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ABSTRACT 
This paper presents a large-scale strip adjustment method for 
LiDAR mobile mapping data, yielding highly precise maps. It 
uses several concepts to achieve scalability. First, an efficient 
graph-based pre-segmentation is used, which directly operates on 
LiDAR scan strip data, rather than on point clouds. Second, 
observation equations are obtained from a dense matching, which 
is formulated in terms of an estimation of a latent map. As a result 
of this formulation, the number of observation equations is not 
quadratic, but rather linear in the number of scan strips. Third, the 
dynamic Bayes network, which results from all observation and 
condition equations, is partitioned into two sub-networks. 
Consequently, the estimation matrices for all position and 
orientation corrections are linear instead of quadratic in the 
number of unknowns and can be solved very efficiently using an 
alternating least squares approach.  

It is shown how this approach can be mapped to a standard 
key/value MapReduce implementation, where each of the 
processing nodes operates independently on small chunks of data, 
leading to essentially linear scalability. Results are demonstrated 
for a dataset of one billion measured LiDAR points and 278,000 
unknowns, leading to maps with a precision of a few millimeters. 
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gies➝Image segmentation • Computing methodologies➝ 
Matching. 

Keywords 
Mobile mapping; LiDAR; least squares adjustment; MapReduce. 

1. INTRODUCTION 
Since more than 20 years, digital maps have been used to support 
car and personal navigation systems. Recently, the development 
of highly detailed and accurate maps has gained momentum, since 
such maps are required for advanced driver assistance systems, as 

well as partially or fully autonomous cars. In order to collect such 
maps, mobile mapping systems are employed, which usually 
combine vision sensors, such as cameras and laser scanners 
(LiDAR) with a localization subsystem. In case of vehicles, the 
latter is normally a combination of a global navigation satellite 
system (GNSS) receiver, an inertial measurement unit (IMU) and 
an odometer (wheel distance measurement). All measurements are 
combined by a filter approach to deliver a continuous position and 
orientation (pose) update, at a typical rate of 200 Hz. 

 
Figure 1. Example results. A large number of single scans 

(strips) acquired by LiDAR mobile mapping (left) are aligned 
(middle) using a global optimization. After alignment, 

systematic errors are removed which allows estimating the 
surface with a high density and a standard deviation of only a 
few millimeters. Details such as façade and wall structure and 

sidewalk pavement become visible (right). 
Even if highly accurate (and expensive) GNSS/IMU components 
are employed, and measurements are processed using differential 
GNSS post-processing, one can typically observe absolute errors 
in the range of 30 centimeters in urban areas. While this seems to 
be fairly accurate, it is in large contrast to the accuracy of the 
LiDAR sensors themselves, which nowadays have down to 5 mm 
accuracy (and 3 mm precision), a difference of two orders of 
magnitude. Since contemporary LiDAR mobile mapping systems 
reach measurement rates of up to 2 million measured points per 
second, which is 10,000 observations for each pose delivered by 
the (200 Hz) GNSS/IMU system, it is highly attractive to correct 
the pose using the LiDAR measurements themselves. 

2. RELATED WORK 
The problem of adjusting sensor poses using measurements is 
fundamental to geodesy and surveying. In photogrammetry (and 
lately, computer vision), it is known as bundle adjustment, and 
after several decades of research, it is still the dominant 
refinement approach, due to its rigorous formulation of the 
functional and stochastic error model [19]. In robotics, such 
problems are usually encountered in the context of simultaneous 
localization and mapping (SLAM, [7]), where (in-) dependencies 
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between random variables are typically depicted using 
probabilistic graphical models [12], especially (dynamic) Bayes 
networks. It is important to note that the frequent problem of 
iteratively estimating the ‘current best state’, also known as on-
line SLAM, is different from the so-called full SLAM problem, 
where all unknowns are to be estimated simultaneously, using all 
observations. Since the main objective of this paper is to improve 
maps, rather than to find the current best state of the mobile 
mapping system, the problem is of full SLAM type. 

A special estimation problem that has received large attention is 
the alignment of data, especially the alignment of 2D surfaces in 
3D space. Since no 3D point correspondences are known in this 
case, tentative correspondences are chosen, which are used to 
estimate the optimal transformation, which in turn is used to 
establish new point correspondences. This is known as the 
iterative closest point (ICP) algorithm [2], and different strategies 
have been devised to select suitable correspondences [17]. Apart 
from the strategy how corresponding pairs are selected, it is also 
important to decide which functional model is introduced. In its 
basic form, the ICP algorithm uses 3D point correspondences to 
estimate a rigid or similarity transformation, i.e., all three 
components of the residual vector are used during minimization. 
However, since 2D surfaces are aligned, which are locally planar, 
only one component should be introduced into the functional 
model, namely, the distance parallel to the surface normal. A 
similar effect can be obtained by weighting of the quadratic error 
term, known as generalized ICP [18]. Its advantage is that it is a 
direct extension of the standard ICP algorithm which requires 
only minor modification. However, if the introduction of 
variances in the error term is only used to achieve the ‘point-to-
plane effect’, this leads to computational overhead. Therefore, in 
the model presented below, a direct formulation of the point-to-
plane observation equation is preferred. 

In photogrammetry, as well as rigid body alignment, the basic 
‘building blocks’ are assumed to be rigid structures (the bundle of 
rays, and the surface, respectively). However, the typical 
characteristic of dynamic LiDAR mobile mapping is that the 
sensor system undergoes continuous movement while scanning. 
This leads to non-rigid ICP formulations. In case of LiDAR, this 
is also termed strip adjustment and has been investigated since the 
advent of airborne LiDAR systems, 20 years ago [9]. It is still a 
contemporary research topic in the context of unmanned aerial 
vehicles with LiDAR sensors [6]. Similar problems occur with 
rolling shutter cameras on moving platforms. One solution that 
has been applied at a global scale is to consider the IMU trajectory 
as being ‘correct’ for short time intervals and to ‘bake’ it into each 
exposure span (one full ‘roll’ of the shutter) [11]. However, for a 
rigorous error modeling, strip adjustment is often formulated by 
estimating pose correction parameters at constant time or distance 
intervals along the trajectory, constraining the relative pose 
changes by condition equations. This leads to a large number of 
unknowns, which in turn result in large, sparsely populated 
estimation matrices. 

While in traditional airborne laser scanning, the number of 
overlapping scan strips may be low, it is more common in mobile 
mapping to have a large number of overlapping strips, acquired 
during different measurement campaigns. For 𝑛 overlapping 
strips, 𝑂(𝑛2) pairings are possible, each of which leads to a 
corresponding observation equation. A standard solution to this 
problem is to introduce additional unknowns, tie points, so that 
instead of relating every strip to every other strip (leading to 
𝑂(𝑛2) equations), every strip is related to the tie point (leading to 

only 𝑂(𝑛) equations). Since actually, surface elements need to be 
matched, rather than individual points, small tie surface patches 
need to be introduced as additional unknowns. This approach has 
been described by Huang and Anguelov [8], who termed the 
collection of surface elements, in Bayesian parlance, the latent 
map. 

Different approaches are possible to represent the latent map. In 
[8], the scene is subdivided into small grid cells, each of which 
represents one line. With this representation, it was observed that 
thin surfaces, captured from both sides, lead to wrong 
assignments. Instead of raising the density of the grid, which was 
found to decrease computational efficiency drastically, the authors 
opted for a representation with a maximum of two lines in each 
grid cell, which are distinguished by their opposite normal 
vectors. Recently, implicit surface representations in the form of 
truncated signed distance functions (TSDF), originally proposed 
by Curless and Levoy [3], have gained increased attention. 
Newcombe et al. [13] have shown how TSDFs can be embedded 
into an incremental mapping process, using the Microsoft Kinect 
sensor. In each step, the current surface reconstruction is used to 
estimate the pose of the sensor; subsequently, the sensor measure-
ments are used to improve the surface estimate by updating the 
TSDF. Being incremental, this method does not perform a global 
optimization. Since the TSDF represents the surface implicitly by 
a scalar function 𝑓(𝑥,𝑦, 𝑧) = 0, represented by a discrete scalar 
field, its memory requirements are cubic in the scene extents. 
However, since the distance function is truncated, it will be 
undefined for most of the space. Therefore, spatial data structures 
have been used to efficiently store the TSDF only in areas where 
it is defined. Recent approaches favor voxel hashing, where small 
sub-blocks of 83 or 163 scalar values are hash-indexed, leading to 
much lower memory requirements while still having 𝑂(1) access 
time [14][10]. 

3. MOBILE MAPPING DATA 
The test area is located in Hannover, Germany. Over time, it was 
covered by several mobile mapping measurement campaigns. 
From these, scan strips around a central ‘double-8-loop’ were 
selected (see Figure 2). The data was not cut at the borders of this 
area, so that strips extend beyond the ‘double-8’. Overall, 150 
scan strips were selected (75 pairs). The number of scan strips 
which cover an individual street varies between two and 28. 

 
Figure 2. Test area in Hannover, Germany (scan trajectories 
marked in red). Scan strips were selected around a central 

‘double-8’ loop. Background: OpenStreetMap. 



The data was acquired using a RIEGL VMX-250 mobile mapping 
system [16]. This system includes two 360° LiDAR scanners, 
each capable of measuring 300,000 points per second (pulse rate) 
at 100 profiles per second (rotation rate), with a specified 
accuracy of 10 mm and precision of 5 mm (both 1σ). For 
positioning, an Applanix POS-LV 510 system is used, which 
integrates a GNSS receiver, IMU, and odometer. It is specified 
with 2 cm accuracy in position and 5 cm in height, and angular 
errors of 0.005° (roll and pitch) and 0.015° (true heading), where 
all values are RMS, and the data is post-processed using GNSS 
reference stations. For GNSS outages of 60 seconds, the system is 
specified with 10 cm error in position and 7 cm in height [1]. In 
practical situations, for urban areas with buildings and trees of 
moderate height (as in the case of the test area used here), one can 
expect position and height errors to reach 20-30 centimeters. 

4. SCAN STRIP SEGMENTATION 
Instead of converting the scan strip data immediately to 3D point 
clouds, a segmentation into continuous regions is performed first. 
The basic rationale is that the point clouds are acquired in a highly 
structured fashion, using rotating mirrors and forward motion of 
the vehicle. Therefore, the acquisition sequence defines a 
topology between the scanned points, which would get lost if the 
data were converted into unstructured 3D point clouds. 

In order to segment the strips, the data is put into a regular raster 
of pixels: 3000 lines (the number of measurements per scan head 
revolution) times the number of columns which depends on the 
duration of the acquisition (for each second, 100 columns). For 
each pixel, a normal vector is estimated. A robust, random-
sampling consensus (RANSAC) based plane estimation is used, 
which preserves sharp edges. The point and normal vector data is 
then used to compute a homogeneity criterion, which evaluates 𝐶0 
and 𝐶1 continuity. Then, the efficient, graph-based image 
segmentation approach of Felzenszwalb and Huttenlocher [5] is 
used to obtain image regions. Note that while the method uses the 
‘image topology’ of the points in the scan strip, the homogeneity 
criterion is solely based on the underlying geometry. 

Figure 3 and Figure 4 show typical results for one scan strip (with 
colors chosen randomly). As one can see, the algorithm manages 
to find the major structures, such as the street and sidewalk 
surfaces, but also minor details such as façade parts and 
curbstones. Note that while the homogeneity criterion evaluates 
continuity, it is not a segmentation into planar patches, which 
would partition the curved road surface into many regions.  

As a net result of this pre-processing, connected regions are 
available which form surfaces in 3D space, with a normal vector 
defined at each surface point. Small area regions are removed, 
which also reduces tree foliage to a large extend, and helps to 
avoid wrong assignments in the later matching steps. 

5. ESTIMATION 
5.1 Estimation Model 
A typical situation of the data capture situation is depicted in 
Figure 5. The blue scan vehicle travels along the dark blue 
trajectory. The red lines indicate the scan planes of the two 
LiDAR scanners. The scan ray hits an object, or map element m, 
but due to errors in the measurement of the vehicle trajectory, it 
does not indicate the correct position. Similarly, at a different time 
instance, the green vehicle hits the same map element. The green 
and blue trajectories may also be obtained during the same scan, 
when m is hit first by scanner 1, and later by scanner 2. The task is 
to align the two scanned points at m by deforming the green and 

blue trajectories, earlier introduced as strip adjustment. This 
deformation is accomplished by estimating correction terms to the 
pose at discrete locations 𝑎1, 𝑎2, 𝑎3, … and 𝑏1, 𝑏2, 𝑏3, …, called 
anchor points. The spacing of anchor points should be selected 
according to the expected characteristics of the data, either in 
space or time. In this paper, a spatial distance of 0.5 m was 
chosen, which means that for any part of a trajectory, for which 
LiDAR observations are available that lead to minimization terms, 
six unknowns are introduced every 0.5 m along the trajectory. 
Between anchor points, the pose parameter corrections are 
interpolated. 

 
Figure 3. Example for a segmented scan strip. Segments were 

assigned a random color. 

 
Figure 4. Detail of Fig. 3. Façade structures, walls, car parts 
and curbstones can be discerned. Note that small regions are 

removed. 

 
Figure 5. Illustration of a scan situation. 
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Since the surface element m is not known, one would typically 
minimize the distance between the two scan points. As noted 
earlier, if 𝑛 scans are available, this would lead to 𝑂(𝑛2) 
observation equations. Instead, the surface element m is 
introduced as an additional unknown, so that only 𝑂(𝑛) 
observation equations are needed to relate the scan points to m. 

 
Figure 6. Bayes network for the situation shown in Figure 5. 

To illustrate the overall situation, Figure 6 shows the Bayes 
network for the scene in Figure 5. In this case, one trajectory a is 
related to another trajectory b by a single map element m. The 
task is to estimate 
 𝑥� = argmax

𝑎1,𝑎2,𝑎3,𝑏1,𝑏2,𝑏3,𝑚
𝑃(𝑎1,𝑎2, 𝑎3, 𝑏1, 𝑏2,𝑏3,𝑚) (1) 

where 𝑥� denotes the estimate of the vector of all random variables 
𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3,𝑚. For the purposes of this paper, all random 
variables are assumed to be normal distributed and the solution is 
found using least squares adjustment. 
The poses in 𝑎𝑖 were observed by the GNSS/IMU system, which 
is introduced as observed variables, 𝑝𝑖 (similarly for 𝑏𝑖, which are 
observed by 𝑞𝑖). Since corrections are estimated rather than 
absolute poses, this leads to observation equations of the form 
 0 + 𝑣 = 𝑎𝑖   ; Σprior (2) 

where Σprior is the variance of the GNSS/IMU measurement and 
𝑣 is a placeholder for the residual which is to be minimized. Note 
that these are actually six observation equations (three for 
position, three for rotation angles). Similar equations are required 
for all 𝑏𝑖. In addition, successive anchor points are constrained to 
have similar pose corrections. This enforces a smoothing of the 
pose correction along the trajectory and leads to equations of the 
form 
 0 + 𝑣 = 𝑎𝑖+1 − 𝑎𝑖   ; Σsmooth (3) 
for all anchor elements which are actually used (similarly for 𝑏𝑖). 
Σsmooth can be set according to the assumed drift of the trajectory. 
In practice, it is usually used as a design parameter to control the 
trajectory smoothness. Again, these are six equations for any 
anchor pair which takes part in the estimation. Finally, the 
observed random variables 𝑢𝑖 relate the pose corrections 𝑎𝑖 to the 
map element 𝑚, which is also unknown (similarly for 𝑣𝑖, which 
relate 𝑏𝑖 to 𝑚). As described earlier, since the location is not 
constrained along the surface, but only perpendicular to it, only a 
scalar observation equation is necessary, 
 0 + 𝑣 = 〈𝑤𝑗 , 𝑠𝑗 − �𝑅𝑖𝑟𝑘 + 𝑡𝑖 + 𝑡0,𝑘�〉  ;  𝜎dist

2   

which, bringing constant terms to the left hand side, leads to 
 〈𝑤𝑗 , 𝑠𝑗 − 𝑡0,𝑘〉 − 𝑣 = 〈𝑤𝑗 ,𝑅𝑖𝑟𝑘 + 𝑡𝑖〉  ;  𝜎dist

2  (4) 

where 𝑤𝑗 is the surface normal vector and 𝑠𝑗 is a point on the map 
element 𝑚𝑗, 𝑟𝑘 is the measurement vector from the LiDAR scan 
head to the measured point and 𝑡0,𝑘 is the associated scan head 
position, so that without correction, 𝑟𝑘 + 𝑡0,𝑘 would be the 
measured point. This is corrected by the translation 𝑡𝑖 and rotation 
𝑅𝑖, which are part of the pose correction 𝑎𝑖. Since 𝑡𝑖 and 𝑅𝑖 are 
interpolated from the anchor points, this equation is set up for 𝑎𝑖 
and 𝑎𝑖+1, if the measurement took place while the vehicle was 
between anchors 𝑎𝑖 and 𝑎𝑖+1. The variance 𝜎dist

2  is set according 
to the distance measurement accuracy of the LiDAR scanner. 

5.2 Estimation procedure 
The overall estimation proceeds iteratively. It uses the estimated 
trajectory corrections from the previous pass to correct the entire 
point cloud. Then, map elements are defined which are used to set 
up all correspondences, which in turn lead to estimation equations 
for the distances (Eq. 4). These are complemented by the 
constraint equations for the prior (Eq. 2) and smoothness (Eq. 3). 
If all equations, written down in rows, are denoted by the design 
matrix 𝐴, the solution can be computed by solving the normal 
equation system 
 𝑥� = (𝐴𝑇𝑃𝐴)−1𝐴𝑇𝑃𝑙, (5) 

where 𝑃 is the weight matrix of the observations which results 
from all variances given in Eqs. 2-4, and 𝑙 is the column vector of 
all left hand sides of these equations (which is nonzero only for 
Eq. 4). Note that the actual procedure to obtain 𝑥� is different, as 
discussed in the sequel. 
Since the matching is dense, the number of rows of 𝐴 is the 
number of LiDAR observations (Eq. 4), plus the number of 
constraint equations (Eqs. 2 and 3), which is linear in the distance 
travelled. Of those, the number of LiDAR observations is by far 
dominant. For example, when the mobile mapping van travels at 
an average speed of 10 m/s (36 km/h, 22 mph), 20 anchor points 
are generated per second (based on one anchor every 0.5 m 
distance), which leads to a total of 120 constraint equations, as 
opposed to a maximum of 600,000 measured LiDAR points. Even 
if only 30-50% of the LiDAR measurements lead to distance 
equations, there are about three orders of magnitude more 
equations of type (4) than of type (2) and (3). 
In the example presented here, this amounts to approximately one 
billion rows in 𝐴. Though this looks daunting, it is not a limiting 
factor, since the standard approach to set up Equation 5 is to 
directly compute the sub-blocks for (𝐴𝑇𝑃𝐴)block (6 × 6 matrices) 
and (𝐴𝑇𝑃𝑙)block (6-vectors) upon processing one observation 
equation, which are then added up in an overall matrix 𝐴𝑇𝑃𝐴 
(which is sparse), and vector 𝐴𝑇𝑃𝑙, both of which have as 
dimension the number of unknowns, rather than observations. 
Concerning the unknowns, these consist of the pose correction 
terms for each anchor, but also of the map elements m, as can be 
seen in Figure 6 and Eq. 1. This raises the question how the map 
elements are represented. In Eq. 4, the only relevant properties of 
a map element, in terms of the observation equation, are the 
normal vector 𝑤𝑗, and the distance of the transformed LiDAR 
point to the surface. A suitable and conceptually simple surface 
representation would be in the form of a TSDF. However, even if 
the TSDF is made sparse by using relatively small blocks, it is 
inherently a volumetric representation. For standard scenes, which 
contain large areas of flat surfaces, this wastes a lot of memory. 
Therefore, an approach based on local surface models was used. 
Similarly to a TSDF, the space is subdivided into cells of equal 
size, which are indexed using voxel hashing. However, inside 
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each cell, no 3D grid of distance and weight values is used, but 
rather, the surface is represented by a set of local surface models 
(LSM), each modeling a height field over a regular 2D raster in 
terms of ‘height pixels’. The number of LSMs inside each cell is 
determined by the number of different surface normal vectors. 

 
Figure 7. Representation of one local surface model, part of a 
map element. Illustration in 2D, actual representation is a 3D 

cell with a height model over a 2D raster. 
Figure 7 illustrates this representation. Imagine the real situation 
is a ‘curbstone’ so that the left part is the sidewalk, the right part 
is the road surface, and the (steep) middle part is the shoulder of 
the curbstone. Two LSMs will be initialized in this case, one for 
the road and sidewalk surface, and another one for the shoulder of 
the curbstone (not shown here). All blue points stem from one 
scan. Since their connectivity is known from the pre-segmentation 
(section 4), the affected LSM pixels can immediately be 
identified; no further triangulation is necessary. Moreover, since 
the segmentation separates the different regions, wrong 
assignments are minimized. For example, the grey points 
belonging to the curbstone shoulder do not affect the LSM for the 
sidewalk/ road surface. Every scan (e.g., also the green one in 
Figure 7) influences the associated LSM. In summary, the global 
map consists of map elements, which are 3D cells, each of which 
contains one or more LSMs which represent the surface in terms 
of a 2D raster of height values. 
Computing this map amounts to the estimation of all height values 
(orange bars in Figure 7) in all LSM cells. Since the LSMs use a 
2D grid of constant spacing, the overall number of unknowns is 
proportional to the total surface of the scene. Again, this is the 
dominant term. In the example presented here, there are 278,052 
unknowns due to the anchor points, but millions to billions of 
unknowns due to the map elements (depending on LSM grid 
resolution). Such a number of unknowns may still be handled by a 
sparse solver, however, as this grows linearly with the size of the 
scene, handling and solution of the normal equations would have 
to be spread across multiple machines. The following section 
describes how this can be realized using the MapReduce 
framework [4] instead. 

6. SCALABLE ESTIMATION 
6.1 Partitioning the Dependency Graph 
The Bayes network shown in Figure 6 allows to reason about the 
dependencies between random variables. For example, if 𝑎3 
changes, this will influence 𝑚, since 𝑢3 is observed and arrows 
meet head-to-head. By a similar argument, this will influence 𝑏1 
and so on, so that overall, the change spreads across the entire 
graph. 

The key observation is that if 𝑚 is observed, this chain of 
dependencies is broken, so that a change in 𝑎3 only influences the 
anchors 𝑎2 and 𝑎1. Conversely, if all 𝑎𝑖 and 𝑏𝑖 are observed, the 
map elements 𝑚 become independent. Therefore, similar to the 

approach in [8], the unknowns are split into two groups. Instead of 
maximizing 

𝑋∗ = argmax
𝐴,𝑀

𝑃(𝐴,𝑀) 

where 𝐴 and 𝑀 are the anchor point and map unknowns, 
respectively, the two maximizations 
 𝐴∗ = argmax

𝐴
𝑃(𝐴|𝑀) (6) 

 𝑀∗ = argmax
𝑀

𝑃(𝑀|𝐴). (7) 

are iterated. In the context of the models used here, this is also 
known as the alternate least squares approach. 
Concerning Eq. 6, as just demonstrated for the example in 
Figure 6, if the map 𝑀 is held fixed, the remaining dependencies 
are only between anchors of the same trajectory. As this graph is 
linear, it can be solved exactly and efficiently by a single forward-
backward pass of a max product algorithm [12]. In case of 
continuous, normal distributed variables, this algorithm is known 
as Kalman smoother, or Rauch-Tung-Striebel algorithm [15]. It 
consists of a forward pass, identical to the Kalman filter, and an 
additional backward pass. Note that this is not an approximation, 
but the exact maximum likelihood estimate for the unknowns 𝐴. 
For the map optimization, Eq. 7, the situation is even simpler. 
Since all map elements are independent, they can be estimated 
individually. This is done using a least squares estimation, 
yielding a mean value and variance for every pixel of every LSM 
(every orange bar in Figure 7). 

6.2 MapReduce: Pre-Processing 
The overall process is mapped to two separate MapReduce calls, 
the pre-processing, called once, and the estimation, which is 
iterated. Pre-processing is shown in Figure 8. It is assumed that 
raw data is available in the form of individual scan strips. In this 
work, scan strips are bounded in length, due to the operation of 
the mobile mapping system. Otherwise, they could be cut at 
arbitrary positions into records of manageable size. The task of 
one mapper is to compute first the segmentation (section 4). Since 
each individual strip is bounded in size, this can be done in 
memory. The time complexity of Felzenszwalb and Hutten-
locher’s algorithm is 𝑂(𝑛 log𝑛), where 𝑛 is the size of the 
individual scan strip [5]. It can be argued that, since the strip size 
is bounded, the processing of an individual strip is of constant 
time complexity, 𝑂(1). Therefore, the overall time complexity, in 
terms of the (more important) number of strips 𝑁, is linear, 𝑂(𝑁). 

 
Figure 8. MapReduce for the preprocessing step. 

After the segmentation is computed, the mapper assigns each 
single point a key which is the index of its spatial tile. This key is 
trivially computable from the global point coordinates and a given 
tile size. In the example shown here, this was selected to be 15 m. 
Since during the later process of estimation, the original mapping 
trajectories are deformed by the estimated pose corrections, the 
assignment of LiDAR points to tiles may be not correct anymore. 
To solve this, the mappers emit points along the borders to 
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multiple tiles. Thus, the later process of estimation can proceed 
using the tiles only and does not need to go back to the original 
scan strips. Note that during estimation, these multiply emitted 
points do not pose a problem since they are ultimately used only 
in one tile. The border area should be selected according to the 
maximum shift expected. In the presented example, an overlap of 
0.3 m was used, which, for a tile size of 15 m, corresponds to 8% 
overhead. 
On the basis of this key, shuffling will send all points to their 
appropriate tile so that there is no work left for the reducers apart 
from emitting them. Note that the points in each tile consist not 
only of their X, Y, Z co-ordinates, but also contain e. g. the point 
along the trajectory when the measurement was taken, the 
segment id they belong to, and their index in the scan strip image, 
which allows recovering their neighbors in the original scan strip 
image. 

6.3 MapReduce: Estimation 
During estimation (shown in Figure 9), the set of tiles is the input 
to the mapping phase. In addition, the trajectory corrections from 
the previous iteration are required. The latter is relatively little 
data and can be efficiently broadcast. 

 
Figure 9. MapReduce for the estimation step. Tiles lead to 

collections of LSMs, which lead to (𝑨𝑻𝑷𝑨)block and (𝑨𝑻𝑷𝒍)block 
blocks with key t (the trajectory) and index i (the anchor in 

the trajectory). 
While a single mapper processes one tile, it builds up the set of 
occupied cells, and sets up and updates the LSMs in each cell. 
This estimates the map, i.e., implements Eq. 7. Subsequently, for 
each measurement in the cell, the distance and normal vector can 
be obtained, required for the distance equation (Eq. 4). This 
generates the (𝐴𝑇𝑃𝐴)block and (𝐴𝑇𝑃𝑙)block blocks, which are valid 
for a certain anchor point of a certain trajectory. The mapper emits 
those blocks with the key being the trajectory id. 

After the shuffle phase, every reducer will get all (𝐴𝑇𝑃𝐴)block and 
(𝐴𝑇𝑃𝑙)block blocks for a certain trajectory and will add them up 
accordingly. Since, as observed above, trajectories are 
independent when the map is given, each reducer is able to 
compute one part of the maximum likelihood solution (Eq. 6) 
independently from all others. The Rauch-Tung-Striebel 
algorithm is run and the pose corrections for each anchor point are 
obtained. These are then broadcast and the next iteration 
commences. 

In terms of memory consumption, each mapper sets up the latent 
map for one tile only. After the observation blocks for one tile are 
emitted, it is discarded. The required amount of memory can be 
controlled by varying the (spatial) tile size. The achievable 
parallelism is equal to the number of tiles, which is ideal. 

After shuffling, each reducer integrates incoming observation 
blocks into a sorted data structure, e.g. a balanced tree. This 
structure takes space linear in the length of the trajectory. During 
the forward pass of the Rauch-Tung-Striebel algorithm, matrices 

are generated which are updated during the backward pass. This 
takes also linear memory space. Note that during the entire 
algorithm, no large and/or sparse matrices are set up. In 
consequence, the estimation is linear in time and space, relative to 
the length of the mapping trajectories. The achievable parallelism 
is equal to the number of trajectories, which, again, is ideal. (Note 
that, as described in section 6.2, the length of the strips, and thus 
of the trajectories, is bounded, so that large projects will have 
thousands of trajectories.) In general, solving Eq. 6 is so fast that 
it is not relevant for the overall time budget. 

7. RESULTS 
7.1 Quantitative Results 
The algorithm was applied to the dataset described in section 3. 
The pre-processing reads 150 scan strips and generates 1,287 map 
tiles of size 15 × 15 𝑚2. The number of points per tile varies 
from one to 17.6 million (M). Overall, including the data 
introduced due to the tile overlap, there are 1.05 billion points in 
the dataset, which corresponds to 60 GB of raw data. 

During estimation, 18 iterations were carried out. The adjustment 
is robustified using outlier removal. A distance threshold is 
introduced, which discards correspondences of points to latent 
map elements. Initially, this is set at 0.3 m and is reduced during 
iterations, down to 7 mm in the final iteration. As a result of this, 
the number of points which take part in the estimation varies. It 
starts at 898 M, then, due to alignment, increases to 923 M, from 
which it decreases, due to the increasingly tight threshold, to 
849 M in the final iteration. For a more efficient computation, the 
grid size of the LSM cells is also varied, from 10 cm in the 
beginning down to 1 cm in the final adjustment, with most 
iterations using 2 cm. At 2 cm grid size, the reference 
implementation (C++), run on an Intel i7-4790k (4 cores), takes 
approximately 370 seconds per iteration (including reading of the 
60 GB of raw data). 

 
Figure 10. Example for the estimated pose correction along 
one trajectory, between kilometer 6.3 and 6.5. Left column: 
shift, right column: rotation angles around omega, phi and 

kappa (heading). 
During each iteration, corrections for all trajectories are estimated. 
Overall, there are 75 trajectories, Figure 10 shows one example. 
Typical position corrections are within 0.2 m and angle 
corrections are within 0.2 degrees. 

In order to assess the goodness of the fit, the standard deviation is 
computed in each latent map element. Figure 11 shows the latent 
map for the entire scene (c.f. Figure 2), before estimation. 
Standard deviations of 7 mm and above are shown in red, which 
leads to a mainly red plot. Some areas are green or blue, which 
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happens mostly when some parts of the scene were mapped only 
once, so that they are covered only by two scan strips from the 
same trajectory, which are usually well aligned. 

Figure 12 shows the same plot after the last iteration, using the 
same color scale. As can be seen, most areas are green, which 
corresponds to a standard deviation of approximately 3 mm. 

 
Figure 11. Latent map of the project area, before estimation 

(top view). Color scale: standard deviation, temperature scale, 
blue (0 mm) to red (7 mm or more). 

 
Figure 12. Latent map of the project area used in the last 

estimation (top view). Color scale: standard deviation, 
temperature scale, blue (0 mm) to red (7 mm or more). 

Figures 13 and 14 show a tilted view of a part of the scene. It can 
be seen that before the iteration (Figure 13), there are large errors 
(0.1 m and more) present, while after estimation (Figure 14), the 
standard deviations are mostly reduced to a few millimeters. Note 
that before estimation, the street in the upper right corner shows 
larger errors than the street in the lower part of the figure. This 
coincides with the expectation, since the former is a narrow street 
with an alley of large trees and dense tree canopy, so that GNSS 

outages are more probable. The latter is relatively wide with only 
a few, isolated trees. 

 
Figure 13. Tilted view of a part of the scene, before estimation. 

Color scale: standard deviation, temperature scale, blue 
(0 mm) to red (100 mm or more). 

 
Figure 14. Same view as Figure 13, after estimation. Note the 

color scale has been changed to the range between 0 mm 
(blue) to 7 mm (red). 

Figures 15 and 16 show a comparison for a close-up view. Note 
that in Figure 16, small details can be seen. Especially for the 
building in the lower left corner, a façade structure becomes 
apparent, which is due to the wall being covered by shingles. 
Compare this to Figure 20.  
For a quantitative assessment, the distance between all LiDAR 
points and their corresponding latent map element was computed. 
Figure 17 shows histograms of the signed distance for some of the 
adjustment iterations. Since approx. 900 M points take part, the 
curves are very smooth. The bucket size is 0.1 mm, so that the 



value of the highest (yellow) peak means that 14.6 M points were 
within 0 and +0.1 mm distance to the surface (the same holds for 
the -0.1 to 0 mm bucket). As can be seen, the distances are 
initially spread (blue curve), since the data is not aligned. The 
standard deviation is 4 cm (which coincides with the x-axis 
extents of the figure). After the first iteration (green curve), the 
curve already resembles a Gaussian distribution. While large 
progress is made during the first iterations, later iterations lead 
only to minor changes (cyan, magenta, yellow curves). The final 
standard deviations are 3.5 mm (2 cm threshold/ 897 M points 
remaining), 2.8 mm (1 cm/ 873 M) and 2.5 mm (7 mm/ 849 M). 

 
Figure 15. Detail view, before estimation. Color scale: 

standard deviation, temperature scale, blue (0 mm) to red 
(100 mm or more). 

 
Figure 16. Same view as Figure 15, after estimation. Note the 

color scale has been changed to the range between 0 mm 
(blue) to 7 mm (red). Compare the lower left building to 

Figure 20. 

7.2 Qualitative Results 
The effect of the adjustment can be easily seen in the adjusted 
point clouds. Figure 18 shows the alignment of facades and walls 
in the scene (the colors indicate the original segmentation). 
Figure 19 shows a tilted view, where the increased sharpness is 
obvious, especially at the lattice fence in front. Note that for these 
visualizations, only the points of the point cloud are included 

which were assigned to a region during the pre-segmentation step. 
However, the results of the adjustment may also be applied to the 
original point cloud. 

Figure 20 shows the latent map for the building in the lower left 
of Figure 16, with 1 cm raster size. Note how the surface structure 
of the roughcast in the building base and the different shingle 
tiling patterns in the first and second floor are visible. Figures 21 
and 22 show two more examples where the precision and detail of 
the latent map become apparent. 

 
Figure 17. Histograms of the signed distance of LiDAR points 
to the latent map. Initial distribution (blue), after first (green) 

and second (red) iteration (all with a distance threshold of 
0.3 m), and after iterations with 2 cm (cyan), 1 cm (magenta) 

and 7 mm (yellow). 

8. CONCLUSIONS AND OUTLOOK 
This paper presents a global strip adjustment method to obtain 
dense surface maps with a precision of a few millimeters for 
arbitrary large scenes. In the example shown here, it is applied to 
a scene of one billion points, estimating 278,000 unknowns. 

The method uses a pre-processing MapReduce step for finding 
continuous regions and building up a representation in terms of 
spatial tiles. During the map phase, each scan strip is segmented 
individually, and the results are sent to the correct spatial cell 
during shuffle. 

In the main part of the algorithm, an alternating least squares 
approach is used, which is realized as a number of MapReduce 
steps. In the map phase, each tile generates a set of normal 
equation blocks. During shuffling, these are grouped by trajectory. 
Finally, in each reducer, the maximum likelihood estimate is 
obtained for each trajectory individually using the highly efficient 
Rauch-Tung-Striebel algorithm. 

The method scales linearly in time and space. In pre-processing, it 
is linear in the number of scan strips. During estimation, the map 
phase is linear in the number of tiles, while the reduce phase is 
linear in the total length of the trajectories. Note that the algorithm 
does not need matrices beyond size 6 × 6, and at no point in the 
algorithm data needs to be funneled through a single machine. 
Therefore, the algorithm lends itself well for a scaling to arbitrary 
scene sizes using MapReduce on a distributed file system. 

For the future, it is planned to increase the robustness of the 
method. Currently, scan correspondences are ultimately based on 
proximity. This could be improved by a stronger role of the 
segmentation or by the introduction of an additional classification 



step. Also, the estimation of additional calibration parameters may 
improve the results. Furthermore, a pre-processing step for coarse 
alignment may be useful, in order to extend the approach to low 
cost mapping vehicles, or even to a crowd mapping approach 
involving normal vehicles equipped with LiDAR and/ or camera 
sensors. 

 

 
Figure 18. Top view of a part of the point cloud, before (top) 
and after (bottom) adjustment. Note how the façade (right) 

and walls are well aligned after adjustment. 

 

 
Figure 19. Tilted view of a part of the point cloud, before (top) 
and after (bottom) adjustment. See especially the lattice fence. 

  
Figure 20. Left: latent map for the lower left building in 

Figure 16. Note the details in the surface structure. Right: for 
comparison, StreetView image (image credit: Google). 

 
Figure 21: Example of a half-timbered house where timber 

and protruding infill are clearly visible.  

 
Figure 22: Example with different surface structure. Flat 
tarred surface on the road, large tiles on the sidewalk and 

small tiles in front of the building. 
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