
Scalable Estimation of Precision Maps in a MapReduce
Framework

Claus Brenner
Institute of Cartography and Geoinformatics

Leibniz Universität Hannover
Appelstr. 9a, 30167 Hannover, Germany

claus.brenner@ikg.uni-hannover.de

ABSTRACT
This paper presents a large-scale strip adjustment method for
LiDAR mobile mapping data, yielding highly precise maps. It
uses several concepts to achieve scalability. First, an efficient
graph-based pre-segmentation is used, which directly operates on
LiDAR scan strip data, rather than on point clouds. Second,
observation equations are obtained from a dense matching, which
is formulated in terms of an estimation of a latent map. As a result
of this formulation, the number of observation equations is not
quadratic, but rather linear in the number of scan strips. Third, the
dynamic Bayes network, which results from all observation and
condition equations, is partitioned into two sub-networks.
Consequently, the estimation matrices for all position and
orientation corrections are linear instead of quadratic in the
number of unknowns and can be solved very efficiently using an
alternating least squares approach.

It is shown how this approach can be mapped to a standard
key/value MapReduce implementation, where each of the
processing nodes operates independently on small chunks of data,
leading to essentially linear scalability. Results are demonstrated
for a dataset of one billion measured LiDAR points and 278,000
unknowns, leading to maps with a precision of a few millimeters.

CCS Concepts
• General and reference➝Estimation • Mathematics of com-
puting➝Bayesian networks • Mathematics of computing➝
Kalman filters and hidden Markov models • Mathematics of
computing➝Maximum likelihood estimation • Information
systems➝Geographic information systems • Theory of com-
putation➝MapReduce algorithms • Computing methodolo-
gies➝Image segmentation • Computing methodologies➝
Matching.

Keywords
Mobile mapping; LiDAR; least squares adjustment; MapReduce.

1. INTRODUCTION
Since more than 20 years, digital maps have been used to support
car and personal navigation systems. Recently, the development
of highly detailed and accurate maps has gained momentum, since
such maps are required for advanced driver assistance systems, as

well as partially or fully autonomous cars. In order to collect such
maps, mobile mapping systems are employed, which usually
combine vision sensors, such as cameras and laser scanners
(LiDAR) with a localization subsystem. In case of vehicles, the
latter is normally a combination of a global navigation satellite
system (GNSS) receiver, an inertial measurement unit (IMU) and
an odometer (wheel distance measurement). All measurements are
combined by a filter approach to deliver a continuous position and
orientation (pose) update, at a typical rate of 200 Hz.

Figure 1. Example results. A large number of single scans

(strips) acquired by LiDAR mobile mapping (left) are aligned
(middle) using a global optimization. After alignment,

systematic errors are removed which allows estimating the
surface with a high density and a standard deviation of only a
few millimeters. Details such as façade and wall structure and

sidewalk pavement become visible (right).
Even if highly accurate (and expensive) GNSS/IMU components
are employed, and measurements are processed using differential
GNSS post-processing, one can typically observe absolute errors
in the range of 30 centimeters in urban areas. While this seems to
be fairly accurate, it is in large contrast to the accuracy of the
LiDAR sensors themselves, which nowadays have down to 5 mm
accuracy (and 3 mm precision), a difference of two orders of
magnitude. Since contemporary LiDAR mobile mapping systems
reach measurement rates of up to 2 million measured points per
second, which is 10,000 observations for each pose delivered by
the (200 Hz) GNSS/IMU system, it is highly attractive to correct
the pose using the LiDAR measurements themselves.

2. RELATED WORK
The problem of adjusting sensor poses using measurements is
fundamental to geodesy and surveying. In photogrammetry (and
lately, computer vision), it is known as bundle adjustment, and
after several decades of research, it is still the dominant
refinement approach, due to its rigorous formulation of the
functional and stochastic error model [19]. In robotics, such
problems are usually encountered in the context of simultaneous
localization and mapping (SLAM, [7]), where (in-) dependencies

© Claus Brenner, 2016. This is the author's version of the work.
It is posted here for your personal use. Not for redistribution.
The definitive version was published in: SIGSPATIAL'16,
October 31-November 03, 2016, Burlingame, CA, USA.
http://dx.doi.org/10.1145/2996913.2996990

http://dx.doi.org/10.1145/2996913.2996990�

between random variables are typically depicted using
probabilistic graphical models [12], especially (dynamic) Bayes
networks. It is important to note that the frequent problem of
iteratively estimating the ‘current best state’, also known as on-
line SLAM, is different from the so-called full SLAM problem,
where all unknowns are to be estimated simultaneously, using all
observations. Since the main objective of this paper is to improve
maps, rather than to find the current best state of the mobile
mapping system, the problem is of full SLAM type.

A special estimation problem that has received large attention is
the alignment of data, especially the alignment of 2D surfaces in
3D space. Since no 3D point correspondences are known in this
case, tentative correspondences are chosen, which are used to
estimate the optimal transformation, which in turn is used to
establish new point correspondences. This is known as the
iterative closest point (ICP) algorithm [2], and different strategies
have been devised to select suitable correspondences [17]. Apart
from the strategy how corresponding pairs are selected, it is also
important to decide which functional model is introduced. In its
basic form, the ICP algorithm uses 3D point correspondences to
estimate a rigid or similarity transformation, i.e., all three
components of the residual vector are used during minimization.
However, since 2D surfaces are aligned, which are locally planar,
only one component should be introduced into the functional
model, namely, the distance parallel to the surface normal. A
similar effect can be obtained by weighting of the quadratic error
term, known as generalized ICP [18]. Its advantage is that it is a
direct extension of the standard ICP algorithm which requires
only minor modification. However, if the introduction of
variances in the error term is only used to achieve the ‘point-to-
plane effect’, this leads to computational overhead. Therefore, in
the model presented below, a direct formulation of the point-to-
plane observation equation is preferred.

In photogrammetry, as well as rigid body alignment, the basic
‘building blocks’ are assumed to be rigid structures (the bundle of
rays, and the surface, respectively). However, the typical
characteristic of dynamic LiDAR mobile mapping is that the
sensor system undergoes continuous movement while scanning.
This leads to non-rigid ICP formulations. In case of LiDAR, this
is also termed strip adjustment and has been investigated since the
advent of airborne LiDAR systems, 20 years ago [9]. It is still a
contemporary research topic in the context of unmanned aerial
vehicles with LiDAR sensors [6]. Similar problems occur with
rolling shutter cameras on moving platforms. One solution that
has been applied at a global scale is to consider the IMU trajectory
as being ‘correct’ for short time intervals and to ‘bake’ it into each
exposure span (one full ‘roll’ of the shutter) [11]. However, for a
rigorous error modeling, strip adjustment is often formulated by
estimating pose correction parameters at constant time or distance
intervals along the trajectory, constraining the relative pose
changes by condition equations. This leads to a large number of
unknowns, which in turn result in large, sparsely populated
estimation matrices.

While in traditional airborne laser scanning, the number of
overlapping scan strips may be low, it is more common in mobile
mapping to have a large number of overlapping strips, acquired
during different measurement campaigns. For 𝑛 overlapping
strips, 𝑂(𝑛2) pairings are possible, each of which leads to a
corresponding observation equation. A standard solution to this
problem is to introduce additional unknowns, tie points, so that
instead of relating every strip to every other strip (leading to
𝑂(𝑛2) equations), every strip is related to the tie point (leading to

only 𝑂(𝑛) equations). Since actually, surface elements need to be
matched, rather than individual points, small tie surface patches
need to be introduced as additional unknowns. This approach has
been described by Huang and Anguelov [8], who termed the
collection of surface elements, in Bayesian parlance, the latent
map.

Different approaches are possible to represent the latent map. In
[8], the scene is subdivided into small grid cells, each of which
represents one line. With this representation, it was observed that
thin surfaces, captured from both sides, lead to wrong
assignments. Instead of raising the density of the grid, which was
found to decrease computational efficiency drastically, the authors
opted for a representation with a maximum of two lines in each
grid cell, which are distinguished by their opposite normal
vectors. Recently, implicit surface representations in the form of
truncated signed distance functions (TSDF), originally proposed
by Curless and Levoy [3], have gained increased attention.
Newcombe et al. [13] have shown how TSDFs can be embedded
into an incremental mapping process, using the Microsoft Kinect
sensor. In each step, the current surface reconstruction is used to
estimate the pose of the sensor; subsequently, the sensor measure-
ments are used to improve the surface estimate by updating the
TSDF. Being incremental, this method does not perform a global
optimization. Since the TSDF represents the surface implicitly by
a scalar function 𝑓(𝑥,𝑦, 𝑧) = 0, represented by a discrete scalar
field, its memory requirements are cubic in the scene extents.
However, since the distance function is truncated, it will be
undefined for most of the space. Therefore, spatial data structures
have been used to efficiently store the TSDF only in areas where
it is defined. Recent approaches favor voxel hashing, where small
sub-blocks of 83 or 163 scalar values are hash-indexed, leading to
much lower memory requirements while still having 𝑂(1) access
time [14][10].

3. MOBILE MAPPING DATA
The test area is located in Hannover, Germany. Over time, it was
covered by several mobile mapping measurement campaigns.
From these, scan strips around a central ‘double-8-loop’ were
selected (see Figure 2). The data was not cut at the borders of this
area, so that strips extend beyond the ‘double-8’. Overall, 150
scan strips were selected (75 pairs). The number of scan strips
which cover an individual street varies between two and 28.

Figure 2. Test area in Hannover, Germany (scan trajectories
marked in red). Scan strips were selected around a central

‘double-8’ loop. Background: OpenStreetMap.

The data was acquired using a RIEGL VMX-250 mobile mapping
system [16]. This system includes two 360° LiDAR scanners,
each capable of measuring 300,000 points per second (pulse rate)
at 100 profiles per second (rotation rate), with a specified
accuracy of 10 mm and precision of 5 mm (both 1σ). For
positioning, an Applanix POS-LV 510 system is used, which
integrates a GNSS receiver, IMU, and odometer. It is specified
with 2 cm accuracy in position and 5 cm in height, and angular
errors of 0.005° (roll and pitch) and 0.015° (true heading), where
all values are RMS, and the data is post-processed using GNSS
reference stations. For GNSS outages of 60 seconds, the system is
specified with 10 cm error in position and 7 cm in height [1]. In
practical situations, for urban areas with buildings and trees of
moderate height (as in the case of the test area used here), one can
expect position and height errors to reach 20-30 centimeters.

4. SCAN STRIP SEGMENTATION
Instead of converting the scan strip data immediately to 3D point
clouds, a segmentation into continuous regions is performed first.
The basic rationale is that the point clouds are acquired in a highly
structured fashion, using rotating mirrors and forward motion of
the vehicle. Therefore, the acquisition sequence defines a
topology between the scanned points, which would get lost if the
data were converted into unstructured 3D point clouds.

In order to segment the strips, the data is put into a regular raster
of pixels: 3000 lines (the number of measurements per scan head
revolution) times the number of columns which depends on the
duration of the acquisition (for each second, 100 columns). For
each pixel, a normal vector is estimated. A robust, random-
sampling consensus (RANSAC) based plane estimation is used,
which preserves sharp edges. The point and normal vector data is
then used to compute a homogeneity criterion, which evaluates 𝐶0
and 𝐶1 continuity. Then, the efficient, graph-based image
segmentation approach of Felzenszwalb and Huttenlocher [5] is
used to obtain image regions. Note that while the method uses the
‘image topology’ of the points in the scan strip, the homogeneity
criterion is solely based on the underlying geometry.

Figure 3 and Figure 4 show typical results for one scan strip (with
colors chosen randomly). As one can see, the algorithm manages
to find the major structures, such as the street and sidewalk
surfaces, but also minor details such as façade parts and
curbstones. Note that while the homogeneity criterion evaluates
continuity, it is not a segmentation into planar patches, which
would partition the curved road surface into many regions.

As a net result of this pre-processing, connected regions are
available which form surfaces in 3D space, with a normal vector
defined at each surface point. Small area regions are removed,
which also reduces tree foliage to a large extend, and helps to
avoid wrong assignments in the later matching steps.

5. ESTIMATION
5.1 Estimation Model
A typical situation of the data capture situation is depicted in
Figure 5. The blue scan vehicle travels along the dark blue
trajectory. The red lines indicate the scan planes of the two
LiDAR scanners. The scan ray hits an object, or map element m,
but due to errors in the measurement of the vehicle trajectory, it
does not indicate the correct position. Similarly, at a different time
instance, the green vehicle hits the same map element. The green
and blue trajectories may also be obtained during the same scan,
when m is hit first by scanner 1, and later by scanner 2. The task is
to align the two scanned points at m by deforming the green and

blue trajectories, earlier introduced as strip adjustment. This
deformation is accomplished by estimating correction terms to the
pose at discrete locations 𝑎1, 𝑎2, 𝑎3, … and 𝑏1, 𝑏2, 𝑏3, …, called
anchor points. The spacing of anchor points should be selected
according to the expected characteristics of the data, either in
space or time. In this paper, a spatial distance of 0.5 m was
chosen, which means that for any part of a trajectory, for which
LiDAR observations are available that lead to minimization terms,
six unknowns are introduced every 0.5 m along the trajectory.
Between anchor points, the pose parameter corrections are
interpolated.

Figure 3. Example for a segmented scan strip. Segments were

assigned a random color.

Figure 4. Detail of Fig. 3. Façade structures, walls, car parts
and curbstones can be discerned. Note that small regions are

removed.

Figure 5. Illustration of a scan situation.

a1
a2

a3

b1

b2 b3

m

Since the surface element m is not known, one would typically
minimize the distance between the two scan points. As noted
earlier, if 𝑛 scans are available, this would lead to 𝑂(𝑛2)
observation equations. Instead, the surface element m is
introduced as an additional unknown, so that only 𝑂(𝑛)
observation equations are needed to relate the scan points to m.

Figure 6. Bayes network for the situation shown in Figure 5.

To illustrate the overall situation, Figure 6 shows the Bayes
network for the scene in Figure 5. In this case, one trajectory a is
related to another trajectory b by a single map element m. The
task is to estimate
 𝑥� = argmax

𝑎1,𝑎2,𝑎3,𝑏1,𝑏2,𝑏3,𝑚
𝑃(𝑎1,𝑎2, 𝑎3, 𝑏1, 𝑏2,𝑏3,𝑚) (1)

where 𝑥� denotes the estimate of the vector of all random variables
𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3,𝑚. For the purposes of this paper, all random
variables are assumed to be normal distributed and the solution is
found using least squares adjustment.
The poses in 𝑎𝑖 were observed by the GNSS/IMU system, which
is introduced as observed variables, 𝑝𝑖 (similarly for 𝑏𝑖, which are
observed by 𝑞𝑖). Since corrections are estimated rather than
absolute poses, this leads to observation equations of the form
 0 + 𝑣 = 𝑎𝑖 ; Σprior (2)

where Σprior is the variance of the GNSS/IMU measurement and
𝑣 is a placeholder for the residual which is to be minimized. Note
that these are actually six observation equations (three for
position, three for rotation angles). Similar equations are required
for all 𝑏𝑖. In addition, successive anchor points are constrained to
have similar pose corrections. This enforces a smoothing of the
pose correction along the trajectory and leads to equations of the
form
 0 + 𝑣 = 𝑎𝑖+1 − 𝑎𝑖 ; Σsmooth (3)
for all anchor elements which are actually used (similarly for 𝑏𝑖).
Σsmooth can be set according to the assumed drift of the trajectory.
In practice, it is usually used as a design parameter to control the
trajectory smoothness. Again, these are six equations for any
anchor pair which takes part in the estimation. Finally, the
observed random variables 𝑢𝑖 relate the pose corrections 𝑎𝑖 to the
map element 𝑚, which is also unknown (similarly for 𝑣𝑖, which
relate 𝑏𝑖 to 𝑚). As described earlier, since the location is not
constrained along the surface, but only perpendicular to it, only a
scalar observation equation is necessary,
 0 + 𝑣 = 〈𝑤𝑗 , 𝑠𝑗 − �𝑅𝑖𝑟𝑘 + 𝑡𝑖 + 𝑡0,𝑘�〉 ; 𝜎dist

2

which, bringing constant terms to the left hand side, leads to
 〈𝑤𝑗 , 𝑠𝑗 − 𝑡0,𝑘〉 − 𝑣 = 〈𝑤𝑗 ,𝑅𝑖𝑟𝑘 + 𝑡𝑖〉 ; 𝜎dist

2 (4)

where 𝑤𝑗 is the surface normal vector and 𝑠𝑗 is a point on the map
element 𝑚𝑗, 𝑟𝑘 is the measurement vector from the LiDAR scan
head to the measured point and 𝑡0,𝑘 is the associated scan head
position, so that without correction, 𝑟𝑘 + 𝑡0,𝑘 would be the
measured point. This is corrected by the translation 𝑡𝑖 and rotation
𝑅𝑖, which are part of the pose correction 𝑎𝑖. Since 𝑡𝑖 and 𝑅𝑖 are
interpolated from the anchor points, this equation is set up for 𝑎𝑖
and 𝑎𝑖+1, if the measurement took place while the vehicle was
between anchors 𝑎𝑖 and 𝑎𝑖+1. The variance 𝜎dist

2 is set according
to the distance measurement accuracy of the LiDAR scanner.

5.2 Estimation procedure
The overall estimation proceeds iteratively. It uses the estimated
trajectory corrections from the previous pass to correct the entire
point cloud. Then, map elements are defined which are used to set
up all correspondences, which in turn lead to estimation equations
for the distances (Eq. 4). These are complemented by the
constraint equations for the prior (Eq. 2) and smoothness (Eq. 3).
If all equations, written down in rows, are denoted by the design
matrix 𝐴, the solution can be computed by solving the normal
equation system
 𝑥� = (𝐴𝑇𝑃𝐴)−1𝐴𝑇𝑃𝑙, (5)

where 𝑃 is the weight matrix of the observations which results
from all variances given in Eqs. 2-4, and 𝑙 is the column vector of
all left hand sides of these equations (which is nonzero only for
Eq. 4). Note that the actual procedure to obtain 𝑥� is different, as
discussed in the sequel.
Since the matching is dense, the number of rows of 𝐴 is the
number of LiDAR observations (Eq. 4), plus the number of
constraint equations (Eqs. 2 and 3), which is linear in the distance
travelled. Of those, the number of LiDAR observations is by far
dominant. For example, when the mobile mapping van travels at
an average speed of 10 m/s (36 km/h, 22 mph), 20 anchor points
are generated per second (based on one anchor every 0.5 m
distance), which leads to a total of 120 constraint equations, as
opposed to a maximum of 600,000 measured LiDAR points. Even
if only 30-50% of the LiDAR measurements lead to distance
equations, there are about three orders of magnitude more
equations of type (4) than of type (2) and (3).
In the example presented here, this amounts to approximately one
billion rows in 𝐴. Though this looks daunting, it is not a limiting
factor, since the standard approach to set up Equation 5 is to
directly compute the sub-blocks for (𝐴𝑇𝑃𝐴)block (6 × 6 matrices)
and (𝐴𝑇𝑃𝑙)block (6-vectors) upon processing one observation
equation, which are then added up in an overall matrix 𝐴𝑇𝑃𝐴
(which is sparse), and vector 𝐴𝑇𝑃𝑙, both of which have as
dimension the number of unknowns, rather than observations.
Concerning the unknowns, these consist of the pose correction
terms for each anchor, but also of the map elements m, as can be
seen in Figure 6 and Eq. 1. This raises the question how the map
elements are represented. In Eq. 4, the only relevant properties of
a map element, in terms of the observation equation, are the
normal vector 𝑤𝑗, and the distance of the transformed LiDAR
point to the surface. A suitable and conceptually simple surface
representation would be in the form of a TSDF. However, even if
the TSDF is made sparse by using relatively small blocks, it is
inherently a volumetric representation. For standard scenes, which
contain large areas of flat surfaces, this wastes a lot of memory.
Therefore, an approach based on local surface models was used.
Similarly to a TSDF, the space is subdivided into cells of equal
size, which are indexed using voxel hashing. However, inside

p1 p2 p3

b1

a1 a2 a3

b2 b3

q1 q2 q3

u2 u3

v1 v2

m

each cell, no 3D grid of distance and weight values is used, but
rather, the surface is represented by a set of local surface models
(LSM), each modeling a height field over a regular 2D raster in
terms of ‘height pixels’. The number of LSMs inside each cell is
determined by the number of different surface normal vectors.

Figure 7. Representation of one local surface model, part of a
map element. Illustration in 2D, actual representation is a 3D

cell with a height model over a 2D raster.
Figure 7 illustrates this representation. Imagine the real situation
is a ‘curbstone’ so that the left part is the sidewalk, the right part
is the road surface, and the (steep) middle part is the shoulder of
the curbstone. Two LSMs will be initialized in this case, one for
the road and sidewalk surface, and another one for the shoulder of
the curbstone (not shown here). All blue points stem from one
scan. Since their connectivity is known from the pre-segmentation
(section 4), the affected LSM pixels can immediately be
identified; no further triangulation is necessary. Moreover, since
the segmentation separates the different regions, wrong
assignments are minimized. For example, the grey points
belonging to the curbstone shoulder do not affect the LSM for the
sidewalk/ road surface. Every scan (e.g., also the green one in
Figure 7) influences the associated LSM. In summary, the global
map consists of map elements, which are 3D cells, each of which
contains one or more LSMs which represent the surface in terms
of a 2D raster of height values.
Computing this map amounts to the estimation of all height values
(orange bars in Figure 7) in all LSM cells. Since the LSMs use a
2D grid of constant spacing, the overall number of unknowns is
proportional to the total surface of the scene. Again, this is the
dominant term. In the example presented here, there are 278,052
unknowns due to the anchor points, but millions to billions of
unknowns due to the map elements (depending on LSM grid
resolution). Such a number of unknowns may still be handled by a
sparse solver, however, as this grows linearly with the size of the
scene, handling and solution of the normal equations would have
to be spread across multiple machines. The following section
describes how this can be realized using the MapReduce
framework [4] instead.

6. SCALABLE ESTIMATION
6.1 Partitioning the Dependency Graph
The Bayes network shown in Figure 6 allows to reason about the
dependencies between random variables. For example, if 𝑎3
changes, this will influence 𝑚, since 𝑢3 is observed and arrows
meet head-to-head. By a similar argument, this will influence 𝑏1
and so on, so that overall, the change spreads across the entire
graph.

The key observation is that if 𝑚 is observed, this chain of
dependencies is broken, so that a change in 𝑎3 only influences the
anchors 𝑎2 and 𝑎1. Conversely, if all 𝑎𝑖 and 𝑏𝑖 are observed, the
map elements 𝑚 become independent. Therefore, similar to the

approach in [8], the unknowns are split into two groups. Instead of
maximizing

𝑋∗ = argmax
𝐴,𝑀

𝑃(𝐴,𝑀)

where 𝐴 and 𝑀 are the anchor point and map unknowns,
respectively, the two maximizations
 𝐴∗ = argmax

𝐴
𝑃(𝐴|𝑀) (6)

 𝑀∗ = argmax
𝑀

𝑃(𝑀|𝐴). (7)

are iterated. In the context of the models used here, this is also
known as the alternate least squares approach.
Concerning Eq. 6, as just demonstrated for the example in
Figure 6, if the map 𝑀 is held fixed, the remaining dependencies
are only between anchors of the same trajectory. As this graph is
linear, it can be solved exactly and efficiently by a single forward-
backward pass of a max product algorithm [12]. In case of
continuous, normal distributed variables, this algorithm is known
as Kalman smoother, or Rauch-Tung-Striebel algorithm [15]. It
consists of a forward pass, identical to the Kalman filter, and an
additional backward pass. Note that this is not an approximation,
but the exact maximum likelihood estimate for the unknowns 𝐴.
For the map optimization, Eq. 7, the situation is even simpler.
Since all map elements are independent, they can be estimated
individually. This is done using a least squares estimation,
yielding a mean value and variance for every pixel of every LSM
(every orange bar in Figure 7).

6.2 MapReduce: Pre-Processing
The overall process is mapped to two separate MapReduce calls,
the pre-processing, called once, and the estimation, which is
iterated. Pre-processing is shown in Figure 8. It is assumed that
raw data is available in the form of individual scan strips. In this
work, scan strips are bounded in length, due to the operation of
the mobile mapping system. Otherwise, they could be cut at
arbitrary positions into records of manageable size. The task of
one mapper is to compute first the segmentation (section 4). Since
each individual strip is bounded in size, this can be done in
memory. The time complexity of Felzenszwalb and Hutten-
locher’s algorithm is 𝑂(𝑛 log𝑛), where 𝑛 is the size of the
individual scan strip [5]. It can be argued that, since the strip size
is bounded, the processing of an individual strip is of constant
time complexity, 𝑂(1). Therefore, the overall time complexity, in
terms of the (more important) number of strips 𝑁, is linear, 𝑂(𝑁).

Figure 8. MapReduce for the preprocessing step.

After the segmentation is computed, the mapper assigns each
single point a key which is the index of its spatial tile. This key is
trivially computable from the global point coordinates and a given
tile size. In the example shown here, this was selected to be 15 m.
Since during the later process of estimation, the original mapping
trajectories are deformed by the estimated pose corrections, the
assignment of LiDAR points to tiles may be not correct anymore.
To solve this, the mappers emit points along the borders to

Segmented strip

Segmented strip

Segmented strip

p p p…

p p p…

p p p…

Map Shuffle Reduce Map tilesScan strips

multiple tiles. Thus, the later process of estimation can proceed
using the tiles only and does not need to go back to the original
scan strips. Note that during estimation, these multiply emitted
points do not pose a problem since they are ultimately used only
in one tile. The border area should be selected according to the
maximum shift expected. In the presented example, an overlap of
0.3 m was used, which, for a tile size of 15 m, corresponds to 8%
overhead.
On the basis of this key, shuffling will send all points to their
appropriate tile so that there is no work left for the reducers apart
from emitting them. Note that the points in each tile consist not
only of their X, Y, Z co-ordinates, but also contain e. g. the point
along the trajectory when the measurement was taken, the
segment id they belong to, and their index in the scan strip image,
which allows recovering their neighbors in the original scan strip
image.

6.3 MapReduce: Estimation
During estimation (shown in Figure 9), the set of tiles is the input
to the mapping phase. In addition, the trajectory corrections from
the previous iteration are required. The latter is relatively little
data and can be efficiently broadcast.

Figure 9. MapReduce for the estimation step. Tiles lead to

collections of LSMs, which lead to (𝑨𝑻𝑷𝑨)block and (𝑨𝑻𝑷𝒍)block
blocks with key t (the trajectory) and index i (the anchor in

the trajectory).
While a single mapper processes one tile, it builds up the set of
occupied cells, and sets up and updates the LSMs in each cell.
This estimates the map, i.e., implements Eq. 7. Subsequently, for
each measurement in the cell, the distance and normal vector can
be obtained, required for the distance equation (Eq. 4). This
generates the (𝐴𝑇𝑃𝐴)block and (𝐴𝑇𝑃𝑙)block blocks, which are valid
for a certain anchor point of a certain trajectory. The mapper emits
those blocks with the key being the trajectory id.

After the shuffle phase, every reducer will get all (𝐴𝑇𝑃𝐴)block and
(𝐴𝑇𝑃𝑙)block blocks for a certain trajectory and will add them up
accordingly. Since, as observed above, trajectories are
independent when the map is given, each reducer is able to
compute one part of the maximum likelihood solution (Eq. 6)
independently from all others. The Rauch-Tung-Striebel
algorithm is run and the pose corrections for each anchor point are
obtained. These are then broadcast and the next iteration
commences.

In terms of memory consumption, each mapper sets up the latent
map for one tile only. After the observation blocks for one tile are
emitted, it is discarded. The required amount of memory can be
controlled by varying the (spatial) tile size. The achievable
parallelism is equal to the number of tiles, which is ideal.

After shuffling, each reducer integrates incoming observation
blocks into a sorted data structure, e.g. a balanced tree. This
structure takes space linear in the length of the trajectory. During
the forward pass of the Rauch-Tung-Striebel algorithm, matrices

are generated which are updated during the backward pass. This
takes also linear memory space. Note that during the entire
algorithm, no large and/or sparse matrices are set up. In
consequence, the estimation is linear in time and space, relative to
the length of the mapping trajectories. The achievable parallelism
is equal to the number of trajectories, which, again, is ideal. (Note
that, as described in section 6.2, the length of the strips, and thus
of the trajectories, is bounded, so that large projects will have
thousands of trajectories.) In general, solving Eq. 6 is so fast that
it is not relevant for the overall time budget.

7. RESULTS
7.1 Quantitative Results
The algorithm was applied to the dataset described in section 3.
The pre-processing reads 150 scan strips and generates 1,287 map
tiles of size 15 × 15 𝑚2. The number of points per tile varies
from one to 17.6 million (M). Overall, including the data
introduced due to the tile overlap, there are 1.05 billion points in
the dataset, which corresponds to 60 GB of raw data.

During estimation, 18 iterations were carried out. The adjustment
is robustified using outlier removal. A distance threshold is
introduced, which discards correspondences of points to latent
map elements. Initially, this is set at 0.3 m and is reduced during
iterations, down to 7 mm in the final iteration. As a result of this,
the number of points which take part in the estimation varies. It
starts at 898 M, then, due to alignment, increases to 923 M, from
which it decreases, due to the increasingly tight threshold, to
849 M in the final iteration. For a more efficient computation, the
grid size of the LSM cells is also varied, from 10 cm in the
beginning down to 1 cm in the final adjustment, with most
iterations using 2 cm. At 2 cm grid size, the reference
implementation (C++), run on an Intel i7-4790k (4 cores), takes
approximately 370 seconds per iteration (including reading of the
60 GB of raw data).

Figure 10. Example for the estimated pose correction along
one trajectory, between kilometer 6.3 and 6.5. Left column:
shift, right column: rotation angles around omega, phi and

kappa (heading).
During each iteration, corrections for all trajectories are estimated.
Overall, there are 75 trajectories, Figure 10 shows one example.
Typical position corrections are within 0.2 m and angle
corrections are within 0.2 degrees.

In order to assess the goodness of the fit, the standard deviation is
computed in each latent map element. Figure 11 shows the latent
map for the entire scene (c.f. Figure 2), before estimation.
Standard deviations of 7 mm and above are shown in red, which
leads to a mainly red plot. Some areas are green or blue, which

Map tiles

Tile LSMs t: i, ATPA, ATPl

t: i, ATPA, ATPl

Map Shuffle Reduce

t: i, ATPA, ATPl

t: i, ATPA, ATPl

…
Tile LSMs

happens mostly when some parts of the scene were mapped only
once, so that they are covered only by two scan strips from the
same trajectory, which are usually well aligned.

Figure 12 shows the same plot after the last iteration, using the
same color scale. As can be seen, most areas are green, which
corresponds to a standard deviation of approximately 3 mm.

Figure 11. Latent map of the project area, before estimation

(top view). Color scale: standard deviation, temperature scale,
blue (0 mm) to red (7 mm or more).

Figure 12. Latent map of the project area used in the last

estimation (top view). Color scale: standard deviation,
temperature scale, blue (0 mm) to red (7 mm or more).

Figures 13 and 14 show a tilted view of a part of the scene. It can
be seen that before the iteration (Figure 13), there are large errors
(0.1 m and more) present, while after estimation (Figure 14), the
standard deviations are mostly reduced to a few millimeters. Note
that before estimation, the street in the upper right corner shows
larger errors than the street in the lower part of the figure. This
coincides with the expectation, since the former is a narrow street
with an alley of large trees and dense tree canopy, so that GNSS

outages are more probable. The latter is relatively wide with only
a few, isolated trees.

Figure 13. Tilted view of a part of the scene, before estimation.

Color scale: standard deviation, temperature scale, blue
(0 mm) to red (100 mm or more).

Figure 14. Same view as Figure 13, after estimation. Note the

color scale has been changed to the range between 0 mm
(blue) to 7 mm (red).

Figures 15 and 16 show a comparison for a close-up view. Note
that in Figure 16, small details can be seen. Especially for the
building in the lower left corner, a façade structure becomes
apparent, which is due to the wall being covered by shingles.
Compare this to Figure 20.
For a quantitative assessment, the distance between all LiDAR
points and their corresponding latent map element was computed.
Figure 17 shows histograms of the signed distance for some of the
adjustment iterations. Since approx. 900 M points take part, the
curves are very smooth. The bucket size is 0.1 mm, so that the

value of the highest (yellow) peak means that 14.6 M points were
within 0 and +0.1 mm distance to the surface (the same holds for
the -0.1 to 0 mm bucket). As can be seen, the distances are
initially spread (blue curve), since the data is not aligned. The
standard deviation is 4 cm (which coincides with the x-axis
extents of the figure). After the first iteration (green curve), the
curve already resembles a Gaussian distribution. While large
progress is made during the first iterations, later iterations lead
only to minor changes (cyan, magenta, yellow curves). The final
standard deviations are 3.5 mm (2 cm threshold/ 897 M points
remaining), 2.8 mm (1 cm/ 873 M) and 2.5 mm (7 mm/ 849 M).

Figure 15. Detail view, before estimation. Color scale:

standard deviation, temperature scale, blue (0 mm) to red
(100 mm or more).

Figure 16. Same view as Figure 15, after estimation. Note the

color scale has been changed to the range between 0 mm
(blue) to 7 mm (red). Compare the lower left building to

Figure 20.

7.2 Qualitative Results
The effect of the adjustment can be easily seen in the adjusted
point clouds. Figure 18 shows the alignment of facades and walls
in the scene (the colors indicate the original segmentation).
Figure 19 shows a tilted view, where the increased sharpness is
obvious, especially at the lattice fence in front. Note that for these
visualizations, only the points of the point cloud are included

which were assigned to a region during the pre-segmentation step.
However, the results of the adjustment may also be applied to the
original point cloud.

Figure 20 shows the latent map for the building in the lower left
of Figure 16, with 1 cm raster size. Note how the surface structure
of the roughcast in the building base and the different shingle
tiling patterns in the first and second floor are visible. Figures 21
and 22 show two more examples where the precision and detail of
the latent map become apparent.

Figure 17. Histograms of the signed distance of LiDAR points
to the latent map. Initial distribution (blue), after first (green)

and second (red) iteration (all with a distance threshold of
0.3 m), and after iterations with 2 cm (cyan), 1 cm (magenta)

and 7 mm (yellow).

8. CONCLUSIONS AND OUTLOOK
This paper presents a global strip adjustment method to obtain
dense surface maps with a precision of a few millimeters for
arbitrary large scenes. In the example shown here, it is applied to
a scene of one billion points, estimating 278,000 unknowns.

The method uses a pre-processing MapReduce step for finding
continuous regions and building up a representation in terms of
spatial tiles. During the map phase, each scan strip is segmented
individually, and the results are sent to the correct spatial cell
during shuffle.

In the main part of the algorithm, an alternating least squares
approach is used, which is realized as a number of MapReduce
steps. In the map phase, each tile generates a set of normal
equation blocks. During shuffling, these are grouped by trajectory.
Finally, in each reducer, the maximum likelihood estimate is
obtained for each trajectory individually using the highly efficient
Rauch-Tung-Striebel algorithm.

The method scales linearly in time and space. In pre-processing, it
is linear in the number of scan strips. During estimation, the map
phase is linear in the number of tiles, while the reduce phase is
linear in the total length of the trajectories. Note that the algorithm
does not need matrices beyond size 6 × 6, and at no point in the
algorithm data needs to be funneled through a single machine.
Therefore, the algorithm lends itself well for a scaling to arbitrary
scene sizes using MapReduce on a distributed file system.

For the future, it is planned to increase the robustness of the
method. Currently, scan correspondences are ultimately based on
proximity. This could be improved by a stronger role of the
segmentation or by the introduction of an additional classification

step. Also, the estimation of additional calibration parameters may
improve the results. Furthermore, a pre-processing step for coarse
alignment may be useful, in order to extend the approach to low
cost mapping vehicles, or even to a crowd mapping approach
involving normal vehicles equipped with LiDAR and/ or camera
sensors.

Figure 18. Top view of a part of the point cloud, before (top)
and after (bottom) adjustment. Note how the façade (right)

and walls are well aligned after adjustment.

Figure 19. Tilted view of a part of the point cloud, before (top)
and after (bottom) adjustment. See especially the lattice fence.

Figure 20. Left: latent map for the lower left building in

Figure 16. Note the details in the surface structure. Right: for
comparison, StreetView image (image credit: Google).

Figure 21: Example of a half-timbered house where timber

and protruding infill are clearly visible.

Figure 22: Example with different surface structure. Flat
tarred surface on the road, large tiles on the sidewalk and

small tiles in front of the building.

9. REFERENCES
[1] Applanix Corp. 2012. POSLV Specifications.

http://www.applanix.com (June 23, 2016).
[2] Besl, P. J. and McKay, N. D. 1992. A method for registration

of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 2,
239-256. DOI= http://dx.doi.org/10.1109/34.121791.

[3] Curless, B. and Levoy, M. 1996. A volumetric method for
building complex models from range images. In ACM
Transactions on Graphics SIGGRAPH ’96, 303-312. DOI=
http://dx.doi.org/10.1145/237170.237269.

[4] Dean, J., Ghemawat, S. 2004. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI'04: Sixth Symposium
on Operating System Design and Implementation (San
Francisco, CA, December, 2004).

[5] Felzenszwalb, P. and Huttenlocher, D. 2004. Efficient
Graph-Based Image Segmentation. International Journal of
Computer Vision, 59, 2, 167-181. DOI=
http://dx.doi.org/10.1023/B:VISI.0000022288.19776.77.

[6] Glira, P., Pfeifer, N. and Mandlburger, G. 2015. Rigorous
Strip adjustment of UAV-based laserscanning data including
time-dependent correction of trajectory errors. In 9th
International Symposium of Mobile Mapping Technology,
MMT 2015 (Sydney, Australia, 9-11 December, 2015).

[7] Grisetti, G., Kümmerle, R., Stachniss, C. and Burgard, W.
2010. A Tutorial on Graph-Based SLAM. IEEE Intelligent
Transportation Systems Magazine 2, 4, 31-43. DOI=
http://dx.doi.org/10.1109/MITS.2010.939925.

[8] Huang, Q.-X. and Anguelov, D. 2010. High quality pose
estimation by aligning multiple scans to a latent map. In
IEEE International Conference on Robotics and Automation
(ICRA) (Anchorage, AK, 2010), 1353-1360. DOI=
http://dx.doi.org/10.1109/ROBOT.2010.5509460.

[9] Kilian, J., Haala, N. and Englich, M. 1996. Capture and
Evaluation of Airborne Laser Scanner Data. International
Archives of Photogrammetry and Remote Sensing, Vol. 31/3,
ISPRS, Vienna, Austria, 383-388.

[10] Klingensmith, M., Dryanovski, I., Srinivasa, S., and Xiao, J.
2015. Chisel: Real Time Large Scale 3D Reconstruction
Onboard a Mobile Device using Spatially Hashed Signed

Distance Fields. In Robotics: Science and Systems (Rome,
Italy). DOI= http://dx.doi.org/10.15607/RSS.2015.XI.040.

[11] Klingner, B., Martin, D. and Roseborough, J. 2013. Street
View Motion-from-Structure-from-Motion. In IEEE
International Conference on Computer Vision (Sydney,
NSW, 2013), 953-960. DOI=
http://dx.doi.org/10.1109/ICCV.2013.122.

[12] Koller, D., Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. MIT Press.

[13] Newcombe, R. A., Izadi, S. Hilliges, O., Molyneaux, D.,
Kim, D., Davison, A., Pushmeet, K., Shotton, J., Hodtes, S.,
and Fitzgibbon, A. 2011. KinectFusion: Real-time dense
surface mapping and tracking. In IEEE International
Symposium on Mixed and Augmented Reality (ISMAR), 127-
136. DOI= http://dx.doi.org/10.1109/ISMAR.2011.6092378.

[14] Nießner, M., Zollhöfer, M., Izadi, S., and Stamminger, M.
2013. Real-time 3D reconstruction at scale using voxel
hashing. ACM Transactions on Graphics (SIGGRAPH Asia
2013), 32, 6 (November 2013), 169:1-169:11. DOI=
http://dx.doi.org/10.1145/2508363.2508374.

[15] Rauch, H. E., Tung, F., and Striebel, C. T., 1965. Maximum
likelihood estimates of linear dynamic systems. AIAA
Journal, 3, 8, 1445-1450. DOI=
http://dx.doi.org/10.2514/3.3166.

[16] Riegl LMS GmbH 2012. Data sheet Mobile Mapping System
RIEGL VMX-250. http://www.riegl.com (June 23, 2016).

[17] Rusinkiewicz, S. and Levoy, M. 2001. Efficient variants of
the ICP algorithm. In Third International Conference on 3-D
Digital Imaging and Modeling (Quebec City, Que., 2001),
145-152. DOI= http://dx.doi.org/10.1109/IM.2001.924423.

[18] Segal, A. V., Haehnel, D., and Thrun, S. 2009. Generalized-
ICP. In Robotics: Science and Systems (Seattle, USA, June).
DOI= http://dx.doi.org/10.15607/RSS.2009.V.021.

[19] Triggs, B., McLauchlan, P. F., Hartley, R. I., Fitzgibbon, and
Andrew W. 2000. Bundle Adjustment – A Modern
Synthesis. In Vision Algorithms: Theory and Practice:
International Workshop on Vision Algorithms (Corfu,
Greece, September 21-22, 1999 Proceedings), 298-372.
DOI= http://dx.doi.org/10.1007/3-540-44480-7_21.

http://www.applanix.com/�
http://dx.doi.org/10.1109/34.121791�
http://dx.doi.org/10.1145/237170.237269�
http://dx.doi.org/10.1023/B:VISI.0000022288.19776.77�
http://dx.doi.org/10.1109/MITS.2010.939925�
http://dx.doi.org/10.1109/ROBOT.2010.5509460�
http://dx.doi.org/10.15607/RSS.2015.XI.040�
http://dx.doi.org/10.1109/ICCV.2013.122�
http://dx.doi.org/10.1109/ISMAR.2011.6092378�
http://dx.doi.org/10.1145/2508363.2508374�
http://dx.doi.org/10.2514/3.3166�
http://www.riegl.com/�
http://dx.doi.org/10.1109/IM.2001.924423�
http://dx.doi.org/10.15607/RSS.2009.V.021�
http://dx.doi.org/10.1007/3-540-44480-7_21�

	1. INTRODUCTION
	2. RELATED WORK
	3. MOBILE MAPPING DATA
	4. SCAN STRIP SEGMENTATION
	5. ESTIMATION
	5.1 Estimation Model
	5.2 Estimation procedure

	6. SCALABLE ESTIMATION
	6.1 Partitioning the Dependency Graph
	6.2 MapReduce: Pre-Processing
	6.3 MapReduce: Estimation

	7. RESULTS
	7.1 Quantitative Results
	7.2 Qualitative Results

	8. CONCLUSIONS AND OUTLOOK
	9. REFERENCES

