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Abstract

dotty is a new, experimental Scala compiler based on DOT,
the calculus of Dependent Object Types. Higher-kinded
types are a natural extension of first-order lambda calculus,
and have been a core construct of Haskell and Scala. As long
as such types are just partial applications of generic classes,
they can be given a meaning in DOT relatively straightfor-
wardly. But general lambdas on the type level require ex-
tensions of the DOT calculus to be expressible. This paper
is an experience report where we describe and discuss four
implementation strategies that we have tried out in the last
three years. Each strategy was fully implemented in the dotty
compiler. We discuss the usability and expressive power of
each scheme, and give some indications about the amount of
implementation difficulties encountered.
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1.

Scala has first-class support for higher-kinded types [3], they
can be defined by users as follows:

Introduction

type Foo[A] = List[A] // Foo has kind » -> =
and abstracted over:

def return[F[_], A](x: A): M[A]
type Bar[M[_]1] = M[Int] // Bar has kind (% -> *) —-> =

Implementing sound support for these higher-kinded
types in dotty [S] without restricting their expressive power
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proved to be challenging, so much so that we evaluated four
different strategies before settling on the current direct rep-
resentation encoding. The strategies are summarized as fol-
lows:

® A simple encoding in the DOT-inspired [9] core type
structures that can express partial applications and not
much more

® A direct representation that adds support for full type
lambdas and higher-kinded applications, without re-
using much of the existing concepts of the calculus and
the compiler.

e A projection encoding, that encodes higher-kinded types
as first-order generic types using type projections T#A.

e A refinement encoding, that encodes higher-kinded types
as first-order generic types using refinements and path-
dependent types.

Neither of the encodings is fully transparent, in that some
type checking operations still needed special provisions for
encoded types.

These four strategies were implemented in the dotty re-
search compiler for Scala over the course of three years
(2013-2016). The purpose of the present paper is to give
a high-level overview of the implementations and the lan-
guage design choices they entail.

The perspective of the paper is experimental rather than
theoretical. One can regard it as a kind of lab notebook
describing and contrasting different experiments. The raw
data for the experiments exists in the form of commits in
the repository ‘lampepfl/dotty‘ on GitHub. Given the con-
siderable implementation effort that went into higher-kinded
types we wanted to create a record of what was done, what
worked out, and what did not work as well as hoped for.
Overall, it’s fair to say that there were more failed than suc-
cessful experiments, but failures are at least as important to
record as successes.

The rest of this paper is organized as follows. Section 3
describes the simple encoding of partial applications into
core DOT. Section 4 describes the direct representation of
higher kinded types. Section 5 and Section 6 describe two
encodings based on projections and refinements, respec-


http://github.com/lampepfl/dotty

tively. Section 7 compares the four implementation strate-
gies described previously. Section 8 concludes.

2. Background

If we combine generics and subtyping in a language like
Java or Scala, we face the problem that we want to express
a generic type where the type argument is an unknown type
that can range over a set of possible types. The prototypi-
cal case is where the argument ranges over all subtypes or
supertypes of some type bound, as in List[_ <: Fruit].

Such partially undetermined types come up when we
want to express variance. We would like to express, say,
that List[Apple] is a subtype of List[Fruit] since Apple is
a subtype of Fruit. An equivalent way to express this is to
say that the type List[Fruit] includes Lists where the el-
ements are of an arbitrary subtype of Fruit. By that rea-
soning, List[Apple] is a special case of List[Fruit]. We
can also express this notion directly using the wildcard type
List[_ <: Fruit]. Definition-site variance can be regarded
as a user-friendly notation that expands into use-site vari-
ance expressions using such wildcards.

The problem is how to model a wildcard type such as
List[_ <: Fruit]. Igarashi and Viroli’s original interpre-
tation [1] was as an existential type 3T <: Fruit.List[T]
which would be written

List[T] forSome { type T <: Fruit }

in current Scala. However, existential types usually come
with explicit pack and unpack constructs [2], which are
absent in Scala’s setting. Moreover, actual subtyping rules
as e.g. implemented in the reference compilers for Java and
Scala are more powerful than what can be expressed with
existential types alone [12]. The theory of the rules that are
actually implemented is not fully known and the issues look
complicated. Tate, Leung and Learner have explored some
possible explanations in [11], but their treatment raises about
as many questions as it answers.

2.1 A Uniform Representation of Types

The problem is solved in DOT and dotty by a radical reduc-
tion. Type parameters and type arguments are not primitive,
but are seen as syntactic sugar for type members and type
refinements. For instance, if List is declared like this:

trait List[Elem] { ... }

then this would be expanded to a parameterless trait with
a type member, like this:

trait List { type Elem; ... }

(For simplicity we re-use the name of the parameter Elem
as the name of the type member, whereas in practice the
compiler would choose a mangled name like List$Elem in
order to avoid name clashes.)
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An application such as List[String] is then expanded
to List { type Elem = String }. If List were declared as
covariant (using [+Elem]), the type application is instead
expanded to a refinement with an upper bound:

List { type Elem <: String }

Analogously, applications of contravariant types lead to re-
finements with lower bounds.

This scheme has two immediate benefits. First, we only
need to explain one concept instead of two. Second, the
interaction between the two concepts, which was so difficult
before, now becomes trivial. Indeed, a type like

List[_ <: Fruit]
is simply
List { type Elem <: Fruit }

That is, wildcard parameters translate directly to refinements
with the same type bounds.

3. The Simple Encoding

Following DOT, we model type parameters as type members
and type arguments as refinements. For instance, a parame-
terized class such as

Map[K, V]
is treated as equivalent to a type with type members:
class Map { type Map$K; type Map$v }

The type members are name-mangled (i.e. Map$K) to ensure
that they do not conflict with other user-defined members or
parameters named K or V.

A type-instance such as Map[String, Int] would then be
treated as equivalent to

Map { type Map$K = String; type Map$V = Int }

whereas a wildcard type such as Map[_, Int] is equivalent
to:

Map { type Map$V = Int }

That is, _ arguments correspond to type members that are
left abstract. Wildcard arguments can have bounds. E.g.

Map[_ <: AnyRef, Int]
is equivalent to:

Map { type Map$K <: AnyRef; type Map$V = Int }

3.1 Type Parameters and Partial Applications

The notion of type parameters makes sense even for encoded
types, which do not contain parameter lists in their syntax.
Specifically, the type parameters of a type are a sequence of



type fields that correspond to parameters in the unencoded
type. They are determined as follows.

e The type parameters of a class or trait type are those
parameter fields declared in the class that are not yet
instantiated, in the order they are given. Type parameter
fields of parents are not considered.

e The type parameters of an abstract type are the type
parameters of its upper bound.

e The type parameters of an alias type are the type param-
eters of its right hand side.

e The type parameters of every other type is the empty
sequence.

This definition of type parameters leads to a simple model
of partial applications. Consider for instance:

type Histogram = Map[_, Int]

Histogram is a higher-kinded type that still has one type
parameter. Histogram[String] would be a possible type in-
stance, and it would be equivalent to Map[String, Int].

One interesting consequence of this definition is that
higher-kinded types and existential types are identified with
each other by virtue of being mapped to the same construct.
Indeed, the type Map[_, Int] can be interpreted as both an
existential type, where the K field is unspecified and as a
higher-kinded type that takes a type argument for the K field
and produces an instance of Map.

3.2 Modeling Polymorphic Type Declarations

The partial application scheme gives us a new — and quite
elegant — way to express certain higher-kinded types. But
how do we interpret the polymorphic types that exist in
Scala?

More concretely, Scala allows us to write parameterized
type definitions, abstract types, and type parameters. In the
new scheme, only classes (and traits) can have parameters
and these are treated as equivalent to type members. Type
aliases and abstract types do not allow the definition of
parameterized types so we have to interpret polymorphic
type aliases and abstract types specially.

Parameterized Aliases. A simple, and quite common case
of parameterized type definitions in Scala are parameterized
aliases. For instance, we find in the Scala package the defi-
nition
type List[+T] =
scala.collection.immutable.List[T]

Aliases like these can be expanded under the simple encod-
ing by simply dropping the parameters on the left hand side
and the arguments on the right hand side of the equals sign.

Partial Applications. Type definitions representing partial
applications like Histogram above are straightforward.
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Non-linear parameter occurrences. It is also possible to
express some patterns where type parameters occur non-
linearly on the right-hand side. An example is the definition
of Pair below.

type Pair[T] = Tuple2[T, T]
where Tuple2 is declared as
class Tuple2[+T1, +T2] ...

The definition of Pair is expanded to the following parame-
terless type alias:

type Pair =
Tuple2 { type Tuple2$T2 = Tuple2$T1 }

More generally, each type parameter of the left-hand side
must appear as a type member of the right hand side type.
Type members must appear in the same order as their corre-
sponding type parameters. References to the type parameter
are then translated to references to the type member. The
type member itself is left uninstantiated.

3.3 Limitations

The technique described in the previous section can expand
most polymorphic type aliases appearing in Scala codebases
but not all of them. Here are some examples of types that
cannot be expressed:

1. type Rep[T] = T

This fails because the right hand side T does not have a
type field named T.

2. type LL[Elem] = List[List[Elem]]

This fails because the occurrence of the parameter Elem
on the right hand side is not a member binding of the
outer List.

3. type RMap[V, K] = Map[K, V]

This fails because the order of type parameters of the left-
and right-hand sides of the definition differ.

Another restriction concerns the bounds of higher-kinded
type parameters. Consider the following pattern:

class Seq[X] extends Iterable[X] ...

def f[C[X] <: Iterable[X]]: C[String] = ...
def g[C[X] <: Seq[X]]: C[String] = f[C]

According to our rules for type parameters, the result type of
f is encoded as

C { type Iterable$X = String }
On the other hand, the result type of g is encoded as

C { type Seq$X = String }



The two types are incompatible, hence the example above
would be lead to an ill-typed encoding, even though it seems
completely natural. The problem here is that type parameters
are encoded as type fields with mangled names that contain
the name of the enclosing class. This means that narrowing
of bounds for type parameters is not supported. The root
problem in the example above is that the type parameter C
in g has a type parameter field named Seq$X whereas the type
parameter C in f has a type parameter named Iterable$X.
Therefore, it should not be allowed to pass € from £ to g.

In a sense the simple encoding abandons the traditional
notion of kinds, but replaces it with the notion that the kind
of a type is the sequence of the names of its type parameter
fields. According to the new notion, the call f[C] above
would not be kind-correct.

This discussion also points to a need for a mechanism to
enforce that the type parameters of a class have the same
names as the type parameters of a superclass. In the example
above, we would like to enforce that the type parameter of
class Seq has the same (encoded) name as the type parameter
of class Iterable. A possible way to do this would be by al-
lowing explicitly named parameters that are available under
the same name as public fields. E.g.,

type Seq[type X] extends Iterable[X]

A more detailed discussion of named type parameters is
beyond the scope of this paper.

3.4 Discussion

The simple encoding has the advantage that no new concepts
beyond those already covered by DOT are needed. It sup-
ports all forms of partial application naturally, with minimal
notational overhead.

On the other hand, the limitations of the simple encod-
ing make it less expressive than the current implementation
of higher-kinded types in Scala. Furthermore, the distinction
between what can be expressed and what cannot looks some-
what arbitrary and not well connected with the source-level
parameter syntax.

4. The Direct Representation

The direct representation of higher-kinded types keeps the
encoding of type parameters of traits and classes in terms of
type members as before. Higher-kinded abstractions and ap-
plications are modeled by their own constructs. In particular,
we add explicit internal representations for:

e Type lambdas

[’U1 X1y, «vuy Un Xn] > T

where vy, ..., v, are the variances of the type parame-
ters. This is used internally but can also be written ex-
plicitly by the user (see Section 4.2), in fact

type Foo[+X] = T

is now just syntactic sugar for:

type Foo = [+X] -> T

e Higher-kinded applications

C[le LERE] Tn]

where C is a higher-kinded type constructor and Ty, ..., T,
are argument types. In such an application C is always a
higher-kinded abstract or alias type or a type parameter.
If c is a class, the usual encoding with refinement types
is applied. If C is a lambda abstraction, beta reduction is
applied:

([vl X1, «evy Un Xn] -> T)[Ul, LR Un]

[Xy :=U1, ..., X :=0U,]T

Reducing applied aliases proceeds similarly, but this is
not done eagerly in general as it affects type inference,
see the example at the end of this section.

We now sketch the extra subtyping rules as they are im-
plemented in the compiler (a more formal treatment would
require us to extend the soudness proof of DOT), for sim-
plicity of presentation we only cover the case of single-
parameter lambdas and we do not consider F-bounds or
kind-checking. The rule governing type lambdas is as fol-
lows (conforms(vy,vs) specifies the conformance relation
between variances. It is true iff v; = vy or if vy is non-
variant) :

conforms(vy,vs)
't Ly <: Ly
' U <. U
I X>Li< U FT)y < Ty

'+ [UlX >:Lq <:U1} - T < [UQX >: Lo <ZU2] — T

Subtyping rules for higher-kinded applications are as fol-
lows (here, the syntax I' = S <:; TorI' -+ S >:; T means
that the closest known upper (respectively, lower) bound of
type S'is T').

'+ A < [UX] - U
'+ [X = Tl]Ul <:Us

'+ Al[Tl] <: Uy

' Ay >y [vX] = Us
'+ U < [X = TQ]UQ

' U <: AQ[TQ]

T A<y [+X] U
IHT < Ty

'+ A[Tl] <: A[TQ]




I+ A<:g [7X]~>U
T < Ty
T - A[Ty] <: A[T3]

'A<y [X]*)Ul
T < Ty Ty < Ty

T+ AT <: A[Ty]

Type inference also has to be adapted to higher-kinded
types. The main addition needed concerns the case where
the compiler needs to satisfy a subtyping constraint

S < (C[Ty, ..., Tpl

where C is an instantiable higher-kinded type parameter and
Sand Ty, ..., T,, are types. We need to find an instantiation of
C that satisfies the constraint.

The scheme to find this instantiation is essentially the
same as for the most recent version of scalac (including
support for partial unification of type constructors [10]). We
first find a base type of s that has a constructor with at least
n type parameters where the variances of the rightmost n
parameters conform to those of C’s type parameters. Let that
base type be

B[S1, ... Sm, U1, .., Upd.

Then, try to instantiate C to
[X1, ..., Xn] > B[S1, ... Sin, X1, «-., Xnl
and, if this succeeds, continue with the subtyping check

B[S1,
B[S1,

ver Sy U,
oo Sy T1, on

The search for suitable base types proceeds according to
the linearization order of c. This is a deviation from scalac,
which uses a slightly different order in which base types are
visited. In both compilers, once a base type satisfies both
the type parameter instantiation and the subtyping check, the
type parameter stays instantiated to that base type, even if
subsequent subtyping checks fail. This is analogous to Pro-
log’s “cut” operator that prevents backtracking from undoing
a partial success. The cut is necessary to prevent a combina-
torial explosion by limiting the search space.

Example: Assume the following definitions:

trait A[X]
trait B[X, Y]
object 0 extends A[String]
with B[Int, String]
def f[C[X], Z](x: C[Z]) : C[Z] = x

Then the type parameters for £ in the call £(0) are inferred
as follows.

1. The constraint to be satisfied is 0 <: C[Z], where C and Z
are instantiable type variables.
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2. The argument 0 does not have the right number of type
parameters to match the pattern c[z] and is therefore
discarded.

3. The next base type in linearization order from 0 is
B[Int, String]. This type has enough type parameters,
and we therefore instantiate C to [X] -> B[Int, X].

4. After instantiation we obtain the constraint

B[Int, String] <: B[Int, Z],

which leads to the instantiation of Z = String.

5. The call is hence expanded to

F[[X] -> B[Int, X], String](0)

and its result type is B[Int, String].

6. One could have alternatively chosen to instantiate C to
[X] -> A[X]. But since B came first in linearization order,
this alternative was discarded. If subsequently we were
faced with the constraint that the result type of £ should
be a subtype of A[String] this constraint will fail.

Inference takes abstract types and type aliases into ac-
count when trying to find possible type parameter instances.
For instance, given the type alias

type Transform[X] = Map[X, X]

and the definition
val trans: Transform[String]

the call f(trans) would be expanded to
f[Transform, String](trans)

That is, Transform is a valid candidate for the decomposition
of the type of t into a type constructor and a type argument.
For this to work, it is important that aliases are not derefer-
enced eagerly in the compiler. If the compiler had expanded
the binding

trans: Transform[String]
to
trans: Map[String, String]

type inference would have yielded a different, and less intu-
itive expansion:

f[[X] -> Map[String, X], String](trans)

4.1 Higher-Kinded Wildcard Applications

Recall that one of the main motivations of dotty’s encoding
of type parameters was to give a simple semantics to wild-
card arguments. With the introduction of higher-kinded ap-
plications, the problem resurfaces. For example, consider the
definition:



type M[X] <: Map[X, X]

What should be the meaning of M[_] be? One might be
tempted to simply disallow higher-kinded applications to
wildcard arguments. But unfortunately, Scala libraries do
contain occurrences of such applications, which are hard to
work around. Another possible interpretation would be as an
existential type - i.e. M[_] corresponds to

Map[X, X] forSome { type X }.

If we follow that line, every existential type in Scala could
be expressed as a higher-kinded application to wildcard ar-
guments. Indeed,

T forSome { type X >: L <: H }
is equivalently expressed as
([X] > DC>: L<:H.

On the other hand, getting rid of existential types was an-
other design objective of the dotty project. In the absence of
explicit pack and unpack constructs, their interactions with
many other concepts are unclear. Furthermore, existential
types are semantically quite close to path-dependent types
and it seems undesirable to have two concepts that largely
overlap.

The solution pursued in dotty is to disallow applications
of higher-kinded types to wildcards unless these applications
can be ultimately reduced to wildcard arguments of class
types. More precisely we restrict applications to wildcard
arguments to reducible type constructors, where a type con-
structor is reducible if one of the following is true.

o The constructor is a reference to a class or trait

¢ The constructor is a type lambda of the form

[X] > B[... X ...]

where B is a reference to a class or trait and X appears at
most once, in argument position to B.

e The constructor is an alias of a reducible constructor.

e The constructor is an abstract type, and any bounds given
for it are reducible constructors.

Example: Assume the declarations

type C[X] <: Iterable[X]
type M[X] = Map[X, X]

Then c[_] is legal because C is reducible but M[_] is illegal
because M is irreducible.

The idea is that it is safe to beta-reduce an application of a
type lambda of the form given above to a wildcard argument.
For instance,

([X] -> CIXD[]
is simply c[_]. On the other hand,
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([X] > MIX, XD[-]

is semantically not the same as M[_, _]. The former type im-
plies a coupling between the two unknown type parameters
which the latter type lacks.

The reducibility restriction does not seem to be very bur-
densome in practice. The dotty test suite, which includes
Scala’s standard collection library did not contain any oc-
currences of irreducible applications that would have to be
rejected.

4.2 Implementation

The changes for supporting the direct representation are con-
tained in pull request #1343 of the lampepfl/dotty reposi-
tory on GitHub. The base-line of that pull request is the re-
finement encoding presented in Section 6.

The changes can be summarized as follows.

e New syntax for type lambdas. The additional syntax is:

Type ::=
HkTypeParamClause ‘->’ Type
HkTypeParamClause ::=
‘[’ HkTypeParam {‘,’ HkTypeParam} ‘]’
HkTypeParam ::=
{Annotation} [’'+’ | ‘-’]
(Id[HkTypeParamClause] | ‘_")
TypeBounds

e Internal representations for type lambdas and higher-
kinded applications as two new forms of types.

e A “smart” constructor for type application C[T1, .., Tn]
that picks the member-based encoding if C is a class
reference, beta-reduces if C is a type lambda, and returns
a higher-kinded application otherwise.

e Extractors for type lambdas and type applications that
work independently of the underlying representation.

¢ Implementation of subtyping and inference rules for type
lambdas and applications as outlined above.

4.3 Comparison with scalac

The direct representation shares many characteristics with
scalac’s implementation of higher-kinded types, which was
originally done by Adriaan Moors. In particular, the algo-
rithms for subtyping and type inference are quite similar. But
there are also differences to note.

In scalac, all forms of type applications are represented
the same way. Type arguments are recorded as an additional
list-valued field in a TypeRef node, which is one of the fun-
damental constructors with which the compiler represents
types. Furthermore, all type definitions have a field that
records the definition’s type parameters. Type lambdas are
not a primitive concept in scalac; the Scala community has
instead settled on a rather elaborate encoding using struc-
tural types with type members and type projection, which
bears some resemblance to the projection encoding in the
next section.



By contrast, in dotty type parameters of classes are simply
specially marked type members. For alias and abstract types,
type parameters are expressed in the form of type lambdas.
E.g., a source level definition like

type C[X] <: Iterable[X]
is represented in the equivalent form
type C <: [X] —> Iterable[X].

In summary, type parameters in dotty are a derived concept,
not a fundamental one.

Type arguments are represented in dotty as refinements
as long as the type constructor is a reference to a class or
a trait. For type constructors that are abstract or alias types,
there is a special type node called HkApply which has the type
constructor and its arguments as fields.

4.4 Discussion

The direct encoding supports higher-kinded types in their
full generality. Partial applications are supported through the
introduction of type lambdas, which are notationally heavier
than the solution of the simple encoding, but are much more
legible than the workarounds using structural types and type
projections in current Scala.

The direct representation is in a sense less elegant and
economical than the simple encoding. It feels a bit awkward
that type applications are encoded as refinements in the first-
order case but remain as a primitive constructs in the higher-
order case. On the other hand, this aligns well with the han-
dling of wildcard arguments, which were the original moti-
vation for encoding type applications as type member refine-
ments. Wildcard arguments are expressible only if it can be
guaranteed that they can be eventually reduced away. So in
a sense, one of the main benefits of making the distinction
between encoded and unencoded applications is that this ob-
viates the need for existential types.

The conceptual and implementation cost of the direct
representation suggests that it might be advantageous to
study other encodings of higher-kinded types. Two such
candidate encodings are presented in the next sections.

S. The Projection Encoding

The type projection approach was originally suggested by
Adriaan Moors. It uses the following basic encodings.

e A type lambda [X >: S <: U] -> T is encoded as the re-
fined type

Lambda$T {
type $hko >: S <: U
type $Apply = [X := this.$hko]T

This makes use of a family of synthetic base traits
Lambda$. .., one for each vector of variances of possi-
ble higher-kinded parameters. A suffix of I indicates a

57

non-variant parameter, P (positive) a covariant parameter,
and N (negative) a contravariant parameter. An n-ary base
trait defines parameters hki for ¢ = 1, ..., n with the given
variances, as well as an abstract type member $Apply. For
instance, the base trait

trait Lambda$NP {
type $hko
type $hkl
type $Apply

is used for binary type lambdas where the first type pa-
rameter is contravariant and the second is covariant.

e An application of a non-variant higher kinded type C to
an argument T is encoded as
C { type $hko = T } # $Apply
Covariant and contravariant type applications lead to re-
finements with upper and lower bounds instead.

e Beta reduction is supported by dereferencing the type
projection. Indeed,

([X] > TH[A]

is encoded as

Lambda$I {

type $hko

type $Apply = [X
o

this . $hko]T

type $hko = A
} # Apply

which reduces to

[this.$hkO := A][X := this.$hk0]T

which is equivalent to

[X := A]JT.

Ideally, an encoding of higher-kinded types into type
members and refinements would be sufficiently expressive;
an encoded term should be type-checkable in the base calcu-
lus without special provisions that account for the fact that
types were originally higher-kinded. Unfortunately, there
are a number of areas where higher-kinded types do shine
through. To make, e.g. the standard Scala collections com-
pile, all of the following tweaks are necessary:

1. $Apply refinements are covariant. If T <: U then

S { type $Apply = T }
<: S { type $Apply = U }

This subtyping relationship does not hold for ordinary
type refinements. It would hold for upper bound refine-
ments, of course. But we cannot model $Apply refine-



ments as upper bound refinements because that would
lose beta reduction.

2. Encodings of type lambdas distribute over intersections
and unions. For instance,

Lambda$I { ... type $Apply =T } &
Lambda$P { ... type $Apply = U }

needs to be normalized to

Lambda$T { ... type $Apply =T & U }

3. A subtype test of the encoded version of

(X1, -, Xpl > D <: C

where C is a class constructor is rewritten to:

T <: C[X1, ..., Xn].

Analogously, the subtype test of the encoded version of

C < (X1, ..., Xp]l > D
is rewritten to
ClX1, +.., Xn] <: T.

4. Inference of higher-kinded type parameters is handled
using an algorithm analogous to the one described in
Section 4.

One problematic aspect of the projection encoding is
that generalized type projections have been shown to be
unsound [7]. The known examples of unsoundness do not
overlap with the images of the projection encoding, so it is
conceivable that one could have a restricted form of type
projection that permits the encoding of higher-kinded types
and that is at the same time sound. But the rules for such
a restricted form of type projection have not been worked
out, and indeed the plan for future Scala is to allow only
classes as prefixes of type projections. This can still model
Java’s inner classes (i.e. C#1I is Scala’s version of Java’s inner
class reference C.I), but it cannot model higher-kinded types
which relies on the abstract type $Apply appearing in prefix
positon of type projections.

5.1 Discussion

The projection encoding can model full higher-kinded types.
It is based on two concepts already present in current Scala,
type members and type projections. However, the latter con-
cept is about to be phased out because it has been shown to
be unsound.

The implementation overhead of the projection encoding
was considerable and debugging was hard because encoded
types can become quite large. But ultimately, it succeeded in
representing all higher-kinded types in the standard library.
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6. The Type Refinement Encoding

Whereas the type projection encoding makes use of an op-
erator (type projection #) not covered in DOT but present in
current Scala, the type refinement encoding uses general re-
cursive types which are part of DOT but absent in Scala. The
idea is as follows.

e A type lambda [X >: S <: U] -> T is encoded as the re-
fined type

[X := this.$hk0]T {
type $hk0 >: S <: U

e An application of a non-variant higher kinded type C to
an argument T is encoded as

C { type $hko = T }

Covariant and contravariant type applications lead to re-
finements with upper and lower bounds instead.

e Beta reduction is a little bit problematic:

([X] > T[A]

is encoded as

[X := this.$hko]T {
type $hko
3o

type $hko = A
}

This is equivalent to (i.e. both a subtype and a supertype
of):

[this.$hko := A]
[X := this.$hko]T {
type $hko = A

which simplifies to
[X := AIT { type $hko = A }

The latter type is a subtype of the beta-reduced type
[X := AIT but it is not a supertype, because of the oc-
currence of the additional refinement { type $hko = A }.
To make beta reduction work correctly, we have to add a
“garbage collection” rule along the following lines.

T is a first-order type
T <: T{Shk; =U}

To encode all higher-kinded types, the refinement encod-
ing needs the full power of recursive types. For instance, the

type
type Rep[T] =T



Lines of code Full hk types Type lambdas  Full inference = Implementation effort
Simple 0 no no no 1 person-month
Projection [4] 719 yes no no 4 person-months
Refinement [8] 1216  yes yes no 1 person-month
Direct [6] 2000 yes yes yes 1 person-month

Table 1. Implementation characteristics

would lead to the encoding
type Rep = { z => z.$hk0; type $hko }

Here, the right hand side is a path-dependent recursive type,
where “self” is represented by the variable z. Scala cannot
currently express types like this, but DOT can. We have
extended the dotty compiler to be able to cope with such
general recursive types.

Like the projection encoding, the refinement encod-
ing needed several tweaks in the compiler. The neces-
sary changes are contained in pull request #1282 of the
lampepfl/dotty repository on GitHub.

The main changes necessary were, in addition to tweaks
(2) - (4) of the type projection encoding:

1. Support for general recursive types, as outlined above.

2. Two “normalization functions” that essentially perform
beta reduction. One of these (called betaReduce) was ap-
plied eagerly whenever a type application was formed;
the other (normalizeHkApply) was applied every time the

application was accessed.

. A special case that disregards superfluous bindings of
higher-kinded type parameters, as outlined in the garbage
collection rule above.

. A special case that disregards parameter bounds check-
ing when comparing two encodings of type lambdas. The
problem here is that naturally parameter bounds are con-
travariant whereas in the encoding they become member
bounds, which are covariant. Disabling bounds check-
ing for encodings of type lambdas thus avoids spurious
type errors. Type soundness can still be guaranteed if one
type-checks all type applications instead. In that case,
type errors are simply reported reported later, on first-
orer type formation. However, it turned out subsequently
that checking all type applications, including in types in-
ferred by the compiler is not very practical; so one might
be better off enforcing the proper contravariant bounds
relationship for type lambdas.

A recurring problem in the implementation of the refine-
ment encoding was that circular types would arise during
type simplification. An example of such a circular type is

C { type $hko = this.$hko }.
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In theory, such circular types are harmless, but naive imple-
mentations of most type operations would send the compiler
into an infinite loop. So cycles like these had to be detected
and eliminated, which turned out to be difficult.

6.1 Discussion

The refinement encoding has the advantage that it is very
closely integrated with DOT. It uses the full power of recur-
sive types of DOT to model higher-kinded types. Unlike the
projection encoding it does not need additional fundamen-
tal concepts like type projection whose status in future Scala
is unclear. On the other hand, the abstraction presented by
the refinement encoding is also leaky. Additional subtyping
rules for garbage collection and type lambdas are needed,
and the compiler needed a subtle combination of two type
normalization rules. Also, one of these type normalization
rules follows higher-kinded aliases when a type was applied,
which leads to suboptimal type inference.

7. Comparison of Implementations

Table 1 gives some of the characteristics of the different im-
plementations. The lines of code number gives approximate
additional lines of code relative to the simple encoding. It in-
cludes whitespace, comments, and other documentation but
excludes tests. The numbers are taken from the pull requests
that implemented the proposals; Smaller changes to the dif-
ferent proposals that occurred after the initial pull requests
are not taken into account.

The other columns in Table 1 indicate whether higher
kinded types are supported in full generality, whether type
lambdas are supported, and whether type inference is as
complete as in current scalac with the inclusion of the fix
to SI-2712.

The implementation of the simple encoding is smallest,
but lacks all three of these properties. The refinement encod-
ing is about 500 lines larger than the projection encoding,
but includes syntactic support for type lambdas, and also
includes several ameliorations in the handling of recursive
types. The direct representation has the largest implemen-
tation footprint. On the other hand, it is the only one that
supports type inference on a par with scalac.

The final column in Table 1 gives estimated implementa-
tion cost in (full-time) person months. These are rough es-
timates derived from personal recollections with the help of
some GitHub archaeology. As all effort estimates, they have
to be taken with a grain of salt. The projection encoding took



much longer than the others not just because of its imple-
mentation difficulties but also because it was our first attempt
at implementing full higher-kinded types. Subsequent imple-
mentation schemes were implemented faster in part because
of what was learned before.

8. Conclusion

The work on the four different implementations of higher-
kinded types was done 2013-2016 in the context of the dotty
compiler. Initially, dotty supported the simple encoding. Be-
cause of its lack of expressiveness this was discarded in favor
of the projection encoding. Once it became clear that general
type projection was unsound, we investigated the refinement
encoding as an alternative to the projection encoding.

Neither encoding turned out to be fully satisfactory. Both
were leaky in the sense that they demanded certain rules
that applied specifically to constructs that resulted from en-
codings. Both also posed considerable difficulties for imple-
mentation and debugging. In retrospect, the biggest problem
with the projection encoding was the size of the encoded
types, which made diagnostics and debugging hard. The re-
finement encoding added somewhat less bulk, but suffered
from the fact that cyclic bindings were often created inadver-
tently. Both encodings posed the problem that, being encod-
ings, they were not reflected in static types. So the safety net
of static typing was largely unavailable to the type checker
itself.

In the end, dotty settled for a direct representation of
higher-kinded types. This implementation was larger than
the others, due to the fact that less typing infrastructure
could be re-used. On the other hand, each of the higher-
kinded constructs of type lambdas and type applications now
was represented by its own static type, which was a big
help in ensuring the correctness and completeness of the
implementation.

In a sense, the direct representation gives an honest ac-
count of the additional implementation overhead caused by
higher-kinded types. The overhead is non-negligible: about
2’000 lines compared to a total of about 28’000 lines which
taken up by core data-structures and the type-checker.

In retrospect, we believe the simple encoding is an inter-
esting alternative for a language that wants to provide most
of the benefits of higher-kinded types at minimal cost to
specification and implementation, provided one can arrive at
a crisp definition of what is legal and what is not. But Scala
is not that language, since it has a large installed code base
that makes essential use of full higher-kinded types. The les-
son learned from the work on the dotty compiler was that
one is best off supporting full higher-kinded types directly.
Encodings seem attractive at first for the code reuse they can
provide, but in the end they cause more difficulties than they
remove.
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