skip to main content

Semantics and Efficient Simulation Algorithms of an Expressive Multilevel Modeling Language

Published:18 May 2017Publication History
Skip Abstract Section

Abstract

The domain-specific modeling and simulation language ML-Rules is aimed at facilitating the description of cell biological systems at different levels of organization. Model states are chemical solutions that consist of dynamically nested, attributed entities. The model dynamics are described by rules that are constrained by arbitrary functions, which can operate on the entities’ attributes, (nested) solutions, and the reaction kinetics. Thus, ML-Rules supports an expressive hierarchical, variable structure modeling of cell biological systems. The formal syntax and semantics of ML-Rules show that it is firmly rooted in continuous-time Markov chains. In addition to a generic stochastic simulation algorithm for ML-Rules, we introduce several specialized algorithms that are able to handle subclasses of ML-Rules more efficiently. The algorithms are compared in a performance study, leading to conclusions on the relation between expressive power and computational complexity of rule-based modeling languages.

Skip Supplemental Material Section

Supplemental Material

References

  1. J. Banks and L. Chwif. 2011. Warnings about simulation. Journal of Simulation 5, 4, 279--291. Google ScholarGoogle ScholarCross RefCross Ref
  2. Fernando J. Barros. 1997. Modeling formalisms for dynamic structure systems. ACM Transactions on Modeling and Computer Simulation 7, 4, 501--515. DOI:http://dx.doi.org/10.1145/268403.268423 Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Marco Beccuti, Mary Ann Blätke, Martin Falk, Simon Hardy, Monika Heiner, Carsten Maus, Sebastian Nähring, and Christian Rohr. 2015. Dictyostelium discoideum: Aggregation and synchronisation of amoebas in time and space. Dagstuhl Reports: Multiscale Spatial Computational Systems Biology (Dagstuhl Seminar 14481) 4, 11, 195--214. DOI:http://dx.doi.org/10.4230/DagRep.4.11.138Google ScholarGoogle Scholar
  4. Arne T. Bittig, Fiete Haack, Carsten Maus, and Adelinde M. Uhrmacher. 2011. Adapting rule-based model descriptions for simulating in continuous and hybrid space. In Proceedings of the 9th International Conference on Computational Methods in Systems Biology (CMSB’11). 161--170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Arne T. Bittig, Florian Reinhardt, Simone Baltrusch, and Adelinde M. Uhrmacher. 2014. Predictive modelling of mitochondrial spatial structure and health. In Proceedings of the 12th International Conference on Computational Methods in Systems Biology (CMSB’14). 252--255. Google ScholarGoogle ScholarCross RefCross Ref
  6. Michael L. Blinov, James R. Faeder, Byron Goldstein, and William S. Hlavacek. 2004. BioNetGen: Software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20, 17, 3289--3291. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. T. Bonner and L. J. Savage. 1947. Evidence for the formation of cell aggregates by chemotaxis in the development of the slime mold Dictyostelium discoideum. Journal of Experimental Zoology 106, 1, 1--26. Google ScholarGoogle ScholarCross RefCross Ref
  8. Luca Bortolussi, Rocco De Nicola, Vashti Galpin, Stephen Gilmore, Jane Hillston, Diego Latella, Michele Loreti, and Mieke Massink. 2015. CARMA: Collective adaptive resource-sharing Markovian agents. In Proceedings of the 13th Workshop on Quantitative Aspects of Programming Languages and Systems (QAPL’15). 16--31. DOI:http://dx.doi.org/10.4204/EPTCS.194.2 Google ScholarGoogle ScholarCross RefCross Ref
  9. Olivier Bouissou and Alexandre Chapoutot. 2012. An operational semantics for Simulink’s simulation engine. In Proceedings of the 13th ACM International Conference on Languages, Compilers, Tools, and Theory for Embedded Systems (LCTES’12). 129--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Daniel S. Calovi, Leonardo G. Brunnet, and Rita M. C. de Almeida. 2010. cAMP diffusion in Dictyostelium discoideum: A Green’s function method. Physical Review E 82, 1, 011909. DOI:http://dx.doi.org/10.1103/PhysRevE.82.011909 Google ScholarGoogle ScholarCross RefCross Ref
  11. Yang Cao, Daniel T. Gillespie, and Linda R. Petzold. 2005. The slow-scale stochastic simulation algorithm. Journal of Chemical Physics 122, 1, 14416. DOI:http://dx.doi.org/10.1063/1.1824902 Google ScholarGoogle ScholarCross RefCross Ref
  12. Yang Cao, Daniel T. Gillespie, and Linda R. Petzold. 2006. Efficient step size selection for the tau-leaping simulation method. Journal of Chemical Physics 124, 4, 044109. DOI:http://dx.doi.org/10.1063/1.2159468 Google ScholarGoogle ScholarCross RefCross Ref
  13. Yang Cao, Hong Li, and Linda Petzold. 2004. Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. Journal of Chemical Physics 121, 9, 4059--4067. DOI:http://dx.doi.org/10.1063/1.1778376 Google ScholarGoogle ScholarCross RefCross Ref
  14. Troels Christoffer Damgaard, Espen Højsgaard, and Jean Krivine. 2012. Formal cellular machinery. Electronic Notes in Theoretical Computer Science 284, 55--74. DOI:http://dx.doi.org/10.1016/j.entcs.2012.05.015 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Vincent Danos, Jérôme Feret, Walter Fontana, and Jean Krivine. 2007. Scalable simulation of cellular signaling networks. In Proceedings of the 5th Asian Symposium on Programming Languages and Systems (APLAS’07). 139--157. Google ScholarGoogle ScholarCross RefCross Ref
  16. Vincent Danos and Cosimo Laneve. 2004. Formal molecular biology. Theoretical Computer Science 325, 1, 69--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. E. Weinan, D. Liu, and E. Vanden-Eijnden. 2005. Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. Journal of Chemical Physics 123, 19, 194107. DOI:http://dx.doi.org/10.1063/1.2109987 Google ScholarGoogle ScholarCross RefCross Ref
  18. James R. Faeder. 2011. Toward a comprehensive language for biological systems. BMC Biology 9, 1, 68.Google ScholarGoogle ScholarCross RefCross Ref
  19. James R. Faeder, Michael L. Blinov, and William S. Hlavacek. 2009. Rule-based modeling of biochemical systems with BioNetGen. Methods in Molecular Biology 500, 113--167. Google ScholarGoogle ScholarCross RefCross Ref
  20. Jasmin Fisher and Thomas A. Henzinger. 2007. Executable cell biology. Nature Biotechnology 25, 11, 1239--1249. DOI:http://dx.doi.org/10.1038/nbt1356 Google ScholarGoogle ScholarCross RefCross Ref
  21. Michael A. Gibson and Jehoshua Bruck. 2000. Efficient exact stochastic simulation of chemical systems with many species and many channels. Journal of Chemical Physics 104, 9, 1876--1889. DOI:http://dx.doi.org/10.1021/jp993732q Google ScholarGoogle ScholarCross RefCross Ref
  22. Daniel T. Gillespie. 1977. Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81, 25, 2340--2361. Google ScholarGoogle ScholarCross RefCross Ref
  23. Leonard A. Harris, Justin S. Hogg, and James R. Faeder. 2009. Compartmental rule-based modeling of biochemical systems. In Proceedings of the 2009 Winter Simulation Conference (WSC’2009). 908--919. Google ScholarGoogle ScholarCross RefCross Ref
  24. Tobias Helms, Roland Ewald, Stefan Rybacki, and Adelinde M. Uhrmacher. 2015. Automatic runtime adaptation for component-based simulation algorithms. ACM Transactions on Modeling and Computer Simulation 26, 1, 7:1--7:24. DOI:http://dx.doi.org/10.1145/2821509 Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Tobias Helms, Martin Luboschik, Heidrun Schumann, and Adelinde M. Uhrmacher. 2013. An approximate execution of rule-based multi-level models. In Proceedings of the 11th International Conference on Computational Methods in Systems Biology (CMSB’13). 19--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Espen Højsgaard and Jean Krivine. 2011. Towards Scalable Simulation of Stochastic Bigraphs. Technical Report TR-2011-148. IT University of Copenhagen.Google ScholarGoogle Scholar
  27. Michael Hucka, Lucian P. Smith, Darren J. Wilkinson, Frank T. Bergmann, Stefan Hoops, Sarah M. Keating, Sven Sahle, and James C. Schaff. 2010. The Systems Biology Markup Language (SBML): Language Specification for Level 3 Version 1 Core. Available at http://dx.doi.org/10.1038/npre.2010.4123.1 Google ScholarGoogle ScholarCross RefCross Ref
  28. Matthias Jeschke, Roland Ewald, and Adelinde M. Uhrmacher. 2011. Exploring the performance of spatial stochastic simulation algorithms. Journal of Computational Physics 230, 7, 2562--2574. DOI:http://dx.doi.org/10.1016/j.jcp.2010.12.030 Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Mathias John. 2010. Reaction Constraints for the Pi-Calculus—A Language for the Stochastic and Spatial Modeling of Cell-Biological Processes. Ph.D. Dissertation. University of Rostock.Google ScholarGoogle Scholar
  30. Mathias John, Cédric Lhoussaine, Joachim Niehren, and Adelinde M. Uhrmacher. 2008. The attributed pi calculus. In Computational Methods in Systems Biology. Lecture Notes in Computer Science, Vol. 5307. Springer, 83--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Mathias John, Cédric Lhoussaine, Joachim Niehren, and Adelinde Uhrmacher. 2010. The attributed pi calculus with priorities. ACM Transactions on Computational Systems Biology 5945, 12, 13--76.Google ScholarGoogle ScholarCross RefCross Ref
  32. Mathias John, Cédric Lhoussaine, Joachim Niehren, and Cristian Versari. 2011. Biochemical reaction rules with constraints. In Proceedings of the 20th European Symposium on Programming (ESOP’11). 338--357. Google ScholarGoogle ScholarCross RefCross Ref
  33. Simon L. Peyton Jones. 2003. Haskell 98 Language and Libraries: The Revised Report. Cambridge University Press, Cambridge, England.Google ScholarGoogle Scholar
  34. L. N. Joppa, G. McInerny, R. Harper, L. Salido, K. Takeda, K. O’Hara, D. Gavaghan, and S. Emmott. 2013. Troubling trends in scientific software use. Science 340, 6134, 814--815. Google ScholarGoogle ScholarCross RefCross Ref
  35. Jongrae Kim, Pat Heslop-Harrison, Ian Postlethwaite, and Declan G. Bates. 2007. Stochastic noise and synchronisation during Dictyostelium aggregation make cAMP oscillations robust. PLoS Computational Biology 3, 11, e218. DOI:http://dx.doi.org/10.1371/journal.pcbi.0030218 Google ScholarGoogle ScholarCross RefCross Ref
  36. Jean Krivine, Robin Milner, and Angelo Troina. 2008. Stochastic bigraphs. Electronic Notes in Theoretical Computer Science 218, 73--96. DOI:http://dx.doi.org/10.1016/j.entcs.2008.10.006 Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Tomas G. Kurtz. 1981. Approximation of Population Processes. SIAM. Google ScholarGoogle ScholarCross RefCross Ref
  38. Carsten Maus. 2013. Toward Accessible Multilevel Modeling in Systems Biology: A Rule-Based Language Concept. Ph.D. Dissertation. University of Rostock.Google ScholarGoogle Scholar
  39. Carsten Maus, Stefan Rybacki, and Adelinde M. Uhrmacher. 2011. Rule-based multi-level modeling of cell biological systems. BMC Systems Biology 5, 166. DOI:http://dx.doi.org/10.1186/1752-0509-5-166 Google ScholarGoogle ScholarCross RefCross Ref
  40. Orianne Mazemondet, Mathias John, Stefan Leye, Arndt Rolfs, and Adelinde M. Uhrmacher. 2012. Elucidating the sources of β-catenin dynamics in human neural progenitor cells. PLoS ONE 7, 8, e42792.Google ScholarGoogle ScholarCross RefCross Ref
  41. Orianne Mazemondet, Mathias John, Carsten Maus, Adelinde M. Uhrmacher, and Arndt Rolfs. 2009. Integrating diverse reaction types into stochastic models: A signaling pathway case study in the imperative π-calculus. In Proceedings of the 2009 Winter Simulation Conference (WSC’09). Google ScholarGoogle ScholarCross RefCross Ref
  42. S. Nähring, R. Ewald, A. M. Uhrmacher, and C. Maus. 2013. From standardized modeling formats to modeling languages and back—an exploration based on SBML and ML-Rules. In Proceedings of the 2013 Winter Simulation Conference (WSC’13). 1359--1370. DOI:http://dx.doi.org/10.1109/WSC.2013.6721522 Google ScholarGoogle ScholarCross RefCross Ref
  43. Nicolas Oury and Gordon D. Plotkin. 2013. Multi-level modelling via stochastic multi-level multiset rewriting. Mathematical Structures in Computer Science 23, 2, 471--503. Google ScholarGoogle ScholarCross RefCross Ref
  44. Ernest H. Page. 1994. Simulation Modeling Methodology: Principles and Etiology of Decision Support. Ph.D. Dissertation. Virginia Polytechnic Institute and State University.Google ScholarGoogle Scholar
  45. Terence Parr. 2013. The Definitive ANTLR 4 Reference (2nd ed.). Pragmatic Bookshelf, Raleigh, NC.Google ScholarGoogle Scholar
  46. O. Parvu, D. Gilbert, M. Heiner, F. Liu, N. Saunders, and S. Shaw. 2015. Spatial-temporal modelling and analysis of bacterial colonies with phase variable genes. ACM Transactions on Modeling and Computer Simulation 25, 2, Article No. 13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  48. Corrado Priami. 1995. Stochastic π-calculus. Computer Journal 38, 7, 578--589. Google ScholarGoogle ScholarCross RefCross Ref
  49. Corrado Priami and Paola Quaglia. 2005. Beta binders for biological interactions. In Proceedings of the 2005 International Conference on Computational Methods in Systems Biology (CMSB’05). 20--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Corrado Priami, Paola Quaglia, and Alessandro Romanel. 2009. BlenX static and dynamic semantics. In Proceedings of the 20th International Conference on Concurrency Theory (CONCUR’09). 37--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Aviv Regev, Ekaterina M. Panina, William Silverman, Luca Cardelli, and Ehud Shapiro. 2004. BioAmbients: An abstraction for biological compartments. Theoretical Computer Science 325, 1, 141--167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Alexander Steiniger and Adelinde M. Uhrmacher. 2016. Intensional couplings in variable structure models: An exploration based on multi-level-DEVS. ACM Transactions on Modeling and Computer Simulation 26, 2, 9:1--9:27. DOI:http://dx.doi.org/10.1145/2818641 Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Vo Hong Thanh, Corrado Priami, and Roberto Zunino. 2014. Efficient rejection-based simulation of biochemical reactions with stochastic noise and delays. Journal of Chemical Physics 141, 13, 134116. DOI:http://dx.doi.org/10.1063/1.4896985 Google ScholarGoogle ScholarCross RefCross Ref
  54. John J. Tyson. 1991. Modeling the cell division cycle: cdc2 and cyclin interactions. Proceedings of the National Academy of Sciences 88, 16, 7328--7332. Google ScholarGoogle ScholarCross RefCross Ref
  55. Adelinde M. Uhrmacher. 2001. Dynamic structures in modeling and simulation: A reflective approach. ACM Transactions on Modeling and Computer Simulation 11, 2, 206--232. DOI:http://dx.doi.org/10.1145/384169.384173 Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Arie van Deursen, Paul Klint, and Joost Visser. 2000. Domain-specific languages: An annotated bibliography. ACM SIGPLAN Notices 35, 6, 26--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Tom Warnke, Tobias Helms, and Adelinde M. Uhrmacher. 2015. Syntax and semantics of a multi-level modeling language. In Proceedings of the 3rd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (PADS’15). 133--144. DOI:http://dx.doi.org/10.1145/2769458.2769467 Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Richard J. Youle and Alexander M. van der Bliek. 2012. Mitochondrial fission, fusion, and stress. Science 337, 6098, 1062--1065. DOI:http://dx.doi.org/10.1126/science.1219855 Google ScholarGoogle ScholarCross RefCross Ref
  59. Bernard P. Zeigler. 1984. Theory of discrete event specified models: Modularity, hierarchy, experimental frames. International Journal of General Systems 10, 1 (1984), 57--84. DOI:http://dx.doi.org/10.1080/03081078408934871 Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Semantics and Efficient Simulation Algorithms of an Expressive Multilevel Modeling Language

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Modeling and Computer Simulation
        ACM Transactions on Modeling and Computer Simulation  Volume 27, Issue 2
        Special Issue on PADS 2015
        April 2017
        203 pages
        ISSN:1049-3301
        EISSN:1558-1195
        DOI:10.1145/3015562
        Issue’s Table of Contents

        Copyright © 2017 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 18 May 2017
        • Accepted: 1 September 2016
        • Revised: 1 June 2016
        • Received: 1 November 2015
        Published in tomacs Volume 27, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader