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ABSTRACT

This paper introduces analyses of write-back caches
integrated into response-time analysis for fixed-priority
preemptive and non-preemptive scheduling. For each
scheduling paradigm, we derive four different approaches to
computing the additional costs incurred due to write backs.
We show the dominance relationships between these
different approaches and note how they can be combined to
form a single state-of-the-art approach in each case. The
evaluation explores the relative performance of the different
methods using a set of benchmarks, as well as making
comparisons with no cache and a write-through cache.

1. INTRODUCTION

In caches using the write-back policy, writes are not
immediately written back to memory. Instead, writes are
performed in the cache and the affected cache lines are
marked as dirty. Only upon eviction of a dirty cache line
are its contents written back to main memory. This has the
potential to greatly reduce the overall number of writes to
main memory compared to a write-through policy, as
multiple writes to the same location and multiple writes to
different locations in the same cache line can be
consolidated. Evictions of dirty cache lines are a source of
interference between different tasks sharing a cache. The
execution of a task may leave dirty cache lines in the cache
that will have to be written back during the execution of
another task, delaying that task’s execution. A read which
is a cache miss and evicts a dirty cache line may incur
approximately twice the delay compared to evicting a
non-dirty line, since the former requires both a read from
memory and an additional write-back of the dirty line. This
may occur with non-preemptive as well as with preemptive
scheduling, and dirty cache lines left by low priority tasks
may impact the response time of higher priority tasks and
vice-versa. This is in contrast to the impact of evictions
with a write-through cache, which only affect other tasks
under preemptive scheduling, and then only tasks of lower
priority. In this paper, we discuss different ways of soundly
accounting for write backs, and show how to integrate these
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costs into response-time analysis for both fixed-priority
preemptive and non-preemptive scheduling.

Early work on accounting for scheduling overheads in
fixed-priority preemptive systems by Katcher et al. [23] and
Burns et al. [15] focused on scheduler overheads and context
switch costs. Subsequent work on the analysis of Cache
Related Preemption Delays (CRPD) and their integration
into schedulability analyses used the concepts of Useful
Cache Blocks (UCBs) and Evicting Cache Blocks (ECBs).
(See section 2.1 of [6] for a detailed description). A number
of methods have been developed for computing CRPD
under fixed-priority preemptive scheduling. In 1996,
Busquets et al. introduced the ECB-Only approach [16],
which considers just the preempting task; while in 1998,
Lee et al. developed the UCB-Only approach [24], which
considers just the preempted task(s). Both the UCB-Union
approach [30] developed by Tan and Mooney in 2007, and
the ECB-Union approach [2] derived by Altmeyer et al. in
2011 consider both the preempted and preempting tasks. As
does an alternative approach [29] developed by
Staschulat et al. in 2005. These approaches were later
superseded by multiset based methods (ECB-Union Multiset
and UCB-Union Multiset) which dominate them [3].

Cache partitioning is one way of eliminating CRPD;
however, this results in inflated worst-case execution times
due to the reduced cache partition size available to each
task. In 2014, Altmeyer et al. [4], [5] derived an optimal
cache partitioning algorithm for the case where each task
has its own partition. They compared cache partitioning
and cache sharing accounting for CRPD, concluding that
the trade off between longer worst-case execution times and
CRPD often favours sharing the cache rather than
partitioning it.

Preemption thresholds [32, 27| provide an alternative
means of reducing CRPD by making certain groups of tasks
non-preemptable with respect to each other. In 2014,
Bril et al. [12] integrated CRPD into analysis for
fixed-priority scheduling with preemption thresholds.
Further work in this area by Wang et al. [31] in 2015 showed
that by using preemption thresholds, groups of tasks can
share a partition while still avoiding CRPD. This results in
a hybrid approach that can outperform the approach of
Altmeyer et al. [4].

As far as we are aware, all of the prior work on integrating
CRPD into schedulability analysis assumes write-through
caches. In this paper, we explore the impact of using write-
back caches instead.

With write-through caches, non-preemptive scheduling
provides a simple means of eliminating CRPD without
increasing worst-case execution times, since each task can
still utilise the entire cache. However, with write-back



caches, non-preemptive scheduling is insufficient to
eliminate all cache-related interference effects. In this paper,
we therefore consider the effects of write-back caches under
both fixed-priority preemptive scheduling and fixed-priority
non-preemptive scheduling. As this is the first such study of
the impact of write backs, we restrict our attention to
direct-mapped caches (examples of microprocessors that
implement such caches are given in section 2). In future, we
aim to extend the techniques to set-associative caches and
replacement policies such as LRU using the methodology
given in [2].

Ferdinand and Wilhelm [19] introduced an analysis of
write-back caches to determine for each memory access,
which cache lines may have to be written back. The basic
idea is to track for each potentially dirty memory block
whether it must or may be cached; however, this analysis
has neither been integrated into a WCET analysis nor has it
been experimentally evaluated. Sondag and Rajan [28]
implement a similar idea in the context of multi-level cache
analysis, where the write-back behavior of the first-level
cache influences the contents of the second-level cache.
While potential write backs from the first- to the
second-level cache are correctly accounted for, the cost of
write backs to main memory does not seem to be taken into
account within their WCET analysis. We note that both
approaches [19, 28] are not particularly suited to precisely
bound the number of write backs, as imprecisions in the
may- and must-analyses yield many potential write backs
for a single write back in a concrete execution. To analyze a
program’s WCET, Li, Malik, and Wolfe [25] proposed to
capture both the software and the microarchitectural
behavior via integer linear programming (ILP). Their
analysis is able to cover write-back caches, however,
scalability is a major concern. The key distinction between
the work presented in this paper and previous research is
that our work focuses on the open problem of integrating
write-back costs into schedulability analysis.

2. CACHES

Caches are fast but small memories that store a subset
of the main memory’s contents to bridge the difference in
speed between the processor and main memory. To reduce
management overhead and to profit from spatial locality,
data is not cached at the granularity of words, but at the
granularity of so-called memory blocks. To this end, main
memory is logically partitioned into equally-sized memory
blocks. Blocks are cached in cache lines of the same size.
The size of a memory block varies from one processor to
another, but is usually between 32 and 128 bytes.

When accessing a memory block, the cache logic has to
determine whether the block is stored in the cache, a cache
hit, or not, a cache miss. To enable an efficient look-up, each
memory block can only be stored in a small number of cache
lines referred to as a cache set. Thus caches are partitioned
into a number of equally-sized cache sets. The size of a cache
set is called the associativity of the cache.

The placement policy determines the cache set a memory
block maps to. Typically, the number of cache sets is a power
of two, and modulo placement is employed, where the least
significant bits of the block number determine the cache set
that a memory blocks maps to. Since caches are usually
much smaller than main memory, a replacement policy is
used to decide which memory block to replace on a cache miss.
As stated earlier, we limit our attention to direct-mapped
caches, where each cache set consists of exactly one cache
line. In this case, the only possible action on a cache miss is
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to replace the memory block currently stored in the cache
line that the accessed memory block maps to.

In this paper, we assume a timing-compositional
architecture [21], i.e. the timing contribution of cache misses
and write backs can be analyzed separately from other
architectural features such as the pipeline behavior.

2.1 Write Policies

Data written to the cache needs to eventually also be
written to main memory. When exactly the data is written
to main memory is determined by the write policy. There
are two basic write policies: With a write through policy,
the write to main memory is requested at the same time
as the write to the cache. With a write back policy, the
write to main memory is postponed until the memory block
containing the data is evicted from the cache, it is then
written back to main memory in its entirety.

Write through is simpler to implement than write back,
but may result in a significantly larger number of accesses
to main memory. If a cached memory block is written to
multiple times before being evicted, under write back only
the final write needs to be performed in main memory. The
drawback of write-back caches is that additional dirty bits
are required to keep track of which cache lines have been
modified since they were fetched from main memory, the
writes are delayed, and the logic required to implement the
cache is more complex.

Due to the potential performance advantages of
write-back caches these are often preferred in embedded
microprocessor designs.  Alternatively, caches may be
configurable as write back or write through. Examples
include: Infineon Tricore TCIM (separate data and
instruction caches, LRU replacement policy, write-back);
Freescale MPC740 (separate data and instruction caches,
PLRU replacement policy, configurable for write back or
write through); Renesas SHT7705 (unified data and
instruction cache, LRU replacement policy, configurable for
write back or write through); Renesas SH7750 (separate
instruction and data caches, direct mapped, configurable for
write back or write through); NEC VR4181 and VR4121
(separate instruction and data caches, direct mapped, write
back).

A second question to answer when designing a cache is
what happens on a write to a memory block that is not cached.
There are two write-miss policies: With write allocate a cache
line is allocated to the memory block containing the word
that is being written, which is fetched from main memory,
then, the write is performed in the cache. With no-write
allocate the write is performed only in main memory, and
no cache line is allocated. In principle, each write policy can
be used in conjunction with each write-miss policy; however,
usually, write through is combined with no-write allocate,
and write back is combined with write allocate. In this
paper we assume a cache employing write back and write
allocate, which minimizes the total number of accesses to
main memory.

2.2 Classification of Write Backs

For analysis purposes, it is useful to classify write backs
into three categories:

Job-internal write backs. These are write backs of dirty
cache lines previously written to by the same job.

Carry-in write backs. These are write backs of dirty
cache lines that were not written to by the job itself and
that were present in the cache when the job was dispatched.
Carry-in write backs can be further distinguished depending



on whether they emanate from a job that is still active or
not: Carry-in write backs from jobs that are still active can
only come from lower-priority preempted tasks. We refer
to these as “Ip-carry-in” write backs. Carry-in write backs
from finished jobs can emanate from both lower and higher
priority tasks. We refer to these as “finished-carry-in” write
backs.

Preemption-induced write backs. These are write backs of
dirty cache lines that were not written to by the task itself
and that were introduced by a preempting task. Preemption-
induced write backs can only come from jobs that are finished.

Consider Figure 1 for an example schedule of three tasks
containing the three types of write backs described above. In
the example, z* denotes a write to memory block x, whereas
just x denotes a read from memory block . Memory blocks
a,c and b,d, f map to the same cache sets, and hence cache
lines, respectively.

Task T1
Task T2
Task T3
Write backs: c a d f b f c d
— .
carry-in job- preemption-
internal induced

Figure 1: Example illustrating different kinds of write backs.

The first write to memory block a of task 73, causes the
eviction of ¢, which was written to by a finished job of task 72,
thus it causes a finished-carry-in write-back. On the other
hand, the access to ¢ in the second job of 72, causes an Ip-
carry-in write back of a. The first access to b within task 7
evicts f, which was previously modified in the same job, thus
causing a job-internal write back. Finally, the read of d in the
second job of task T causes a preemption-induced write back
of f which was previously written to by task 7. Similarly,
the reads of a and b in task 73 result in preemption-induced
write backs of ¢ and d, previously written to by task 2.

2.3 Characterizing a Task’s Write Backs

We assume that job-internal write backs are accounted for
within WCET analysis, as they are independent of how a job
is scheduled. To bound carry-in write backs, and in the case
of preemptive scheduling, preemption-induced write backs,
we need to characterize the memory-access behavior of each
task. To do so, we introduce the following concepts:

An FEvicting Cache Block (ECB) of task 7; is a memory
block that may be accessed by task 7,. We denote the set
of cache lines that evicting cache blocks of task 7; map to
by ECB;. Note ECBs have previously been considered in
the analysis of the cache-related preemption delays [3].

A Dirty Cache Block (DCB) of task 7; is a memory block
that may be written to by task 7;. We denote the set of cache
lines that dirty cache blocks of task 7; map to by DCB;.

A Final Dirty Cache Block (FDCB) of task 7; is a DCB that
may still be cached at completion of the task. We denote the
set of cache lines that final dirty cache blocks of task 7; map
to by FDCB,. (By definition, FDCB,; C DCB; C ECB;).

By evicting dirty cache lines, ECBs may cause both
carry-in and preemption-induced write backs. In preemptive
scheduling, lp-carry-in write backs may occur due to DCBs,
while preemption-induced and finished-carry-in write backs
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can only be due to FDCBs. In non-preemptive scheduling,
preemption-induced write backs do not occur, and carry-in
write backs are necessarily finished-carry-in write backs, and
can thus only be due to FDCBs. With both scheduling
paradigms, job-internal write backs can occur and carry-in
write backs can occur due to jobs of all tasks, including the
previous job of the same task.

3. TASK MODEL AND BASIC ANALYSIS

In this section, we set out the basic task model used in
the rest of the paper, and recapitulate existing response-time
analysis for Fixed-Priority Preemptive Scheduling (FPPS)
and Fixed-Priority Non-preemptive Scheduling (FPNS).

3.1 Task Model

We consider a set of sporadic tasks scheduled on a
uniprocessor under either FPPS or FPNS. A task set T’
comprises a static set of n tasks {71, 72,...7»}. Each task
has a unique priority, which without loss of generality is
given by its index. Thus task 7| has the highest priority and
task 7, the lowest. Each task 7; gives rise to a potentially
unbounded sequence of jobs separated by a minimum
inter-arrival time or period 1;. Each job of task 7; has a
bounded worst-case execution time C;, and relative deadline
D;. Deadlines are assumed to be constrained, i.e. D; < Tj.
Note C; is the worst-case execution time in the
non-preemptive case, starting from an arbitrary clean cache.
Thus C; does not include the cost of reloading cache lines
evicted due to preemption, or additional write backs that
may be required when loading memory blocks into dirty
cache lines. On the other hand, it does include the cost of
job-internal write backs.

The worst-case response time R; of task 7; is given by the
longest time from the release of a job of the task until it
completes execution. If the worst-case response time is not
greater than the deadline (R; < D;), then the task is said
to be schedulable. The utilization U; of a task 7; is given by
U; %' and the utilization of the task set is the sum of the
utilizations of the individual tasks U = Z;":l U;.

We use hp(i) and hep(i) to denote respectively the set of
indices of tasks with priorities higher than, and higher than
or equal to that of task 7; (including 7; itself). Similarly, we
use Ip(7) and lep(i) to denote respectively the set of indices
of tasks with priorities lower than, and lower than or equal
to that of task ;.

3.2 Schedulability Analysis for FPPS

For task sets with constrained deadlines scheduled using
FPPS, the exact response time of task 7; may be computed
according to the following recurrence relation [8], [22]:

R =cC, + Z [R_f)—‘ C
T T M T J
jenp(@) ' Y

(1)

Iteration starts with R,P = (; and ends either on convergence
or when R’ > D; in which case the task is unschedulable.

3.3 Schedulability Analysis for FPNS

Determining exact schedulability of a task 7, under FPNS
requires checking all of the jobs of task 7; within the worst-
case priority level-i busy period [13]. (This is the case even
when all tasks have constrained deadlines).

The worst-case priority level-i busy period starts with
an interval of blocking due to a job of the longest task of
lower priority than 7;. Just after that job starts to execute,



jobs of task 7; and all higher priority tasks are released
simultaneously, and then re-released as soon as possible.
Finally, the busy period ends at some time ¢t when there are
no ready jobs of priority ¢ or higher that were not released
strictly before time t.

In this paper, we make use of the following sufficient
schedulability test for FPNS, applicable only to constrained-
deadline task sets. It is based on a test originally given
for non-preemptive scheduling on Controller Area Network
(CAN) [18]. This schedulability test considers two scenarios.
Kither the worst-case response time for task 7; occurs for the
first job in the priority level-i busy period, or for a subsequent
job. The start time WZ-%P of the first job ¢ = 0 of task 7; in
the worst-case priority level-i busy period can be computed
using the following recurrence relation:

WiNP
jehp(i) I

and hence its worst-case response time is given by:

NP NP
Ri,O = Wi,O +Cz

W%P = max Cj +
’ kelp(i)

3
Subsequent jobs of task 7; may be subject to push-through
blocking due to non-preemptive execution of the previous job
of the same task. Let the jobs of task 7; be indexed by values
of q=0,1,..., where ¢ = 0 is the first job in the busy period.
We consider job g 4 1, assuming that job ¢ is schedulable
(we return to this point later). Since job ¢ is schedulable
it completes by its deadline at the latest and therefore also
by the release of job ¢ + 1. Consider the length of the time
interval from when job ¢ starts executing to when job ¢ + 1
starts executing. Note when job ¢ starts executing there can
be no jobs of higher priority tasks that are ready to execute.
In the worst-case, jobs of all higher priority tasks may be
released immediately after job ¢ starts to execute. Thus an
upper bound on the length Wi{\;il of this interval can be
computed using the following recurrence relation:

NP le,\;il
Wz¢q+1 = C’L + Z T +1 Cj (4)
J

J€hp(i)
Since we assume that job g completes by its deadline and
deadlines are constrained (D; < T;), then the interval Wij)\;il
must also upper bound the time from the release of job g + 1
until it starts to execute. As job ¢ + 1 takes time C; to
execute, an upper bound on its worst-case response time is
given by:

R =Wl + G (5)

Assuming that job ¢ = 0 is schedulable according to (2) then
schedulability of the second and subsequent jobs in the busy
period can be determined by induction using (5).

We note the similarity between (2) and (4), and also
between (3) and (5). Thus we may combine them obtaining
an upper bound for the response time of task 7;, under
FPNS. This upper bound may be compared with the task’s
deadline to determine schedulability.

Z (50 o

j€hD(i)

NP
W;

max Cp +
kelep(i)

BT =wi 4 ¢ (1)

The analysis expressed in (5) can be improved by noting
that the start time of job ¢ must be at least C; before the
release of job ¢ + 1, hence the response time upper bound
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given in (5) may be reduced by C;. In this paper, for ease of
presentation, we make use of the simpler test embodied in
(6) and (7).

4. WRITE BACKS UNDER FPNS

In this section, we extend the sufficient schedulability
test for FPNS for constrained-deadline task sets given in
(6) and (7) to account for carry-in write backs. In non-
preemptive scheduling, only job-internal and finished-carry-
in write backs may occur. As discussed earlier, we assume
that job-internal write backs are accounted for within WCET
analysis.

We identify two methods of accounting for finished-carry-
in write backs, which are illustrated in Figure 2. In the first
method, we associate with each job of a task, the carry-in
write backs that occur within the job. This method is used
in the FCB-Only and FDCB-Union approaches described in
Section 4.1. By contrast, in the second method we associate
with each job of a task the carry-in write backs that occur in
subsequent jobs due to dirty cache lines left by the job itself.
This method is used in the FDCB-Only and ECB-Union
approaches described in Section 4.2.

Task 7; Cj

"""""" O
Task 7; t C]
Task Ty C)

(a) Write backs within the job itself.

Task 7;
Task 7; t
Task 7, Q

(b) Write backs in subsequent jobs.

Figure 2: Carry-in write backs may be accounted for either
(a) within the job of the task 7; under analysis, or (b) in
subsequent jobs of both higher (e.g. 7;) and lower (e.g. 7%)
priority tasks.

4.1 Carry-in Write Backs Within the Job

4.1.1 ECB-Only Approach

The number of ECBs provides an upper bound on the
number of carry-in write backs it suffers'. Thus, assuming
timing compositionality [21], the WCET of task 7, including
the cost of write backs, is bounded by

Cl=C; + WBT - |[ECB;| (8)

where W BT is an upper bound on the time to perform
one write back. Replacing C; by C; as defined above (and
similarly Cy and Cj), (6) and (7) can be used to derive
worst-case response times accounting for write backs.

!Note that this holds for direct-mapped caches as well as
for set-associative caches with LRU replacement. This is
different from additional cache misses, which are not directly
bounded by the number of ECBs [14].



4.1.2 FDCB-Union Approach

The ECB-Only approach can be improved upon by taking
into account which cache lines may be dirty when a job is
started. In non-preemptive execution, dirty cache lines at a
job’s start are the final dirty cache lines left by other jobs.

When analyzing 7;’s response time, we distinguish two
types of finished-carry-in write backs: Those that are due
to dirty cache lines introduced before 7;’s release by tasks
with lower or equal priority to 7, represented by ¢;, and
those that are due to dirty cache lines introduced before
and after 7;’s release by tasks of higher priority than 7,
represented by ;" Jb.

Each final dirty cache line of a task with priority lower
than or equal to that of task 7; may result in at most one
write back during 7;’s response time, excluding write backs
that occur during the blocking time. Write backs of these
dirty cache lines can only occur within the response time of
task 7 if the cache lines are accessed by (i.e. in the ECBy)
some task 75 of priority ¢ or higher. The term J; accounts
for these write backs. Note that we exclude from §4; cache
lines that may be dirty due to higher priority tasks as such
cache lines are accounted for by the 7;’:'}’ term introduced
next, thus:

8 = WBT - U #FpCBe\ |J FDCB:
kelep(i) kehp(3)
n| U ECB: (9)
kehep(i)

The number of finished-carry-in write backs that can be
made during the execution of one job of task 7; due to dirty
cache lines introduced by tasks of higher priority than 7 is
upper bounded by 7,7 *b_ Note that only cache lines accessed
by task 7; (i.e. in EC‘B ;) can be written back during the
execution of a job of 7;.

= WBT - U FDCBy | nECB

kehp(i)

vy (10)

We now adapt (6) and (7) to include the write backs
(%‘;’}r’l,b) that can occur within one job of a blocking task 7;
the write backs (d;) that can occur during jobs other than
that of a blocking task, due to dirty cache lines left by tasks
of lower priority than 7; before the start of the busy period;
and finally, the write backs (fywb and ~'?) that can occur
within each of the other jobs that contribute to the response
time of task 7;, due to dirty cache lines introduced by tasks
of higher priority than 7;.

Wz W€B - ma'X (Ch + 77z+1 b) + 5

ep(i)
(11)
() o

+ >
Rzz\,]\/l’;B = W'L],VtﬁB +(Ci + ’vazb) (12)

zWB

jehp(i)

In the 77‘2’}2176 term, n+ 1 denotes a priority that is lower than

that of any task, thus VTVLV}ZM accounts for all carry-in write
backs that may occur during the execution of a blocking task

7, due to cache lines left dirty by previous jobs of any task.

In contrast, ;" ]b and vfff’ need only cover write backs due to
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dirty cache lines from tasks of higher priority than 7;, since
all other write backs are accounted for in J;.

The ECB-Only approach pessimistically assumes that each
time a task is executed the cache is full of dirty cache lines.
The FDCB-Union approach improves upon this by more
precisely modeling which cache lines could actually be dirty.
FDCB-Union strictly dominates ECB-Only, meaning that
any task set that is deemed schedulable according to the
ECB-Only approach is guaranteed to be deemed schedulable
using the FDCB-Union approach. This can be seen by first
considering the C; + 7"} terms in (11) and (12). From (10),
it follows that C; + 'yx)\, cannot be greater than the value
of C; used in (8) for any task 7; and index x, and hence
cannot exceed the inflated WCE'T values used in the ECB-
Only approach. Second, we must consider the additional
contributions in the §; term. For an FDCB to contribute
to &;, then from (9), that FDCB cannot be in FDCBj; of
any task 7, with a priority higher than that of task 7;. Also,
it must be in the ECB; of task 7; or the ECB), of some
higher priority task 7. If it is in EC'B; and conttlbuteb
to d; then from (10) it is not included in the )P term in
(12), thus the inflated WCET Cj in the ECB- Only approach
covers both this contribution to ¢; and the 1P term in (12).
Similarly, if the FDCB is in £CB; and contributes to §; then
it is not included in the 4,"P term in (11), thus the inflated
WCET Cj in the ECB- Only approach again covers both this
contllbutlon to § and ;" ] Finally, it serves only to consider
a system with no FDCBs to see that FDCB-Union strictly
dominates ECB-Only. At the other extreme, if all ECBs are
also FDCBs, then FDCB-Union reduces to ECB-Only (with
6; = 0).

4.2 Carry-in Write Backs in Subsequent Jobs
4.2.1 FDCB-Only Approach

Instead of using 7;'; ¥b {0 mean the cost of carry-in write
backs that occur wzthm the execution of a job of task 7;,
we can redefine 7'> to cover the write backs that occur in
subsequent jobs due to dirty cache lines left by a job of task 7;.
This is achieved by assuming that all of these cache lines
may be evicted by the subsequent jobs:

WP = WBT - |[FDCB,| (13)

With this approach, § needs to account for all carry-in write
backs due to cache lines that were dirty prior to 7;’s release:
6 =WBT

(UFDCBy (14)

Finally, the final dirty cache lines that 7; leaves do not
affect its own response time. As a consequence (12) can be
simplified as follows (with (11) unchanged):

Rf,jviB = W; we + Ci
4.2.2 ECB-Union Approach

The above approach can be improved by taking into
account which of the dirty cache lines may actually be
evicted by subsequent jobs of tasks which may execute
within 7;’s response time (i.e. by also considering the cache
lines (ECBy) accessed by each task 7, of priority ¢ or
higher).

(15)

(16)

Wy =WBT-|FDCB;n | J ECB;

kehep(i)



Similarly, in the dp; term, we need only account for those
dirty cache lines that may be evicted during 7;’s response
time. This depends on the blocking task y:

8ps = WBT - (U FDCBk> N U
k

jehep(i)U{b}

ECB,

Hence we include dp,; in the blocking term resulting in the
following adaptation of (11):

NP

Wiwp = ,hax (Cb+’7zb + 0b,1)

ep(i)
(18)
<\‘ zVVBJ )(C +'Y1,g)

+ >
j€hp(i)

The ECB-Union approach strictly dominates the FDCB-
Only approach. This can be seen by comparing the 'yfvjh
terms and the dp; terms. Comparing the 7;"; Wb terms in (13)
and (16) we note that surprisingly there is no advantage
gained by ECB-Union, since FDCB; C ECB; and i € lep(j)
in all uses of this term, hence (16) effectively reduces to (13).
Considering the dp; terms, if there are a number of lower
priority tasks with FDCBs that are not present in the ECBs
of tasks with priorities higher than or equal to 7; then (17)
can improve upon (14), with dominance apparent from the
set intersection.

We note that the ECB-Union and FDCB-Union
approaches are incomparable, and hence we may form a
combined approach by taking the minimum response time
computed by either approach. By construction, this
combined approach dominates both ECB-Union and
FDCB-Union. Since it can be applied on a per task basis,
the combined approach classifies more task sets as
schedulable than can be found by using the ECB-Union and
FDCB-Union approaches individually on each task set. A
worked example that illustrates these relationships is given
in Appendix B of the technical report [17].

5. WRITE BACKS UNDER FPPS

Response-time analysis for FPPS has previously been
extended to account for preemption-related cache misses [2],
[3] by introducing a term -~;; into the response-time
equation for task 7; as follows:

-_C—i—Z[

JjEhp(i)

](c ) (19)

J

To also account for additional write backs in preemptive
scheduling, we extend the recurrence relation as follows:

R;
7@
Here, §; is used to account for write backs due to cache
lines that were already dirty on release of 7; and are written
back within its response time. Additional cache misses due
to preemptions are captured by *ym‘” Any of the existing
techniques, for example those 1ntr0duced in [3] can be used
to account for such misses. Finally, 'yf:’Jb is used to account
for carry-in and preemption-induced write backs of cache

lines that were written to after Ti’s release
We further subdivide ;" J'-) into fyw P and 'be -finsuch that

wh- fp accounts for lp-carry-in

miss

Rl =6i+Cit+ > s by (20)

JEhp(i)

wb-1p wb-fin
%,] =Y T Vi

write backs and 7;’;

, where 7",

Wb'ﬁn d(,(,OllIltb for finished-carry-in and
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preemption-induced write backs (see Section 2.2 for their
definitions). In the following we introduce four different

ways of computing 'y;” 2P These combine with the analysis

derived for ¢; and ’be in to give the DCB-Only, ECB-Union,
ECB-Only and DCB-Union approaches for analysing write
backs under FPPS.

5.1 Initially Dirty Cache Line Write Backs

We first consider which cache lines may be dirty when the
priority level-i busy period starts that leads to the worst-
case response time of a job of task 7;. Only tasks of lower
priority than 7; may be active immediately before the start
of this busy period, so the cache lines in UJelp(i) DCBj may
all be in the cache and dirty. Further, the cache lines in
Ukehep(i) FDC By, may have been left dirty by finished jobs
of higher priority tasks. Among all the dirty cache lines,
we need only account for those that may be evicted within
7;’s response time. As only 7; and higher priority tasks can
run during this interval, these are Ukehep(i) EC By, hence we
obtain the following formula for d;:

8 = WBT-
\J pcByu |J FDCBy|n| |J ECB:
JEI(7) kehep(i) ke€hep(z)

5.2 Lower-Priority Carry-in Write Backs

To bound lp-carry-in write backs (v; ]b ") due to preempted

tasks, we identify two methods, both illustrated in Figure 3.

(a) the Ip-carry-in write backs of dirty cache lines

introduced by the job immediately-preempted by a job

of 7; that occur within the response time of 75, i.e.
either executing 7; or a higher-priority task.

(b) the Ip-carry-in write backs of dirty cache lines
introduced by any preempted lower-priority tasks that
occur within the execution of a job of ;.

Using method (a), we define the DCB-Only and ECB-

Union approaches, and with method (b), the ECB-Only and
DCB-Union approaches.

(a) Effect of immediately-preempted task (light grey) on all
preempting tasks (dark grey).

(b) Effect of preempted tasks (light grey) on immediately
preempting task (dark grey).

Figure 3: Methods of accounting for Ip-carry-in write backs.

5.2.1 DCB-Only Approach

Using method (a), any task that could be active during
the response time of task 7; and has a lower priority than
task 7; (i.e. a task in the set aff(i, j) = hep(:) Nip(j)) could



be immediately preempted by task 7;, thus we obtain the
following upper bound on the cost of write backs 'yf" Jb‘lp
associated with jobs of task 7;:

max

whlp _ oW BT .
g heuff(i,5)

|DC By, | (22)
Note, when using this DCB-Only approach we assume that
(21) is simplified ignoring the ECBs.

6;=WBT-| | J DCB;U |J FDCB
JEp(i) kehep(i)

5.2.2 ECB-Union Approach

The DCB-Only approach can be refined by noting that we
are only interested in write backs of these dirty cache lines
due to execution of tasks while the job of task 7; is active, i.e.
due to execution of 7; or a higher-priority task (see Figure 3)
thus:

(23)

wh-lp __

WP = WBT - (24)

max |DCBp N U ECB;
heaff(i,5) )
lehep(j)

5.2.3 ECB-Only Approach

Using method (b), the Ip-carry-in write backs of dirty
cache lines introduced by any preempted lower-priority tasks
that occur within the execution of 7; are upper bounded by
the ECBs of 7;:
wh-1
Vi, b=
Note, when using this ECB-Only approach we assume that
(21) is simplified ignoring the DCBs.

WBT - |ECB,| (25)

5, = WBT - U ECB

kehep(i)

5.2.4 DCB-Union Approach

The ECB-Only approach can be refined by noting that
we are only interested in write backs of dirty cache lines
introduced by preempted lower-priority tasks (see Figure 3).
Note, that we do not need to account for Ip-carry-in write
backs due to dirty cache lines of tasks of lower priority than 7;
as these are already accounted for in ¢;.

(26)

wb-lp __

WP = WBT -

U DCBw | NnECB,
heaff(i,7)

(27)

5.3 Finished-carry-in Write Backs
A job of task 7; can leave |FFDC By| dirty cache lines, which
may have to be written back within 7;’s response time. This
yields the following simple bound on the cost of finished-
carry-in and preemption-induced write backs:
=WBT - |FDCB;]|.

vy
One might assume that this bound can be improved by
taking into account the evicting cache blocks of other tasks;
however, as FDCB; C FECB;, then without further
information, we must assume that the next job of task ;
will have to clean up the final dirty cache lines left by the
previous job of the same task, thus no improvement is
possible.
By construction, the ECB-Union approach dominates
DCB-Only, and the DCB-Union approach dominates

(28)
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ECB-Only. Further, since ECB-Union and DCB-Union are
incomparable we may form a combined approach that takes
the smallest response time computed by either approach,
and hence dominates both. A worked example that
illustrates these relationships is given in Appendix B of the
technical report [17].

In some cases there could be pessimism in the analysis for
FPPS as a result of write backs that are counted as both
job-internal write backs in the WCET of a task, and also as
carry-in write backs that occur when a task is preempted
and a cache line is written back by the preempting task. As
an example consider the sequence of accesses c*, c*, ¢, d
where memory blocks ¢ and d are mapped to the same cache
line, and * indicates a write. Here the read of d causes a job-
internal write back of ¢. Preemption between the final write
to ¢ and the read of d could result in the preempting task
writing back ¢ (a carry-in write back), but no job-internal
write back. In this case the analysis would over-approximate
the total number of write backs. However, preemptions
between the writes to ¢ could induce a further carry-in write
back in addition to the job-internal one. While there is some
over-approximation in the analysis, our evaluations, in the
next section, show that this over-approximation is small, with
the combined approach close to the upper bound computed
without write-back costs.

6. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the
different analyses introduced in Sections 4 and 5 for
write-back caches under fixed-priority preemptive and
non-preemptive scheduling, as compared to no cache and a
write-through cache. For both write-back and write-through
caches, we assumed a write-allocate policy. Preliminary
experiments showed that the difference between write
allocate and no-write allocate for a write-through cache
were minimal, with the former giving slightly better
performance on the benchmarks studied.

We assume a timing-compositional processor with separate
instruction and data caches. Each cache is direct-mapped
and has 512 cache lines of size 32 bytes. Thus both caches
have a capacity of 16 KB. Further, we assume a write-back
latency W B'T" of 10 cycles. Cache misses also take 10 cycles,
while non-memory instructions and cache hits take 1 cycle.

As a proof of concept for the analysis techniques, we
obtained realistic estimates for WCETs and the sets of
DCBs and ECBs, from the Mélardalen benchmark suite [20]
and the EEMBC Benchmark suite [1] (Section 7 explains
how this was done). Table 1 shows the number of UCBs,
ECBs, DCBs, and FDCBs for selected benchmarks, as well
as the WCETs (without inter-task interference) assuming a
write-back cache (C™P), a write-through cache (C™*), and
no data cache (C™°). We note that these stand-alone
WCETs are a substantial factor of 1.4 to 3.0 times lower
with a write-back cache than with write through, and 2 to 9
times lower than with no data cache. Since we assume a
separate instruction and data cache, the UCB and ECB
values are shown separately for each cache.

We note that fixed-priority non-preemptive scheduling
suffers from the long task problem, whereby task sets that
contain some tasks with short deadlines and others with
long WCETSs are trivially unschedulable due to blocking. To
ameliorate this problem, we only selected benchmarks for
Table 1 where the stand-alone WCETs were in the range
[7000 : 70000] cycles. This interval corresponds to the most
populated range where the smallest and largest WCET's
differ by a factor of 10. This restriction has little effect on



Table 1: Data from the Milardalen and EEMBC benchmarks used for evaluation

Name cvb vt cvevt o o )c™ |UcB'| |ECB'| [UCBP| |ECBP| |DCB| |FDCB]
cnt 9325 13485 1.44 24565 2.63 12 82 21 68 28 28
compress 10673 18713 175 43443 407 21 71 53 103 60 60
countneg 36180 57250 1.58 114340 3.16 15 7 59 103 66 66
cre 68889 133909 1.94 272859 3.96 19 89 2% 73 10 39
expint 9268 15208 1.64 31098 3.35 16 76 11 42 13 13
fdct 7883 16793 2.13 38423 4.87 52 144 15 48 19 19
fir 8328 18998 2928 43668 5.24 22 83 17 57 17 16
jfdctint 9711 18621 1.91 39181 4.03 46 145 17 53 23 23
loop3 14189 28729 2.02 57929 4.08 7 309 9 42 12 12
ludemp 10058 15948 1.58 39668 3.94 38 128 21 61 28 28
minver 18976 30616 1.61 54746 2.88 103 213 18 71 33 33
ns 27464 37674 1.37 98634 3.59 14 70 9 116 13 11
nsichneu 18988 24458 1.28 66808 3.51 345 494 52 95 54 53
qurt 10473 16003 1.52 23573 2.25 61 132 14 49 17 17
select 8981 17031 189 30331 3.37 A7 124 10 49 16 16
sqrt 27667 40537 1.46 59117 2.13 51 102 11 48 16 16
statemate 64638 195778 3.02 581908 9.00 92 167 2 68 21 20
a2time 12655 22975 1.81 53815 4.25 16 122 8 100 69 67
aifirf 44898 86768 1.93 181698 404 2 141 33 188 161 54
basefp 50491 92221 1.82 213771 4.23 11 88 15 512 507 467
canrdr 32641 65211 1.99 156611 4.79 8 40 9 371 195 186
iirfit 20995 56995 1.90 127605 425 35 288 28 259 147 138
pntrch 23887 43137 1.80 109257 4.57 24 38 20 237 176 70
puwmod 48782 97072 1.98 239752 491 3 50 5 512 307 275
rspeed 10913 21393 1.96 51713 4.73 8 53 7 122 71 70
tblook 12533 25493 2.03 58813 4.69 12 115 14 125 71 71

the results for FPPS, while also providing task sets that
can actually be scheduled using FPNS. We used the same
set of benchmarks for FPPS and FPNS to facilitate direct
comparison. Results using all of the benchmarks are shown
in Appendix D of the technical report [17], along with a
complete table of values.
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We evaluated the guaranteed performance of the various
approaches on a large number of randomly generated task sets
(10000 per utilization level for the baseline experiments, and
100 per level for the weighted schedulability [9]) experiments.
The task set parameters were generated as follows:

e The default task set size was 10.

e Bach task was assigned data from a randomly chosen
row of Table 1, corresponding to code from the
benchmarks.

The task utilizations (U;) were generated using
UUnifast [10].

Task periods were set based on utilization and the stand-
alone WCET for a write-back cache, i.e., T; = Cl-Wb/Ui.
Task deadlines were implicit D; = 1;.

Task priorities were in deadline-monotonic order.
Tasks were placed in memory sequentially in priority
order, thus determining the direct mapping to cache.

Figures 4 and 5 show the baseline results for FPPS and
FPNS respectively. Table 2 summarises these results using
the weighted schedulability measure [9].

Table 2: Weighted Schedulability for FPNS and FPPS

Approach FPPS FPNS

Write-back (upper bound) 0.793458  0.445750
Combined 0.693003 0.412270
(F)DCB-Union 0.692087  0.411087
ECB-Union 0.672489  0.396159
(F)DCB-Only 0.561542  0.396159
ECB-Only 0.581876  0.365523
Write-through 0.249231 0.112666
No data cache 0.052548 0.021463

Additional experimental results showing how this measure
varies with the number of tasks and with the memory latency
are given in Appendix A of the technical report [17]. The lines
in the figures correspond to the four different approaches, plus
the combined approach, along with results for a write-through
data cache and a system with no data cache. The first line



refers to an optimistic upper bound where we assumed the
stand-alone WCETs for write-back caches, but without any
cost for write backs. This line upper bounds the performance
of any sound analysis for write-back caches, and thus gives an
indication of the precision of the analyses introduced in this
paper. For preemptive scheduling, in all cases, we include
the cost of additional cache misses due to CRPD using the
UCB-Union approach [3].

The results shown in Figures 4 and 5 indicate that the
guaranteed performance obtained for write-back caches using
the analyses introduced in this paper exceeds that which can
be obtained for write-through caches. Further, the upper
bound line indicates that the combined approaches used to
analyse write-back cache offer a high degree of precision.

7. ECB, DCB, AND FDCB ANALYSES

This paper focusses on the integration of the overheads
due to write backs into response time analysis. As a proof-of-
concept of the analysis techniques, we obtained the WCKETs
and the sets of DCBs and ECBs used in the evaluation
from a trace of accesses obtained for each of the programs
in the Milardalen [20] and EEMBC [1] benchmark suites.
Due to the simplicity of the benchmarks, and the provision
of input data, this was possible for both single-path and
multi-path examples. The code for each benchmark was first
compiled using the GCC ARM cross-compiler, and included
statically-linked library calls. Traces for the benchmarks were
then generated using the gemb instruction set simulator [11].
Bounds on the sets of UCBs, ECBs, DCBs, and FDCBs
for each benchmark were derived from the traces via cache
simulation. (Note, we assumed that the location of code
and data in memory was fixed for all runs of the program,
as is common in simple embedded systems). Obtaining the
sets of values in this way enables a like-for-like comparison
between the different analyses for write back, write through,
and no cache. More complex programs would require the
use of static analysis techniques to generate these sets. The
development and implementation of such techniques is the
subject of our ongoing work.

We now sketch how to derive the set of evicting cache
blocks (ECB), dirty cache blocks (DCB), and final dirty
cache blocks (FDCB) using static analysis techniques. In
all cases, we are interested in conservative approximations
in the sense that the sets may only be over- but never be
under-approximated. For the set of ECBs, it is sufficient to
accumulate all cache lines accessed across all paths during
program execution, and for the set of DCBs, it is sufficient
to accumulate all cache lines written to during program
execution. This can be accomplished by a simple data-flow
analysis. In the case of data caches, a challenge is to precisely
determine which cache lines may be accessed at a particular
program point. Since by construction, the set of FDCBs is a
subset of the set of DCBs, a DCB analysis therefore provides
a sound but pessimistic approximation of the set of FDCBs.
A more precise approximation can be obtained using may-
cache analysis [19]. This computes for each program point an
over-approximation of the cache contents, i.e., of the memory
blocks that may be cached in each cache set. May-cache
analysis can be extended to keep track of the dirty state of
each cache line, as shown in [19], again in a conservative
fashion: each potentially dirty cache line is considered to be
dirty. The set of FDCBs is then given by the set of dirty
cache lines in the may cache at the final program point.

We assume that the software programs being analysed are
designed for use in critical real-time systems. Thus they
make minimal use of pointers, do not include recursion, and
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statically allocate all data structures. Further, we assume
that the operating system uses a separate fixed stack location
for each task, thus stack variables created in every function
calling context can have their addresses fully resolved at
compilation / linking time, along with all global variables
and other data structures. Difficulties remain in resolving
precisely which memory locations are accessed inside loops;
however, loop unrolling provides a potential solution to this
problem. Nevertheless, we recognise that there are a number
of sources of pessimism that can potentially impact the
accuracy of a static cache analysis leading to imprecision in
the sets of DCBs and FDCBs, examples include accesses to
locations that are dependent on input data. Refining the
analysis techniques presented in this paper to deal with such
uncertainty is the subject of ongoing research.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced for the first time, analysis for
a write-back cache which we integrated into response-time
analysis for fixed-priority preemptive and fixed-priority
non-preemptive scheduling. We introduced the concepts of
Dirty Cache Blocks (DCBs), and Final Dirty Cache Blocks
(FDCBs) and classified the different types of write back
which can occur due to a task’s internal behavior, carry-in
effects from previously executing tasks, and preemption
effects. For each scheduling paradigm, we derived four
approaches to analysing the worst-case number of write
backs that can occur within the response time of a task. We
showed the dominance relationships that hold between these
different approaches and formed state-of-the-art combined
approaches for both fixed-priority preemptive and
non-preemptive scheduling based on them.

Our evaluation using data from the Maélardalen and
EEMBC benchmark suites showed that the approaches
derived are highly effective, resulting in guaranteed
performance with a write-back cache which significantly
exceeds that obtained using a write-through cache. These
results show that the commercial preference for write-back
caches due to their better average case performance extends
to their analysable real-time performance.

This paper represents an important first step in the
integration of analysis for write-back caches into
schedulability analysis. It necessarily makes some
simplifications, most notable of which is the focus on
direct-mapped caches. We intend to extend our work in this
area to include the analysis of set-associative caches, with
the least-recently-used (LRU) policy, and a resilience-like [7]
notion for dirty cache blocks. We are also extending this
work to consider write buffers which can be used to improve
efficiency with write-through and write-back policies.
Preliminary results in this area can be found in Appendix C
of [17]. There we show that with write-through caches, large
write buffers are necessary to achieve comparable
performance to write-back caches. Further, compositional
analysis for write-buffers of size >1 may incur timing
anomalies (domino effects) and result in unsafe bounds.

Other avenues we aim to explore include the effect of
bypassing the cache on stores where there is no re-use, i.e.
streaming stores; the effect of flushing the cache (forcing write
backs) at certain points in the code to improve predictability,
for example by forcing write backs at job termination; and
the effect of memory layout on performance, similar to what
has previously been done to reduce cache-related preemption
delays [26]. In this work, we assume that job-internal write
backs are accounted for in a task’s WCE'T bound, in future,
we aim to integrate a precise analysis of job-internal write



backs into WCET analysis. We also note that uncertainty /
imprecision in determining the sets of ECBs, UCBs, DCBs,
and FDCBs challenges the analysis for both write-through
and write-back caches; this is an area that requires further
study and is the subject of our ongoing work.
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