Template Library. The
language feature that most clearly distinguishes the two
libraries is the template facility: ubiquitous in the Standard
Template Library but not available -- at least not yet -- in
Java. In the Java Generic Library, the type of each item in a
container is Object, which a user can typecast to a type
suitable for the current application.

All of the laboratory materials are stored on the
World Wide Web. The pedagogical advantages of this
medium have been well documented (Carlson [1996], Hitz
[19971, Paxton [19961). A further benefit of the World Wide
Web is that its hyperlink, mail, and security features support
the separation of the labs into separate stages for observation,
hypothesis formation, testing and conclusions.

2. Course Outline
The CS2 course at Lafayette College presents a study of
container classes, This is a four-credit course, with 150
minutes of lecture and two 7.5minute labs per week. In the
lectures, each container class is described, its design is
outlined and analyzed, and then an application that uses the
container class is developed. Most of the students in the

174

http://crossmark.crossref.org/dialog/?doi=10.1145%2F299649.299746&domain=pdf&date_stamp=1999-03-01

course took an object-oriented CSl course with Java, so they
will use Java in the CS2 course. But students in Electrical
and Computer Engineering are required to use C++, and
students with Advanced Placement credit in computer science
may prefer C++ to Java.

Much of the lecture material is language-
independent, with illustrations of how methods work -- such
as inserting into a doubly linked list -- rather than on
language details. Occasionally, the differences between Java
and C++ warrant discussion. These contrasts highlight
significant language-design issues even for students who are
familiar with only one of the languages.

For example, Java prizes security over efficiency, so
the index checking in the Quick Sort generic algorithm
contributes to that methods (two orders of magnitude) slower
run-time than the corresponding C++ version. Another factor
impeding Java’s speed is that -- as you would expect in an
object-oriented language -- methods are virtual by default, so
inlining is not possible. C++, a hybrid language, facilitates
inlining: any method defined within a class body is
automatically inlined, and a function outside of a class body
can be inlined with the inline keyword. This gives C++
programmers the semantics of a function call without the
save/return overhead.

There are two sets of lecture notes, Data Structures
and the Standard Template Library and Data Strtrctures and
the Java Generic Library. Both sets can be downloaded
from the course home page. These notes cover the usual data-
structures/software-engineering material: recursion, analysis
of algorithms, formal verification and so on. Material on
object-orientation is also included: inheritance,
polymorphism and the major container classes.

The lab materials must cover the language features
in sufficient detail to allow students to understand the library
code and to complete the assigned programming projects --
such as enhancing a text editor or spell checker, 01
developing a condition evaluator.

The course grade is based on 1000 points,
distributed as follows: 150 points for lab assignments, 350
points for programming projects, 200 points for the midterm
exam, and 300 points for the final exam.

3. The Laboratory Component
The laboratory consists of 24 Pentium-chip computers
running Borland C++ 5.02 and Cafe (from Symantec, Inc.)
under Windows 95. The computers are part of the campus
network, which has World Wide Web access through
Netscape.

There are 28 lab periods, and each lab period is 75
minutes long. The labs are closed in the sense that there is a
fixed lab period by the end of which the lab experiment must

be completed and during which the instructor is present in
the lab. But students need not attend the lab period as long as
they e-mail their conclusions by the end of the lab period. All
students must e-mail their hypotheses before the beginning of
the lab period.

The lab assignments, on the World Wide Web, are
accessible through the following cover page Uniform
Resource Locator (URL):

http://www.cs.lafayette.edu/cgi-bin/csl03/backupcpp

While working on a lab assignment, a student will go back
and forth between a Web browser such as Netscape, the C*
or Java Integrated Development Environment, and a mail
facility such as PINE.

For the first ten labs, the focus is on language
features that are not necessarily covered in a CS 1 course. For
C++, for example, there are labs on creating overloaded

operators, iterators and templates. For Java, some of the
early labs are on interfaces, exception handling and
synchronization. For the remaining I8 labs, the emphasis is
on the standard library, especially its container classes.

The labs are written in HTML (Hyper-Text Markup
Language). There are two advantages to this. Because
Internet access is available throughout the college, labs
written entirely in HTML will give students the opportunity to
do the labs anytime and, with a laptop, anywhere. Secondly,
the hyperlinks in HTML provide an easy way to direct the
flow of the lab: students are led through the process of
observation, hypothesis formation, testing and conclusion.

Each laboratory experiment consists of four
sections: Observation, Hypothesis Fomlation, Testing, and
Conclusions. We now describe each section in detail.

3.1 Observation Section
In this section, there is a discussion of the lab topic with
hyperlinks to a glossary, code examples and, occasionally,
images. After about 50 lines of hypertext, there is a simple,
multiple-choice quiz. A student who clicks on a wrong
answer is sent back to review the previous section -- with a
hint explaining why the student’s choice was incorrect. A
click on the right answer advances the student to the next
section.

For example, The Java version of Lab 27 tests the
run times for various sort methods: BinarySearchTree Sort,
RedBlackTree Sort, Heap Sort and Quick Sort (the C++
version also tests Merge Sort, the only sort method provided
for the list class in the Standard Template Library). In the
lectures before this lab, students had been exposed to these
sorts and a Big-O analysis of their average and worst times.
An early quiz from that lab deals with the run times for

175

sorting random integers with RedBlackTree Sort:

Quick Quiz: When the project (SortTimer .java) was run --
on a 200-megahertz Pentium -- with 10,000 random integers,
the run time was 1.59 seconds. Estimate the run time for
20000 random integers. (Hint: See Exercise 9.5a.)

a. 3.18 seconds

b. 3.40 seconds

c. 6.12 seconds

d. 9.68 seconds

(Exercise 9.5a is given in the Appendix). In the actual lab,
the choices are hyperlinked. In this paper, underlining is
used to indicate hyperlinks. By choosing b, the student gets
to advance to the next page of the lab. Any other choice will
include a hint and a request to review this part of the lab.
Such quizzes ensure that the students will be actively
involved in the material. After, on average, two such quizzes,
the Hypothesis Formation section is entered.

3.2 Hypothesis Formation Section
Here the student conjectures “what would happen if . ..” or
“what needs to be added in order to . ..“. For example, here is
the Hypothesis section of the Sorting Times Lab :

HYPOTHESIZE:

Modify SortTimerl.java to determine the time for
BinarySearchTree Sort. Which do you think will be faster in
the average case (that is, for sorting random integers),
BinarySearchTree Sort or RedBlackTree Sort? Why? Which
do you think will be faster in the worst case? How would you
get the worst case?

Use Exercise 9.4 to figure out how to arrange n items to get
the worst time for Quick Sort. Write the code to store the n
items in an Array called “array”.

Hvnothesis

(Exercise 9.4 is given in the Appendix) A crucial
feature of the Hypothesis Formation section is that students
do not yet have easy access to all of the code they will need to
test their hypotheses. This is an anti-hacking measure.

The hyperlink on the Hypothesis Formation page
leads to a form where students can fill in their hypotheses.
Hypothesis submission is accomplished through a Common
Gateway Interface (CGI) script. When the student clicks on
the “SEND” button, two mail messages are simultaneously
generated:

1. The contents of the Hypothesis window are e-mailed
to the instructor. This is achieved through HTML’s
form handling capability and a shell command
“sendmail”. The mail must be sent by the student
before the start of the lab period. This portion of
the lab is graded -- 40% of total lab grade -- on the
reasonableness of the hypotheses.

2. The password for this lab assignment is
automatically e-mailed to the student. The student
uses this password to access the Testing section.
For example, the password for Lab 3 is “cat”, so the
URL to access the Testing section for Lab 3 is

www.cs.lafayette.edu/-collinsw/csl03flabs/cppfl27/cat.html

3.3 Testing Section
The student is given the details of an experiment that will test
the hypotheses. This section includes hyperlinks to relevant
files, sometimes with missing parts. The student transfers
these files to disk. Within the Borland C++ or Cafe
environment, the student modifies the given files, adds new
files if necessary, creates a project, and runs that project with
supplied or generated input. For example, here is the testing
section of the Sorting Times Lab:

TEST:

Run your modified-to-get-BinarySearchTree Sort for
SortTimer .java with 10,000 random integers and with
20,000 random integers. You will need to add
BinSearchTree.java, BinSearchTreeIterator.java, and
Node.java to your project. Then run the project for
RedBlackTree Sort for 10,000 and 20,000 random integers.
For the worst times for BinarySearchTree Sort and
RedBlackTree Sort, run the project for 1,000 items and for
2,000 items.

Run you1 modified-to-get-worst-case version of
SortTimer3,java (Quick Sort) for one thousand items and for
two thousand items. If your time for two thousand items is not
about four times as large as your time for one thousand items,
your code does not produce the worst case. Keep trying!

On completion of the testing section, the student goes back to
Netscape and enters the Conclusions section.

3.1 Conclusions Section
In this section, the student fills in a window with a brief
report on the results of the experiment and what the student
learned. Especially important are explanations of any
discrepancies between what the student hypothesized and
what the student discovered during testing. For example,
here is the Conclusions section of the Sarting Times Lab:

CONCLUDE:

176

Include YOU BinarySearchTree modification to
SortTimer .iava and the run times you got for 10,000 random
integers and for 20,000 integers. What were the
corresponding times for RedBlackTree Sort? What’s going
on here? Shouldn’t RedBlackTree Sort be faster than
BinarySearchTree Sort? When would RedBlackTree Sort be
preferable to BinarySearchTree Sort?

Include your code for getting the worst case with Quick Sort
and the run times you got for 1,000 and 2,000 integers.

Quick Sort is generally considered the fastest sort algorithm
on average. Why is that not tme for the Java Generic
Library’s version7

Explain any discrepancies between your hypotheses and your
results in the lab.

What part of this lab gave you the most trouble?

Conclude

The Conclude hyperlink leads to a fonn. When the
student fills in that form and clicks on Send, the contents of
the form are e-mailed to the instructor. The conclusions fonn
is processed in the same way as the hypothesis-formation
form. A CGI script e-mails to the instructor the conclusions
entered by the student. This portion of the lab grade -- 60%
of total lab grade -- is based on the extent to which the
student succeeded in testing the original (or modified)
hypotheses and in answering the questions asked.

These suites of labs also include other aspects of an
ordinary lab class. Students are able to receive feedback --
grades and professor’s comments -- through the World Wide
Web as well. This is done by letting each student have an
alias, which is the name of a file on the Web server. The
instructor posts the grades and comments for each lab on
each individual’s file. The students can then pull up the tile on
Netscape and view their own grades and the comments.

4. Conclusions of this Paper
By working from a standard library of container classes,
students can be walked through code written by
professionals. All of the source code in the Standard
Template Library and Java Generic Library is available, so
the labs give students practice in deciphering such code as
the following (from the get-node method in the Standard
Template Library’s fist class):

return free-list ?
(free-list = (link_type)(free-list->next), tmp)
: (next-avail==last ?

(add-new buffer(), next-avail++)
: ne?<tavail++);

This statement is not too difficult to unravel once it is pointed
out that both the conditional and comma operators are
involved. This sort of code density is vastly different from
the simplicity that students usually encounter in lectures and
textbooks.

The container classes and generic algorithms of
these standard libraries constitute building blocks for later
courses. This advantage is augmented by another feature of
these libraries: portability. Both libraries are widely
available on a variety of platforms, so students need not rely
on the instructor’s library. Often, an instructor’s library is
only partially tested, and that testing is done on a single
platform.

There is also an inter-language transference. The
Java Generic Library was developed from the Standard
Template Library, and so both libraries have the same
components: container classes, generic algorithms, iterators,
function objects and adaptors. There are a few key
differences; for example, the Java Generic Library relies
more heavily on function objects (because operator
overloading is not allowed) and exception handling. But
basically, understanding one of these standard libraries makes
it substantially easier to understand the other. This
transference is especially valuable at Lafayette College,
where Java is used in the CSI and CS2 courses, and C++ is
used in subsequent courses.

Students learned -- possibly through the osmosis of
28 labs -- a systematic approach to experimentation.
Hacking was discouraged by the separation of the Hypothesis
Formation section and the Testing section: Until the
hypotheses were e-mailed (for grading) to the instructor,
students could not easily access the code needed for testing.
Also, the quizzes, hypotheses and conclusions ensured that
the active leaming went beyond coding.

Each lab took about three hours to complete.
According to the written evaluations, some students thought
this was too much time spent on labs. But the quality of the
student projects -- which the labs were preparation for -- was
exceptionally high. Also, the lab schedule was advantageous

for the more capable students: they usually completed the
entire lab assignment before the lab period, so they were able
to skip the lab period. And weaker students profited because
the instructor could devote more time to each of them during
the lab period.

One drawback to using the Web is that the amount
of time to construct lab assignments on the Web is quite a bit
more than for other lab assignments. The student does most
of the work out of the presence of the instructor, so the tiles,
hyperlinks and passwords must be carefully tested
beforehand. Otherwise, students who embark on a lab at 2

177

a.m. will send flame mail to the instructor.

The most positive aspect of using a standard library
seems to have been on students’ attitudes toward the course.
This is difficult to analyze objectively, and it is premature to
draw long-term conclusions based on only two semesters,
But perhaps because they were able to understand code
written by professionals, students felt more like professionals
themselves. Whatever the reason, enthusiasm for the course
has far surpassed that of previous semesters.

5. References
[II

PI

[31

[41

[51

PI

171

PI

Budd, Timothy, Data Structures in C++ Using the
Standard Template Library, Addison-Wesley,
1998.

Carlson, G.M., Guzdial, M., Kehoe, C., Shah, V.,
Stasko, J., “WWW Interactive Learning
Environments for Computer Science Education”,
SZGCSE Bulletin 28, 1 (March 1996), pages 290-
294.

Denning, P.J., Comer, D.E., Gries, D., Mulder,
M.C., Tucker, A.B., and Young, P.R., “Computing
as a Discipline”, Communications ofthe ACM 32, 1
(January 1989), pages 9-23.

Hitz, M. and Kogeler, S., “Teaching C-l-+ on the
WWW”, SIGCSE Bulletin 29, 3 (September 1997),
pages 1 l-13.

Paxton, J.T., “Webucation: Using the Web as a
Classroom Tool”, SIGCSE Bulletin 28, 1 (March
1996), pages 285-289.

Musser, D.R. and Saini, A., STL Tutorial and
Reference Guide, Addison-Wesley, 1996.

Nelson, Mark, C++ Programmer’s Guide to the
Standard Template Library, IDG Books Worldwide,
Inc., 1995.

Tucker, A.B. (Editor) et al, Computing CurricicMla

1991: Report of the ACM/IEEE-CS Joint
Curriculum Task Force, ACM Press,

6. Appendix
Exercise 9.4.

Hint:

Exercise 9.5a.

Develop an arrangement of the integers
O...n-I which will require the worstTime
(n) for Quick Sort. Assume that the pivot
is chosen as the median of the first, middle
and last items.

In order to get the worst time, each
partition should produce a subsection with
just one item, either the smallest or largest
item in the segment. One way to get this is
to put the items in order except that the
middle two items will be the smallest and
largest items. For example, if the numbers
are 0...9, we start with

1,2,3,4,0, 9,5,6,7,8

Note that when each partition is
performed, the pivot is either the next-to-
smallest item or the next-to-largest item, so
each partition will produce a subsection of
size 1.

Suppose we have a sort algorithm whose
averageTime (n) is 0 (n log n). For
example, any of the fast sorts in this
chapter would qualify as such an
algorithm. Let runTime (n) represent the
time, in seconds, for the implementation of
the algorithm to sort n random integers.
Then we can write:

runTime (n) -k (c) * n * log,n seconds,

where c is a an integer variable and k is a
function whose value depends on c. Show
that runTime (cn) - runTime (n) * (c +
c/log,n).

178

