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Abstract 

In this paper we describe and analyze a three week as- 
signment that was given in a Machine Learning course 
at Columbia University. The assignment presented stu- 
dents with an introduction to machine learning research. 
The assignment required students to apply Genetic Pro- 
gramming to evolve algorithms that play the board game 
Othello. The students were provided with an imple- 
mented experimental approach as a starting point. The 
students were required to perform their own experi- 
mental modifications corresponding to research issues in 
machine learning. The results of student experiments 
were good both in terms of research and in terms of 
student learning. All relevant code, documentation and 
information about GPOthello is available at the follow- 
ingurl: http://www.cs.columbia.edu/ 
-evs/ml/othello.html. 

1 Introduction 

Teaching a research topic has several inherent difficul- 
ties. Research material often requires a strong back- 
ground in a given subject in computer science. Because 
computer science is such a broad area, most undergrad- 
uate curriculums tend not to focus in a particular area 
enough to provide the depth necessary to present the 
research topics. Furthermore, research topics are usu- 
ally only reached at the very end of the semester. By 
the time they are covered, there is little time to assign 
a project on that material. 

In addition, even a small software research project 
often involves an inordinate amount of implementation 
time before any interesting results are seen. Usually, 
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the scope of a research project is beyond the scope of 
a typical assignment for a course. Sometimes, students 
are asked to reimplement a research project, but the 
majority of time a student spends on the project is pro- 
gramming as opposed to thinking about the research 
topics at hand. 

In this paper we describe and analyze a three week 
assignment that was given in an Undergraduate/Masters 
level Machine Learning course at Columbia University 
(Professor: Eric Siegel, TA: Eleazar Eskin). The project 
was called GPOthello. The assignment was designed to 
avoid these problems and give students the experience 
of “doing” research. 

For GPOthello, students applied the machine learn- 
ing method genetic programming (GP) to the board 
game Othello. Othello is a checkers type game also 
known as Reversi. Each student or student team se- 
lected a unique experimental project investigating vari- 
ations on the learning method, hypothesis representa- 
tion, or both. To evaluate results, students had to deal 
with many machine learning issues, among them over- 
learning, temporal credit assignment, local optima, hy- 
pothesis representation bias, learning speed and noisy 
fitness measurements. The projects were mutually com- 
plementary. 

Our assignment provided the students with an imple- 
mentation of a non-trivial, complete experiment which 
they used as a starting point. The assignment required 
students to modify the experiment in several ways. A 
hierarchy of research-motivated options were presented 
in the assignment, although students were also encour- 
aged to pursue their own original ideas. 

GPOthello was designed to avoid the problems of 
teaching research. Since the first experiment was a com- 
plete implementation, the students need to make only 
minor modifications in the code which was given in or- 
der to run their own experiments. In addition, the fun- 
damental algorithm of genetic programming is relatively 
simple, especially in the context of a machine learning 
class, compared to for example, Neural Network back- 
propagation. This allowed students to get up to speed 
with regards to the research issues very quickly. 
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2 Genetic Programming 

Genetic programming is a supervised machine learning 
paradigm inspired by biology. Genetic programming 
evolves algorithms in a method modeled after natural 
selection. These algorithms are represented as function 
trees [ 1,4]. The function trees are intended to perform 
a given “task”. The process of genetic programming 
attempts to create a function tree that adequately per- 
forms the task. 

Essentially, natural selection and reproduction are 
simulated over a randomly generated collection or “pop- 
ulation” of these algorithms or “hypotheses”. Each 
member or hypothesis of the population is “evaluated” 
by measuring the performance of its function tree on a 
given task. Every hypothesis is then ranked based on 
it’s evaluation. Each hypothesis has a certain chance 
of being eliminated from the population based on its 
ranking. Those with higher ranking are less likely to be 
eliminated, hence survival of the fittest. 

In order to replace the hypotheses that are elimi- 
nated, some of the hypotheses that do not get elimi- 
nated reproduce in order to create new hypothesis in the 
population. There are traditionally two ways to repro- 
duce. The first is called “mutation” where a hypothesis 
is modified randomly. The second is called “crossover” 
where two hypotheses swap subtrees. Crossover intu- 
itively simulates sexual reproduction. Once these new 
hypotheses are created, we have a new population. This 
population is referred to as the next generation. For ev- 
ery generation this process is repeated until we obtain 
a function tree that performs the task adequately. 

The intuitive idea behind genetic programming is 
that as the generations progress, the hypotheses of the 
population will tend to get better at their task because 
the ones that perform poorly are eliminated and the 
ones that perform well are kept in the population. Fur- 
thermore the ones that perform well are likely to repro- 
duce and their subtrees which may contain beneficial 
features to the task are replicated. 

3 GPOthello 

In GPOthello, students had to apply genetic program- 
ming to develop an algorithm that can play the board 
game Othello [lo]. The GP function tree is a heuristic 
function to evaluate a board configuration. The func- 
tion tree “plays” the game Othello by selecting the move 
leading to the best position every turn. In this ap- 
proach, there is no search beyond the next immediate 
move in the game. 

The students were also provided with another pre- 
viously developed Othello player, Edgar. Edgar, who 
was designed by Astro Teller [ll], was trained with a 
different learning paradigm, so students could perform 
cross-paradigm comparisons. 

Teller devised a clever learning method that is specif- 
ically designed for Othello [9]. It takes a unique ap- 
proach to the temporal credit assignment problem of 
machine learning. Temporal credit assignment is how 

a system deals with delayed reinforcement, where you 
don’t know how bad or good each move was, only what 
the final outcome was. Teller’s approach contributes 
by representing temporal credit explicitly, and without 
imposing a manually-designed method to judges inter- 
mediate game board states. Usually, implicit measure- 
ments to handle temporal credit assignment are em- 
ployed, e.g., the approach to Checkers in Chapter 1 of 
Tom Mitchell’s “Machine Learning” text. [6]. 

The experiments by Teller that lead to Edgar’s strat- 
egy are preliminary, and we only describe the approach 
here to a limited degree of detail. More information 
about Edgar is available on the GPOthello project web 
site [9]. 

We approached the difficulty of introducing the ma- 
chine learning research in several ways. Since the first 
experiment was completely implemented for the stu- 
dents, there was little overhead for the students’ ex- 
periments. The second is that the GPOthello project 
is a full scale implementation of a genetic programming 
system, which raises various research issues in machine 
learning. This allowed students to be creative in choos- 
ing their experiments and made the online compendium 
of all the students’ experiments interesting because of 
the diversity in the experiments. Finally, genetic pro- 
gramming is an exciting topic to many students and the 
basic algorithm can be grasped relatively easily. This al- 
lowed the students to pick up the concepts and implicit 
heuristics behind genetic programming very quickly and 
readily come up with their own ideas for relevant exper- 
iments . 

3.1 The Given Experiment 

An initial approach to the problem was implemented by 
the instructional staff and provided to the students. 

In this approach, the structure of the function tree 
used various board statistics as the terminals (or leaves 
of the tree) and arithmetic operators aa the nodes. The 
board statistics were computed based on the board con- 



whitenear-corners - the number of white pieces 
near a corner. 

white-edges - the number of white pieces on the 
edge of the board. 

10 - the numerical value 10 which was used as a 
constant. 

For example, the sample GP function tree repre- 
sented by (+ white (* 10 white-corners)) evaluates a 
board configuration by computing the sum of the num- 
ber of white pieces and 10 times the number of white 
corners. 

The fitness measure was computer from playing 5 
games against a random player and summing the num- 
ber of opponents pieces at the end of each game. At the 
end of the experiment, the best players in a population 
would have the lowest scores because they would tend 
to beat the random players by larger margins and lose 
very rarely. 

In the final generation of the experiment, there were 
players developed that could beat the random players 
47 out of 50 times. However, these players were not 
good enough to beat Edgar. 

3.2 GP Research Issues 

In the assignment, students were presented with several 
research issues in genetic programming. The specific 
details of how each aspect of the genetic programming 
system is implemented has significant impact in overall 
performance. Several important issues in genetic pro- 
gramming are the structure of the function trees, and 
the fitness measure. 

Variations in the structure of the hypothesis can in- 
volve changing the terminals and the operators and also 
limiting the structure of the function trees. 

The fitness measure refers to how a score is obtained 
for each hypothesis in the population. Variations on 
the fitness measure involve changing how this evalua- 
tion occurs. This usually involves evaluating the func- 
tion in some kind of simulation. In the initial experi- 
ment the score was obtained by playing 5 games with a 
computer opponent. Variations include playing players 
against each other or against various levels of computer 
(or even human) opponents, or varying the number of 
games played. 

Students were required to perform further experi- 
ments by making modifications to the given experiment. 
Students were to make modifications to try to improve 
the results, possibly developing good enough players to 
beat Edgar, or to investigate variations to learning, fit- 
ness or hypothesis representation- beating Edgar was 
not the primary goal. We asked students to make one 
modification to the experiment in each of three different 
areas corresponding to these research issues in genetic 
programming. Students had to vary the structure of 
the hypothesis, the learning method, and the fitness 
measure. We presented several directions that could be 
followed in each case: 

l Variations on the hypothesis 

1. New primitives (i.e., terminals) for GP trees. 

2. 

3. 

4. 

5. 

- distance-from-corner, parity thereof. 
- number of choices this move gives oppo- 

nent (e.g., 0 is good). 
- number of black/white pieces that can never 

be switched the remainder of this game. 
- statistics, e.g., “scatterness/clumpiness of 

white distribution” 
- average number of flips black/white has 

made per move this particular game 
- random constants 
- more fundamental, simple primitives, e.g., 

x/y coordinates of the piece just placed to 
get to this new board 

- configuration - could GP use this and au- 
tomatically build the concepts of “edge”, 
” corner” , 

- “one-away-from-corner” 

Improve Edgar, e.g., provide a terminal which 
is Edgar’s score for a given move. 
Perform a shallow search through the space of 
possible moves, e.g., minimax or Alpha-Beta, 
and apply the tree at the end-points of this 
search. 
Help the hypothesis behave differently in the 
end-game versus other points in the game. 
(credit: Chris Porcelli’s idea). 
Use ADFs (Automatically Defined Functions). 
An ADF is separately evolving tree which the 
function tree can invoke. [5] 

l Variations on the learning method 

1. 

2. 

3. 

4. 

5. 

Parameters: population size, number of gen- 
erations, proportion of crossover, etc. 
Number of games played during fitness mea- 
sure 
Vary opponents for fitness measure (e.g., play 
against different kinds of random players, Edgar, 
a previously-evolved player, a hand-made player, 
or combination thereof) 
Competitive fitness measure - population plays 
itself (single elimination tournament), or com- 
peting populations co-evolve. 

With competition, how do you select the best- 
of-generation individuals? How do you track 
the changes in “absolute, objective” fitness? 

6. Have a set of 32 individuals each make one 
move of a game and distribute the resulting 
scores amongst them equally. Each individ- 
ual in the population can make one move in 
several games. This is a noisy fitness measure, 
but much faster (more generations and/or larger 
population size possible). It’s so crazy it just 
might work! (applies whether or not compe- 
tition is happening) 
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7. Have a population vote on each move. 

8. Explicit Credit assignment. Compare each 
move’s score to Edgar’s score for that move. 

l Methods to evaluate results 

1. Vary Opponents. Try to play against: human 
players, Edgar, other on-line Othello players, 
random players, previously evolved players, 
hand-written baselines of comparison. 

2. Head-to-head competition between results of 
various experiments including experiments per- 
formed by other classmates. 

3. Compute statistics of tendencies of how it plays, 
include visualizations of this. 

4. Analyze resulting function trees to “under- 
stand” their “strategy”. 

The goal of each student project was not necessarily 
to beat Edgar. Rather the goals included: 

l Compare, contrast and discover methods to ap- 
proach Othello with GP. 

l Investigate methods to evaluate resulting Othello 
players. 

l Compare results to another learned Othello player, 
Edgar. 

l Use another Othello expert, Edgar, during train- 
ing. 

To avoid redundancy, we asked students to send us 
a description of their project to be screened by the in- 
structors. We asked students to select a project that 
they could do in two weeks. We allowed the students 
work in teams. Based on student proposals, we asked 
several groups to communicate between each other and 
come to an agreement on specific differences between 
experiments. 

Students handed in an HTML write-up of their project, 
about 3-6 pages in length (available on our web page). 
The write-up was to contain a written description of the 
experiments that were conducted, numerical results of 
those experiments with an analysis of the results, and 
a conclusion. 

3.3 Time breakdown for assignment 

In general, students spent about 4-10 hours on imple- 
mentation of the project and about lo-20 hours on run- 
ning and analyzing the experiments and working on the 
write up. Many of these experiments were left overnight 
to run. This caused students to have to start early on 
their assignments in order to finish them. 

We allowed students who wanted to continue work- 
ing on this assignment after the project was over to 
work on an extension of their GPOthello project for 
their final project in the class. 

4 Results 

4.1 Experimental Results of Student Projects 

The write ups of students presented their results. Every 
project improved over the initial experiment. A com- 
plete compendium of the variations and student exper- 
iments are found on the GPOthello project web page. 
There were 18 total GPOthello projects. Several of the 
students came up with their own original primitives, 
variations on the learning method, and variations on 
the evaluation. 

In general, the performance of the student projects 
were better than the first experiments performance. In 
a few cases, evolved players could even beat Edgar. The 
collection of students results gives an excellent compar- 
ison of various training methods and hypothesis repre- 
sentations. 

4.2 How Much Students Learned about Machine 
Learning 

The GPOthello assignment allowed students to experi- 
ence the “feel” of research. Many of the students pur- 
sued their original ideas which can be shown by the fact 
that many of the modifications that students included 
in their experiments were not included in our list of 
sample modifications. 

The quality of the write ups for the student projects 
were very high as can be seen on the web site. Stu- 
dents were able to effectively organize their write ups. 
The write up of process and evaluation improved the 
students ability to organize a research project and re- 
search paper leading to a collection of very good fi- 
nal project write ups, especially considering the limited 
time of three weeks for entire inception, planning, im- 
plementing, evaluation and write up of the work. In 
addition, every project effectively cited machine learn- 
ing work which was a requirement in the assignment. 
Students learned how to cite correctly and effectively 
in their write ups. The students also included in their 
write ups a discussion of relevant research issues to their 
experiments. 

The online compendium of the results of all of the 
projects gives a survey of various possible modifications 
and their relative performance. 

Their writing up of their process and evaluation was 
a great precedent, improving their ability to organize 
a research project and research paper, and ultimately 
leading to high quality write ups of final semester project2 
on other machine learning work. The GPOthello project 
web page also provides access to several such final project 
write ups. 

Several students in the course also decided to con- 
tinue working on this project for their final project. In 
addition, 5 of the 15 students in the class opted to enroll 
for independent research projects in machine learning 
for the following semester. 

The Machine Learning course which was taught in 
Fall 1997 received among the highest student evalua- 
tion for a computer science course. The course received 
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14 "5"'s and 1 “4” out of 15 students with “5” being 
the maximum score. Four out of five of the assign- 
ments in the course had a research flavor similar to 
the GPOthello project which built through the semester 
and piqued student interest in the topic and the course. 

The project effectively fostered collaboration between 
students. Students word on this project in teams. In 
addition, the class as a whole did mutually complimen- 
tary work. After the assignment was given in Fall 97, 
the students in the following semester, Spring 98, built 
on what was done the previous semester using the on- 
line compendium of projects. For example, one student 
combined primitives which were proven to be effective 
from previous students experiments to obtain better re- 
sults. 

5 Conclusion 

The GPOthello project was a manageable research project 
for students. Because the given experiment contained 
most of the implementation necessary for the students 
experiments, the students were able to perform their 
experiments without spending too much time on im- 
plementation overhead. In addition, because the ba- 
sic algorithm of genetic programming is easy to grasp, 
the students were able to quickly generate their own 
original ideas for their experiments. Furthermore, the 
genetic programming implementation for GPOthello is 
a full scale implementation which raises many general 
issues in machine learning. 

The results of the projects themselves were interest- 
ing. Students were able to improve the performance 
of their players by making modifications to the initial 
given approach. Many of these modifications were orig- 
inal student ideas, not provided by the instructional 
staff. The assignment also provided students with an 
opportunity to create research style evaluations and write 
ups. 

The assignment and course in general also received 
an extremely positive response from the students. Many 
of these students continued pursuing research projects 
the following semester. 

6 Obtain GPOthello for your Class 

GPOthello is available via the World Wide Web. The 
homework assignment and all needed code are available 
for interested researchers or machine learning instruc- 
tors. This includes ideas for GPOthello projects from 
which students could select. It also includes Java im- 
plementations of GP (jpgpp) and of Othello, which are 
hooked up; to perform many non-trivial experiments, 
this code can be modified easily by students who are not 
fluent with Java. In addition, each student’s Othello re- 
port on their project is available on the web. If you are 
interested in using it in your class or obtaining more 
information about the project, you can find the project 
andallrelevantcodeat http://www.cs.columbia.edu/ 
"evs/ml/othello.html. 
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