The IX Operating System: Combining Low Latency, High Throughput,
and Efficiency in a Protected Dataplane

ADAM BELAY, Stanford

GEORGE PREKAS and MIA PRIMORAC, EPFL

ANA KLIMOVIC, SAMUEL GROSSMAN, and CHRISTOS KOZYRAKIS, Stanford
EDOUARD BUGNION, EPFL

The conventional wisdom is that aggressive networking requirements, such as high packet rates for small
messages and us-scale tail latency, are best addressed outside the kernel, in a user-level networking stack.
We present 1x, a dataplane operating system that provides high I/O performance and high resource efficiency
while maintaining the protection and isolation benefits of existing kernels.

X uses hardware virtualization to separate management and scheduling functions of the kernel (control
plane) from network processing (dataplane). The dataplane architecture builds upon a native, zero-copy API
and optimizes for both bandwidth and latency by dedicating hardware threads and networking queues to
dataplane instances, processing bounded batches of packets to completion, and eliminating coherence traffic
and multicore synchronization. The control plane dynamically adjusts core allocations and voltage/frequency
settings to meet service-level objectives.

We demonstrate that ix outperforms Linux and a user-space network stack significantly in both throughput
and end-to-end latency. Moreover, Ix improves the throughput of a widely deployed, key-value store by up to
6.4x and reduces tail latency by more than 2x. With three varying load patterns, the control plane saves 46%—
54% of processor energy, and it allows background jobs to run at 35%—47% of their standalone throughput.

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management; D.4.4 [Operating
Systems]: Communications Management; D.4.7 [Operating Systems]: Organization and Design

General Terms: Design, Performance

Additional Key Words and Phrases: Virtualization, dataplane operating systems, latency-critical applica-
tions, microsecond-scale computing, energy-proportionality, workload consolidation

ACM Reference Format:

Adam Belay, George Prekas, Mia Primorac, Ana Klimovic, Samuel Grossman, Christos Kozyrakis, and
Edouard Bugnion. 2016. The IX operating system: Combining low latency, high throughput, and efficiency
in a protected dataplane. ACM Trans. Comput. Syst. 34, 4, Article 11 (December 2016), 39 pages.

DOT: http://dx.doi.org/10.1145/2997641

This work was funded by DARPA CRASH (under contract #N66001-10-2-4088), a Google research grant, the
Stanford Experimental Datacenter Lab, the Microsoft-EPFL Joint Research Center, and NSF grant CNS-
1422088. George Prekas was supported by a Google Graduate Research Fellowship and Adam Belay by a
VMware Graduate Fellowship.

Authors’ addresses: A. Belay, A. Klimovic, S. Grossman, and C. Kozyrakis, Computer Science Department,
Stanford University, 353 Serra Mall, Stanford, CA, 94305; emails: {abelay, anakli, samuelgr, kozyraki}@
stanford.edu; G. Prekas, M. Primorac, and E. Bugnion, School of Computer and Communication Sciences,
EPFL, INN 237 (Batiment INN), Station 14, CH-1015 Lausanne, Switzerland; emails: {george.prekas,
mia.primorac, edouard.bugnion}@epfl.ch.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2016 ACM 0734-2071/2016/12-ART11 $15.00

DOI: http://dx.doi.org/10.1145/2997641

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

http://dx.doi.org/10.1145/2997641
http://dx.doi.org/10.1145/2997641

11:2 A. Belay et al.

1. INTRODUCTION

Datacenter applications have evolved with the advent of web-scale services. User-
facing, large-scale applications such as search, social networking, and e-commerce now
rely extensively on high fan-out patterns between low-latency services. Such services
exhibit low per-request service times (a handful of us for a key-value store), have strict
service-level objectives (SLOs, e.g. <500us at the 99th percentile), and must sustain
massive request rates for short messages with high client fan-in connection counts and
churn [Atikoglu et al. 2012; Dean and Barroso 2013; Nishtala et al. 2013].

The conventional wisdom is that there is a basic mismatch between these re-
quirements and existing networking stacks in commodity operating systems. To
address the performance concern, some systems bypass the kernel and implement
the networking stack in user-space [Jeong et al. 2014b; Kapoor et al. 2012; Marinos
et al. 2014; Solarflare Communications 2011; Thekkath et al. 1993]. While kernel
bypass eliminates privilege-level crossing overheads, on its own it does not eliminate
the difficult tradeoffs between high packet rates and low latency (see Section 5.2.1).
Moreover, user-level networking suffers from lack of protection. Application bugs and
crashes can corrupt the networking stack and impact other workloads. Other systems
go a step further by also replacing TCP/IP with RDMA in order to offload network
processing to specialized adapters [Dragojevic et al. 2014; Jose et al. 2011; Mitchell
et al. 2013; Ousterhout et al. 2015]. However, such adapters must be present at both
ends of the connection and can only be used within the datacenter.

Such latency-critical services are also challenging to run in a shared infrastruc-
ture environment. They are particularly sensitive to resource allocation and frequency
settings, and they suffer frequent tail latency violations when common power man-
agement or consolidation approaches are used [Leverich and Kozyrakis 2014; Li et al.
2014]. As a result, operators typically deploy them on dedicated servers running in
polling mode, forgoing opportunities for workload consolidation and reduced power
consumption at below-peak utilization levels. Since these services are deployed on
thousands of servers in large-scale datacenters, this deployment practice represents a
huge waster in resource use.

Ideally, we want these services to achieve energy proportionality, so that their en-
ergy consumption scales with observed load [Barroso and Hoélzle 2007; Lo et al. 2014].
Hardware enhancements, primarily in dynamic voltage/frequency scaling (DVFS) and
idle modes in modern processors [Kim et al. 2008; Rotem et al. 2012], provide a founda-
tion for energy proportionality. Moreover, we want these services to allow for workload
consolidation, so that any spare resources during periods of low load can be used by
workloads such as background analytics in order to raise server utilization [Vogels
2008; Verma et al. 2015]. The two goals map to distinct economic objectives: energy
proportionality reduces operational expenses (opex), whereas workload consolidation
reduces capital expenses (capex). Since capital costs often dominate the datacenter’s
total cost of ownership (TCO), consolidation is highly desirable. Nevertheless, it is not
always possible, for example, when one application consumes the entirety of a given
resource (e.g., memory). In such cases, energy proportionality is a necessity.

We propose 1x, an operating system designed to break the four-way tradeoff between
high throughput, low latency, strong protection, and resource efficiency. Its architec-
ture builds upon lessons from high-performance middleboxes, such as firewalls, load
balancers, and software routers [Dobrescu et al. 2009; Kohler et al. 2000]. 1x separates
the control plane, which is responsible for system configuration and coarse-grained
resource provisioning between applications, from the dataplanes, which run the net-
working stack and application logic. 1x leverages Dune and virtualization hardware to
run the dataplane kernel and the application at distinct protection levels and to isolate
the control plane from the dataplane [Belay et al. 2012]. In our implementation, the

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

The IX Operating System 11:3

control plane leverages mechanisms of the full Linux kernel to dynamically reallocate
resources, and the dataplanes run as protected, library-based operating systems on
dedicated hardware threads.

The x dataplane allows for networking stacks that optimize for both bandwidth
and latency. It is designed around a native, zero-copy API that supports processing of
bounded batches of packets to completion. Each dataplane executes all network pro-
cessing stages for a batch of packets in the dataplane kernel, followed by the associated
application processing in user mode. This approach amortizes API overheads and im-
proves both instruction and data locality. We set the batch size adaptively based on
load. The x dataplane also optimizes for multicore scalability. The network adapters
(NICs) perform flow-consistent hashing of incoming traffic to distinct queues. Each
dataplane instance exclusively controls a set of these queues and runs the network-
ing stack and a single application without the need for synchronization or coherence
traffic during common case operation. The x API departs from the POSIX API, and its
design is guided by the commutativity rule [Clements et al. 2013]. However, the 1ibix
user-level library includes an event-based API similar to the popular 1ibevent library
[Provos and Mathewson 2003], providing compatibility with a wide range of existing
applications.

The core of the 1x control plane is a dynamic controller that adjusts the number of
cores allocated to a latency-sensitive application running on top of 1x and the DVFS
settings for these cores. The remaining cores can be placed in idle modes to reduce
power consumption or can be safely used to run background tasks. The controller
builds on two key mechanisms. The first mechanism detects backlog and increases in
queuing delays that exceed the allowable upper bound for the specific latency-critical
application. It monitors CPU utilization and signals required adjustments in resource
allocation. The second mechanism, implemented in coordination with the dataplane,
quickly migrates both network and application processing between cores transparently
and without dropping or reordering packets.

To evaluate the dataplane, we compare 1x with a TCP/IP dataplane against Linux 4.2
and mTCP, a state-of-the-art user-level TCP/IP stack [Jeong et al. 2014b]. On a 10GbE
experiment using short messages, X outperforms Linux and mTCP by up to 6.6x and
1.8x, respectively, for throughput. 1x further scales to a 4x10GbE configuration using
a single multicore socket. The unloaded uni-directional latency for two IX servers is
5.8us, which is 3.3x better than standard Linux kernels and an order of magnitude
better than mTCP, as both trade off latency for throughput. Our evaluation with mem-
cached, a widely deployed key-value store, shows that x improves upon Linux by up
to 6.4x in terms of throughput at a given 99th percentile latency bound, as it can
reduce kernel time, due essentially to network processing, from ~80% with Linux to
60% with 1x.

Before evaluating the control plane, we performed an exhaustive analysis of static
configurations for a latency-critical service (memcached [memcached 2014]) running on
a modern server to gain a principled understanding of the challenges for resource man-
agement in the presence of latency-critical services. We explored up to 224 possible
settings for core allocation, use of hyperthreads, DVFS frequencies, and Turbo Boost.
While our experiments use a single application, the implications have broad applica-
bility because memcached has aggressive latency requirements, short service times, and
a large number of independent clients that are common among many latency-critical
applications. Our experiments reveal that there is an inherent tradeoff for any given
static configuration between the maximum throughput and the overall efficiency when
operating below peak load. Furthermore, the experiments reveal a Pareto-optimal fron-
tier in the efficiency of static configurations at any given load level, which allows for
close to linear improvements in energy proportionality and workload consolidation
factors.

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

11:4 A. Belay et al.

We then evaluated our control plane with two control policies that optimize for en-
ergy proportionality and workload consolidation, respectively. A policy determines how
resources (cores, hyperthreads, and DVFS settings) are adjusted to reduce underuti-
lization or to restore violated SLOs. The two policies are derived from the exhaustive
analysis of the 224 static configurations. For the platform studied (a Xeon E5-2665),
we conclude that for best energy proportionality, (1) we start with the lowest clock rate
and allocate additional cores to the latency-critical task as its load grows, using at
first only one hyperthread per core; (2) we enable the second hyperthread only when
all cores are in use; and finally (3) we increase the clock rate for the cores running
the latency-critical task. For best consolidation, we (1) start at the nominal clock rate
and add cores with both hyperthreads enabled as load increases and (2) finally enable
Turbo Boost as a last resort.

x demonstrates that, by revisiting networking APIs and taking advantage of modern
NICs and multicore chips, we can design systems that achieve high throughput, low
latency, robust protection, and resource efficiency. It also shows that, by separating the
small subset of performance-critical I/O functions from the rest of the kernel, we can
architect radically different I/O systems and achieve large performance gains, while
retaining compatibility with the huge set of APIs and services provided by a modern
OS like Linux. Finally, we also demonstrate that latency-sensitive applications can be
deployed efficiently through dynamic resource allocation policies that target a specific
tail latency.

This article contains the research contributions of two conference papers that focus on
the dataplane [Belay et al. 2014] and the control plane [Prekas et al. 2015], respectively.
The evaluation results presented in this article have been reproduced with IX v.1.0,
which is available in open source [IX on GitHub 2016]. A corresponding technical report
provides detailed instructions to reproduce all the results of this article [Prekas et al.
2016].

The rest of the article is organized as follows. Section 2 motivates the need for a new
OS architecture. Sections 3 and 4 present the design principles and implementation of
1X. Section 5 presents the quantitative evaluation. Sections 6 and 7 discuss open issues
and related work. We conclude in Section 8.

2. BACKGROUND AND MOTIVATION

Our work focuses on improving operating systems for applications with aggressive
networking requirements running on multicore servers.

2.1. Challenges for Datacenter Applications

Large-scale, datacenter applications pose unique challenges to system software and
their networking stacks:

Microsecond tail latency. To enable rich interactions between a large number of
services without impacting the overall latency experienced by the user, it is essential
to reduce the latency for some service requests to a few tens of us [Barroso 2014;
Rumble et al. 2011]. Because each user request often involves hundreds of servers, we
must also consider the long tail of the latency distributions of RPC requests across
the datacenter [Dean and Barroso 2013]. Although tail tolerance is actually an end-
to-end challenge, the system software stack plays a significant role in exacerbating
the problem [Leverich and Kozyrakis 2014]. Overall, each service node must ideally
provide tight bounds on the 99th percentile request latency.

High packet rates. The requests and, oftentimes, the replies between the various
services that compose a datacenter application are quite small. In Facebook’s memcached
service, for example, the vast majority of requests use keys shorter than 50 bytes and

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

The IX Operating System 11:5

involve values shorter than 500 bytes [Atikoglu et al. 2012], and each node can scale
to serve millions of requests per second [Nishtala et al. 2013].

The high packet rate must also be sustainable under a large number of concurrent
connections and high connection churn [Graham 2013]. If the system software cannot
handle large connection counts, there can be significant implications for applications.
The large connection count between application and memcached servers at Facebook
made it impractical to use TCP sockets between these two tiers, resulting in deploy-
ments that use UDP datagrams for get operations and an aggregation proxy for put
operations [Nishtala et al. 2013].

Protections. Since multiple services commonly share servers in both public and pri-
vate datacenters [Dean and Barroso 2013; Hindman et al. 2011; Schwarzkopf et al.
2013], there is a need for isolation between applications. The use of kernel-based or
hypervisor-based networking stacks largely addresses the problem. A trusted network
stack can firewall applications, enforce access control lists (ACLs), and implement
limiters and other policies based on bandwidth metering.

Resource efficiency. The load of datacenter applications varies significantly due to di-
urnal patterns and spikes in user traffic. Ideally, each service node will use the fewest
resources (cores, memory, or IOPS) needed to satisfy packet rate and tail latency re-
quirements at any point. Unfortunately, classic operating system schedulers are ill-
matched to ensure tail control [Leverich and Kozyrakis 2014; Li et al. 2014]. Novel
dynamic resource management mechanisms and policies are required to improve en-
ergy proportionality and workload consolidation in the presence of latency-sensitive
applications [Lo et al. 2014, 2015; Li et al. 2016].

2.2. The Hardware—OS Mismatch

The wealth of hardware resources in modern servers should allow for low latency and
high packet rates for datacenter applications. A typical server includes one or two
processor sockets, each with eight or more multithreaded cores and multiple high-
speed channels to DRAM and PCle devices. Solid-state drives and PCle-based Flash
storage are also increasingly popular. For networking, 10GbE NICs and switches are
widely deployed in datacenters, with 40GbE and 100GbE technologies right around
the corner. The combination of tens of hardware threads and 10GbE NICs should allow
for rates of 156M packets/sec with minimum-sized packets. We should also achieve 10
to 20us round-trip latencies given 3us latency across a pair of 10GbE NICs, one to five
switch crossings with cut-through latencies of a few hundred ns each, and propagation
delays of 500ns for 100 meters of distance within a datacenter.

Unfortunately, commodity operating systems have been designed under very differ-
ent hardware assumptions. Kernel schedulers, networking APIs, and network stacks
are based on an assumption of multiple applications sharing a single processing core
and packet interarrival times being many times higher than the latency of inter-
rupts and system calls. As a result, such operating systems trade off both latency and
throughput in favor of fine-grained resource scheduling. Interrupt coalescing (used to
reduce processing overheads), queuing latency due to device driver processing inter-
vals, the use of intermediate buffering, and CPU scheduling delays frequently add up to
several hundred us of latency to remote requests. The overheads of buffering and syn-
chronization needed to support flexible, fine-grained scheduling of applications to cores
increase CPU and memory system overheads, which limits throughput. As requests
between service tiers of datacenter applications often consist of small packets, common
NIC hardware optimizations, such as TCP segmentation and receive side coalescing,
have a marginal impact on packet rate.

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

11:6 A. Belay et al.

2.3. Alternative Approaches

Since the network stacks within commodity kernels cannot take advantage of the abun-
dance of hardware resources, a number of alternative approaches have been suggested.
Each alternative addresses a subset, but not all of the requirements for datacenter ap-
plications.

User-space networking stacks. Systems such as OpenOnload [Solarflare Communica-
tions 2011], mTCP [Jeong et al. 2014b], and Sandstorm [Marinos et al. 2014] run the en-
tire networking stack in user-space in order to eliminate kernel crossing overheads and
optimize packet processing without incurring the complexity of kernel modifications.
However, there are still tradeoffs between packet rate and latency. For instance, mTCP
uses dedicated threads for the TCP stack, which communicate at relatively coarse
granularity with application threads. This aggressive batching amortizes switching
overheads at the expense of higher latency (see Section 5). It also complicates resource
sharing as the network stack must use a large number of hardware threads regard-
less of the actual load. More importantly, security tradeoffs emerge when networking
is lifted into the user-space and application bugs can corrupt the networking stack.
For example, an attacker may be able to transmit raw packets (a capability that nor-
mally requires root privileges) to exploit weaknesses in network protocols and impact
other services [Bellovin 2004]. It is difficult to enforce any security or metering policies
beyond what is directly supported by the NIC hardware.

Alternatives to TCP. In addition to kernel bypass, some low-latency object stores rely
on RDMA to offload protocol processing on dedicated Infiniband host channel adapters
[Dragojevic et al. 2014; Jose et al. 2011; Mitchell et al. 2013; Ousterhout et al. 2015].
RDMA can reduce latency but requires that specialized adapters be present at both
ends of the connection. Using commodity Ethernet networking, Facebook’s memcached
deployment uses UDP to avoid connection scalability limitations [Nishtala et al. 2013].
Even though UDP is running in the kernel, reliable communication and congestion
management are entrusted to applications.

Alternatives to POSIX API. MegaPipe replaces the POSIX API with lightweight
sockets implemented with in-memory command rings [Han et al. 2012]. This reduces
some software overheads and increases packet rates, but retains all other challenges
of using an existing, kernel-based networking stack.

OS enhancements. Tuning kernel-based stacks provides incremental benefits with
superior ease of deployment. Linux SO_REUSEPORT allows multithreaded applications to
accept incoming connections in parallel. Affinity-accept reduces overheads by ensuring
that all processing for a network flow is affinitized to the same core [Pesterev et al.
2012]. Recent Linux kernels support a busy polling driver mode that trades increased
CPU utilization for reduced latency [Intel Corp. 2013], but it is not yet compatible with
epoll. When microsecond latencies are irrelevant, properly tuned stacks can maintain
millions of open connections [WhatsApp, Inc. 2012].

3. ix DESIGN APPROACH

The first two requirements in Section 2.1—microsecond latency and high packet rates—
are not unique to datacenter applications. These requirements have been addressed
in the design of middleboxes such as firewalls, load balancers, and software routers
[Dobrescu et al. 2009; Kohler et al. 2000] by integrating the networking stack and the
application into a single dataplane. The two remaining requirements—protection and
resource efficiency—are not addressed in middleboxes because they are single-purpose
systems, not exposed directly to users.

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

The IX Operating System 117

Many middlebox dataplanes adopt design principles that differ from traditional OSs.
First, they run each packet to completion. All network protocol and application process-
ing for a packet is done before moving on to the next packet, and application logic is
typically intermingled with the networking stack without any isolation. By contrast,
a commodity OS decouples protocol processing from the application itself in order to
provide scheduling and flow control flexibility. For example, the kernel relies on device
and soft interrupts to context switch from applications to protocol processing. Simi-
larly, the kernel’s network stack will generate TCP ACKs and slide its receive window
even when the application is not consuming data, up to an extent. Second, middlebox
dataplanes optimize for synchronization-free operation in order to scale well on many
cores. Network flows are distributed into distinct queues via flow-consistent hashing
and common case packet processing requires no synchronization or coherence traffic
between cores. By contrast, commodity OSs tend to rely heavily on coherence traffic
and are structured to make frequent use of locks and other forms of synchronization.

X extends the dataplane architecture to support untrusted, general-purpose appli-
cations and satisfy all requirements in Section 2.1. Its design is based on the following
key principles:

Separation and protection of control and data plane. 1x separates the control function
of the kernel, responsible for resource configuration, provisioning, scheduling, and
monitoring, from the dataplane, which runs the networking stack and application
logic. Like a conventional OS, the control plane multiplexes and schedules resources
among dataplanes, but in a coarse-grained manner in space and time. Entire cores are
dedicated to dataplanes, memory is allocated at large page granularity, and NIC queues
are assigned to dataplane cores. The control plane is also responsible for elastically
adjusting the allocation of resources between dataplanes.

The separation of control and dataplane also allows us to consider radically different
I/0 APIs while permitting other OS functionality, such as file system support, to be
passed through to the control plane for compatibility. Similar to the Exokernel [Engler
et al. 1995], each dataplane runs a single application in a single address space. However,
we use modern virtualization hardware to provide three-way isolation between the
control plane, the dataplane, and untrusted user code [Belay et al. 2012]. Dataplanes
have capabilities similar to guest OSs in virtualized systems. They manage their own
address translations, on top of the address space provided by the control plane, and
can protect the networking stack from untrusted application logic through the use
of privilege rings. Moreover, dataplanes are given direct pass-through access to NIC
queues through memory-mapped I/0.

Run to completion with adaptive batching. 1X dataplanes run to completion all stages
needed to receive and transmit a packet, interleaving protocol processing (kernel mode)
and application logic (user mode) at well-defined transition points. Hence, there is no
need for intermediate buffering between protocol stages or between application logic
and the networking stack. Unlike previous work that applied a similar approach to
eliminate receive livelocks during congestion periods [Mogul and Ramakrishnan 1997],
X uses run to completion during all load conditions. Thus, we are able to use polling
and avoid interrupt overhead in the common case by dedicating cores to the dataplane.
We still rely on interrupts as a mechanism to regain control, for example, if application
logic is slow to respond. Run to completion improves both message throughput and
latency because successive stages tend to access many of the same data, leading to
better data cache locality.

The 1x dataplane also makes extensive use of batching. Previous systems applied
batching at the system call boundary [Han et al. 2012; Soares and Stumm 2010] and
at the network API and hardware queue level [Jeong et al. 2014b]. We apply batching

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

11:8 A. Belay et al.

in every stage of the network stack, including but not limited to system calls and
queues. Moreover, we use batching adaptively as follows: (1) we never wait to batch
requests and batching only occurs in the presence of congestion, and (2) we set an
upper bound on the number of batched packets. Using batching only on congestion
allows us to minimize the impact on latency, while bounding the batch size prevents
the live set from exceeding cache capacities and avoids transmit queue starvation.
Batching improves packet rate because it amortizes system call transition overheads
and improves instruction cache locality, prefetching effectiveness, and branch predic-
tion accuracy. When applied adaptively, batching also decreases latency because these
same efficiencies reduce head-of-line blocking.

The combination of bounded, adaptive batching and run to completion means that
queues for incoming packets can build up only at the NIC edge, before packet process-
ing starts in the dataplane. The networking stack sends acknowledgments to peers
only as fast as the application can process them. Any slowdown in the application-
processing rate quickly leads to shrinking windows in peers. The dataplane can also
monitor queue depths at the NIC edge and signal the control plane to allocate addi-
tional resources for the dataplane (more hardware threads, increased clock frequency),
notify peers explicitly about congestion (e.g., via ECN [Ramakrishnan et al. 2001]), and
make policy decisions for congestion management (e.g., via RED [Floyd and Jacobson
1993)).

Native, zero-copy API with explicit flow control. We do not expose or emulate
the POSIX API for networking. Instead, the dataplane kernel and the applica-
tion communicate at coordinated transition points via messages stored in mem-
ory. Our API is designed for true zero-copy operation in both directions, improving
both latency and packet rate. The dataplane and application cooperatively manage
the message buffer pool. Incoming packets are mapped read-only into the applica-
tion, which may hold onto message buffers and return them to the dataplane at
a later point. The application sends to the dataplane scatter/gather lists of mem-
ory locations for transmission, but since contents are not copied, the application
must keep the content immutable until the peer acknowledges reception. The dat-
aplane enforces flow control correctness and may trim transmission requests that
exceed the available size of the sliding window, but the application controls transmit
buffering.

Flow-consistent, synchronization-free processing. We use multiqueue NICs with
receive-side scaling (RSS [Microsoft Corp. 2014]) to provide flow-consistent hashing
of incoming traffic to distinct hardware queues. Each hardware thread (hyperthread)
serves a single receive and transmit queue per NIC, eliminating the need for synchro-
nization and coherence traffic between cores in the networking stack. Similarly, mem-
ory management is organized in distinct pools for each hardware thread. The absence
of a POSIX socket API eliminates the issue of the shared file descriptor namespace
in multithreaded applications [Clements et al. 2013]. Overall, the 1x dataplane design
scales well with the increasing number of cores in modern servers, which improves both
packet rate and latency. This approach does not restrict the memory model for applica-
tions, which can take advantage of coherent, shared memory to exchange information
and synchronize between cores.

TCP-friendly flow group migration. The 1x control plane establishes dynamically the
mapping of RSS flow groups to queues to balance the traffic among the hardware
threads. The x dataplane implements the actual flow group migration and programs
the NIC’s RSS Redirection Table [Intel Corp. 2014a] to change the mappings. The
implementation does not impact the steady-state performance of the dataplane and

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

The IX Operating System 11:9

e N N
2 ()] -
2 ! !

- IXcp || libix | libix
_______ e I e
° [} [}
=2 1\ J 1\),
________ R e -

o3 | |

2 % Linux | |

z E | |

> | |

| |
ICIICI:ICIICIICI:CIICIICI

[} [}

| |

[} [}

| |

S0 |0 5

Fig. 1. Protection and separation of control and dataplane in IX.

its coherence-free design. The migration algorithm contains distinct phases that en-
sure that migration does not create network anomalies such as dropping packets or
processing them out of order in the networking stack.

Dynamic control loop with user-defined policies. At its core, the control plane has a
control loop that monitors the queuing delay to detect likely SLO violations and reacts
by adding system resources within milliseconds. It monitors the utilization of the 1x
dataplane to similarly remove unnecessary system resources. The 1x control plane relies
on the host Linux kernel mechanisms to adjust system resources such as changing the
processor frequency or the number of cores allocated to the 1x dataplane. It relies on
the 1x dataplane’s TCP-friendly flow group migration mechanism to balance the load
among the cores. Although the control loop specifies when resources must be adjusted,
it does not specify which resource must be added or removed, as this policy decision is a
function of the platform’s characteristics, the application’s ability to scale horizontally,
and the overall objective (energy proportionality or workload consolidation).

4. 1x IMPLEMENTATION
4.1. Overview

Figure 1 presents the 1x architecture, focusing on the separation between the control
plane and the multiple dataplanes. The hardware environment is a multicore server
with one or more multiqueue NICs with RSS support. The 1x control plane consists of
the full Linux kernel and IXCP, a user-level program. The Linux kernel initializes PCle
devices, such as the NICs, and provides the basic mechanisms for resource allocation
to the dataplanes, including cores, memory, and network queues. Equally important,
Linux provides system calls and services that are necessary for compatibility with a
wide range of applications, such as file system and signal support. IXCP monitors re-
source usage and dataplane performance and implements resource allocation policies.

We run the Linux kernel in VMX root ring 0, the mode typically used to run hy-
pervisors in virtualized systems [Uhlig et al. 2005]. We use the Dune module within
Linux to enable dataplanes to run as application-specific OSs in VMX nonroot ring 0,
the mode typically used to run guest kernels in virtualized systems [Belay et al. 2012].

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

11:10 A. Belay et al.

Applications run in VMX nonroot ring 3, as usual. This approach provides dataplanes
with direct access to hardware features, such as page tables and exceptions, and pass-
through access to NICs. Moreover, it provides full, three-way protection between the
control plane, dataplanes, and untrusted application code.

Each x dataplane supports a single, multithreaded application. For instance,
Figure 1 shows one dataplane for a multithreaded memcached server and another dat-
aplane for a multithreaded httpd server. The control plane allocates resources to each
dataplane in a coarse-grained manner. Core allocation is controlled through real-time
priorities and cpusets, memory is allocated in large pages, and each NIC hardware
queue is assigned to a single dataplane. This approach avoids the overheads and
unpredictability of fine-grained time multiplexing of resources between demanding
applications [Leverich and Kozyrakis 2014].

Each x dataplane operates as a single address-space OS and supports two thread
types within a shared, user-level address space: (1) elastic threads, which interact with
the x dataplane to initiate and consume network I/O, and (2) background threads.
Both elastic and background threads can issue arbitrary POSIX system calls that are
intermediated and validated for security by the dataplane before being forwarded to
the Linux kernel. Elastic threads are expected to not issue blocking calls because of
the adverse impact on network behavior resulting from delayed packet processing.
Each elastic thread makes exclusive use of a core or hardware thread allocated to the
dataplane in order to achieve high performance with predictable latency. In contrast,
multiple background threads may timeshare an allocated hardware thread. For exam-
ple, if an application were allocated four hardware threads, it could use all of them as
elastic threads to serve external requests or it could temporarily transition to three
elastic threads and use one background thread to execute tasks such as garbage collec-
tion. When the control plane revokes or allocates an additional hardware thread using
a protocol similar to the one in Exokernel [Engler et al. 1995], the dataplane adjusts
its number of elastic threads.

4.2. The ix Dataplane

We now discuss the x dataplane in more detail. It differs from a typical kernel in that
it is specialized for high-performance network I/O and runs only a single application,
similar to a library OS but with memory isolation. However, our dataplane still provides
many familiar kernel-level services.

For memory management, we accept some internal memory fragmentation in order
to reduce complexity and improve efficiency. All hot-path data objects are allocated
from per-hardware thread memory pools. Each memory pool is structured as arrays
of identically sized objects, provisioned in page-sized blocks. Free objects are tracked
with a simple free list, and allocation routines are inlined directly into calling functions.
Mbufs, the storage object for network packets, are stored as contiguous chunks of book-
keeping data and MTU-sized buffers, and are used for both receiving and transmitting
packets.

The dataplane also manages its own virtual address translations, supported through
nested paging. In contrast to contemporary OSs, it uses exclusively large pages (2MB).
We favor large pages due to their reduced address translation overhead [Basu et al.
2013; Belay et al. 2012] and the relative abundance of physical memory resources in
modern servers. The dataplane maintains only a single address space; kernel pages are
protected with supervisor bits. We deliberately chose not to support swappable memory
in order to avoid adding performance variability.

We provide a hierarchical timing wheel implementation for managing network
timeouts, such as TCP retransmissions [Varghese and Lauck 1987]. It is optimized
for the common case where most timers are canceled before they expire. We support

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

The IX Operating System 11:11

Table I. Lines of Code (in Thousands)

KSLOC IX | IwIP | Dune | total
Control plane 0.4 0.4
Data plane 9.7 9.4 4.9 24.0
Linux kernel 2.5 2.5
User-level library | 1.0 1.0

Table Il. The I1x Dataplane System Call and Event Condition API
System Calls (Batched)

Type Parameters Description

connect cookie, dst_IP, dst_port Opens a connection

accept handle, cookie Accepts a connection

sendv handle, scatter_gather_array Transmits a scatter-gather array of data

recv_done handle, bytes_acked Advances the receive window and frees memory
buffers

close handle Closes or rejects a connection

Event Conditions

Type Parameters Description

knock handle, src_IP, src_port A remotely initiated connection was opened
connected cookie, outcome A locally initiated connection finished opening
recv cookie, mbuf_ptr, mbuf_len A message buffer was received

sent cookie, bytes_sent, window_size A send completed and/or the window size changed
dead cookie, reason A connection was terminated

extremely high-resolution timeouts, as low as 16us, which has been shown to improve
performance during TCP in-cast congestion [Vasudevan et al. 2009].

Our current 1x dataplane implementation is based on Dune and requires the VT-x
virtualization features available on Intel x86-64 systems [Uhlig et al. 2005]. However, it
could be ported to any architecture with virtualization support, such as ARM, SPARC,
and Power. It also requires one or more Intel 82599 chipset NICs, but it is designed to
easily support additional drivers.

Table I lists the code size (in thousands of SLOC [Wheeler 2001]). The rows corre-
spond to the different protection domains of the system, while the columns correspond
to the different open-source projects involved. The TCP/IP stack uses a highly modified
version of IwIP [Dunkels 2001]. We chose IwIP as a starting point for TCP/IP processing
because of its modularity and its maturity as a RFC-compliant, feature-rich network-
ing stack. We implemented our own RFC-compliant support for UDP, ARP, and ICMP.
Since IwIP was optimized for memory efficiency in embedded environments, we had to
radically change its internal data structures for multicore scalability and fine-grained
timer management. However, we did not yet optimize the IwIP code for performance.
Hence, the results of Section 5 have room for improvement. In addition, the x dat-
aplane links with an unmodified DPDK library, which is used to initially configure
the NIC. DPDK code is not used during datapath operations; instead, 1x accesses NIC
descriptor rings directly.

4.3. Dataplane APl and Operation

The elastic threads of an application interact with the ix dataplane through three asyn-
chronous, nonblocking mechanisms summarized in Table II: they issue batched system
calls to the dataplane; they consume event conditions generated by the dataplane; and
they have direct, but safe, access to mbufs containing incoming payloads. The latter
allows for zero-copy access to incoming network traffic. The application can hold on to
mbufs until it asks the dataplane to release them via the recv_done batched system
call.

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

11:12 A. Belay et al.

(3>
Event libix w Batched

o L v
> Conditions Syscalls
o 3 K
o T
c C
€ O
c

@ oo

A adaptive batch \%'LJ

Fig. 2. Interleaving of protocol processing and application execution in the IX dataplane.

Both batched system calls and event conditions are passed through arrays of shared
memory, managed by the user and the kernel, respectively. ix provides an unbatched
system call (run_io) that yields control to the kernel and initiates a new run-to-
completion cycle. As part of the cycle, the kernel overwrites the array of batched system
call requests with corresponding return codes and populates the array of event condi-
tions. The handles defined in Table II are kernel-level flow identifiers. Each handle is
associated with a cookie, an opaque value provided by the user at connection establish-
ment to enable efficient user-level state lookup [Han et al. 2012].

X differs from POSIX sockets in that it directly exposes flow control conditions to
the application. The sendv system call does not return the number of bytes buffered.
Instead, it returns the number of bytes that were accepted and sent by the TCP stack, as
constrained by correct TCP sliding-window operation. When the receiver acknowledges
the bytes, a sent event condition informs the application that it is possible to send
more data. Thus, send window-sizing policy is determined entirely by the application.
By contrast, conventional OSs buffer send data beyond raw TCP constraints and apply
flow control policy inside the kernel.

We built a user-level library, called 1ibix, which abstracts away the complexity of our
low-level API. It provides a compatible programming model for legacy applications and
significantly simplifies the development of new applications. 1ibix currently includes
a very similar interface to 1ibevent and nonblocking POSIX socket operations. It also
includes new interfaces for zero-copy read and write operations that are more efficient,
at the expense of requiring changes to existing applications.

libix automatically coalesces multiple write requests into single sendv system calls
during each batching round. This improves locality, simplifies error handling, and
ensures correct behavior, as it preserves the data stream order even if a transmit
fails. Coalescing also facilitates transmit flow control because we can use the transmit
vector (the argument to sendv) to keep track of outgoing data buffers and, if necessary,
reissue writes when the transmit window has more available space, as notified by
the sent event condition. Our buffer sizing policy is currently very basic; we enforce
a maximum pending send byte limit, but we plan to make this more dynamic in the
future [Fisk and Feng 2000].

Figure 2 illustrates the run-to-completion operation for an elastic thread in the 1x
dataplane. NIC receive buffers are mapped in the server’s main memory and the NIC’s

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

The IX Operating System 11:13

receive descriptor ring is filled with a set of buffer descriptors that allow it to transfer
incoming packets using DMA. The elastic thread (1) polls the receive descriptor ring
and potentially posts fresh buffer descriptors to the NIC for use with future incoming
packets. The elastic thread then (2) processes a bounded number of packets through
the TCP/IP networking stack, thereby generating event conditions. Next, the thread (3)
switches to the user-space application, which consumes all event conditions. Assuming
that the incoming packets include remote requests, the application processes these
requests and responds with a batch of system calls. Upon return of control from user-
space, the thread (4) processes all batched system calls, and in particular the ones
that direct outgoing TCP/IP traffic. The thread also (5) runs all kernel timers in order
to ensure compliant TCP behavior. Finally (6), it places outgoing Ethernet frames in
the NIC’s transmit descriptor ring for transmission, and it notifies the NIC to initiate
a DMA transfer for these frames by updating the transmit ring’s tail register. In a
separate pass, it also informs the protocol stack of any buffers that have finished
transmitting, based on the transmit ring’s head position. The process repeats in a loop
until there is no network activity. In this case, the thread enters a quiescent state, which
involves either hyperthread-friendly polling or optionally entering a power-efficient C-
state, at the cost of some additional latency.

4.4. Multicore Scalability

The 1x dataplane is optimized for multicore scalability, as elastic threads operate in a
synchronization- and coherence-free manner in the common case. This is a stronger
requirement than lock-free synchronization, which requires expensive atomic instruc-
tions even when a single thread is the primary consumer of a particular data structure
[David et al. 2013]. This is made possible through a set of conscious design and imple-
mentation tradeoffs.

First, system call implementations can only be synchronization-free if the API itself
is commutative [Clements et al. 2013]. The x API is commutative between elastic
threads. Each elastic thread has its own flow identifier namespace, and an elastic
thread cannot directly perform operations on flows that it does not own.

Second, the API implementation is carefully optimized. Each elastic thread manages
its own memory pools, hardware queues, event condition array, and batched system
call array. The implementation of event conditions and batched system calls benefits
directly from the explicit, cooperative control transfers between 1x and the application.
Since there is no concurrent execution by producer and consumer, event conditions and
batched system calls are implemented without synchronization primitives based on
atomics.

Third, the use of flow-consistent hashing at the NICs ensures that each elastic thread
operates on a disjoint subset of TCP flows. Hence, no synchronization or coherence
occurs during the processing of incoming requests for a server application. For client
applications with outbound connections, we need to ensure that the reply is assigned
to the same elastic thread that made the request. Since we cannot reverse the Toeplitz
hash used by RSS [Microsoft Corp. 2014], we simply probe the ephemeral port range
to find a port number that would lead to the desired behavior. Note that this implies
that two elastic threads in a client cannot share a flow to a server.

x does have a small number of shared structures, including some that require syn-
chronization on updates. For example, the ARP table is shared by all elastic threads
and is protected by RCU locks [McKenney and Slingwine 1998]. Hence, the common
case reads are coherence-free but the rare updates are not. RCU objects are garbage
collected after a quiescent period that spans the time it takes each elastic thread to
finish a run-to-completion cycle.

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

11:14 A. Belay et al.

IXCP.py Prepare Wait RPC iDefer.process! o _ o ___
i done
migrate(fgs) ’ timeout l
/
CPUAY. |
finalize| !
prepare release I
CPUB 1 localQ-B remoteQ-B :
I
first I:I > 1
update HW I;Scket |
NIC packet 4 o . defaultQ-8 _ !
(a) Thread-centric view (b) Packet-centric view

Fig. 3. Flow-group migration algorithm.

Finally, the application code may include interthread communication and synchro-
nization. While using X does not eliminate the need to develop scalable application
code, it ensures that there are no scaling bottlenecks in the system and protocol pro-
cessing code.

4.5. Flow Group Migration

When adding or removing a thread, IXCP generates a set of migration requests. Each
individual request is for a set of flow groups (fgs) currently handled by one elastic
thread A to be handled by elastic thread B. To simplify the implementation, the con-
troller serializes the migration requests and the dataplane assumes that at most one
such request is in progress at any point in time. Each thread has three queues that can
hold incoming network packets and ensure that packets are delivered in order to the
network layer.

Figure 3 illustrates the migration steps in a thread-centric view (Figure 3(a)) and
in a packet-centric view (Figure 3(b)). The controller and the dataplane threads com-
municate via lock-free structures in shared memory. First, the controller signals A to
migrate fgs to B. A first marks each flow group of the set fgs with a special tag to hold
off normal processing on all threads, moves packets that belong to the flow group set
fgs from defaultQ-A to remoteQ-B, and stops all timers belonging to the flow group set.
A then reprograms the NIC’s RSS Relocation Table for index fgs. Packets still received
by A will be appended to remoteQ-B; packets received by B will go to 1ocalQ-B.

Upon reception of the first packet whose flow group belongs to fgs by B, B signals A to
initiate the final stage of migration. Then, B finalizes the migration by re-enabling fgs’s
timers, removing all migration tags, and prepending to its defaultQ-B the packets from
remoteQ-B and the packets from 1ocalQ-B. Finally, B notifies the control plane that the
operation is complete. A migration timer ensures completion of the operation when the
NIC does not receive further packets.

4.6. The IXCP Control Loop

The IXCP daemon largely relies on Linux host- and 1x dataplane-provided mechanisms.
It is implemented in ~500 lines of Python. At its core, the controller adjusts proces-
sor resources by suspending and resuming 1x elastic threads, specifying the mapping
between flow groups and threads, and controlling the processor frequency. For server
consolidation scenarios, it may additionally control the resources allocated to back-
ground tasks.

The control loop implements a user-specified policy that determines the upper bound
on the acceptable queuing delay and the sequence of resource allocation adjustments.
For this, it relies on a key side effect of x’s use of adaptive batching: unprocessed

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

The IX Operating System 11:15

packets that form the backlog are queued in a central location, namely, in step (1)
in the pipeline of Figure 2. Packets are then processed in order in bounded batches to
completion through both the networking stack and the application logic. In other words,
each 1x core operates like a simple FCFS queuing server, onto which classic queuing
and control theory principles can be easily applied. In contrast, conventional operating
systems distribute buffers throughout the system: in the NIC (because of coalesced
interrupts), in the driver before networking processing, and in the socket layer before
being consumed by the application. Furthermore, these conventional systems provide
no ordering guarantees across flows, which makes it difficult to pinpoint congestion.

To estimate queuing delays, the controller monitors the iteration time 7 and the
queue depth Q. With B the maximal batch size, the tail latency is ~max(delay) =
[Q/B] * . The dataplane computes each instantaneous metric every 10ms for the
previous 10ms interval. As these metrics are subject to jitter, the dataplane computes
the exponential weighted moving averages using multiple smoothing factors («) in
parallel. For example, we track the queue depth as Q(¢, @) = a* Qo +(1—a)*x Qt — 1,).
The control loop executes at a frequency of 10Hz, which is sufficient to adapt to load
changes.

The control loop is responsible to determine when to adjust resources, but not the
sequence of resource adjustment steps. For example, adding a core, enabling hyper-
thread, or increasing processor frequency can each increase throughput. In principle,
the selection of the resource allocation (and deallocation) sequence can be derived from
a Pareto analysis among all possible static configuration. For energy proportionality,
the optimization metric is the energy consumption; for workload consolidation, it is the
throughput of the background job. We show in Section 5.3 how such a methodology can
be applied in practice for a given workload and compute platform.

Deciding when to remove resources is trickier than deciding when to add them, as
shallow and near-empty queues do not provide reliable metrics. Instead, the control loop
measures idle time and relies on the observation that each change in the configuration
adds or removes a predictable level of throughput. The control loop makes resource
deallocation decisions when idle time exceeds the throughput ratio.

4.7. Security Model

The x API and implementation have a cooperative flow control model between ap-
plication code and the network-processing stack. Unlike user-level stacks, where the
application is trusted for correct networking behavior, the 1x protection model makes
few assumptions about the application. A malicious or misbehaving application can
only hurt itself. It cannot corrupt the networking stack or affect other applications. All
application code in 1X runs in user mode, while dataplane code runs in protected ring
0. Applications cannot access dataplane memory, except for read-only message buffers.
No sequence of batched system calls or other user-level actions can be used to violate
correct adherence to TCP and other network specifications. Furthermore, the dataplane
can be used to enforce network security policies, such as firewalling and access con-
trol lists. The 1x security model is as strong as conventional kernel-based networking
stacks, a feature that is missing from all recently proposed user-level stacks.

The 1x dataplane and the application collaboratively manage memory. To enable
zero-copy operation, a buffer used for an incoming packet is passed read-only to the
application, using virtual memory protection. Applications are encouraged (but not
required) to limit the time they hold message buffers, both to improve locality and
to reduce fragmentation because of the fixed size of message buffers. In the transmit
direction, zero-copy operation requires that the application must not modify outgoing
data until reception is acknowledged by the peer, but if the application violates this
requirement, it will only result in incorrect data payload.

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

11:16 A. Belay et al.

Since elastic threads in 1x execute both the network stack and application code, a
long-running application can block further network processing for a set of flows. This
behavior in no way affects other applications or dataplanes. We use a timeout interrupt
to detect elastic threads that spend excessive time in user mode (e.g., in excess of 10ms).
We mark such applications as nonresponsive and notify the control plane.

The current 1x prototype does not yet use an IOMMU. As a result, the x dataplane
is trusted code that has access to descriptor rings with host-physical addresses. This
limitation does not affect the security model provided to applications.

5. EVALUATION OF THE DATAPLANE

We compared 1x to a baseline running Linux kernel version 4.2 and to mTCP [Jeong
et al. 2014b]. Our evaluation uses both networking microbenchmarks and a widely
deployed, event-based application. In all cases, we use TCP as the networking protocol.

5.1. Experimental Methodology

Our experimental setup consists of a cluster of 24 clients and one server connected
by a Quanta/Cumulus 48x10GbE switch with a Broadcom Trident+ ASIC. The client
machines are a mix of Xeon E5-2637 @ 3.5Ghz and Xeon E5-2650 @ 2.6Ghz. The server
is a Xeon E5-2665 @ 2.4Ghz with 256GB of DRAM. Each client and server socket has
eight cores and 16 hyperthreads. All machines are configured with Intel x520 10GbE
NICs (82599EB chipset). We connect clients to the switch through a single NIC port,
while for the server it depends on the experiment. For 10GbE experiments, we use a
single NIC port, and for 4x10GbE experiments, we use four NIC ports bonded by the
switch with a L3+L4 hash.

Our baseline configuration in each machine is an Ubuntu LTS 14.0.4 distribution,
updated to the 4.2 Linux kernel, the most recent at the time of writing. We enable
hyperthreading when it improves performance. Except for Section 5.2.1, client ma-
chines always run Linux. All power management features are disabled for all systems
in all experiments. Jumbo frames are never enabled. All Linux workloads are pinned
to hardware threads to avoid scheduling jitter, and background tasks are disabled.

The Linux client and server implementations of our benchmarks use the 1ibevent
framework with the epoll system call. We downloaded and installed mTCP from the
public-domain release [Jeong et al. 2014a] but had to write the benchmarks ourselves
using the mTCP API. We run mTCP with the 2.6.36 Linux kernel, as this is the most
recent supported kernel version. We report only 10GbE results for mTCP, as it does
not support NIC bonding. For 1x, we bound the maximum batch size to B = 64 packets
per iteration, which maximizes throughput on microbenchmarks (see Section 6).

5.2. Dataplane Performance

5.2.1. Latency and Single-Flow Bandwidth. We first evaluated the latency of 1x using Net-
PIPE, a popular ping-pong benchmark, using our 10GbE setup. NetPIPE simply ex-
changes a fixed-size message between two servers and helps calibrate the latency and
bandwidth of a single flow [Snell et al. 1996]. In all cases, we run the same system on
both ends (Linux, mTCP, or 1x).

Figure 4 shows the goodput achieved for different message sizes. Two x servers have
a one-way latency of 5.8us for 64B messages and achieve goodput of 5Gbps, half of
the maximum, with messages as small as 20000 bytes. In contrast, two Linux servers
have a one-way latency of 19.0us and require 192KB messages to achieve 5Gbps. The
differences in system architecture explain the disparity: ix has a dataplane model that
polls queues and processes packets to completion, whereas Linux has an interrupt
model, which wakes up the blocked process. mTCP uses aggressive batching to offset

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

The IX Operating System 11:17

T R
8 .
2 6 -
e}
<)
=
(=Y
kS
g,
O
2 -
IX-IX —&—
Linux-Linux —&—
% mTCP-mTCP —=—
0 T T T T T
0 100 200 300 400 500
Message Size (KB)

Fig. 4. NetPIPE performance for varying message sizes and system software configurations.

the cost of context switching [Jeong et al. 2014b], which comes at the expense of higher
latency than both x and Linux in this particular test.

5.2.2. Throughput and Scalability. We evaluate 1x’s throughput and multicore scalability
with the same benchmark used to evaluate MegaPipe [Han et al. 2012] and mTCP
[Jeong et al. 2014b]. Eighteen clients connect to a single server listening on a single
port, send a remote request of size s bytes, and wait for an echo of a message of the
same size. Similar to the NetPIPE benchmark, while receiving the message, the server
holds off its echo response until the message has been entirely received. Each client
performs this synchronous remote procedure call n times before closing the connection.
As in Jeong et al. [2014b], clients close the connection using a reset (TCP RST) to avoid
exhausting ephemeral ports.

Figure 5 shows the message rate or goodput for both the 10GbE and the 40GbE
configurations as we vary the number of cores used, the number of round-trip messages
per connection, and the message size, respectively. For the 10GbE configuration, the
results for Linux and mTCP are consistent with those published in the mTCP paper
[Jeong et al. 2014b]. For all three tests (core scaling, message count scaling, message
size scaling), X scales more aggressively than mTCP and Linux. Figure 5(a) shows
that 1x needs only four cores to saturate the 10GbE link, whereas mTCP requires all
eight cores. On Figure 5(b), for 1,024 round trips per connection, 1x delivers 8.5 million
messages per second, which is 1.8x the throughput of mTCP and 6.6x that of Linux.
With this packet rate, 1x achieves line rate and is limited only by 10GbE bandwidth.

Figure 5 also shows that 1x scales well beyond 10GbE to a 4x10GbE configuration.
Figure 5(a) shows that x linearly scales to deliver 4.2 million TCP connections per
second on 4x10GbE. Figure 5(b) shows a speedup of 2.0x with n = 1 and of 1.5x with
n =1, 024 over 10GbE 1x. Finally, Figure 5(c) shows 1x can deliver 8KB messages with

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

11:18 A. Belay et al.

Linux 10Gbps —e— IX 10Gbps —&— mTCP 10Gbps —=—
Linux 40Gbps —e— IX 40Gbps —=—
4.5 -
4 -
< 35 -
x 37
§ 2.5 +
3 2
on
g 1.5 4
s 1
0.5 - -
0 Y
0 1 2 3 4 5 6 7 8
Number of CPU cores
(a) Multi-core scalability (n=1, s=64B)
“«
2
z
2
3
g
5
=
0 1 2 8 32 64 128 256 512 1K
Number of Messages per Connection
(b) n round-trips per connection. (s=64B)
35
30
g 25 A
©
© 20 |
2z
S 15 A
g
®© 10 +
5 .
0 T T T T 1
0 64 256 1024 4096 8192

Message Size

(c) Different message sizes s (n=1)

Fig. 5. Multicore scalability and high connection churn for 10GbE and 4x10GbE setups. In (a), half steps
indicate hyperthreads.

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

The IX Operating System 11:19

a goodput of 33.0 Gbps, for a wire throughput of 36.3 Gbps, out of a possible 39.7 Gbps.
Overall, 1x makes it practical to scale protected TCP/IP processing beyond 10GbE, even
with a single-socket multicore server.

5.2.3. Connection Scalability. We also evaluate X’s scalability when handling a large
number of concurrent connections on the 4x10GbE setup. Eighteen client machines
runs n threads, with each thread repeatedly performing a 64B remote procedure call to
the server with a variable number of active connections. We experimentally set n = 24
to maximize throughput. We report the maximal throughput in messages per second
for a range of total established connections.

Figure 6 shows up to 250,000 connections, which is the upper bound we can reach with
the available client machines. As expected, Figure 6(a) shows that throughput increases
with the degree of connection concurrency but then decreases for very large connection
counts due to the increasingly high cost of multiplexing among open connections. At the
peak, 1x performs 11x better than Linux, consistent with the results from Figure 5(b).
With 250,000 connections and 4x10GbE, 1x is able to deliver 41% of its own peak
throughput.

Figure 6(b) shows that the drop in throughput is not due to an increase in the
instruction count, but instead can be attributed to the performance of the memory
subsystem. Intel’s Data Direct I/O technology, an evolution of DCA [Huggahalli et al.
2005], eliminates nearly all cache misses associated with DMA transfers when given
enough time between polling intervals, resulting in as little as 1.6 L3 cache misses per
message for up to 2,500 concurrent connections, a scale where all of IX’s data structures
fit easily in the L3 cache. In contrast, the workload averages 29 L3 cache misses per
message when handling 250,000 concurrent connections. At high connection counts,
the working set of this workload is dominated by the TCP connection state and does
not fit into the processor’s L3 cache. Nevertheless, we believe that further optimizations
in the size and access pattern of lwIP’s TCP/IP protocol control block structures can
substantially reduce this handicap.

Figure 6(b) additionally gives insights about the positive impact of the adaptive
batching. As the load increases, the average batch size increases from 0 to the maximum
configured value, which is 64 in our benchmark setup. At the same time, the average
number of cycles per message decreases from 9,000 to less than 4,000, before it starts
increasing again due to the negative impact of L3 cache misses.

5.2.4. Memcached Performance. Finally, we evaluated the performance benefits of 1x
with memcached, a widely deployed, in-memory, key-value store built on top of the
libevent framework [memcached 2014]. It is frequently used as a high-throughput,
low-latency caching tier in front of persistent database servers. memcached is a network-
bound application, with threads spending over 80% of execution time in kernel mode
for network processing [Leverich and Kozyrakis 2014]. It is a difficult application to
scale because the common deployments involve high connection counts for memcached
servers and small-sized requests and replies [Atikoglu et al. 2012; Nishtala et al. 2013].
Furthermore, memcached has well-known scalability limitations [Lim et al. 2014]. To
alleviate some of the limitations, we configure memcached with a larger hash table size
(-0 hashpower=20) and use a random replacement policy instead of the built-in LRU,
which requires a global lock. We configure memcached similarly for Linux and 1x.

We use the mutilate load generator to place a selected load on the server in terms
of requests per second (RPS) and measure response latency [Leverich 2014]. mutilate
coordinates a large number of client threads across multiple machines to generate
the desired RPS load, while a separate unloaded client measures latency by issuing
one request at a time across 32 open connections, to eliminate statistical errors due
to slight potential imbalances across network card queues and respective CPU cores

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

11:20 A. Belay et al.

| e
1X-40 —=—
IX-10 —=—
12 Linux-40 ——®— N
Linux-10
O e N
O
=
No) 8 N N
2
L 7 A
3
=
4 22
2 oL
0 T T T T T ™ T T ™ i i T
10 100 1000 10000 100000
Connection Count (log scale)
(a) Throughput for 10GbE and 4x10GbE configurations.
12 - 80
avg. batch size —»*—
cycles per msg ———
L3 misses per msg —— - 70
TO T T o0
~ - 60 g
ME 8 N 3
s P02
£n g
B 6 e T - 40 3
o) - 30 <
S A N e S
5 8
- 20
I Y A 2
- 10
O B T T T T T T O
10 100 1000 10000 100000

Connection Count (log scale)

(b) Hardware metrics for 1X on the 4x10GbE configuration.

Fig. 6. Connection scalability of 1x.

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

The IX Operating System 11:21

Table Ill. Unloaded Latency and Maximum RPS for
a Given Service-Level Agreement for the Memcache
Workloads ETC and USR

Configuration | Minimum Latency RPS for SLA:
@99th pct <500us @99th pct
ETC-Linux 65us 898K
ETC-IX 34us 4186K
USR-Linux 66us 902K
USR-IX 33us 5817K

handling those queues. We configure mutilate to generate load representative of two
workloads from Facebook [Atikoglu et al. 2012]: the ETC workload that represents
that highest-capacity deployment in Facebook has 20B to 70B keys, 1B to 1KB values,
and 75% GET requests, and the USR workload that represents deployment with most
GET requests in Facebook has short keys (<20B), 2B values, and 99% GET requests.
In USR, almost all traffic involves minimum-sized TCP packets. Each request is issued
separately (no multiget operations). However, clients are permitted to pipeline up to
four requests per connection if needed to keep up with their target request rate. We use
11 client machines to generate load for a total of 2,752 connections to the memcached
server.

To provide insights into the full range of system behaviors, we report average and
99th percentile latency as a function of the achieved throughput. The 99th percentile
latency captures tail latency issues and is the most relevant metric for datacen-
ter applications [Dean and Barroso 2013]. Most commercial memcached deployments
provision each server so that the 99th percentile latency does not exceed 200us to
500us.

We carefully tune the Linux baseline setup according to the guidelines in Leverich
and Kozyrakis [2014]: we pin memcached threads, configure interrupt distribution
based on thread affinity, and tune interrupt moderation thresholds. Additionally, we
increase the socket accept queue size and disable SYN cookies via sysctl and via the
respective memcached command line argument to accommodate for the large connection
accept rate at the beginning of the benchmark. Finally, to resolve observed unexpected
99th percentile latency spikes when running memcached under Linux, we disable trans-
parent huge pages via sysfs, instruct memcached to use the mlockall system call, and
utilize numactl to pin memory pages on the desired NUMA node of our server. We
believe that our baseline Linux numbers are as tuned as possible for this hardware
using the open-source version of memcached-1.4.18. We report the results for the server
configuration that provides the best performance: eight cores with hyperthreading en-
abled.

Porting memcached to X primarily consisted of adapting it to use our event library. In
most cases, the port was straightforward, replacing Linux and libevent function calls
with their equivalent versions in our API. We did yet not attempt to tune the internal
scalability of memcached [Fan et al. 2013] or to support zero-copy I/O operations.

Figures 7(a) and 7(b) show the throughput latency curves for the two memcached
workloads for Linux and 1x, while Table III reports the unloaded, round-trip latencies
and maximum request rate that meets a service-level agreement, both measured at
the 99th percentile. 1x cuts the unloaded latency of both workloads in half. Note that
we use Linux clients for these experiments; running 1x on clients should further reduce
latency.

At high request rates, the distribution of CPU time shifts from being ~80% in the
Linux kernel to 60% in the 1x dataplane kernel. This allows 1xX to increase throughput
by 4.7x and 6.4 x for ETC and USR, respectively, at a 500us tail latency SLA.

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

11:22 A. Belay et al.

Linux (avg) - Linux (99" pet) —— IX (avg) 1X (99" pety ——

TS0 oeeeemeee e TR

500

Latency (us)

250 ~

750

500

Latency (us)

250 A

0 1 2 3 4 5 6 7
USR: Throughput (RPS x 106)

Fig. 7. Average and 99th percentile latency as a function of throughput for the ETC and USR memcached
workloads.

5.3. Pareto-Optimal Static Configurations

Static resource configurations allow for controlled experiments to quantify the trade-
off between an application’s performance and the resources consumed. Our approach
limits bias by considering many possible static configurations in the three-dimensional
space of core, hyperthread, and frequency. For each static configuration, we character-
ize the maximum load that meets the SLO (<500us@99th percentile); we then measure
the energy draw and throughput of the background job for all load levels up to the max-
imum load supported. From this large dataset, we derive the set of meaningful static
configurations and build the Pareto efficiency frontier. The frontier specifies, for any
possible load level, the optimal static configuration and the resulting minimal energy
draw or maximum background throughput, depending on the scenario.

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

The IX Operating System 11:23

100

60

Power (W)

Pareto frontier ———
cfgat 1.2GHz ———
cfg w/ 8 cores + HT ——— ..
cfg at Turbo mode
cfg - all others ——

0 T T T 1
0 2 4 6 8
Memcached RPS x 10° at SLO
(a) Energy Proportionality
LT R R PEEPPEEE

% of Peak for Best-effort Task

Memcached RPS x 10° at SLO

(b) Server Consolidation (IX)

Fig. 8. Pareto efficiency for energy proportionality and workload consolidation for x. The Pareto efficiency
is in red, while the various static configurations are color-coded according to their distinctive characteristics.

Figure 8 presents the frontier for the memcached USR workload for two different
policies: energy proportionality, which aims to minimize the amount of energy con-
sumed while maintaining SLO, and workload consolidation, which aims to maximize
the throughput of some background process while also maintaining the SLO of the
latency-sensitive application.

The graphs each plot the objective—which is either to minimize energy or maximize
background throughput—as a function of the foreground throughput, provided that
the SLO is met. Except for the red lines, each line corresponds to a distinct static con-
figuration of the system: the green curves correspond to configuration at the minimal
clock rate of 1.2GHz, the blue curves use all available cores and hyperthreads, and
other configurations are in black. In Turbo Boost mode, the energy drawn is reported
as a band since it depends on operating temperature.!

1For any given throughput level, we observe that the reported power utilization is stable for all CPU
frequencies except for Turbo Boost. When running in Turbo Boost, the temperature of the CPU gradually
rises over a few minutes from 58° to 78°, and with it the dissipated energy rises by 4 W for the same level of
performance. The experiments in Section 5.3 run for a long time in Turbo Boost mode with a hot processor;
we therefore report those results as an energy band of 4 W.

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

11:24 A. Belay et al.

L R L T

Power (W)

Pareto IX —
,, DVES-only IX
Pareto Linux

DVES-only Linux -

0 2 4 6 8
Memcached RPS x 10° at SLO

Fig. 9. Energy proportionality comparison between the Pareto-optimal frontier considering only DVFS
adjustments and the full Pareto frontier considering core allocation, hyperthread allocations, and frequency.

Finally, the red line is the Pareto frontier, which corresponds, for any load level, to
the optimal result using any of the static configurations available. Each graph only
shows the static configurations that participate in the frontier.

Energy proportionality. We evaluate 224 distinct combinations: from one to eight
cores, using consistently either one or two threads per core, for 14 different DVFS
levels from 1.2GHz to 2.4GHz as well as Turbo Boost. Figure 8(a) shows the 45 static
configurations (out of 224) that build the Pareto frontier for energy proportionality. The
figures confirm the intuition that (1) various static configurations have very different
dynamic ranges, beyond which they are no longer able to meet the SLO; (2) each static
configuration draws substantially different levels of energy for the same amount of
work; (3) at the low end of the curve, many distinct configurations operate at the
minimal frequency of 1.2GHz, obviously with a different number of cores and threads,
and contribute to the frontier—these are shown in green in the figure; and (4) at the
high end of the range, many configurations operate with the maximum of eight cores,
with different frequencies including Turbo Boost.

Consolidation. The methodology here is a little different. We first characterize the
background job and observe that it delivers energy-proportional throughput up to
2.4GHz, but that Turbo Boost came at an energy/throughput premium. Consequently,
we restrict the Pareto configuration space at 2.4GHz; the objective function is the
throughput of the background job, expressed as a fraction of the throughput of that
same job without any foreground application. Background jobs run on all cores that are
not used by the foreground application. Figure 8(b) shows the background throughput,
expressed as a fraction of the standalone throughput, as a function of the foreground
throughput, provided that the foreground application meets the SLO: as the foreground
application requires additional cores to meet the SLO, the background throughput
decreases proportionally.

DVFS-only alternative. Figure 9 further analyzes the data and compares the Pareto
frontiers of Linux 4.2 and 1x for the energy-proportional scenario with an alternate
frontier that only considers changes in DVFS frequency. We observe that the impact
of DVFS-only controls differs noticeably between Linux and x: with Linux, the DVFS-
only alternate frontier is very close to the Pareto frontier, meaning that a DVFS-only
approach such as Pegasus [Lo et al. 2014] or Adrenaline [Hsu et al. 2015] would be
adequate. This is due to Linux’s idling behavior, which saves resources. In the case of 1x,
however—and likely for any polling-based dataplane—a DVFS-only scheduler would
provide worse energy proportionality at low-moderate loads than a corresponding

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

The IX Operating System 11:25

Linux-based solution. As many datacenter servers operate in the 10% to 30% range
[Barroso et al. 2013], we conclude that a dynamic resource allocation scheme involving
both DVF'S and core allocation is necessary for dataplane architectures.

5.4. Control Plane Effectiveness

We use the results from Section 5.3 to derive a resource configuration policy framework,
whose purpose is to determine the sequence of configurations to be applied, as a function
of the load on the foreground application, to both the foreground (latency-sensitive) and
background (batch) applications. Specifically, given an ever-increasing (or -decreasing)
load on the foreground applications, the goal is to determine the sequence of resource
configurations minimizing energy consumption or maximizing background throughput,
respectively.

We observe that (1) the latency-sensitive application (memcached) can scale nearly
linearly, up to the eight cores of the processor; (2) it benefits from running a second
thread on each core, with a consistent speedup of 1.3x; (3) it is most energy efficient to
first utilize the various cores, and only then to enable the second hyperthread on each
core, rather than the other way around; and (4) it is least energy efficient to increase
the frequency.

We observe that the background application (1) also scales linearly but (2) does not
benefit from the second hyperthread, and (3) is nearly energy proportional across the
frequency spectrum, with the exception of Turbo Boost. From a total-cost-of-ownership
perspective, the most efficient operating point for the workload consolidation of the
background task is therefore to run the system at the processor’s nominal 2.4GHz
frequency whenever possible.

We combine these observations with the data from the Pareto analysis and derive
the following policies:

Energy-proportional policy. As a base state, run with only one core and hyperthread
with the socket set at the minimal clock rate (1.2GHz). To add resources, first enable
additional cores, then enable hyperthreads on all cores (as a single step), and only
after that gradually increase the clock rate until reaching the nominal rate (2.4GHz);
finally, enable Turbo Boost. To remove resources, do the opposite. This policy leads to
a sequence of 22 different configurations.

Workload consolidation policy. As a base state, run the background jobs on all avail-
able cores with the processor at the nominal clock rate. To add resources to the fore-
ground application, first shift cores from the background thread to the foreground
application one at a time. This is done by first suspending the background threads;
use both hyperthreads of the newly freed core for the foreground application. Next,
stop the background job entirely and allocate all cores to the foreground applications.
As a final step, enable Turbo Boost. This policy leads to a sequence of nine different
configurations.

These policies closely track the corresponding Pareto frontier. For energy propor-
tionality, (1) the 45 different static configurations of the frontier are a superset of the
configurations enabled by the policy, and (2) the difference in overall impact in terms
of energy spent is marginal. For consolidation, Pareto and policy nearly identically
overlap.

We use three synthetic, time-accelerated load patterns to evaluate the effectiveness
of the control loop under stressful conditions. All three vary between nearly idle and
maximum throughput within a 4-minute period: the slope pattern gradually raises
the target load from 0 and 6.2M RPS and then reduces its load; the step pattern
increases load by 500 KRPS every 10 seconds; and finally the sine+noise pattern is a

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

11:26 A. Belay et al.

Table 1V. Energy Proportionality and Consolidation Gains

‘ Smooth ‘ Step ‘ Sine+Noise
Energy proportionality (W)
Max. power 92 93 94
Measured 43 (—54%) | 46 (—=51%) | 51 (—46%)

Pareto bound | 38 (—59%) | 38 (—59%) | 43 (—54%)
Server consolidation opportunity (% of peak)

Pareto bound 53% 51% 44%

Measured 47% 43% 35%

basic sinusoidal pattern modified by randomly adding sharp noise that is uniformly
distributed over [—250,+250] KRPS and recomputed every 5 seconds. The slope pattern
provides a baseline to study smooth changes, the step pattern models abrupt and
massive changes, and the sine+noise pattern is representative of daily web patterns
[Urdaneta et al. 2009].

Figure 10, Figure 11, and Figure 12 show the results of these three dynamic load
patterns for the energy proportionality and workload consolidation scenarios. In each
case, the top figure measures the observed throughput. They are annotated with the
control loop events that add resources (green) or remove them (red). Empty triangles
correspond to core allocations and full triangles to DVFS changes. The middle figure
evaluates the soundness of the algorithm and reports the 99th percentile latency, as
observed by a client machine and reported every second. Finally, the bottom figures
compare the overall efficiency of our solution based on dynamic resource controls with
(1) the maximal static configuration, using all cores and Turbo Boost, and (2) the ideal,
synthetic efficiency computed using the Pareto frontier of Figure 8.

Energy proportionality. The left column of Figures 10, 11, and 12 shows the dy-
namic behavior for the energy proportionality scenario. The top-left graph shows that
the workload tracks the desired throughput of the pattern and exercises the entire
sequence of configurations, gradually adding cores, enabling hyperthreading, increas-
ing the frequency, and finally enabling Turbo Boost, before doing it in reverse. The
step pattern of Figure 11 is particularly challenging, as the instant change in load
level requires multiple, back-to-back configuration changes. With a few exceptions,
the middle-left graph shows that the latencies remain well below the 500us SLO. We
further discuss the violations later. For these three figures, the bottom-left graph com-
pares the power dissipated by the workload with the corresponding power levels as
determined by the Pareto frontier (lower bound) or the maximum static configuration
(upper bound). This graph measures the effectiveness of the control loop to maximize
energy proportionality. We observe that the dynamic (actually measured) power curve
tracks the Pareto (synthetic) curve well, which defines a bound on energy savings.
When the dynamic resource controls enter Turbo Boost mode, the measured power in
all three cases starts at the lower end of the 4 W range and then gradually rises, as
expected. Table IV shows that the three patterns have Pareto savings bounds of 54%,
59% and 59%. 1x’s dynamic resource controls results in energy savings of 46%, 51% and
54%, which is 85%, 86% and 92% of the theoretical bound.

Consolidation. The right column of Figures 10, 11, and 12 shows the dynamic be-
havior for the workload consolidation scenario. Here also, the top-right graphs show
that the throughput tracks well the desired load. Recall that the consolidation policy
always operates at the processor’s nominal rate (or Turbo), which limits the number
of configuration changes. The middle-right graph similarly confirms that the system
meets the SLO, with few exceptions. The bottom-right graphs plot the throughput of

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

The IX Operating System 11:27

6 e N 6 e N\
5 e I RRCCCLEEPITTEPPVALPEPRR SPPTCRRPPIEERPS
O O
2 2
Eood g R Eog g
7} %]
& &
3 e R e R CRREERREE
5] o
> >
2 B
T2 g\ T 2 g K
< <
L RERCTREERTTEEPRED P L O RECCCEREEECEEPRTEPPPREE Vo
0 T T T T 0 T T T T
0 50 100 150 200 0 50 100 150 200
1000 === =gy oo e 1000 —--v=sememsrmnee s
800 -] - g BOO v wmemnof e
B 600 o f] e B 600 e eeeef e
= =
2 2
= =
8 400 A 2 400
5 E
[=N) [N
[®)) [®))
200 41 ﬂ/ WW S ((RRRTERTEEPPRTEPREE 200
0 T T T T 0
0 50 100 150 200
[max. conf. dynamic
100
100
80
80
z %60
S 60 8
o S
=3 =]
= 40 IS 40
20 20
O T T T T 0 T 1 T T
0 50 100 150 200 0 50 100 150 200
Time (seconds) Time (seconds)

Fig. 10. Energy proportionality (left) and workload consolidation (right) for the slope pattern.

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

11:28 A. Belay et al.

< <
= =
%] %]
9 9
a4 ~
= =
o o
> >
Q Q
5 5
< <
0 T T T T 0 T T T T
0 50 100 150 200 0 50 100 150 200
1000 === [| 1000 rp=nnnmmeme e
800 +-- - T S EE P P RTRRO
2 2
2 600 4l B 600 fff-eee oo
5 5
£ SLO £ SLO
8 400 A 2 400
S S
[N [N
[o)} [o)}
200 - J” N 200
0 T T T T 0 T T T T
0 50 100 150 200 0 50 100 150 200
[max. conf. dynamic Pareto |
100 -+ mmmm e
100
80
= %
z S
= 4 R
20
0 T T T T 0 T T T T
0 50 100 150 200 0 50 100 150 200
Time (seconds) Time (seconds)

Fig. 11. Energy proportionality (left) and workload consolidation (right) for the step pattern.

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

The IX Operating System 11:29

< <
B B
» 1)
A A
~ ~
= =
5] o
> >
(2} Q
= =
Q Q
< <
1000 - op-eeproeromeerrme e - 1000 op-cmeproeromessroe e
800 - rrofrerre e - 800 - ofrre e -
B 600 o f e 11 B 600 oo -
g] g
= =
B 400 -l 2 400 -
5 E
[=N) [=N)
[®)) [®))
200 ~Nfpi- -- 200 -
0 T T T T 0 T T T T
0 50 100 150 200 0 50 100 150 200
[max. conf. dynamic Pareto |
100 —poeerermerme e
100
80
= 4
< 60 g
o S
= =]
= 40 ®
20
O T T T T T T T
0 50 100 150 200 0 50 100 150 200
Time (seconds) Time (seconds)

Fig. 12. Energy proportionality (left) and workload consolidation (right) for the sin+noise pattern.

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

11:30 A. Belay et al.

Table V. Breakdown of Flow Group Migration Measured During
the Six Benchmarks

avg 95th pct. max. stddev

prepare (us) 119 212 10,082 653

g wait (us) 113 475 1,018 158
; rpe (us) 102 238 378 75
9 deferred (us) 125 460 2,534 283
total (us) 462 1,227 12,804 927

packets 83 285 2,753 280

o prepare (us) 23 49 312 25
S wait (us) 33 106 176 31
% rpe (us) 12 27 48 7
% deferred (us) 16 43 82 11
& total (us) 86 154 370 40
packets 3 9 25 3

the background batch application, expressed as a percentage of its throughput on a ded-
icated processor at 2.4GHz. We compare it only to the Pareto-optimal upper bound as a
maximum configuration would monopolize cores and deliver zero background through-
put. Table IV shows that, for these three patterns, our consolidation policy delivers
35%—47% of the standalone throughput of the background job, which corresponds to
80%—89% of the Pareto bound.

SLO violations. A careful study of the SLO violations of the six runs shows that
they fall into two categories. First, there are 16 violations caused by delays in packet
processing due to flow group migrations resulting from the addition of a core. Second,
there are nine violations caused by an abrupt increase of throughput, mostly in the step
pattern, which occur before any flow migrations. The control plane then reacts quickly
(in ~100ms) and accommodates to the new throughput by adjusting resources. To
further confirm the abrupt nature of throughput increase specific to the step pattern,
we note that the system performed up to three consecutive increases in resources
in order to resolve a single violation. Twenty-three of the 25 total violations last a
single second, with the remaining two violations lasting 2 seconds. We believe that
the compliance with the SLO achieved by our system is more than adequate for any
practical production deployment.

Flow group migration analysis. Table V measures the latency of the 565 flow group
migrations that occur during the six benchmarks, as described in Section 4.5. It also
reports the total number of packets whose processing is deferred during the migration
(rather than dropped or reordered). We first observe that migrations present distinct
behaviors when scaling up and when scaling down the number of cores. The difference
can be intuitively explained since the migrations during the scale-up are performed
in a heavily loaded system, while the system during the scale-down is partially idle.
In absolute terms, migrations that occur when adding a core take 462 on average and
less than 1.5ms 95% of the time. The outliers can be explained by rare occurrences of
longer preparation times or when processing up to 2753 deferred packets.

6. DISCUSSION

What makes 1x fast. The results in Section 5 show that a networking stack can be
implemented in a protected OS kernel and still deliver wire-rate performance for most
benchmarks. The tight coupling of the dataplane architecture, using only a minimal
amount of batching to amortize transition costs, causes application logic to be scheduled
at the right time, which is essential for latency-sensitive workloads. Therefore, the

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

The IX Operating System 11:31

T R
B=1
B=2
B=§ ——
B=64 ——
- 500 SLA
2
g
=
8
<
P D0 e
0 T T T T T T 1
0 1 2 3 4 5 6 7

USR: Throughput (RPS x 106)

Fig. 13. 99th percentile latency as a function of throughput for USR workload from Figure 7(b), for different
values of the batch bound B.

benefits of 1x go beyond just minimizing kernel overheads. The lack of intermediate
buffers allows for efficient, application-specific implementations of I/O abstractions
such as the 1ibix event library. The zero-copy approach helps even when the user-level
libraries add a level of copying, as is the case for the 1ibevent-compatible interfaces in
1libix. The extra copy occurs much closer to the actual use, thereby increasing cache
locality. Finally, we carefully tuned 1x for multicore scalability, eliminating constructs
that introduce synchronization or coherence traffic.

The x dataplane optimizations—run to completion, adaptive batching, and a zero-
copy API—can also be implemented in a user-level networking stack in order to get
similar benefits in terms of throughput and latency. While a user-level implementation
would eliminate protection domain crossings, it would not lead to significant perfor-
mance improvements over 1X. Protection domain crossings inside the VMX nonroot
mode add only a small amount of extra overhead, on the order of a single L3 cache miss
[Belay et al. 2012]. Moreover, these overheads are quickly amortized at higher packet
rates.

Subtleties of adaptive batching. Batching is commonly understood to trade off higher
latency at low loads for better throughput at high loads. 1x uses adaptive, bounded
batching to actually improve on both metrics. Figure 13 compares the latency versus
throughput on the USRmemcached workload of Figure 7(b) for different upper bounds B
to the batch size. At low load, B does not impact tail latency, as adaptive batching does
not delay processing of pending packets. At higher load, larger values of B improve
throughput, by 29% between B = 1 and B = 16. For this workload, B > 16 maximizes
throughput.

While tuning 1x performance, we ran into an unexpected hardware limitation that
was triggered at high packet rates with small average batch sizes (i.e., before the
dataplane was saturated): the high rate of PCle writes required to post fresh descriptors
at every iteration led to performance degradation as we scaled the number of cores. To
avoid this bottleneck, we simply coalesced PCIe writes on the receive path so that we
replenished at least 32 descriptor entries at a time. Luckily, we did not have to coalesce
PClIe writes on the transmit path, as that would have impacted latency.

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

11:32 A. Belay et al.

Using Pareto as a guide. Even though the Pareto results are not used by the dynamic
resource controller, the Pareto frontier proved to be a valuable guide, first to motivate
and quantify the problem, then to derive the configuration policy sequence, and finally
to evaluate the effectiveness of the dynamic resource control by setting an upper bound
on the gains resulting from dynamic resource allocation. Many factors such as software
scalability, hardware resource contention, and network and disk I/O bottlenecks will
influence the Pareto frontier of any given application, and therefore the derived control
loop policies. Without violating the SLO, the methodology explicitly trades off worst
average and tail latency for better overall efficiency. More complex SLOs, taking into
account multiple aspects of latency distribution, would define a different Pareto frontier
and likely require adjustments to the control loop.

Adaptive, flow-centric scheduling. The new flow-group migration algorithm of Sec-
tion 4.5 leads to a flow-centric approach to resource scheduling, where the network
stack and application logic always follow the steering decision. POSIX applications
can balance flows by migrating file descriptors between threads or processes, but this
tends to be inefficient because it is difficult for the kernel to match the flow’s desti-
nation receive queue to changes in CPU affinity. Flow director can be used by Linux
to adjust the affinity of individual network flows as a reactive measure to application-
level and kernel thread migration rebalancing, but the limited size of the redirection
table prevents this mechanism from scaling to large connection counts. By contrast,
our approach allows flows to be migrated in entire groups, improving efficiency, and is
compatible with more scalable hardware flow steering mechanisms based on RSS.

Limitations of current prototype. The current 1x implementation does not yet exploit
IOMMUs or VT-d. Instead, it maps descriptor rings directly into 1Ix memory, using the
Linux pagemap interface to determine physical addresses. Although this choice puts
some level of trust into the 1x dataplane, application code remains securely isolated.
In the future, we plan on using IOMMU support to further isolate ix dataplanes. We
anticipate overhead will be low because of our use of large pages. We also plan to add
support for interrupts to the 1x dataplanes. The 1x execution model assumes some co-
operation from application code running in elastic threads. Specifically, applications
should handle events in a quick, nonblocking manner; operations with extended exe-
cution times are expected to be delegated to background threads rather than execute
within the context of elastic threads. The 1x dataplane is designed around polling, with
the provision that interrupts can be configured as a fallback optimization to refresh
receive descriptor rings when they are nearly full and to refill transmit descriptor rings
when they are empty (steps (1) and (6) in Figure 2). Occasional timer interrupts are
also required to ensure full TCP compliance in the event an elastic thread blocks for
an extended period.

Hardware trends. Our experimental setup uses one Sandy Bridge processor and the
Intel 82599 NIC [Intel Corp. 2014a]. Hash filters for flow group steering could benefit
from recent trends in NIC hardware. For example, Intel’s new XL710 chipset [Intel
Corp. 2014b] has a 512 entry hash LUT (as well as independent 64 entry LUTs for
each VF) in contrast to the 128 entries available in the 82599 chipset. This has the
potential to reduce connection imbalances between cores, especially with high core
counts. The newly released Haswell processors provide per-core DVF'S controls, which
further increases the Pareto space.

Future work. We also plan to explore the synergies between 1x and networking
protocols designed to support microsecond-level latencies and the reduced buffering
characteristics of x deployments, such as DCTCP [Alizadeh et al. 2010] and ECN
[Ramakrishnan et al. 2001]. Note that the x dataplane is not specific to TCP/IP.

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

The IX Operating System 11:33

The same design principles can benefit alternative, potentially application-specific,
network protocols, as well as high-performance protocols for nonvolatile memory
access. Finally, we will investigate library support for alternative APIs on top of our
low-level interface, such as MegaPipe [Han et al. 2012], cooperative threading [von
Behren et al. 2003], and rule-based models [Stutsman and Ousterhout 2013]. Such
APIs and programming models will make it easier for applications to benefit from the
performance and scalability advantages of 1x.

7. RELATED WORK

We organize the discussion topically, while avoiding redundancy with the commentary
in Section 2.3.

Hardware virtualization. Hardware support for virtualization naturally separates
control and execution functions, for example, to build type-2 hypervisors [Bugnion
et al. 2012; Kivity 2007], run virtual appliances [Sapuntzakis et al. 2003], or provide
processes with access to privileged instructions [Belay et al. 2012]. Similar to Ix,
Arrakis uses hardware virtualization to separate the I/O dataplane from the control
plane [Peter et al. 2016]. 1x differs in that it uses a full Linux kernel as the control
plane; provides three-way isolation between the control plane, networking stack,
and application; and proposes a dataplane architecture that optimizes for both high
throughput and low latency. On the other hand, Arrakis uses Barrelfish as the control
plane [Baumann et al. 2009] and includes support for [IOMMUSs and SR-IOV.

Library operating systems. Exokernels extend the end-to-end principle to resource
management by implementing system abstractions via library operating systems
linked in with applications [Engler et al. 1995]. Library operating systems often run
as virtual machines [Bugnion et al. 1997] used, for instance, to deploy cloud services
[Madhavapeddy et al. 2013]. x limits itself to the implementation of the networking
stack, allowing applications to implement their own resource management policies, for
example, via the 1ibevent compatibility layer.

Asynchronous and zero-copy communication. Systems with asynchronous, batched,
or exception-less system calls substantially reduce the overheads associated with fre-
quent kernel transitions and context switches [Han et al. 2012; Jeong et al. 2014b;
Rizzo 2012; Soares and Stumm 2010]. X’s use of adaptive batching shares similar
benefits but is also suitable for low-latency communication. Zero-copy reduces data
movement overheads and simplifies resource management [Pai et al. 2000]. POSIX
OSs have been modified to support zero copy through page remapping and copy-on-
write [Chu 1996]. By contrast, 1x’s cooperative memory management enables zero-copy
without page remapping. Similar to 1x, TinyOS passes pointers to packet buffers be-
tween the network stack and the application in a cooperative, zero-copy fashion [Levis
et al. 2004]. However, 1x is optimized for datacenter workloads, while TinyOS focuses
on memory-constrained, sensor environments.

Scheduling. Scheduler activations [Anderson et al. 1992] give applications greater
control over hardware threads and provide a mechanism for custom application-level
scheduling. Callisto [Harris et al. 2014] uses a similar strategy to improve the per-
formance of colocated parallel runtime systems. Our approach differs in that an inde-
pendent control plane manages the scheduling of hardware threads based on receive
queuing latency indicators while the dataplane exposes a simple kernel threading ab-
straction. SEDA [Welsh et al. 2001] also monitors queuing behavior to make scheduling
decisions such as thread pool sizing. Chronos [Kapoor et al. 2012] makes use of software-
based flow steering, but with a focus on balancing load to reduce latency. Affinity Accept

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

11:34 A. Belay et al.

[Pesterev et al. 2012] embraces a mixture of software- and hardware-based flow steer-
ing in order to improve TCP connection affinity and increase throughput. We focus
instead on energy proportionality and workload consolidation.

Energy proportionality. The energy proportionality problem [Barroso and Hoélzle
2007] has been well explored in previous work. Some systems have focused on so-
lutions tailored to throughput-oriented workloads [Meisner et al. 2011a] or read-only
workloads [Krioukov et al. 2011]. Meisner et al. [2011b] highlight unique challenges
for low-latency workloads and advocate full system active low-power modes. Similar
to our system, Pegasus [Lo et al. 2014] achieves CPU energy proportionality for low-
latency workloads. Our work expands on Pegasus by exploring the elastic allocation
of hardware threads in combination with processor power management states and by
basing scheduling decisions on internal latency metrics within a host endpoint instead
of an external controller. [Niccolini et al. 2012] show that a software router, running
on a dedicated machine, can be made energy-proportional. Similar to our approach,
queue length is used as a control signal to manage core allocation and DVF'S settings.
However, we focus on latency-sensitive applications, rather than middlebox traffic, and
consider the additional case of workload consolidation.

Colocation. Because host endpoints contain some components that are not energy pro-
portional and thus are most efficient when operating at 100% utilization, colocation of
workloads is also an important tool for improving energy efficiency. At the cluster sched-
uler level, BubbleUp [Mars et al. 2012] and Paragon [Delimitrou and Kozyrakis 2014]
make scheduling decisions that are interference aware through efficient classification
of the behavior of workload colocation. Leverich and Kozyrakis [2014] demonstrate
that colocation of batch and low-latency jobs is possible on commodity operating sys-
tems. Our approach explores this issue at higher throughputs and with tighter-latency
SLOs. Bubble-Flux [Yang et al. 2013] additionally controls background threads; we
control background and latency-sensitive threads. CPI? [Zhang et al. 2013] detects per-
formance interference by observing changes in CPI and throttles offending jobs. This
work is orthogonal to ours and could be a useful additional signal for our control plane.
Heracles manages multiple hardware and software isolation mechanisms, including
packet scheduling and cache partitioning, to colocate latency-sensitive applications
with batch tasks while maintaining millisecond SLOs [Lo et al. 2015]. We limit our
focus to DVFS and core assignment but target more aggressive SLOs.

8. CONCLUSION

We described 1x, a dataplane operating system that leverages hardware virtualization
to separate and isolate the Linux control plane, the ix dataplane instances that imple-
ment in-kernel network processing, and the network-bound applications running on
top of them. The 1x dataplane provides a native, zero-copy API that explicitly exposes
flow control to applications. The dataplane architecture optimizes for both bandwidth
and latency by processing bounded batches of packets to completion and by eliminating
synchronization on multicore servers.

The dynamic resource controller allocates cores and sets processor frequency to adapt
to changes in the load of latency-sensitive applications. The novel rebalancing mecha-
nisms do not impact the steady-state performance of the dataplane and can migrate a
set of flow groups in milliseconds without dropping or reordering packets. We develop
two resource control policies focused on optimizing energy proportionality and workload
consolidation.

On microbenchmarks, 1x noticeably outperforms both Linux and mTCP in terms
of latency and throughput; scales to hundreds of thousands of active, concurrent
connections; and can saturate 4x10GbE configurations using a single processor socket.

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

The IX Operating System 11:35

Finally, we show that porting memcached to 1x removes kernel bottlenecks and improves
throughput by up to 6.4 x, while reducing tail latency by more than 2x.

We use three varying load patterns to evaluate the effectiveness of our approach
to resource control. Our results show that resource controls can save 46%—-54% of the
processor’s energy, or enable a background job to deliver 35%—47% of its standalone
throughput. We synthesize the Pareto frontier by combining the behavior of all possible
static configurations. Our policies deliver 85%—92% of the Pareto-optimal bound in
terms of energy proportionality and 80%—89% in terms of consolidation.

ACKNOWLEDGMENTS

The authors would like to thank David Maziéres for his many insights into the system and his detailed
feedback on the article. We also thank Katerina Argyraki, James Larus, Jacob Leverich, Philip Levis, Andrew
Warfield, Willy Zwaenepoel, and the anonymous reviewers for their comments.

REFERENCES

Mohammad Alizadeh, Albert G. Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel, Balaji
Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010. Data center TCP (DCTCP). In Proceed-
ings of the ACM SIGCOMM 2010 Conference. 63—74. DOI : http://dx.doi.org/10.1145/1851182.1851192

Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy. 1992. Scheduler activa-
tions: Effective kernel support for the user-level management of parallelism. ACM Trans. Comput. Syst.
10, 1 (1992), 53—79. DOI : http:/dx.doi.org/10.1145/146941.146944

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. 2012. Workload anal-
ysis of a large-scale key-value store. In Proceedings of the 2012 ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Systems. 53—64. DOI:http://dx.doi.org/
10.1145/2254756.2254766

Luiz Andre Barroso. 2014. Three things that must be done to save the data center of the future (ISSCC 2014
Keynote). http://www.theregister.co.uk/Print/2014/02/11/google_research_three_things_that_must_be_
done_to_save_the_data_center_of_the_future/.

Luiz André Barroso, Jimmy Clidaras, and Urs Holzle. 2013. The Datacenter as a Computer: An Introduction
to the Design of Warehouse-Scale Machines (2nd ed.). Morgan & Claypool Publishers.

Luiz André Barroso and Urs Hoélzle. 2007. The case for energy-proportional computing. IEEE Comput. 40,
12 (2007), 33-37. DOI : http://dx.doi.org/10.1109/MC.2007.443

Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and Michael M. Swift. 2013. Efficient virtual
memory for big memory servers. In Proceedings of the 40th International Symposium on Computer
Architecture (ISCA’13). 237-248. DOI : http://dx.doi.org/10.1145/2485922.2485943

Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Timothy L. Harris, Rebecca Isaacs, Simon Pe-
ter, Timothy Roscoe, Adrian Schiipbach, and Akhilesh Singhania. 2009. The multikernel: A new OS
architecture for scalable multicore systems. In Proceedings of the 22nd ACM Symposium on Operating
Systems Principles (SOSP’09). 29-44. DOI : http:/dx.doi.org/10.1145/1629575.1629579

Adam Belay, Andrea Bittau, Ali José Mashtizadeh, David Terei, David Mazieres, and Christos Kozyrakis.
2012. Dune: Safe user-level access to privileged CPU features. In Proceedings of the 10th Symposium on
Operating System Design and Implementation (OSDI’12). 335-348.

Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis, and Edouard Bugnion.
2014. IX: A protected dataplane operating system for high throughput and low latency. In Proceedings
of the 11th Symposium on Operating System Design and Implementation (OSDI’'14). 49-65.

Steven M. Bellovin. 2004. A look back at “security problems in the TCP/IP protocol suite.” In Pro-
ceedings of the 20th Annual Computer Security Applications Conference (ACSAC04). 229-249.
DOI:http://dx.doi.org/10.1109/CSAC.2004.3

Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel Rosenblum. 1997. Disco: Running commod-
ity operating systems on scalable multiprocessors. ACM Trans. Comput. Syst. 15, 4 (1997), 412—-447.
DOI :http://dx.doi.org/10.1145/265924.265930

Edouard Bugnion, Scott Devine, Mendel Rosenblum, Jeremy Sugerman, and Edward Y. Wang. 2012. Bringing
virtualization to the x86 architecture with the original VMware workstation. ACM Trans. Comput. Syst.
30, 4 (2012), 12. DOI : http://dx.doi.org/10.1145/2382553.2382554

Hsiao-Keng Jerry Chu. 1996. Zero-copy TCP in solaris. In Proceedings of the 1996 USENIX Annual Technical
Conference (ATC’96). 253-264.

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

http://dx.doi.org/10.1145/1851182.1851192
http://dx.doi.org/10.1145/146941.146944
http://dx.doi.org/10.1145/2254756.2254766
http://dx.doi.org/10.1145/2254756.2254766
http://www.theregister.co.uk/Print/2014/02/11/googleresearchthreethingsthatmustbedonetosavethedatacenterofthefuture/
http://www.theregister.co.uk/Print/2014/02/11/googleresearchthreethingsthatmustbedonetosavethedatacenterofthefuture/
http://dx.doi.org/10.1109/MC.2007.443
http://dx.doi.org/10.1145/2485922.2485943
http://dx.doi.org/10.1145/1629575.1629579
http://dx.doi.org/10.1109/CSAC.2004.3
http://dx.doi.org/10.1145/265924.265930
http://dx.doi.org/10.1145/2382553.2382554

11:36 A. Belay et al.

Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert Tappan Morris, and Eddie Kohler.
2013. The scalable commutativity rule: Designing scalable software for multicore processors. In
Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP’13). 1-17.
DOI:http:/dx.doi.org/10.1145/2517349.2522712

Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. 2013. Everything you always wanted to know
about synchronization but were afraid to ask. In Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP’13). 33—48. DOI : http://dx.doi.org/10.1145/2517349.2522714

Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56, 2 (2013), 74-80.
DOI:http://dx.doi.org/10.1145/2408776.2408794

Christina Delimitrou and Christos Kozyrakis. 2014. Quality-of-service-aware scheduling in heterogeneous
data centers with paragon. IEEE Micro 34, 3 (2014), 17-30. DOI : http://dx.doi.org/10.1109/MM.2014.7

Mihai Dobrescu, Norbert Egi, Katerina J. Argyraki, Byung-Gon Chun, Kevin R. Fall, Gianluca
Tannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy. 2009. RouteBricks: Exploiting par-
allelism to scale software routers. In Proceedings of the 22nd ACM Symposium on Operating Systems
Principles (SOSP’09). 15-28. D01 : http://dx.doi.org/10.1145/1629575.1629578

Aleksandar Dragojevic, Dushyanth Narayanan, Miguel Castro, and Orion Hodson. 2014. FaRM: Fast remote
memory. In Proceedings of the 11th Symposium on Networked Systems Design and Implementation
(NSDr'14). 401-414.

Adam Dunkels. 2001. Design and implementation of the IwIP TCP/IP stack. Swedish Inst. Comput. Sci. 2
(2001), 77.

Dawson R. Engler, M. Frans Kaashoek, and James O’Toole. 1995. Exokernel: An operating system archi-
tecture for application-level resource management. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles (SOSP’95). 251-266. D01 : http://dx.doi.org/10.1145/224056.224076

Bin Fan, David G. Andersen, and Michael Kaminsky. 2013. MemC3: Compact and concurrent MemCache
with dumber caching and smarter hashing. In Proceedings of the 10th Symposium on Networked Systems
Design and Implementation (NSDI’13). 371-384.

Mike Fisk and W. Feng. 2000. Dynamic Adjustment of TCP Window Sizes. Technical Report. Los Alamos
Unclassified Report (LAUR) 00-3221, Los Alamos National Laboratory.

Sally Floyd and Van Jacobson. 1993. Random early detection gateways for congestion avoidance. IEEE/ACM
Trans. Netw. 1, 4 (1993), 397-413. DOI: http://dx.doi.org/10.1109/90.251892

Robert Graham. 2013. The C10M Problem. Retrieved from http://c10m.robertgraham.com.

Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy. 2012. MegaPipe: A new programming
interface for scalable network I/O. In Proceedings of the 10th Symposium on Operating System Design
and Implementation (OSDI’'12). 135-148.

Tim Harris, Martin Maas, and Virendra J. Marathe. 2014. Callisto: Co-scheduling parallel run-
time systems. In Proceedings of the 2014 EuroSys Conference. 24:1-24:14. DOI:http://dx.doi.org/
10.1145/2592798.2592807

Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy H. Katz, Scott
Shenker, and Ion Stoica. 2011. Mesos: A platform for fine-grained resource sharing in the data center.
In Proceedings of the 8th Symposium on Networked Systems Design and Implementation (NSDI’11).

Chang-Hong Hsu, Yunqi Zhang, Michael A. Laurenzano, David Meisner, Thomas F. Wenisch, Jason Mars,
Lingjia Tang, and Ronald G. Dreslinski. 2015. Adrenaline: Pinpointing and reining in tail queries with
quick voltage boosting. In Proceedings of the 21st IEEE Symposium on High-Performance Computer
Architecture (HPCA’15). 271-282. DOI : http://dx.doi.org/10.1109/HPCA.2015.7056039

Ram Huggahalli, Ravi R. Iyer, and Scott Tetrick. 2005. Direct cache access for high bandwidth network
1/0. In Proceedings of the 32nd International Symposium on Computer Architecture (ISCA05). 50-59.
DOI:http:/dx.doi.org/10.1109/ISCA.2005.23

Intel Corp. 2013. Open Source Kernel Enhancements for Low Latency Sockets Using Busy Poll. Retrieved
from http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/open-source-kernel-
enhancements-paper.pdf.

Intel Corp. 2014a. Intel 82599 10 GbE Controller Datasheet. Retrieved from http://www.intel.com/content/
dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf.

Intel Corp. 2014b. Intel Ethernet Controller XL.710 Datasheet. Retrieved from http://www.intel.com/content/
dam/www/public/us/en/documents/datasheets/x1710-10-40-controller-datasheet.pdf.

IX on GitHub 2016. The IX Project. https:/github.com/ix-project/.

EunYoung Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong, Sunghwan Ihm, Dongsu Han,
and KyoungSoo Park. 2014a. mTCP source code release, v. of 2014-02-26. Retrieved from
https://github.com/eunyoung14/mtcp.

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

http://dx.doi.org/10.1145/2517349.2522712
http://dx.doi.org/10.1145/2517349.2522714
http://dx.doi.org/10.1145/2408776.2408794
http://dx.doi.org/10.1109/MM.2014.7
http://dx.doi.org/10.1145/1629575.1629578
http://dx.doi.org/10.1145/224056.224076
http://dx.doi.org/10.1109/90.251892
http://c10m.robertgraham.com
http://dx.doi.org/10.1145/2592798.2592807
http://dx.doi.org/10.1145/2592798.2592807
http://dx.doi.org/10.1109/HPCA.2015.7056039
http://dx.doi.org/10.1109/ISCA.2005.23
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/open-source-kernel-enhancements-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/open-source-kernel-enhancements-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
https://github.com/ix-project/
https://github.com/eunyoung14/mtcp

The IX Operating System 11:37

Eunyoung Jeong, Shinae Woo, Muhammad Asim Jamshed, Haewon Jeong, Sunghwan Thm, Dongsu Han,
and KyoungSoo Park. 2014b. mTCP: A highly scalable user-level TCP stack for multicore systems.
In Proceedings of the 11th Symposium on Networked Systems Design and Implementation (NSDI’14).
489-502.

Jithin Jose, Hari Subramoni, Miao Luo, Minjia Zhang, Jian Huang, Md. Wasi ur Rahman, Nusrat S. Islam,
Xiangyong Ouyang, Hao Wang, Sayantan Sur, and Dhabaleswar K. Panda. 2011. Memcached design on
high performance RDMA capable interconnects. In Proceedings of the 2011 International Conference on
Parallel Processing (ICPP’11). 743-752. DOI : http://dx.doi.org/10.1109/ICPP.2011.37

Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M. Voelker, and Amin Vahdat. 2012. Chronos:
Predictable low latency for data center applications. In Proceedings of the 2012 ACM Symposium on
Cloud Computing (SOCC’12). 9. DOI : http://dx.doi.org/10.1145/2391229.2391238

Wonyoung Kim, Meeta Sharma Gupta, Gu-Yeon Wei, and David M. Brooks. 2008. System level
analysis of fast, per-core DVFS using on-chip switching regulators. In Proceedings of the I14th
IEEE Symposium on High-Performance Computer Architecture (HPCA08). 123—-134. DOI : http:/dx.doi.
org/10.1109/HPCA.2008.4658633

Avi Kivity. 2007. KVM: The linux virtual machine monitor. In Proceedings of the 2007 Ottawa Linux Sympo-
sium (OLS’07). 225-230.

Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. 2000. The click modular
router. ACM Trans. Comput. Syst. 18, 3 (2000), 263—-297. DOI : http://dx.doi.org/10.1145/354871.354874

Andrew Krioukov, Prashanth Mohan, Sara Alspaugh, Laura Keys, David E. Culler, and Randy H. Katz. 2011.
NapSAC: Design and implementation of a power-proportional web cluster. Comput. Commun. Rev. 41,
1(2011), 102-108. DOI : http://dx.doi.org/10.1145/1925861.1925878

Jacob Leverich. 2014. Mutilate: High-Performance Memcached Load Generator. Retrieved from https:/
github.com/leverich/mutilate.

Jacob Leverich and Christos Kozyrakis. 2014. Reconciling high server utilization and sub-millisecond
quality-of-service. In Proceedings of the 2014 EuroSys Conference. 4:1-4:14. DOI:http://dx.doi.org/
10.1145/2592798.2592821

Philip Levis, Samuel Madden, David Gay, Joseph Polastre, Robert Szewczyk, Alec Woo, Eric A. Brewer,
and David E. Culler. 2004. The emergence of networking abstractions and techniques in TinyOS. In
Proceedings of the 1st Symposium on Networked Systems Design and Implementation (NSDI'04). 1-14.

Jing Li, Kunal Agrawal, Sameh Elnikety, Yuxiong He, I.-Ting Angelina Lee, Chenyang Lu, and Kathryn S.
McKinley. 2016. Work stealing for interactive services to meet target latency. In Proceedings of the 21st
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’16). 14:1-14:13.
DOI:http:/dx.doi.org/10.1145/2851141.2851151

Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble. 2014. Tales of the tail: Hardware,
0OS, and application-level sources of tail latency. In Proceedings of the 2014 ACM Symposium on Cloud
Computing (SOCC’14). 9:1-9:14. DOI : http://dx.doi.org/10.1145/2670979.2670988

Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky. 2014. MICA: A holistic approach to
fast in-memory key-value storage. In Proceedings of the 11th Symposium on Networked Systems Design
and Implementation (NSDI'14). 429-444.

David Lo, Liqun Cheng, Rama Govindaraju, Luiz Andre Barroso, and Christos Kozyrakis. 2014.
Towards energy proportionality for large-scale latency-critical workloads. In Proceedings of the
41st International Symposium on Computer Architecture (ISCA’14). 301-312. DOI:http://dx.doi.org/
10.1109/ISCA.2014.6853237

David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and Christos Kozyrakis. 2015.
Heracles: Improving resource efficiency at scale. In Proceedings of the 42nd International Symposium
on Computer Architecture (ISCA’15). 450-462. DOI : http://dx.doi.org/10.1145/2749469.2749475

Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David J. Scott, Balraj Singh, Thomas
Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. 2013. Unikernels: Library oper-
ating systems for the cloud. In Proceedings of the 18th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS-XVIII'13). 461-472.
DOI:http:/dx.doi.org/10.1145/2451116.2451167

Ilias Marinos, Robert N. M. Watson, and Mark Handley. 2014. Network stack specialization for per-
formance. In Proceedings of the ACM SIGCOMM 2014 Conference. 175-186. DOI:http://dx.doi.org/
10.1145/2619239.2626311

Jason Mars, Lingjia Tang, Kevin Skadron, Mary Lou Soffa, and Robert Hundt. 2012. Increasing uti-
lization in modern warehouse-scale computers using bubble-up. IEEE Micro 32, 3 (2012), 88-99.
DOI:http://dx.doi.org/10.1109/MM.2012.22

Paul E. McKenney and John D. Slingwine. 1998. Read-copy update: Using execution history to solve concur-
rency problems. In Parallel and Distributed Computing and Systems. 509-518.

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

http://dx.doi.org/10.1109/ICPP.2011.37
http://dx.doi.org/10.1145/2391229.2391238
http://dx.doi.org/10.1109/HPCA.2008.4658633
http://dx.doi.org/10.1109/HPCA.2008.4658633
http://dx.doi.org/10.1145/354871.354874
http://dx.doi.org/10.1145/1925861.1925878
https://github.com/leverich/mutilate
https://github.com/leverich/mutilate
http://dx.doi.org/10.1145/2592798.2592821
http://dx.doi.org/10.1145/2592798.2592821
http://dx.doi.org/10.1145/2851141.2851151
http://dx.doi.org/10.1145/2670979.2670988
http://dx.doi.org/10.1109/ISCA.2014.6853237
http://dx.doi.org/10.1109/ISCA.2014.6853237
http://dx.doi.org/10.1145/2749469.2749475
http://dx.doi.org/10.1145/2451116.2451167
http://dx.doi.org/10.1145/2619239.2626311
http://dx.doi.org/10.1145/2619239.2626311
http://dx.doi.org/10.1109/MM.2012.22

11:38 A. Belay et al.

David Meisner, Brian T. Gold, and Thomas F. Wenisch. 2011a. The PowerNap server architecture. ACM
Trans. Comput. Syst. 29, 1 (2011), 3. DOI :http://dx.doi.org/10.1145/1925109.1925112

David Meisner, Christopher M. Sadler, Luiz André Barroso, Wolf-Dietrich Weber, and Thomas F.
Wenisch. 2011b. Power management of online data-intensive services. In Proceedings of the
38th International Symposium on Computer Architecture (ISCA’11). 319-330. DOI:http:/dx.doi.org/
10.1145/2000064.2000103

memcached 2014. memcached — A distributed memory object caching system. Retrieved from http:/
memcached.org.

Microsoft Corp. 2014. Receive Side Scaling. http://msdn.microsoft.com/library/windows/hardware/ff556942.
aspx.

Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using one-sided RDMA reads to build a fast, CPU-
efficient key-value store. In Proceedings of the 2013 USENIX Annual Technical Conference (ATC’13).
103-114.

Jeffrey C. Mogul and K. K. Ramakrishnan. 1997. Eliminating receive livelock in an interrupt-driven kernel.
ACM Trans. Comput. Syst. 15, 3 (1997), 217-252.

Luca Niccolini, Gianluca Iannaccone, Sylvia Ratnasamy, Jaideep Chandrashekar, and Luigi Rizzo. 2012.
Building a power-proportional software router. In Proceedings of the 2012 USENIX Annual Technical
Conference (ATC’12). 89-100.

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford, Tony Tung, and Venkateshwaran Venkatara-
mani. 2013. Scaling memcache at facebook. In Proceedings of the 10th Symposium on Networked Systems
Design and Implementation (NSDI’'13). 385-398.

John K. Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal, Collin Lee, Behnam Montazeri,
Diego Ongaro, Seo Jin Park, Henry Qin, Mendel Rosenblum, Stephen M. Rumble, Ryan Stutsman,
and Stephen Yang. 2015. The RAMCloud storage system. ACM Trans. Comput. Syst. 33, 3 (2015), 7.
DOI:http://dx.doi.org/10.1145/2806887

Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. 2000. IO-lite: A unified I/O buffering and caching system.
ACM Trans. Comput. Syst. 18, 1 (2000), 37—66. DOI : http://dx.doi.org/10.1145/332799.332895

Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert Tappan Morris. 2012. Improving network
connection locality on multicore systems. In Proceedings of the 2012 EuroSys Conference. 337-350.
DOI:http://dx.doi.org/10.1145/2168836.2168870

Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishnamurthy, Thomas E.
Anderson, and Timothy Roscoe. 2016. Arrakis: The operating system is the control plane. ACM Trans.
Comput. Syst. 33, 4 (2016), 11. DOI : http://dx.doi.org/10.1145/2812806

George Prekas, Adam Belay, Mia Primorac, Ana Klimovic, Samuel Grossman, Marios Kogias, Bernard
Gitermann, Christos Kozyrakis, and Edouard Bugnion. 2016. IX Open-source Version 1.0 — Deployment
and Evaluation Guide. Technical Report. EPFL Technical Report 218568.

George Prekas, Mia Primorac, Adam Belay, Christos Kozyrakis, and Edouard Bugnion. 2015. Energy propor-
tionality and workload consolidation for latency-critical applications. In Proceedings of the 2015 ACM
Symposium on Cloud Computing (SOCC’15). 342—-355. DOI : http://dx.doi.org/10.1145/2806777.2806848

Niels Provos and Nick Mathewson. 2003. libevent: an event notification library. Retrieved from http://
libevent.org.

K. Ramakrishnan, S. Floyd, and D. Black. 2001. The Addition of Explicit Congestion Notification (ECN) to
IP. IETF Network Working Group, RFC3168, September 2001. https://tools.ietf.org/html/rfc3168.

Luigi Rizzo. 2012. Revisiting network I/O APIs: The netmap framework. Commun. ACM 55, 3 (2012), 45-51.
DOI:http://dx.doi.org/10.1145/2093548.2093565

Efraim Rotem, Alon Naveh, Avinash Ananthakrishnan, Eliezer Weissmann, and Doron Rajwan. 2012. Power-
management architecture of the intel microarchitecture code-named sandy bridge. IEEE Micro 32, 2
(2012), 20-27. DOI : http://dx.doi.org/10.1109/MM.2012.12

Stephen M. Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosenblum, and John K. Ousterhout. 2011.
It’s time for low latency. In Proceedings of the 13th Workshop on Hot Topics in Operating Systems
(HotOS-XIIT'11).

Constantine P. Sapuntzakis, David Brumley, Ramesh Chandra, Nickolai Zeldovich, Jim Chow, Monica
S. Lam, and Mendel Rosenblum. 2003. Virtual appliances for deploying and maintaining software.
In Proceedings of the 17th Large Installation System Administration Conference (LISA03). 181—
194.

Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes. 2013. Omega: Flexible,
scalable schedulers for large compute clusters. In Proceedings of the 2013 EuroSys Conference. 351-364.
DOI:http:/dx.doi.org/10.1145/2465351.2465386

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

http://dx.doi.org/10.1145/1925109.1925112
http://dx.doi.org/10.1145/2000064.2000103
http://dx.doi.org/10.1145/2000064.2000103
http://memcached.org
http://memcached.org
http://msdn.microsoft.com/library/windows/hardware/ff556942.aspx
http://msdn.microsoft.com/library/windows/hardware/ff556942.aspx
http://dx.doi.org/10.1145/2806887
http://dx.doi.org/10.1145/332799.332895
http://dx.doi.org/10.1145/2168836.2168870
http://dx.doi.org/10.1145/2812806
http://dx.doi.org/10.1145/2806777.2806848
http://libevent.org
http://libevent.org
https://tools.ietf.org/html/rfc3168
http://dx.doi.org/10.1145/2093548.2093565
http://dx.doi.org/10.1109/MM.2012.12
http://dx.doi.org/10.1145/2465351.2465386

The IX Operating System 11:39

Quinn O. Snell, Armin R. Mikler, and John L. Gustafson. 1996. Netpipe: A network protocol independent per-
formance evaluator. In Proceedings of the IASTED International Conference on Intelligent Information
Management and Systems, Vol. 6.

Livio Soares and Michael Stumm. 2010. FlexSC: Flexible system call scheduling with exception-less system
calls. In Proceedings of the 9th Symposium on Operating System Design and Implementation (OSDI’10).
33-46.

Solarflare Communications. 2011. Introduction to OpenOnload: Building Application Transparency and Pro-
tocol Conformance into Application Acceleration Middleware. Retrieved from http:/www.solarflare.com/
content/userfiles/documents/solarflare_openonload_intropaper.pdf.

Ryan Stutsman and John K. Ousterhout. 2013. Toward common patterns for distributed, concurrent, fault-
tolerant code. In Proceedings of the 14th Workshop on Hot Topics in Operating Systems (HotOS-XIV’13).

Chandramohan A. Thekkath, Thu D. Nguyen, Evelyn Moy, and Edward D. Lazowska. 1993. Implement-
ing network protocols at user level. In Proceedings of the ACM SIGCOMM 1993 Conference. 64-73.
DOI:http:/dx.doi.org/10.1145/166237.166244

Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C. M. Martins, Andrew V. Anderson, Steven
M. Bennett, Alain Kégi, Felix H. Leung, and Larry Smith. 2005. Intel virtualization technology. IEEE
Comput. 38, 5 (2005), 48-56. DOI : http://dx.doi.org/10.1109/MC.2005.163

Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. 2009. Wikipedia workload analy-
sis for decentralized hosting. Comput. Netw. 53, 11 (2009), 1830-1845. DOI:http:/dx.doi.org/
10.1016/j.comnet.2009.02.019

George Varghese and Anthony Lauck. 1987. Hashed and hierarchical timing wheels: Data structures for the
efficient implementation of a timer facility. In Proceedings of the 11th ACM Symposium on Operating
Systems Principles (SOSP’87). 25-38. DOI : http://dx.doi.org/10.1145/41457.37504

Vijay Vasudevan, Amar Phanishayee, Hiral Shah, Elie Krevat, David G. Andersen, Gregory R. Ganger,
Garth A. Gibson, and Brian Mueller. 2009. Safe and effective fine-grained TCP retransmissions
for datacenter communication. In Proceedings of the ACM SIGCOMM 2009 Conference. 303-314.
DOI:http://dx.doi.org/10.1145/1592568.1592604

Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric Tune, and John Wilkes. 2015.
Large-scale cluster management at Google with borg. In Proceedings of the 2015 EuroSys Conference.
18:1-18:17. DOI : http://dx.doi.org/10.1145/2741948.2741964

Werner Vogels. 2008. Beyond server consolidation. ACM Queue 6, 1 (2008), 20—26. DOI:http:/dx.doi.org/
10.1145/1348583.1348590

dJ. Robert von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and Eric A. Brewer. 2003. Capriccio:
Scalable threads for internet services. In Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP’03). 268-281. D01 : http://dx.doi.org/10.1145/945445.945471

Matt Welsh, David E. Culler, and Eric A. Brewer. 2001. SEDA: An architecture for well-conditioned, scal-
able internet services. In Proceedings of the 18th ACM Symposium on Operating Systems Principles
(SOSP’01). 230-243. DOI : http://dx.doi.org/10.1145/502034.502057

WhatsApp Inc. 2012. 1 million is so 2011. Retrieved from https://blog.whatsapp.com/index.php/2012/01/1-
million-is-so-2011.

David A. Wheeler. 2001. SLOCCount, v2.26. Retrieved from http://www.dwheeler.com/sloccount/.

Hailong Yang, Alex D. Breslow, Jason Mars, and Lingjia Tang. 2013. Bubble-flux: Precise online QoS
management for increased utilization in warehouse scale computers. In Proceedings of the 40th
International Symposium on Computer Architecture (ISCA’13). 607-618. DOI:http://dx.doi.org/10.
1145/2485922.2485974

Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and John Wilkes. 2013. CPI2: CPU
performance isolation for shared compute clusters. In Proceedings of the 2013 EuroSys Conference.
379-391. DOI: http://dx.doi.org/10.1145/2465351.2465388

Received June 2016; accepted September 2016

ACM Transactions on Computer Systems, Vol. 34, No. 4, Article 11, Publication date: December 2016.

http://www.solarflare.com/content/userfiles/documents/solarflareopenonloadintropaper.pdf
http://www.solarflare.com/content/userfiles/documents/solarflareopenonloadintropaper.pdf
http://dx.doi.org/10.1145/166237.166244
http://dx.doi.org/10.1109/MC.2005.163
http://dx.doi.org/10.1016/j.comnet.2009.02.019
http://dx.doi.org/10.1016/j.comnet.2009.02.019
http://dx.doi.org/10.1145/41457.37504
http://dx.doi.org/10.1145/1592568.1592604
http://dx.doi.org/10.1145/2741948.2741964
http://dx.doi.org/10.1145/1348583.1348590
http://dx.doi.org/10.1145/1348583.1348590
http://dx.doi.org/10.1145/945445.945471
http://dx.doi.org/10.1145/502034.502057
https://blog.whatsapp.com/index.php/2012/01/1-million-is-so-2011
https://blog.whatsapp.com/index.php/2012/01/1-million-is-so-2011
http://www.dwheeler.com/sloccount/
http://dx.doi.org/10.1145/2485922.2485974
http://dx.doi.org/10.1145/2485922.2485974
http://dx.doi.org/10.1145/2465351.2465388

