
Genetic Programming Applied to Othello:
Introducing Students to Machine Learning Research

Eleazar Eskin and Eric Siegel
{eeskin,evs}@cs.columbia.edu

Department of Computer Science
Columbia University

New York, NY 10027

Abstract

In this paper we describe and analyze a three week as-
signment that was given in a Machine Learning course
at Columbia University. The assignment presented stu-
dents with an introduction to machine learning research.
The assignment required students to apply Genetic Pro-
gramming to evolve algorithms that play the board game
Othello. The students were provided with an imple-
mented experimental approach as a starting point. The
students were required to perform their own experi-
mental modifications corresponding to research issues in
machine learning. The results of student experiments
were good both in terms of research and in terms of
student learning. All relevant code, documentation and
information about GPOthello is available at the follow-
ingurl: http://www.cs.columbia.edu/
-evs/ml/othello.html.

1 Introduction

Teaching a research topic has several inherent difficul-
ties. Research material often requires a strong back-
ground in a given subject in computer science. Because
computer science is such a broad area, most undergrad-
uate curriculums tend not to focus in a particular area
enough to provide the depth necessary to present the
research topics. Furthermore, research topics are usu-
ally only reached at the very end of the semester. By
the time they are covered, there is little time to assign
a project on that material.

In addition, even a small software research project
often involves an inordinate amount of implementation
time before any interesting results are seen. Usually,

Permission to make dlgntal or hard copes of all or part of the. work for
personal or classroom use IS granted wIthout fee provided that
copes are not made or distributed for proflt or commercial advan-
tage and that copes bear the notlce and the full citation on the fwst page.
To copy otherwse, to republish, to post on servers or to
redlstrlbute to Ilsts, requtres pnor specific permrss~on and/or a fee.
SIGCSE ‘99 3/99 New Orleans. LA, USA
0 1999 ACM l-581 13-085-S/99/0003... $5.00

the scope of a research project is beyond the scope of
a typical assignment for a course. Sometimes, students
are asked to reimplement a research project, but the
majority of time a student spends on the project is pro-
gramming as opposed to thinking about the research
topics at hand.

In this paper we describe and analyze a three week
assignment that was given in an Undergraduate/Masters
level Machine Learning course at Columbia University
(Professor: Eric Siegel, TA: Eleazar Eskin). The project
was called GPOthello. The assignment was designed to
avoid these problems and give students the experience
of “doing” research.

For GPOthello, students applied the machine learn-
ing method genetic programming (GP) to the board
game Othello. Othello is a checkers type game also
known as Reversi. Each student or student team se-
lected a unique experimental project investigating vari-
ations on the learning method, hypothesis representa-
tion, or both. To evaluate results, students had to deal
with many machine learning issues, among them over-
learning, temporal credit assignment, local optima, hy-
pothesis representation bias, learning speed and noisy
fitness measurements. The projects were mutually com-
plementary.

Our assignment provided the students with an imple-
mentation of a non-trivial, complete experiment which
they used as a starting point. The assignment required
students to modify the experiment in several ways. A
hierarchy of research-motivated options were presented
in the assignment, although students were also encour-
aged to pursue their own original ideas.

GPOthello was designed to avoid the problems of
teaching research. Since the first experiment was a com-
plete implementation, the students need to make only
minor modifications in the code which was given in or-
der to run their own experiments. In addition, the fun-
damental algorithm of genetic programming is relatively
simple, especially in the context of a machine learning
class, compared to for example, Neural Network back-
propagation. This allowed students to get up to speed
with regards to the research issues very quickly.

242

http://crossmark.crossref.org/dialog/?doi=10.1145%2F299649.299771&domain=pdf&date_stamp=1999-03-01

2 Genetic Programming

Genetic programming is a supervised machine learning
paradigm inspired by biology. Genetic programming
evolves algorithms in a method modeled after natural
selection. These algorithms are represented as function
trees [1,4]. The function trees are intended to perform
a given “task”. The process of genetic programming
attempts to create a function tree that adequately per-
forms the task.

Essentially, natural selection and reproduction are
simulated over a randomly generated collection or “pop-
ulation” of these algorithms or “hypotheses”. Each
member or hypothesis of the population is “evaluated”
by measuring the performance of its function tree on a
given task. Every hypothesis is then ranked based on
it’s evaluation. Each hypothesis has a certain chance
of being eliminated from the population based on its
ranking. Those with higher ranking are less likely to be
eliminated, hence survival of the fittest.

In order to replace the hypotheses that are elimi-
nated, some of the hypotheses that do not get elimi-
nated reproduce in order to create new hypothesis in the
population. There are traditionally two ways to repro-
duce. The first is called “mutation” where a hypothesis
is modified randomly. The second is called “crossover”
where two hypotheses swap subtrees. Crossover intu-
itively simulates sexual reproduction. Once these new
hypotheses are created, we have a new population. This
population is referred to as the next generation. For ev-
ery generation this process is repeated until we obtain
a function tree that performs the task adequately.

The intuitive idea behind genetic programming is
that as the generations progress, the hypotheses of the
population will tend to get better at their task because
the ones that perform poorly are eliminated and the
ones that perform well are kept in the population. Fur-
thermore the ones that perform well are likely to repro-
duce and their subtrees which may contain beneficial
features to the task are replicated.

3 GPOthello

In GPOthello, students had to apply genetic program-
ming to develop an algorithm that can play the board
game Othello [lo]. The GP function tree is a heuristic
function to evaluate a board configuration. The func-
tion tree “plays” the game Othello by selecting the move
leading to the best position every turn. In this ap-
proach, there is no search beyond the next immediate
move in the game.

The students were also provided with another pre-
viously developed Othello player, Edgar. Edgar, who
was designed by Astro Teller [ll], was trained with a
different learning paradigm, so students could perform
cross-paradigm comparisons.

Teller devised a clever learning method that is specif-
ically designed for Othello [9]. It takes a unique ap-
proach to the temporal credit assignment problem of
machine learning. Temporal credit assignment is how

a system deals with delayed reinforcement, where you
don’t know how bad or good each move was, only what
the final outcome was. Teller’s approach contributes
by representing temporal credit explicitly, and without
imposing a manually-designed method to judges inter-
mediate game board states. Usually, implicit measure-
ments to handle temporal credit assignment are em-
ployed, e.g., the approach to Checkers in Chapter 1 of
Tom Mitchell’s “Machine Learning” text. [6].

The experiments by Teller that lead to Edgar’s strat-
egy are preliminary, and we only describe the approach
here to a limited degree of detail. More information
about Edgar is available on the GPOthello project web
site [9].

We approached the difficulty of introducing the ma-
chine learning research in several ways. Since the first
experiment was completely implemented for the stu-
dents, there was little overhead for the students’ ex-
periments. The second is that the GPOthello project
is a full scale implementation of a genetic programming
system, which raises various research issues in machine
learning. This allowed students to be creative in choos-
ing their experiments and made the online compendium
of all the students’ experiments interesting because of
the diversity in the experiments. Finally, genetic pro-
gramming is an exciting topic to many students and the
basic algorithm can be grasped relatively easily. This al-
lowed the students to pick up the concepts and implicit
heuristics behind genetic programming very quickly and
readily come up with their own ideas for relevant exper-
iments .

3.1 The Given Experiment

An initial approach to the problem was implemented by
the instructional staff and provided to the students.

In this approach, the structure of the function tree
used various board statistics as the terminals (or leaves
of the tree) and arithmetic operators aa the nodes. The
board statistics were computed based on the board con-

whitenear-corners - the number of white pieces
near a corner.

white-edges - the number of white pieces on the
edge of the board.

10 - the numerical value 10 which was used as a
constant.

For example, the sample GP function tree repre-
sented by (+ white (* 10 white-corners)) evaluates a
board configuration by computing the sum of the num-
ber of white pieces and 10 times the number of white
corners.

The fitness measure was computer from playing 5
games against a random player and summing the num-
ber of opponents pieces at the end of each game. At the
end of the experiment, the best players in a population
would have the lowest scores because they would tend
to beat the random players by larger margins and lose
very rarely.

In the final generation of the experiment, there were
players developed that could beat the random players
47 out of 50 times. However, these players were not
good enough to beat Edgar.

3.2 GP Research Issues

In the assignment, students were presented with several
research issues in genetic programming. The specific
details of how each aspect of the genetic programming
system is implemented has significant impact in overall
performance. Several important issues in genetic pro-
gramming are the structure of the function trees, and
the fitness measure.

Variations in the structure of the hypothesis can in-
volve changing the terminals and the operators and also
limiting the structure of the function trees.

The fitness measure refers to how a score is obtained
for each hypothesis in the population. Variations on
the fitness measure involve changing how this evalua-
tion occurs. This usually involves evaluating the func-
tion in some kind of simulation. In the initial experi-
ment the score was obtained by playing 5 games with a
computer opponent. Variations include playing players
against each other or against various levels of computer
(or even human) opponents, or varying the number of
games played.

Students were required to perform further experi-
ments by making modifications to the given experiment.
Students were to make modifications to try to improve
the results, possibly developing good enough players to
beat Edgar, or to investigate variations to learning, fit-
ness or hypothesis representation- beating Edgar was
not the primary goal. We asked students to make one
modification to the experiment in each of three different
areas corresponding to these research issues in genetic
programming. Students had to vary the structure of
the hypothesis, the learning method, and the fitness
measure. We presented several directions that could be
followed in each case:

l Variations on the hypothesis

1. New primitives (i.e., terminals) for GP trees.

2.

3.

4.

5.

- distance-from-corner, parity thereof.
- number of choices this move gives oppo-

nent (e.g., 0 is good).
- number of black/white pieces that can never

be switched the remainder of this game.
- statistics, e.g., “scatterness/clumpiness of

white distribution”
- average number of flips black/white has

made per move this particular game
- random constants
- more fundamental, simple primitives, e.g.,

x/y coordinates of the piece just placed to
get to this new board

- configuration - could GP use this and au-
tomatically build the concepts of “edge”,
” corner” ,

- “one-away-from-corner”

Improve Edgar, e.g., provide a terminal which
is Edgar’s score for a given move.
Perform a shallow search through the space of
possible moves, e.g., minimax or Alpha-Beta,
and apply the tree at the end-points of this
search.
Help the hypothesis behave differently in the
end-game versus other points in the game.
(credit: Chris Porcelli’s idea).
Use ADFs (Automatically Defined Functions).
An ADF is separately evolving tree which the
function tree can invoke. [5]

l Variations on the learning method

1.

2.

3.

4.

5.

Parameters: population size, number of gen-
erations, proportion of crossover, etc.
Number of games played during fitness mea-
sure
Vary opponents for fitness measure (e.g., play
against different kinds of random players, Edgar,
a previously-evolved player, a hand-made player,
or combination thereof)
Competitive fitness measure - population plays
itself (single elimination tournament), or com-
peting populations co-evolve.

With competition, how do you select the best-
of-generation individuals? How do you track
the changes in “absolute, objective” fitness?

6. Have a set of 32 individuals each make one
move of a game and distribute the resulting
scores amongst them equally. Each individ-
ual in the population can make one move in
several games. This is a noisy fitness measure,
but much faster (more generations and/or larger
population size possible). It’s so crazy it just
might work! (applies whether or not compe-
tition is happening)

244

7. Have a population vote on each move.

8. Explicit Credit assignment. Compare each
move’s score to Edgar’s score for that move.

l Methods to evaluate results

1. Vary Opponents. Try to play against: human
players, Edgar, other on-line Othello players,
random players, previously evolved players,
hand-written baselines of comparison.

2. Head-to-head competition between results of
various experiments including experiments per-
formed by other classmates.

3. Compute statistics of tendencies of how it plays,
include visualizations of this.

4. Analyze resulting function trees to “under-
stand” their “strategy”.

The goal of each student project was not necessarily
to beat Edgar. Rather the goals included:

l Compare, contrast and discover methods to ap-
proach Othello with GP.

l Investigate methods to evaluate resulting Othello
players.

l Compare results to another learned Othello player,
Edgar.

l Use another Othello expert, Edgar, during train-
ing.

To avoid redundancy, we asked students to send us
a description of their project to be screened by the in-
structors. We asked students to select a project that
they could do in two weeks. We allowed the students
work in teams. Based on student proposals, we asked
several groups to communicate between each other and
come to an agreement on specific differences between
experiments.

Students handed in an HTML write-up of their project,
about 3-6 pages in length (available on our web page).
The write-up was to contain a written description of the
experiments that were conducted, numerical results of
those experiments with an analysis of the results, and
a conclusion.

3.3 Time breakdown for assignment

In general, students spent about 4-10 hours on imple-
mentation of the project and about lo-20 hours on run-
ning and analyzing the experiments and working on the
write up. Many of these experiments were left overnight
to run. This caused students to have to start early on
their assignments in order to finish them.

We allowed students who wanted to continue work-
ing on this assignment after the project was over to
work on an extension of their GPOthello project for
their final project in the class.

4 Results

4.1 Experimental Results of Student Projects

The write ups of students presented their results. Every
project improved over the initial experiment. A com-
plete compendium of the variations and student exper-
iments are found on the GPOthello project web page.
There were 18 total GPOthello projects. Several of the
students came up with their own original primitives,
variations on the learning method, and variations on
the evaluation.

In general, the performance of the student projects
were better than the first experiments performance. In
a few cases, evolved players could even beat Edgar. The
collection of students results gives an excellent compar-
ison of various training methods and hypothesis repre-
sentations.

4.2 How Much Students Learned about Machine
Learning

The GPOthello assignment allowed students to experi-
ence the “feel” of research. Many of the students pur-
sued their original ideas which can be shown by the fact
that many of the modifications that students included
in their experiments were not included in our list of
sample modifications.

The quality of the write ups for the student projects
were very high as can be seen on the web site. Stu-
dents were able to effectively organize their write ups.
The write up of process and evaluation improved the
students ability to organize a research project and re-
search paper leading to a collection of very good fi-
nal project write ups, especially considering the limited
time of three weeks for entire inception, planning, im-
plementing, evaluation and write up of the work. In
addition, every project effectively cited machine learn-
ing work which was a requirement in the assignment.
Students learned how to cite correctly and effectively
in their write ups. The students also included in their
write ups a discussion of relevant research issues to their
experiments.

The online compendium of the results of all of the
projects gives a survey of various possible modifications
and their relative performance.

Their writing up of their process and evaluation was
a great precedent, improving their ability to organize
a research project and research paper, and ultimately
leading to high quality write ups of final semester project2
on other machine learning work. The GPOthello project
web page also provides access to several such final project
write ups.

Several students in the course also decided to con-
tinue working on this project for their final project. In
addition, 5 of the 15 students in the class opted to enroll
for independent research projects in machine learning
for the following semester.

The Machine Learning course which was taught in
Fall 1997 received among the highest student evalua-
tion for a computer science course. The course received

245

14 "5"'s and 1 “4” out of 15 students with “5” being
the maximum score. Four out of five of the assign-
ments in the course had a research flavor similar to
the GPOthello project which built through the semester
and piqued student interest in the topic and the course.

The project effectively fostered collaboration between
students. Students word on this project in teams. In
addition, the class as a whole did mutually complimen-
tary work. After the assignment was given in Fall 97,
the students in the following semester, Spring 98, built
on what was done the previous semester using the on-
line compendium of projects. For example, one student
combined primitives which were proven to be effective
from previous students experiments to obtain better re-
sults.

5 Conclusion

The GPOthello project was a manageable research project
for students. Because the given experiment contained
most of the implementation necessary for the students
experiments, the students were able to perform their
experiments without spending too much time on im-
plementation overhead. In addition, because the ba-
sic algorithm of genetic programming is easy to grasp,
the students were able to quickly generate their own
original ideas for their experiments. Furthermore, the
genetic programming implementation for GPOthello is
a full scale implementation which raises many general
issues in machine learning.

The results of the projects themselves were interest-
ing. Students were able to improve the performance
of their players by making modifications to the initial
given approach. Many of these modifications were orig-
inal student ideas, not provided by the instructional
staff. The assignment also provided students with an
opportunity to create research style evaluations and write
ups.

The assignment and course in general also received
an extremely positive response from the students. Many
of these students continued pursuing research projects
the following semester.

6 Obtain GPOthello for your Class

GPOthello is available via the World Wide Web. The
homework assignment and all needed code are available
for interested researchers or machine learning instruc-
tors. This includes ideas for GPOthello projects from
which students could select. It also includes Java im-
plementations of GP (jpgpp) and of Othello, which are
hooked up; to perform many non-trivial experiments,
this code can be modified easily by students who are not
fluent with Java. In addition, each student’s Othello re-
port on their project is available on the web. If you are
interested in using it in your class or obtaining more
information about the project, you can find the project
andallrelevantcodeat http://www.cs.columbia.edu/
"evs/ml/othello.html.

7 Acknowledgements

Thanks to the excellent students for their projects. The
students in the course were: (Spring 98) Truta, Juno
Suk; (Fall 97) Yi-Min Chee, Chun Chao, Olga Merport,
Federico Kattan, Chris Porcelli, Patrick Pan, Daby Mousse
Sow, William Bauder, Mohamed F. Abdelsadek, Monty
Kahan, Janak J Parekh, Scott Susser, David Evans,
Barry Schiffman, Kayuri Mitsui, Xin Jin, Matt Bo-
gosian, Albert0 Goldberger, LianShu Huang, Jesse Schechter.

The idea to use Othello as a machine learning home-
work project was Astro Teller’s, and he provided some
of the code used in the project, as well as Edgar. In ad-
dition, thanks to Judith Klavans for useful discussions
concerning the writing of this paper.

References

PI

PI

PI

NI

bl

PI

PI

PI

PI

PO1

WI

Cramer, N. A Representation for the Adap-
tive Generation of Simple Sequential Programs.
Proceedings of the [First] International Con-
ference on Genetic Algorithms. Lawrence Erl-
baum. 1985.

HUSS, J. Laboratory Projects for Promoting
Hands-On Learning in a Computer Security
Course. SIGCSE Bulletin 27:2 June 1995.

Klemetti, H., I. Lapinleimu and M. Sieranta.
A Programming Project: Trimming the Spring
Algorithm for Drawing Hypergraphs. SIGCSE
Bulletin 27:3 September 1995.

Koza, J.R. Genetic Programming: On the pro-
gramming of computers by means of natural se-
lection. MIT Press, 1992.

Koza, J.R. Genetic Programming II: Automatic
Discovery of Reusable Programs MIT Press.
1994.

Mitchell, T. Machine Learning. McGraw Hill,
1997.

Russel, S., P. Norvig. Artificial Intelligence: A
Modern Approach Prentice Hall 1995.

Siegel, E. V., Koza, J.R. Genetic Programming:
Papers from the 1995 Fall Symposium”. Pro-
ceedings of AAAI-95.

Siegel, E. V., Teller, A. Edgar Learns to Play
Othello Available at:
http://www.cs.columbia.edu/
"evs/ml/hw4EDGAR.html

Smith R., Gray, B. Co-Adaptive Genetic Algo-
rithms: An Example in Othello Strategy Pro-
ceedings of the Florida Artificial Intelligence
Research Symposium. 1994

Teller, A. Exegesis Random House, 1997.

246

