
Handling the Uncertainty in Resource Performance for
Executing Workflow Applications in Clouds

Hamid Mohammadi Fard
hamid@dps.uibk.ac.at

Sasko Ristov
sashko@dps.uibk.ac.at

Radu Prodan
radu@dps.uibk.ac.at

Institute of Computer Science, University of Innsbruck
Technikerstr. 21a, A-6020 Innsbruck, Austria

ABSTRACT
Execution of workflow applications in Cloud environments
involves many uncertainties because of elastic resource pro-
visioning and unstable performance of multitenant virtual
machines (VM) instances over time. These uncertainties
are usually either neglected by existing researches, or mod-
eled with some probability distribution function. To address
this gap, we extend a multi-objective workflow scheduling al-
gorithm (MOHEFT) in two directions: (1) to deal with the
dynamic nature of Cloud environments offering a potentially
infinite amount of on-demand resources, and (2) to consider
robustness as an objective that mitigates the variability in
VM performance over time. Our new robust model, called
R-MOHEFT, considers uncertainty in processing times of
workflow activities without a precise estimation or known
distribution function within an uncertainty interval. We
approach this scheduling problem as a three-objective op-
timisation that considers makespan, monetary cost, and ro-
bustness as simultaneous objectives of a commercial Cloud
environment. Our new algorithm is able to estimate the
Pareto optimal set of scheduling solutions that resist against
fluctuations in processing times three times better than its
MOHEFT predecessor, with a tradeoff of only 15% worse
Pareto frontier. R-MOHEFT’s hypervolume suffers by only
5% to 16%, compared to the MOHEFT’s drawback of 38%
to surprisingly 87%, when the processing time fluctuates up
to its double value.

CCS Concepts
•Theory of computation→ Self-organization; Distribu-
ted computing models; •Computing methodologies →
Self-organization; •Computer systems organization →
Cloud computing;

Keywords
Cloud environment; multi-objective optimisation; robust sche-
duling; uncertain processing time; workflow application

c©ACM 2016. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the 9th International Conference on Utility and Cloud Computing.

DOI: http://dx.doi.org/10.1145/2822332.2822333

1. INTRODUCTION
Several technological advantages such as elasticity, scala-

bility, accessibility, and reliability, have made of Infrastruc-
ture as a Service (IaaS) Clouds a popular alternative in many
domains to replace in-house IT infrastructures. In the same
way that Clouds have resolved many limitations and con-
cerns within private clusters (e.g. related to on-demand scal-
ability), Cloud computing can be efficiently applied for solv-
ing complex scientific problems. An important class of appli-
cations that benefit from being executed in Cloud infrastruc-
tures are scientific workflows [9], as a set of loosely coupled
components or activities interconnected through control flow
and data flow dependencies. Scheduling workflow applica-
tions in heterogeneous environments including Clouds is an
important NP-complete problem for which a large number
of heuristic algorithms have been proposed [10, 27]. How-
ever, Cloud infrastructures introduce three new challenges in
workflow scheduling compared to other distributed systems,
such as clusters: the pay-as-you-go pricing model, dynamic
on-demand resource provisioning, and instance performance
instability over time [28].

Existing theoretical models for scheduling workflows in
Clouds assume that the processing time and the performance
of Cloud resources can be precisely estimated. Real-world
scenarios, however, differ from these mathematical models
and are confronted with many uncertainties. A realistic
Cloud environment is subject to many sources of uncer-
tainties, such as the breakdown of virtual and physical ma-
chines, variant setup time [12], and unexpected performance
of Cloud instances [2]. The experiments in [1,7] demonstrate
how variant the performance of identical Cloud instances
can be in different repetitions and during the execution of
the experiments, making it hard to predict [23]. Because
of this uncertainty in the performance of Cloud resources,
we cannot always perfectly estimate the processing times of
workflow activities, as often assumed in the literature.

This paper proposes a new and more realistic (robust)
model for resource provisioning and scheduling of workflow
applications in Cloud infrastructures. Our model assumes
that the processing time of a workflow activity is unknown
and bound within a certain uncertainty interval. The prob-
ability function of the processing time distribution in each
uncertainty interval is also unknown. The only deterministic
information being its lower and upper bound, which can be
taken as the minimal and maximal values of execution times.
Using this model, we propose a multi-objective optimisation
approach that approximates the Pareto optimal set of work-
flow scheduling solutions with respect to makespan, mone-

tary cost, and robustness (an objective that shows how much
a schedule is resistant to the uncertainty). We solve this
three-objective scheduling problem by proposing a new algo-
rithm called Robust MOHEFT (R-MOHEFT) that extends
the Multi-Objective Heterogeneous Earliest Finish Time (MO-
HEFT) algorithm researched in previous work [8] to deal
with the uncertainty in resource performance [4]. Experi-
mental results show that scheduling solutions produced by
R-MOHEFT resist aro-und three times better against the
fluctuation in processing time than its MOHEFT predeces-
sor. The drawback of this improvement is an only 15% worse
Pareto frontier of optimal solutions.

The paper is organised as follows. Section 2 studies the
related work, followed by Section 3 that introduces a few
background notions on multi-objective scheduling required
for understanding our work. Section 4 formally models the
application, Cloud, and three-criteria scheduling problem
underneath our work. We describe the new R-MOHEFT
scheduling algorithm in Section 5, followed by its evalua-
tion in Section 6. Section 7 discusses the importance of
R-MOHEFT and Section 8 concludes the paper.

2. RELATED WORK
We classify the related work based on the awareness on

the activities processing times into: (1) precisely known, (2)
random with known probability distribution function, (3)
unknown, and (4) uncertain processing time. We investigate
these classes in detail next.

2.1 Precisely known processing time
Many heuristics algorithms have been proposed to approx-

imate a nearly optimal scheduling solution. Given precise
estimations of the activity processing times, a full-ahead of-
fline scheduling is the best approach for which a broad set of
related works exist [10,27]. The only considered uncertainty
is the start time of an activity, which depends on the critical
path of activities in the workflow graph.

2.2 Random processing time with known prob-
ability distribution function

In the recent years, probability theory and statistical tech-
niques have been incorporated into the scheduling field to
treat uncertainties originating from different sources [21].
This has been considered as stochastic scheduling applied
for problems in which the activity specifications (e.g. pro-
cessing time, due date, arrival time) are modeled as random
variables with known probability distribution function. For
example, Chaves et al. [5] described a TVM-Fuzzy scheduler
for minimising the makespan of Cloud applications under
uncertain available bandwidth. Poola et al. [17] proposed
two metrics to measure robustness of the workflow execu-
tion considering historical execution data. Considering the
time and cost constraints, they propose a robust workflow
scheduling algorithm and resource allocation on heteroge-
neous Cloud resources assuming the known probability dis-
tribution functions for all the data. Malawski et al. [11] dis-
cuss the uncertainty in IaaS Clouds considering both time
and cost constraints in a set of ensembles of inter-related
workflows using a uniform distribution.

2.3 Unknown processing time
Online scheduling cannot be improved when there is no

information about the processing time. Online scheduling is

characterised by no knowledge about the future activity ar-
rival, and the decisions are being made each time an activity
arrives. In such a case, the scheduler usually operates in a
just-in-time fashion by submitting each upcoming activity
on one available resource.

2.4 Uncertain processing time
Whenever random variables with specific probability dis-

tributions are available, stochastic approaches are the usual
techniques for scheduling. However, many real-life situations
do not give enough information to characterise the proba-
bility distribution function of each random parameter, thus
requiring other approaches.

In robust scheduling, a decision maker prefers a schedule
that hedges against the worst-case scenario [13,19]. Consid-
ering stability analysis, Sotskov et al. [21] discuss a multi-
stage decision framework consisting of offline planning and
online scheduling stages, and a solution based on the mini-
mal dominant set of activity permutations.

Tchernykh et al. [23] discuss the impact of uncertainty
for resource provisioning in Clouds. They briefly indicate
the main sources of uncertainty and general scheduling ap-
proaches such as reactive, stochastic, fuzzy and robust, but
do not propose any model or approach for the problem.

Bittencourt et al. [3] suggest a scheduling algorithm based
on HEFT [24] to overcome the wrong estimations by con-
sidering relative instead of absolute costs for processing and
communication times.

Canon and Jeannot [4] proposed several heuristics (includ-
ing evolutionary algorithms) for simultaneously minimising
the makespan and maximising the robustness, including a
discussion on metrics to measure the robustness.

Tchernykh et al. [22] addressed non-preemptive schedul-
ing problems on heterogeneous peer-to-peer Grids, where
resources are changing over time and scheduling decisions
miss information of application characteristics. The authors
consider a scheduling algorithm with task replications to
overcome possible unappropriate resource allocations in the
presence of uncertainty and to ensure better performance.
However, the use of replication in Clouds causes a dramatic
increase in cost for this scheduling algorithm.

Vredeveld [25] discussed a model for scheduling under un-
certainty that combines online and stochastic scheduling.
Activities arrive in an online manner and, as soon as an
activity becomes known, the scheduler only learns the prob-
ability distribution function of the processing time without
its actual value. The problem is theoretically discussed in
single- and multiple-machines environments.

Werne [26] researched a multiple phase scheduling method
in case of uncertainties, when only the lower and the upper
bounds for the activity durations are known. In a first offline
phase, it constructs a set of potentially optimal schedules
considering the uncertainty of the numerical input data. In
the second phase, it uses stability and sensitivity analysis
when a solution of an optimisation problem has been found,
and performs additional calculations to investigate how that
solution depends on the numerical input data. Similar to
this, we assume a known interval for the processing times of
activities executed on a specific Cloud instance type, with
neither known probability function, nor fuzzy model avail-
able. Such uncertainty has been recently theoretically in-
vestigated for general scheduling of problems like open and
flow shop [21], but has not been considered for workflow

Figure 1: Pareto frontier, hypervolume, crowding distance.

scheduling in Clouds yet.
None of these works approach workflow scheduling in dy-

namic Cloud environments as a multi-objective optimisation
problem able to estimate the Pareto frontier of scheduling so-
lutions that are robust to unpredictable fluctuations within
the uncertainty processing time intervals. The Pareto-based
approach provides the user with a set of (nearly) optimal
solutions, such that each of which represents a tradeoff be-
tween the objectives.

3. BACKGROUND
In this section, we introduce the important concepts of

the multi-objective optimisation theory and the MOHEFT
scheduling algorithm for a better understanding of the pa-
per.

3.1 Multi-objective optimisation
A multi-objective optimisation considering more than one

objective distinguishes between two spaces: (1) a solution
space X comprising all feasible solutions, for example the
complete set of possible schedules of a workflow application,
and (2) an objective space O comprising an image of every
element of X mapped onto the objective values.

A point o ∈ O dominates o′ ∈ O if o is not worse than o′

with respect to all objectives and o is better for at least one
of them. A point o′ ∈ O is said to be non-dominated if there
is no o ∈ O that dominates o′. A solution x ∈ X is Pareto
optimal (efficient) if its image in the objective space is non-
dominated. The set of all Pareto optimal solutions is called
Pareto optimal set. The image of all members of a Pareto
optimal set in the objective space is called Pareto frontier. A
vector comprising the best possible values for all objectives
is called Utopia point. Such a vector typically dominates
the entire Pareto frontier and therefore it is impossible to
realistically achieve. A vector comprising the worst possi-
ble values for all existing objectives is called Nadir point
(or anti-utopia). The entire Pareto frontier dominates this
point.

A high quality Pareto frontier needs to fulfill two prop-
erties, accuracy and diversity, by uniformly covering all the
possible ranges of optimal solutions, as close as possible to
the optimal ones. A metric of measuring the quality of a set
of tradeoff solutions X, or how close the tradeoff solutions
are to the corresponding optimal solutions, is the hyper-
volume HV (X) representing the area enclosed between the
points in X and a reference point W (see Figure 1), usually
selected as the Nadir point. This way, more accurate and
more diverse the points in X are, the higher hypervolume is

achieved. In Figure 1, for example, the set containing the
solid round points (right) is better than the set containing
the squared solutions (left) because the area enclosed within
the dashed lines is larger than the one represented by the
solid lines. A method to ensure the diversity of the solutions
is to maximise the crowding distance [6] graphically depicted
as a rectangle around the solution e in Figure 1 (left), which
gives a measure of the area surrounding a solution where no
other tradeoff solution is placed.

3.2 MOHEFT algorithm
The multi-objective heterogeneous earliest finish time (MO-

HEFT) algorithm is an extension of the HEFT schedul-
ing algorithm [24] for estimating the Pareto optimal set of
scheduling solutions for a workflow application. We describe
the MOHEFT in pseudocode in Algorithm 1. Apart of the
workflow application W and the Cloud resource set, the
MOHEFT algorithm additionally receives the number np
of Pareto optimal solutions to be computed (the size of the
paretoSet), which is the output of the algorithm. In line 3,
we sort the workflow activities in ascending order according
to their bottom level (B-rank), defined in the graph theory
for each activity Ai as the longest path to the exit activity
(Aexit), including the activity Ai itself [24]. The outer loop
in lines 4 – 16 iterates over all ranked activities of the work-
flow. For each activity, it generates all possible sub-workflow
schedules by separately mapping the activity onto each re-
source and inserting it into all partial Pareto optimal solu-
tions (lines 9 – 12). From the large set of partial solutions,
the algorithm selects the best np schedules based on the
crowding distance metric in lines 14 – 15. The criterion is to
prefer the solutions with a higher crowding distance, since
the Pareto set represents a wider area of different tradeoff
solutions. The result of each iteration is utmost np Pareto
optimal solutions for the sub-workflows traversed so far. The
algorithm returns the computed Pareto optimal set of the
scheduling solutions in line 17 after all activities have been
traversed.

4. THE MODEL
This section formally models the workflow, Cloud and

three-criteria scheduling problem underneath our work.

4.1 Workflow application model
We model a workflow application as a precedence con-

straint graph (A,D) consisting of a set A =
n⋃

i=1

{Ai} of

n activities interconnected through a set of dependencies
D = {(Ai, Aj , Dij) | (Ai, Aj) ∈ A×A}, where (Ai, Aj , Dij)
implies that Ai needs to be executed before Aj , and the size
of data to be transferred from Ai to Aj is Dij bytes. The ac-
tivities are assumed to be non-preemptive, so is not allowed
to suspend one and resume it later on.

The function pred : A → P(A), where P denotes the
power set, returns the set of immediate predecessors of each
activity Ai ∈ A (i.e. Aj ∈ pred (Ai) ⇐⇒ (Aj , Ai, Dji) ∈
D), while the function succ : A → P(A) returns the set of
immediate successors of the activity Ai (i.e. Aj ∈ succ (Ai)
⇐⇒ (Ai, Aj , Dij) ∈ D). Each workflow has an entry activ-
ity Aentry with no predecessors (i.e. Aentry ∈ A : pred (Aentry)
= ∅) and an exit activity Aexit with no successors (i.e. Aexit ∈
A : succ (Aexit) = ∅).

Algorithm 1: MOHEFT algorithm.

Input: Workflow application: W = (A,D); Resource set: resourcePool; Number of Pareto optimal solutions: np.
Output: Pareto optimal set of workflow schedules: paretoSet.

1 begin
2 paretoSet[0 : np− 1]← ∅ /* Create Pareto set of np empty workflow schedules */
3 rankedActivities ← sortBrank(A) /* Sort activities based on B-rank */
4 foreach Ai ∈ rankedActivities /* Iterate over all ranked activities */
5 do
6 solutions ← ∅ /* All sub-workflow schedules in each iteration */
7 foreach Rj ∈ resourcePool /* Iterate over all possible resources */
8 do
9 foreach paretoSolution ∈ paretoSet /* Iterate over the current Pareto solutions */

10 do
11 solutions ← solutions ∪ {paretoSolution ∪ (Ai, Rj)} /* Save the new sub-workflow schedule */
12 end

13 end
14 solutions ← sortCrowdingDistance(solutions) /* Sort the solutions based on crowding distance */
15 paretoSet ← tail(solutions,np) /* Select the best np solutions based on crowding distance */

16 end
17 return paretoSet

18 end

Each activity Ai has a requirement vector Ri, which de-
fines its hardware or software requirements such as the min-
imum value of memory or storage needed for execution. We
express the computational complexity wi (i.e. work) of each
activity Ai in million of instructions (MI).

4.2 Cloud infrastructure model
A Cloud provider offers a set of r virtual machine (VM) in-

stance types T =
⋃r

k=1 {Tk}. We assume without loss of the
generality an hourly-based pricing model, which means that
the leasing duration of an instance is rounded to the next
full hour, as offered by most commercial Cloud providers.
Each instance type Tk is characterised by three parameters:
computational speed sk in million instructions per second
(MIPS), cost per time unit ck, and boot delay bk.

We denote the set of available VM instances as: I =⋃m
j=1 {Ij}, whose number m may dynamically change since

instances can be started and terminated on-demand any dur-
ing the workflow execution. Each instance Ij has an associ-
ated instance type Tk defined as a function: type : I → T .

We model the expected processing time tji of an activity
Ai as the ratio between its computational complexity and
the speed of the instance Ij on which it is executed, plus a
boot delay bj of the instance Ij if it is not available:

tji =

{ wi
sk
, Ij ∈ I ∧ Tk = type (Ij) ;

bk + wi
sk
, Ij /∈ I ∧ Tk = type (Ij) .

Since the performance of Cloud resources (sk) and the boot
delays (bk) are not precisely predictable, we assume that
only the lower and the upper bounds of the expected tji
processing time are known within the uncertainty interval
tji ∈

[
lower

(
tji
)
, upper

(
tji
)]

with an unknown probability
distribution function. Shrinking this interval reduces the
uncertainty of tji .

4.3 Three-objective scheduling model
We first define a workflow schedule as a function S : A→ I

that maps each activity Ai ∈ A to one Cloud instance Ij ∈ I.
We consider three simultaneous optimisation objectives in
our scheduling problem: makespan, monetary cost for exe-
cution in a commercial Cloud environment, and robustness
to fluctuations in instance performance and boot delay. The
objective is to minimise all three objectives.

4.3.1 Makespan
The completion time of an activity Ai executed on an in-

stance Ij is the latest completion time of all its predecessors
plus its expected processing time:

end (Ai) =

{
tji , Ai = Aentry ;

max
Ap∈pred(Ai)

{
end (Ap) + tji

}
, Ai 6= Aentry .

The first optimisation objective, the workflow makespan M ,
is given by the completion time of the exit activity:

M = end (Aexit) .

4.3.2 Cost
We calculate the cost cji of executing the activity Ai on

the instance Ij as follows:

cji =

0, Ij ∈ I ∧ tji ≤ uj ;⌈

t
j
i−uj

h

⌉
· ck, Ij ∈ I ∧ tji > uj ;Tk = type(Ij);⌈

t
j
i
h

⌉
· ck, Ij /∈ I; Tk = type(Ij).

where uj is unused time of the instance Ij and h is the time
unit (i.e one unit per hour) charged by the cloud provider.
Executing an activity within the unused time of an exist-
ing instance has no cost as the resource is already leased;
otherwise the leased full time unit must be payed.

The second optimisation objective, the cost C of the work-
flow execution, is calculated as:

C =
∑

∀Ai∈A∧S(Ai)=Ij

cji .

4.3.3 Robustness
Dynamic models can be usually solved using different meth-

ods, such as certainty analysis, sensitivity analysis and sta-
bility analysis for theoretic models, and simulation for more
complex ones that do not fit within a theoretic model [26].
In our workflow scheduling model, the theoretical approach
is not applicable because the model is too complex. Be-
cause of the uncertainty in the processing time of activities,
an optimal offline scheduling solution is usually non-optimal.
Thus, we need to find a heuristic approach that will handle
these uncertainties.

makespan

cost

Slower(tlower, clower):
The objective point of the solution S, applying the lower bounds of activities

Supper(tupper, cupper):
The objective point of the solution S, applying the upper bounds of activities

d The Euclidean distance between Slower and Supper points

d

Scheduling solution space

S

Objective space

The schedule solutions

Mlower

Clower

Mupper

Cupper Supper

Slower

Figure 2: Mapping a scheduling solution S onto the objec-
tive space.

Depending on the variant processing time of activities,
each scheduling solution S may map onto different points in
the objective space with a different makespan and cost. We
denote by Slower the point in the objective space represent-
ing the Mlower makespan when the lower processing time
lower

(
tji
)

is applied, with a corresponding Clower cost. Sim-

ilarly, we use the notation Supper for the point upper
(
tji
)

in
the objective space representing the Mupper makespan and
the Cupper cost.

In order to take the uncertainty of processing time into
account, we define the robustness R of a scheduling solution
S based on the Euclidean distance d (Slower , Supper) between
points Slower and Supper in the objective space:

d (Slower , Supper) =

√
(Mupper −Mlower)

2 + (Cupper − Clower)
2.

For a better understanding, Figure 2 represents the map-
ping of a scheduling solution S onto the Slower and Supper

points in objective space, including its robustness.
The motivation for choosing the three objectives is that

we need to find a scheduling solution S that minimises the
makespan (Mlower) and cost (Clower) by applying the lower
bounds of the processing times, while at the same time
achieves a minimal robustness, measured as the distance be-
tween Supper and Slower .

5. ROBUST MOHEFT
This section describes our new scheduling algorithm called

Robust MOHEFT (R-MOHEFT) in two steps. First, we
present how to tailor an offline full-ahead scheduling algo-
rithm like HEFT for a Cloud environment. Then, we ex-
tend the MOHEFT algorithm to solve this three-objective
scheduling problem.

5.1 Tailoring scheduling algorithms for Clouds
In a Cloud environment, customers can access a very large

amount of resources. In such an environment, instead of hav-
ing a static amount of resources as in clusters, the scheduler
needs to deal with a resource pool that may dynamically
be changed over the time. Therefore, the scheduling ap-
proaches need to be correspondingly tailored by scaling out
or scaling in the Cloud infrastructure over time. This im-
pacts the time complexity of the scheduling problem in a
Cloud environment, as defined in Theorem 1.

Theorem 1. The time complexity of scheduling n activ-

ities in a Cloud with r instance types is (r+n−1)!
(r−1)!

.

Proof. To execute each activity in the Cloud, we need
to consider two possible groups of resources: (1) available

running resources and (2) potentially new ones. The former
group includes the instances that are already leased and not
terminated yet, while the latter includes the possible new in-
stances that may be rented from the r instance types offered
by the Cloud provider. Since the Cloud offers r different in-
stance types, the new resource can be selected from those
r different instances. The resource pool for the first activ-
ity A1 is r because there is no running instance yet. For
the second activity, the resource pool contains one available
running instance (created by the first activity) and r new
alternative instances, which yields r + 1 maximum possible
selections. For the third activity, there is a resource pool of
r + 2 maximum possible selections and so on. The resource
pool for the ith activity Ai includes the available running in-
stances (maximum i− 1) plus r new instances. For the last
activity An, the scheduler needs to decide from r+n−1 max-
imum available instances. Consequently the number of com-
binations for scheduling n activities is

∏i=n−1
i=0 (i+ r). This

series represents the complexity of scheduling n activities on

the Cloud offering r instance types, which is: (r+n−1)!
(r−1)!

.

The time complexity of scheduling a set of n activities in
an environment with a static resource pool of m resources
is O (mn). Although the time complexity of scheduling in
a dynamic Cloud environment is lower, the problem is still
NP-hard requiring heuristic algorithms with lower time com-
plexities for solving it. We must note that the privacy will
not be an issue since all instances are isolated and private
per user that executes a workflow.

5.2 R-MOHEFT algorithm
To solve this three-objective optimisation problem, we ex-

tend the MOHEFT algorithm (see Algorithm 1), originally
designed as an offline scheduling approach for estimating the
Pareto set of workflow scheduling solutions. We tailor this
algorithm for the dynamic characteristics of a Cloud environ-
ment and customise it to our new three-objective problem
in a new approach called Robust MOHEFT (R-MOHEFT),
since it absorbs the uncertainty in activities’ processing times
through several modifications.

Algorithm 2 shows the pseudo-code for the R-MOHEFT
algorithm. The inputs are similar to MOHEFT, except of
the set of instance types instead of a static resource pool. Be-
cause of the dynamic nature of a Cloud environment, we rep-
resent each scheduling solution as a tuple that associates to
the workflow schedule and the corresponding resource pool
of Cloud instances. After the initialisation, we sort the ac-
tivities based on B-rank metric in the line 3, as in MOHEFT.
Similar to MOHEFT, R-MOHEFT contains the same three
nested loops that generate all possible sub-workflow sched-
ules by mapping each activity onto each resource separately.
Additionally, it extracts the Pareto optimal scheduling solu-
tions for each sub-workflow (line 9), adds all Cloud instance
types in the potential resource pool (line 10), and inserts
for each instance (lines 11 – 16) the scheduled activity to
the scheduling solution and the instance into the utilised re-
source pool. The result of each outer iteration (line 4–20) is
utmost np Pareto solutions for the sub-workflow traversed so
far. Finally, the algorithm returns the Pareto set paretoSet
of scheduling solutions (line 21).

The outer loop in lines 4 – 20 iterates n times, the loop in
lines 7 – 17 utmost np times, while the inner loop in lines 11–
16 iterates utmost (n− 1 + r) times, as discussed in Section

Algorithm 2: R-MOHEFT algorithm.

Input: Workflow application: W = (A,D); Cloud instance type set: T ; Number of Pareto optimal solutions: np.
Output: Pareto optimal set of scheduling solutions: paretoSet.

1 begin
2 paretoSet[0 : np− 1]← ∅; /* Pareto set of each iteration. paretoSet = {paretoSolutions} */
3 rankedActivities ← sortBrank(A); /* Sort activities based on B-rank */
4 foreach Ai ∈ rankedActivities ; /* Iterate over all ranked activities */
5 do
6 solutions ← ∅; /* All solutions in each iteration. solutions = {(schedule, resourcePool)} */
7 foreach paretoSolution ∈ paretoSet; /* Iterate over the current Pareto solutions */
8 do
9 (schedule, resourcePool)← paretoSolution; /* Extract the Pareto solution’s elements */

10 tempPool ← resourcePool ∪ T ; /* Add all Cloud instance types as potential new resources */
11 foreach Ij ∈ tempPool ; /* Iterate over all possible resources */
12 do
13 schedule ← schedule ∪ (Ai, Ij); /* Insert scheduled activity to the scheduling solution */
14 resourcePool ← resourcePool ∪ Ij ; /* Insert resource to the new resource pool */
15 solutions ← solutions ∪ (schedule, resourcePool); /* Save the new solution */

16 end

17 end
18 solutions ← sortCrowdingDistance(solutions); /* Sort the solutions based on crowding distance */
19 paretoSet ← tail(solutions,np); /* Select the best np solutions based on crowding distance */

20 end
21 return paretoSet

22 end

Table 1: Simulated instance types.

micro small medium large xlarge

Instance size [EC2 ECU] 0.5 1 2 4 8
Price [$ / hour] 0.02 0.08 0.20 0.32 0.64

5.1, which yields to a time complexity of O(n · np · (n− 1 +
r)), which is similar to MOHEFT and much less than the
theoretical complexity from Theorem 1.

6. EXPERIMENTAL RESULTS
We ran an extensive set of experiments using the GroudSim

Cloud simulator [15] to investigate how ignoring the uncer-
tainty in the processing times affects our objectives, and how
robust the scheduling solutions achieved by R-MOHEFT un-
der these uncertain conditions are.

6.1 Experimental environment
We simulated a testing environment with five instance

types presented in Table 1. The activities are executed pre-
emptively, that is, a resource is exclusively assigned to one
activity until its completion. We generated the boot delay
using a uniform distribution between 30 and 60 seconds for
each instance type.

We ran the experiments for two real workflow applications:
(1) PovRay for creating high-quality three-dimensional graph-
ics based on the POV-Ray tools1, and (2) WIEN2k [18] ma-
terial science application for performing electronic structure
calculations of solids. The PovRay workflow, depicted in
Figure 3, consists of a set of parallel tasks to render frames
in PNG format, followed by few sequential tasks to merge
all frames, generate the final mpeg movie, and transfer it to
local host. The WIEN2k workflow contains two parallel sec-
tions with sequential synchronisation activities in between,
as displayed in Figure 4.

We executed 50 WIEN2k and 50 PovRay workflow appli-
cations with various processing times in the [100, 10000] sec-
ond interval. The uncertainty intervals vary in the [0, 10000]

1http://www.povray.org

���������
���	
����

��
��
�����

�
������

��
��

�
������

��
��
�����

�
������

��
��

�
������

���������
������

�����

�
����� �
�����

����

������	
���

Figure 3: PovRay workflow.

seconds range, such that lower(tji) ≤ upper(t
j
i) ≤ 2·lower(tji).

We generated the communication time between activities us-
ing a uniform distribution between [10,1000] seconds. The
number of parallel tasks pt in each loop varies in the interval
[1, 100], which means that the total number of activities n
varies in the range [5,203] (n = 3 + 2 · pt) for the WIEN2k
workflow, respectively in the [5,104] (n = 4 + pt) range for
the PovRay workflow.

To calculate the hypervolume of each Pareto optimal set,
we consider the Nadir point as the reference point. The
length of an interval does not clearly reflect the variation
of the values inside. For instance, two activities with the
processing time intervals [10, 20] and [1000, 1010] have the
same interval length equal to 10, but the variation for the
former is much higher than for the latter. Therefore, we
normalise it using the relative time variation as follows:

δ =
upper(tji)−lower(tji)

lower(tji)
. Since upper(tji) ∈ [lower(tji), 2 ·

lower(tji)], then δ ∈ [0, 1]. We will experiment with dif-
ferent values of δ with a step of 0.125, ignoring the special
case of lower

(
tji
)

= upper
(
tji
)
, since there is no uncertainty

in this case and the results of MOHEFT and R-MOHEFT

LAPW0

Sumpara

LCore

Mixer

Converged

LAPW1 LAPW1 LAPW1. . .

LAPW2 LAPW2 LAPW2. . .

K-Gen

Stage out

LAPW2_FERMI

Stage in

Figure 4: WIEN2K workflow.

are the same.

6.2 MOHEFT robustness
This section shows how suboptimal the MOHEFT solu-

tions can be if we ignore the uncertain intervals [lower(tji),

upper(tji)] for processing times and schedule the workflow
based on fixed processing times. The first three experiments
denoted as MOHEFT(lower), MOHEFT(average), and MO-
HEFT(upper) use constant values for processing time, namely

lower(tji),
lower(tji)+upper(tji)

2
and upper

(
tji
)
. The experi-

ment MOHEFT(lower-upper) maps the solutions of MO-
HEFT(lower) by applying the upper bounds of the uncer-
tainty intervals, representing by Supper in Figure 2).

To better understand the objective spaces, the Pareto
frontiers achieved for a single experiment on PovRay ap-
plication are shown in Figure 5. As an important result,
we observe that the MOHEFT(lower-upper) solutions are
not able to dominate those delivered by MOHEFT(upper),
which means that the MOHEFT(lower) solutions are not
optimal by considering the upper bounds of the uncertainty
intervals. In other words, although the solutions delivered in
MOHEFT(lower) are Pareto optimal, they become subopti-
mal when applying the upper bounds upper

(
tji
)

instead of

the lower ones lower
(
tji
)

on the same solutions to calculate
Supper . Furthermore, a few (two) MOHEFT(lower-upper)
solutions are even dominated by other eight solutions, which
means that they are not Pareto optimal.

Figure 6 presents the hypervolumes for all four experi-
ments, where the dominated solutions of MOHEFT(lower-
upper) are ignored. For a better comparison, we map the
hypervolumes in the range [0, 1] by normalising the surface
enclosed between the reference points (Nadir points) and the
(0, 0) point against the surface enclosed between the refer-
ence Nadir points and the Utopia point. We observe that
applying different processing times (from the intervals) has
a big impact on the Pareto frontier estimated by MOHEFT.
The most important observation is that by increasing the rel-
ative time variation δ → 1, the difference between the hyper-
volumes of MOHEFT(lower) and MOHEFT(lower-upper) is
increasing. The hypervolumes are smaller when higher pro-
cessing times are applied in MOHEFT. This result proves

12

10

12
MOHEFT(lower)
MOHEFT(lower-upper)
MOHEFT()

6

8

($
)

MOHEFT(average)
MOHEFT(upper)

4

6

C
os

t

0

2

0 50000 100000 150000 200000 250000
Makespan (s)

Figure 5: Pareto frontiers of three MOHEFT Pareto op-
timal sets for different (lower, average, upper) processing
times, along with mapping the MOHEFT(lower) solutions
by applying the upper bounds of the uncertainty intervals.

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

H
yp
er
vo
lu
m
e

MOHEFT(lower) MOHEFT(average)
MOHEFT(upper) MOHEFT(lower�upper)

0
0.1

0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

���Relative�time�variation

Figure 6: Impact of relative time variation on hypervolume.

our hypothesis that scheduling decisions based on fixed pro-
cessing times under uncertainty conditions are not robust
under the variation of processing times.

6.3 R-MOHEFT robustness
In the next part of our analysis, we investigate the correla-

tion between the robustness of the entire uncertainty interval
for a scheduling solution (Slower, Supper) and the scheduling
solution (Srandom , Supper), which denotes the solution in the
objective space that considers a random processing time for
the activities within the uncertainty interval, instead of the
lower bound.

Figure 7 shows a positive correlation between the robust-
ness of Slower and Srandom . Consequently, shortening the
robustness will decrease the fluctuation of the scheduling
solutions in objective space for processing times within the
uncertainty interval. This observation means that the ro-
bustness is a proper factor to handle the uncertainty of the
Cloud resource performance in our model. In other words,
the scheduling solutions with a shorter uncertainty yield a
higher robustness, and viceversa.

6.4 MOHEFT versus R-MOHEFT robustness
Further on, we compare the Pareto frontier achieved by

MOHEFT(lower) and R-MOHEFT(lower), and their fluctu-
ations when applying the upper bounds of the uncertainty
intervals, denoted as R-MOHEFT(lower-upper) and R-MO-
HEFT(lower-upper). Figure 8 represents the Pareto optimal

1.5

Random
x105

1

robustness

0 50.5

0

0 0 5 1 1 5Robustness
x105

0 0.5 1 1.5Robustness

Figure 7: Correlation between (Srandom , Supper) and
(Slower , Supper) robustness.

4

6

8

10

12
Cost ($) MOHEFT(lower)

R‐MOHEFT(lower)

R‐MOHEFT(lower‐upper)

MOHEFT(lower‐upper)

0

2

4

0 0.5 1 1.5 2 2.5

Makespan (s) x 105

Figure 8: Pareto optimal set comparison between R-
MOHEFT and MOHEFT.

1.2

1.4

x
1
0
5

MOHEFT(lower‐upper)
(l)

0 8

1

e
ss

x R‐MOHEFT(lower‐upper)

0.6

0.8

b
u
st
n

0.2

0.4

R
o
b

0

1 2 3 4 5 6 7 8 9 10
Solutions

Figure 9: Robustness comparison between R-MOHEFT and
MOHEFT.

set for the same PovRay workflow evaluated in Figure 5.
Although MOHEFT(lower) achieves a better hypervolume
for the Pareto frontier, half of the solutions achieved by R-
MOHEFT(lo-wer) are still not dominated by the solutions of
MOHEFT(lower). The comparison between MOHEFT(lower-
upper) and R-MOHEFT(lower-upper) shows that the all R-
MOHEFT(lower-upper) scheduling solutions are more ro-
bust than the MOHEFT(lower-upper)’s ones, as in Figure 9
depicts.

Let us discuss about the angle of the robustness vector
with the makespan (X-axis). The angle with the cost (Y-
axis) is a complementary to 90 degrees. We observe that
the angle is greater for smaller makespan, which means that
the uncertainty of the performance of an instance impacts

0.4

0.6

0.8

1

H
yp

e
rv
o
lu
m
es

MOHEFT(lower) R‐MOHEFT(lower)
R‐MOHEFT(upper) MOHEFT(lower‐upper)

0

0.2

0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

H

Relative time variation

Figure 10: Quantitative analysis of handling the uncertainty.
Hypervolume as a function of the relative time variation for the
MOHEFT’s and R-MOHEFT’s scheduling solution sets presented
in Figure 8.

more on the greater objective of a scheduling solution. Com-
paring the angles of scheduling solutions for MOHEFT and
R-MOHEFT for the lower cost, we can conclude that the an-
gles of MOHEFT’s solutions are greater than R-MOHEFT’s,
which means that R-MOHEFT’s solutions prefer the in-
creasing of the makespan, rather than the cost when the
processing time of activities will increase.

A deeper comparison of the hypervolumes as the summary
of the experiments is presented in Figure 10, which shows
that the R-MOHEFT algorithm resists the uncertainty in
processing times for each relative time variation. The R-
MOHEFT(lower-upper)’s hypervolume always follows the
R-MOHEFT(lower) one and is three times larger in av-
erage than the corresponding MOHEFT(lower-upper) one.
The tradeoff for the handling of this uncertainty is that R-
MOHEFT(lower)’s hypervolume is smaller by 15%.

In the case of only 12.5% uncertainty in processing time
(for δ = 0.125), which is a real case in the Amazon EC2
infrastructure [7], MOHEFT’s hypervolume is reduced from
0.77 to 0.48 (or by a significant 37.7%), compared to R-
MOHEFT’s reduction of only 5.5%, from 0.73 to 0.69. R-
MOHEFT even increases its benefits for larger uncertainty
intervals and higher relative time variations. For δ = 1,
MOHEFT degrades its hypervolume by 87.3%, compared to
the R-MOHEFT’s degradation of only 16%.

6.5 Competitive ratio analysis
The competitive ratio ρ measures the effectiveness of an

online scheduling algorithm [16] compared to the best offline
scheduling algorithm. An online scheduling algorithm is ρ-
competitive if the objective value of the generated scheduling
solution is at most ρ times higher than the objective value
of the solution achieved by the optimal offline scheduling
algorithm. This means that an online solution with a smaller
competitive ratio has a better value for the corresponding
objective.

To calculate ρ, we considered the solution achieved by
MOHEFT(lower) as the optimal offline solution. Figures 11
and 12 represent the competitive ratio of MOHEFT and R-
MOHEFT algorithms for the makespan and cost. In com-
parison to MOHEFT, R-MOHEFT yields always lower com-
petitive ratios both for makespan and cost, which means
that the R-MOHEFT’s online scheduling solutions are much
better than the MOHEFT’s ones. Another observation is
that increasing δ directly causes a continuous increase in

1 6

1.2

1.6
at
io

MOHEFT R‐MOHEFT

0.8

1.2
iv
e
 r
a

e
sp
an

0.4

p
et
it

M
ak
e

0

C
o
m
p

C

Relative time variation Relative time variation

Figure 11: MOHEFT versus R-MOHEFT competitive ratio
for the makespan.

1 2

1.6

at
io

MOHEFT R‐MOHEFT

0.8

1.2

iv
e
 r
a

st

0.4

p
et
it
i

C
o

0

C
o
m
p

C

Relative time variation Relative time variation

Figure 12: MOHEFT versus R-MOHEFT competitive ratio
for the cost.

the competitive ratios for both MOHEFT and R-MOHEFT.
Moreover, comparing both competitive ratios ρ, we can ob-
serve that increasing the relative time variation δ impacts
more the makespan, rather than the cost. This observation
is because of the larger difference between interval lenght of
time compared to the interval length of cost.

7. DISCUSSION
Scheduling does not find the optimal solution, but close-

to-optimal. Nevertheless, in uncertain environment, such as
cloud, results show that close-to-optimal solution for con-
strained environment does not necessarily mean that it will
be the optimal solution in uncertain environment. Our new
model mitigates these risks by introducing new objective
that is relevant for robustness.

R-MOHEFT is a more realistic model compared to oth-
ers from the literature, since the performance of instances in
cloud is variable and less predictable than the premise’s one.
It uses a dynamic scheduling, since its shows a better per-
formance [11]. Although, for example, activities’ incoming
rate or instance failure rate could be modeled with a Pois-
son’s distribution [14], their processing times cannot. Some
authors modeled the processing times by learning the his-
tory and using machine learning algorithms such as support
vector machine, while others took the mean value of the
historic results. In both cases, the measured and real pro-
cessing times differ, which could increase the slack and lead
to noncompliance with the makespan [20]. Our model uses
instead an uncertainty interval of processing times without
knowing the probability distribution functions.

The R-MOHEFT model generalises its predecessor MO-
HEFT by handling the uncertainty in the processing time
of an activity. In doing this, it uses the lower bound of the
uncertainty interval in order to determine the scheduling so-
lutions. Although one could argue that the average value
of the interval should be considered instead, such Poola et
al. [17], as Section 6.3 shows, the random robustness fol-
lows the robustness of the entire uncertainty interval, thus
allowing us to simplify the model. Another motivation in
choosing the lower bound is the investigation of the impact
of makespan and cost increase rather that decrease, the lat-
ter dominating the former. Another improvement is that R-
MOHEFT assumes elastic available resources in each step
(from r up to r + n), instead of MOHEFT’s constant re-
sources (total of r resources).

8. CONCLUSION
Several technological advantages of commercial Cloud, such

as elasticity, scalability, accessibility, reliability and the pric-
ing model, have made the Clouds popular environments for
execution of complex scientific workflow applications. In
comparison to the traditional approaches, three special fea-
tures of commercial Clouds need to be particularly han-
dled: elasticity in resource provisioning, pay-as-you-go pric-
ing model, and uncertainty in resource performance, largely
ignored in related work.

In this paper, we proposed an innovative approach for
scheduling workflow applications and resource provisioning
in commercial Cloud infrastructure, which handles the un-
certainty in performance of resources. In our model, we
assume neither a precise estimation, nor a probability dis-
tribution function for the processing time of activities on
Cloud resources. The only available knowledge on the pro-
cessing time of activities is the lower and upper bounds of
their processing times. We approach this problem by propos-
ing a novel multi-objective algorithm called R-MOHEFT
that extends the existing MOHEFT algorithm in two direc-
tions: (1) it deals with a potentially unlimited amount of on-
demand Cloud VM instances and (2) it considers the robust-
ness of scheduling solutions when optimising the makespan
and cost of workflow executions under uncertainty. Our new
algorithm is able to approximate the Pareto optimal set of
scheduling solutions that strongly resist against the fluctua-
tion in processing times, three times better than MOHEFT
with a similar time complexity. The tradeoff for this im-
provements is a slightly worse Pareto frontier of tradeoff
solutions of only 15% in hypervolume.

We plan to extend our work by including other uncertainty
factors related to the Cloud providers such as carbon emis-
sion and energy costs, directly connected to the uncertain
processing times of workflow activities.

Acknowledgments
This work is jointly supported by the European Union’s
Horizon 2020 research and innovation programme under the
grant agreement 644179 (ENTICE: dEcentralized reposito-
ries for traNsparent and efficienT vIrtual maChine opEra-
tions), by the Austrian Science Fund (FWF) project TRP
237-N23 (Workflows on Manycore Processors), and by the
Austrian Research Promotion Agency (FFG) project 5077019
(Tiroler Cloud: A federated energy-aware Cloud for indus-
trial, business, and scientific applications).

9. REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,

R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud
computing. Commun. ACM, 53(4):50–58, Apr 2010.

[2] A. O. Ayodele, J. Rao, and T. E. Boult. Performance
measurement and interference profiling in multi-tenant
clouds. In Cloud Computing (CLOUD), 2015 IEEE
8th Int. Conf. on, pages 941–949, June 2015.

[3] L. F. Bittencourt, R. Sakellariou, and E. R. M.
Madeira. Using relative costs in workflow scheduling
to cope with input data uncertainty. In Proc. of the
10th Int. Workshop on Middleware for Grids, Clouds
and e-Science, MGC ’12, pages 8:1–8:6. ACM, 2012.

[4] L.-C. Canon and E. Jeannot. Evaluation and
optimization of the robustness of dag schedules in
heterogeneous environments. IEEE Transactions on
Parallel and Distributed Systems, 21(4):532–546, 2010.

[5] C. Chaves, D. Batista, and N. da Fonseca. Scheduling
cloud applications under uncertain available
bandwidth. In Communications (ICC), 2013 IEEE
Int. Conf. on, pages 3781–3786, June 2013.

[6] K. Deb. A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 6(2):182–197, April 2002.

[7] J. Dejun, G. Pierre, and C.-H. Chi. EC2 performance
analysis for resource provisioning of service-oriented
applications. In Proceedings of the 2009 International
Conference on Service-oriented Computing,
ICSOC/ServiceWave’09, pages 197–207, Berlin,
Heidelberg, 2009. Springer-Verlag.

[8] J. J. Durillo, R. Prodan, and H. M. Fard. MOHEFT:
A multi-objective list-based method for workflow
scheduling. In Proceedings of the 2012 IEEE 4th
International Conference on Cloud Computing
Technology and Science (CloudCom), pages 185–192,
2012.

[9] C. Hoffa, G. Mehta, T. Freeman, E. Deelman,
K. Keahey, B. Berriman, and J. Good. On the use of
cloud computing for scientific workflows. In eScience,
2008. eScience ’08. IEEE Fourth International
Conference on, pages 640–645, Dec 2008.

[10] Y.-K. Kwok and I. Ahmad. Static scheduling
algorithms for allocating directed task graphs to
multiprocessors. ACM Computing Surveys,
31(4):406–471, Dec. 1999.

[11] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski.
Cost- and deadline-constrained provisioning for
scientific workflow ensembles in iaas clouds. In Proc.
of the Int. Conf. on HPC, Networking, Storage and
Analysis, SC ’12, pages 1–11, 2012.

[12] M. Mao and M. Humphrey. A performance study on
the vm startup time in the cloud. In Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference
on, pages 423–430, June 2012.

[13] R. Montemanni. A mixed integer programming
formulation for the total flow time single machine
robust scheduling problem with interval data. J. of
Mathematical Modelling and Algorithms, 6(2):287–296,
2007.

[14] D. Oliveira, K. A. C. S. Ocaña, F. Baião, and
M. Mattoso. A provenance-based adaptive scheduling

heuristic for parallel scientific workflows in clouds.
Journal of Grid Computing, 10(3):521–552, 2012.

[15] S. Ostermann, K. Plankensteiner, and R. Prodan.
Using a new event-based simulation framework for
investigating resource provisioning in clouds. Scient.
Programming, 19(2-3):161–178, 2011.

[16] M. Pinedo. Parallel machine models (deterministic).
In Scheduling, pages 111–149. Springer US, 2012.

[17] D. Poola, S. Garg, R. Buyya, Y. Yang, and
K. Ramamohanarao. Robust scheduling of scientific
workflows with deadline and budget constraints in
clouds. In Advanced Information Networking and
Applications, 2014 IEEE Int. Conf. on, pages
858–865, May 2014.

[18] K. Schwarz, P. Blaha, and G. K. H. Madsen.
Electronic structure calculations of solids using the
wien2k package for material sciences. Computer
Physics Communications, 147(71), 2002.

[19] M. Sevaux and K. SÃűrensen. A genetic algorithm for
robust schedules in a one-machine environment with
ready times and due dates. Quarterly Journal of the
Belgian, French and Italian Operations Research
Societies, 2(2):129–147, 2004.

[20] Z. Shi, E. Jeannot, and J. J. Dongarra. Robust task
scheduling in non-deterministic heterogeneous
computing systems. In 2006 IEEE International
Conference on Cluster Computing, pages 1–10, Sept
2006.

[21] Y. N. Sotskov, N. Sotskova, T.-C. Lai, and F. Werner.
Scheduling under uncertainty. Theory and algorithms.
RUE “Publishing House”, “Belorusskaya nauka”, 2010.
Chapter 2, page 84.

[22] A. Tchernykh, J. E. Pecero, A. Barrondo, and
E. Schaeffer. Adaptive energy efficient scheduling in
peer-to-peer desktop grids. Future Generation
Computer Systems, 36:209 – 220, 2014.

[23] A. Tchernykh, U. Schwiegelsohn, V. Alexandrov, and
E. ghazali Talbi. Towards understanding uncertainty
in cloud computing resource provisioning. Procedia
Computer Science, 51:1772 – 1781, 2015. Int. Conf. on
Computational Science, {ICCS} 2015.

[24] H. Topcuoglu, S. Hariri, and M.-Y. Wu.
Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE Trans.
on Par. and Distr. Systems, 13:260–274, 2002.

[25] T. Vredeveld. Stochastic online scheduling. Computer
Science - Research and Development, 27(3):181–187,
2012.

[26] F. Werne. Scheduling under uncertainty. In
Proceedings of the 13th International Conference on
Project Management and Scheduling (PMS 2012),
pages 67 – 70, 2012.

[27] M. Wieczorek, A. Hoheisel, and R. Prodan. Towards a
general model of the multi-criteria workflow
scheduling on the grid. Future Generations Computer
Systems, 25(3):237–256, 2009.

[28] F. Wu, Q. Wu, and Y. Tan. Workflow scheduling in
cloud: a survey. The Journal of Supercomputing,
71(9):3373–3418, 2015.

