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Abstract—To optimize the flow of traffic in IP networks,
operators do traffic engineering (TE), i.e., tune routing-protocol
parameters in response to traffic demands. TE in IP networks
typically involves configuring static link weights and splitting
traffic between the resulting shortest-paths via the Equal-Cost-
MultiPath (ECMP) mechanism. Unfortunately, ECMP is a no-
toriously cumbersome and indirect means for optimizing traffic
flow, often leading to poor network performance. Also, obtaining
accurate knowledge of traffic demands as the input to TE is
elusive, and traffic conditions can be highly variable, further
complicating TE. We leverage recently proposed schemes for
increasing ECMP’s expressiveness via carefully disseminated
bogus information ("lies") to design COYOTE, a readily de-
ployable TE scheme for robust and efficient network utilization.
COYOTE leverages new algorithmic ideas to configure (static)
traffic splitting ratios that are optimized with respect to all
(even adversarially chosen) traffic scenarios within the operator’s
"uncertainty bounds". Our experimental analyses show that
COYOTE significantly outperforms today’s prevalent TE schemes
in a manner that is robust to traffic uncertainty and variation.
We discuss experiments with a prototype implementation of
COYOTE.

I. INTRODUCTION

Today’s traffic engineering is suboptimal. To adapt the
routing of traffic to the demands network operators do traffic
engineering (TE), i.e., tune routing-protocol parameters so
as to influence how traffic flows in their networks [1]–[3].
Today’s prevalent scheme for TE within an organizational
IP network is based on configuring static link-weights into
shortest-path protocols such as OSPF [4] and splitting traffic
between the resulting shortest-paths via ECMP [5]. Tradi-
tional TE with ECMP significantly constrains both route-
computation and traffic splitting between multiple paths in
two crucial ways: (1) traffic from a source to a destination
in the network can only flow along the shortest paths between
them (for the given configuration of link weights), and (2)
traffic splitting between multiple paths (if multiple shortest
paths exist) can only be done in very specific manners (see
Section II for an illustration).

ECMP’s lack of expressiveness makes traffic engineering
with ECMP a notoriously hard task that often results in
poor performance. Indeed, not only does ECMP’s inflexibility
imply that traffic flow might be arbitrarily far from the global
optimum [6], but even choosing “good” link weights for TE
with ECMP is infeasible in general [7]. Beyond ECMP’s
deficiencies, today’s dominant TE schemes also suffer from
other predicaments, e.g., obtaining an accurate view of traffic
demand so as to optimize TE is elusive, as most networks lack

the appropriate measurement infrastructure. Also, traffic can
be highly variable and routing configurations that are good
with respect to one traffic scenario can be bad with respect
to another. We thus seek a TE scheme that is backwards
compatible with legacy routing infrastructure (i.e., OSPF and
ECMP), yet robustly achieves high performance even under
uncertain or variable traffic conditions.

SDN to the rescue? Software-Defined Networking (SDN)
comes with the promise of improved network manageability
and flexibility. Yet, transition to SDN is extremely challenging
in practice as realizing full-fledged SDN can involve drastic
changes to the legacy routing infrastructure. Consequently,
recent proposals focus on providing “SDN-like” control over
legacy network devices [8], [9]. However, while such control
greatly enhances the expressiveness of today’s IP routing,
backwards compatibility with legacy equipment and protocols
imposes nontrivial constraints on the design of new SDN
applications, including that routing be destination-based and,
typically, absence of an online traffic measurement infrastruc-
ture. We explore how “legacy-compatible SDN control” can
be harnessed to improve TE in traditional IP networks.

COYOTE: optimized, OSPF/ECMP-compatible TE. We
leverage recently introduced approaches for enriching ECMP’s
expressiveness without changing router hardware/software to
design COYOTE (COmpatible Yet Optimized TE). Recent
studies show that by injecting “lies” into OSPF-ECMP (specif-
ically, information about fake links and nodes), OSPF and
ECMP can support much richer traffic flow configurations [8],
[9]. We exploit these developments to explore how OSPF-
ECMP routing can be extended to achieve consistently high
performance even under great uncertainty about the traffic
conditions and high variability of traffic. To accomplish this,
COYOTE relies on new algorithmic ideas to configure (static)
traffic splitting ratios at routers/switches that are optimized
with respect to all (even adversarially chosen) traffic scenarios
within operator-specified “uncertainty bounds”.

Our experimentation with COYOTE on real network topolo-
gies shows that COYOTE consistently and robustly achieves
good performance even with very limited (in fact, sometimes
even no) knowledge about the traffic demands and, in particu-
lar, exhibits significantly better performance than (optimized)
traditional TE with ECMP. Our experiments with a prototype
implementation of COYOTE also demonstrate its performance
benefits. We briefly discuss below the algorithmic challenges
facing the design of COYOTE and how these are tackled.
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As discussed above, we view COYOTE as an important
additional step in the recent exploration of how SDN-like
functionality can be accomplished without changing today’s
networking infrastructure (see [8], [9]). Indeed, COYOTE can
be regarded as the first legacy-compatible SDN application for
TE.

New algorithmic framework: destination-based oblivious
routing. A rich body of literature in algorithmic theory investi-
gates “(traffic-demands-)oblivious routing” [10]–[12], i.e., how
to compute provably good routing configurations with limited
(possibly even no) knowledge of the traffic demands. Past
studies [11], [13] show that, even though lacking accurate in-
formation about the traffic demands, demands-oblivious rout-
ing algorithms yield remarkably close-to-optimal performance
on real-world networks. Unfortunately, the above-mentioned
algorithms involve forwarding packets based on both source
and destination and are so inherently incompatible with des-
tination-based routing via OSPF-ECMP. In addition, realizing
these schemes in practice entails either excessive use of (e.g.,
MPLS) tunneling/tagging in traditional IP networks [11], [14],
or the ubiquitous deployment of per-flow routing software-
defined networking infrastructure [15].

Our design of COYOTE relies on a novel algorithmic
framework for demands-oblivious IP routing. We initiate the
study of optimizing oblivious routing under the restriction
that forwarding is destination-based. In light of the recent
progress on enhancing OSPF-ECMP’s expressiveness through
“SDN-like” control, we view the algorithmic investigation of
destination-based oblivious routing as an important and timely
research agenda. We take the first steps in this direction. Our
first result establishes that, in contrast to unconstrained oblivi-
ous routing, computing the optimal destination-based oblivious
routing configuration is computationally intractable. We show
how, via the decomposition of this problem into sub-problems
that are easier to address with today’s mathematical toolkit,
and by leveraging prior research, good routing configurations
can be generated.

Organization. We motivate our approach to TE via a simple
example in Section II and formulate a major algorithmic
challenge facing legacy-compatible TE optimization in Sec-
tion III. Our negative results are presented in Section IV. We
present COYOTE’s design and explain how it addresses these
challenges in Sections V. A more detailed exposition of COY-
OTE’s algorithmic framework is presented in the Appendix.
An experimental evaluation of COYOTE on empirically-
derived datasets and COYOTE’s prototype implementation are
presented in Sections VI and VII, respectively. We discuss
related work in Section VIII. We conclude and leave the reader
with promising directions for future research in Section IX.

II. A MOTIVATING EXAMPLE

We next motivate our approach to TE in IP networks through
a simple example, which will be used as a running example
throughout the sequel.

Consider the toy example in Fig. 1a. Two network users,
s1 and s2, wish to send traffic to target t. Suppose that
each user is expected to send between 0 and 2 units of
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Fig. 1: A sample network: (a) topology with unit capacity
links; (b) per-destination ECMP routing (oblivious perfor-
mance ratio 3/2); (c) COYOTE (oblivious performance ratio
4/3); and (d) COYOTE implementation with a fake node
inserted at s1 for realizing the required splitting ratio.

flow and each link is of capacity 1. Suppose also that the
network operator is oblivious to the actual traffic demands
or, alternatively, that traffic is variable and user demands
might drastically change over time. The operator aims to
provide robustly good network performance, and thus has an
ambitious goal: configuring OSPF-ECMP routing parameters
so as to minimize link over-subscription across all possible
combinations of traffic demands within the above-specified
uncertainty bounds.

Consider first the traditional practice of splitting traffic
equally amongst the next-hops on shortest-paths to the des-
tination (i.e., traditional TE with ECMP, see Fig. 1b), where
the shortest path DAG towards t is depicted by dashed arrows
labelled with the resulting flow splitting ratios. The actual
OSPF weights are not needed, in terms of exposition, and
are omitted from Fig. 1b. Observe that if the actual traffic
demands are 2 and 0 for s1 and s2, respectively, routing
as in Fig. 1b would result in link (over-)utilization that is
3/2 higher than that of the optimal routing of these specific
demands (which can send all traffic without exceeding any
link capacity). Specifically, routing as in Fig. 1b would result
in 3/2 units of traffic traversing link (v, t), whereas the total
flow could be optimally routed without at all exceeding the
link capacities by equally splitting it between paths (s1 s2 t)
and (s1 v t). One can actually show that this is, in fact,
the best guarantee achievable for this network via traditional
TE with ECMP, i.e., for any choice of link weights, equal
splitting of traffic between shortest paths would result in link
utilization that is 3/2 higher than optimal for some possible
traffic scenario. Can we do better?

We show that this is indeed possible if more flexible traffic
splitting than that of traditional TE with ECMP is possible.
One can prove that for any traffic demands of the users, per-
destination routing as in Fig. 1c results in a maximum link
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utilization at most 4/3 times that of the optimal routing1.
We explain later how COYOTE realizes such uneven per-

destination load balancing without any modification to legacy
OSPF-ECMP. We next formulate the algorithmic challenge
facing COYOTE’s design.

III. THE ALGORITHMIC CHALLENGE

Recent proposals advocate “SDN-like” control over legacy
network devices [8], [9]. By carefully crafting “lies” (fake
links and nodes) to inject into OSPF-ECMP , OSPF and ECMP
can be made to support much richer traffic flow configurations.
We aim to investigate how these recent advances can be
harnessed to improve TE in traditional IP networks.

Importantly, while the proposed SDN approach to legacy
networks discussed above can greatly enhance the expressive-
ness of today’s IP routing, compatibility with legacy equip-
ment and routing protocols induces nontrivial constraints on
the design of “legacy-compatible SDN applications”: (1) that
routing be destination-based, and (2) typically, the absence
of an online traffic measurement infrastructure. Algorithmic
research on traffic flow optimization, in contrast, almost uni-
versally allows the routing of traffic to be dependent on both
sources and targets, and often involves accurate and up-to-date
knowledge of the traffic demand matrices.

We thus seek an algorithmic solution to the following
natural and, to the best of our knowledge, previously unex-
plored, challenge: Compute destination-based (i.e., IP-routing-
compatible) routing configurations that optimize the flow of
traffic with respect to operator-specified “uncretainty margins”
regarding the traffic demand matrices. We next proceed to
formulating this challenge. Our model draws upon the ideas
presented in [11].

Network, routing, and traffic splitting. The network is mod-
eled as a directed and capacitated graph G = (V,E), where ce
denotes the capacity of edge e. A routing configuration φ on
network G specifies, for each vertex t ∈ V , and for each edge
e = (u, v) ∈ E, a value φt(e) representing the fraction of the
flow to t entering vertex u that should be forwarded through
edge (link) e. Clearly, for every vertex v,

∑
(u,v) φt(u, v) = 1.

Observe that the combination of all φt(e) values (across all
vertices t and edges e) indeed completely determines how flow
will be routed between every two end-points.

Since routing is required to be destination-based, the routes
to each destination vertex must form a directed acyclic graph
(DAG). This is formally captured by requiring that for every
vertex t ∈ V and directed cycle C in G, for some edge
e ∈ C on the cycle φt(e) = 0. We say that a routing
configuration φ that satisfies this condition is a per-destination
(PD) routing configuration. For a PD routing configuration
φ, let fst(v), for vertices s, t, v ∈ V , be the fraction of the
demand s→ t that enters v. Observe that in PD routing, fst(v)
is well-defined and is induced by the φt(e) values as follows:
fst(v) =

∑
e=(u,v) fst(u)φt(e) if v 6= s, 1 otherwise. Observe

that when x units of flow are routed from s to t through the

1In fact, even the routing configuration in Fig. 1c is not optimal in this
respect. Indeed, COYOTE’s optimization techniques, discussed in Section V,
yield configurations with better guarantees (see Appendix B).

network, the contribution of this flow to the load on link (u, v)
is xfst(u)φt(u, v).

Performance ratio. We are now ready to formalize the
optimization objective. Our focus is on the traditional goal
of minimizing link (over-)utilization (often also called “con-
gestion” in TE literature). Given a Demand Matrix (DM)
D = {ds1t1 , . . . , dsktk} specifying the demand between each
pair of vertices, the maximum link utilization induced by a PD
routing (φ, f) is

MxLU(φ,D) = max
e=(u,v)∈E

∑
s,t∈D dstfst(u)φt(e)/ce.

An optimal routing for D is a PD routing that minimizes
the load on the most utilized link, i.e.,

OPTU(D) = min
φ|φ is a PD routing

MxLU(φ,D).

The performance ratio of a given PD routing φ on a specific
given DM D is PERF (φ, {D}) = MxLU(φ,D)/OPTU(D).
Given a set D of DMs, the performance ratio of a PD routing
φ on D is PERF (φ,D) = maxD∈D PERF (φ, {D}). D, in
this formulation, should be thought of as the space of demand
matrices deemed to be feasible by the network operator. When
D is the set of all possible DMs, the performance ratio is
referred to as the oblivious performance ratio. A routing φ is
optimal if PERF (φ,D) ≤ PERF (φ′,D) for any φ′. The
OBLIVIOUS IP ROUTING problem is computing a PD routing
φ that is optimal with respect to a given set D of DMs. The
OBLIVIOUS IP ROUTING can be formulated as the following
non-linear minimization problem.

min α

φ is a PD routing
∀ edges e = (u, v) :

∀ DMs D ∈ D with OPTU(D) = r :∑
(s,t) dstfst(u)φt(e)/c(e) ≤ αr

Observe that this optimization objective thus captures both
the computation of per-destination DAGs and the computation
of in-DAG traffic splitting ratios. Our focus is on sets of
demand matrices D that can be defined through linear con-
straints as such sets are expressive enough to model traffic
uncertainty, but mitigate the complexity of the optimization
problem. Specifically, the actual demand dst from a vertex s
to t can assume any value in the range dminst ≤ dst ≤ dmaxst ,
where dminst and dmaxst are the operator’s “uncertainty margins”
regarding dst and are given as input.

IV. NEGATIVE RESULTS

We formulated, in Section III, the fundamental algorith-
mic challenge facing COYOTE’s design: optimizing (traffic-
demands-)oblivious routing in IP networks. Importantly, this
optimization goal is closely related to the rich body of litera-
ture in algorithmic theory on “unconstrained” (i.e., not limited
to destination-based) oblivious routing [10]–[12].

Our results in this section show that imposing the real-
world limitation that routing be destination-based renders the
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computation of “good” oblivious routing solutions signifi-
cantly harder. We first show that, in contrast to unconstrained
oblivious routing [11], destination-based oblivious routing is
intractable, in the sense that computing the optimal routing
configuration is NP-hard. Worse yet, in general, the oblivious
performance ratio, i.e., the distance from the best demands-
aware routing solution can be very high (as opposed to
logarithmic for unconstrained oblivious routing). We explain
in Section V how COYOTE’s design addresses these obstacles.
We next present our two negative results.

A. Oblivious IP Routing is NP-Hard

We examine the computational complexity of the OBLIVI-
OUS IP ROUTING problem, as formulated in Section III. We
present the following computational hardness result.

Theorem 1: The OBLIVIOUS IP ROUTING problem is NP-
hard even if D consists of only two possible demand matrices,
only two vertices can source traffic, and all traffic is destined
for a single target vertex.

Proof of Theorem 1. Our proof reduces the BIPARTITION
problem to OBLIVIOUS IP ROUTING. In the BIPARTITION
problem, the input is a set W = {w1, . . . , wk} of k positive
integers and the goal is to partition then into two sets A and
B such that the sum of the elements in one partition is equal
to the sum of the elements in the other partition.

We now show how to construct an instance I ′ of the
OBLIVIOUS IP ROUTING problem from an instance I of the
BIPARTITION problem so that the reduction holds, i.e., I ′ is
a positive instance if and only if I is a positive instance..

Let SUM be the sum of all the elements in W . We create
a directed graph G as follows. We add two source vertices
s1 and s2 and a single destination vertex d into G. For each
integer wi in W , we construct an INTEGER gadget as follows
(see Fig. 2). We add three vertices x1i , x2i , and mi. We then add
bidirectional edges (x1i , x

2
i ), (x1i ,mi), and (x2i ,mi) each with

capacity wi. Finally, we add two edges (s1, x
1
i ) and (s2, x

2
i )

with capacity 2wi and edge (mi, d) with capacity 2wi into G.
Observe that we can narrow our attention to demand ma-

trices that can be routed in G without exceeding the edge
capacities since the performance ratio is invariant to the
rescaling of traffic demands. In addition, as this set describes a
convex polyhedron in the demand space, we can further restrict
our focus to those vertices of the demand polyhedron that are

not “dominated” by any other demand vertex, i.e., demand
d = (d1, . . . , dn) dominates demand d′ = (d′1, . . . , d

′
n), if, for

all i = 1, . . . , n, we have di ≥ d′i.
In our reduction, the min-cut between the source ver-

tices and the target t is 2SUM , i.e., mincut(s1, t) =
mincut(s2, t) = mincut({s1, s2}, t) = 2SUM . As such, the
set of demand matrices that can be routed within the edge
capacities is D = {(ds1t, ds2t)|ds1t + ds2t ≤ 2SUM, ds1t ≥
0, ds2t ≥ 0}. As observed in Section III, the only relevant
demand points are D1 = (ds1t, ds2t) = (2SUM, 0) and
D2 = (ds1t, ds2t) = (0, 2SUM), which are vertices of the
demands polyhedron.

There are two crucial routing decisions that have to be made
at this point in order to route any demand matrix in D. The
first one is deciding what is the directed acyclic graph that
must be used to routed any traffic from the source vertices to
t. The second one is computing the splitting ratios within that
DAG.

Observe that an optimal routing solution for D1 (D2) would
orient all the edges x1i (x2i ) towards x2i (x1i ) in the per-
destination DAG rooted at t and split the traffic at s1 in such a
way that 2wi units of flow are sent to the i’th INTEGER gadget
and equal split is performed at x1i (x2i ). In this case, D1 (D2)
could be routed without exceeding the edge capacities. This
optimal routing for DM D1 (D2) would cause a link utilization
of 2 when routing DM D2 (D1). As such, in order to minimize
the oblivious ratio, the crucial routing decision boils down
to carefully choose how to orient the edges (x1i , x

2
i ) in each

INTEGER gadget.
Lemma 2: Let I be a positive instance of BIPARTITION.

Then I ′ has a solution with oblivious performance 4
3 .

Proof: Let (P1,W \ P1) be two equal size partitions of
W . We show how to construct an oblivious routing that has
oblivious performance 4

3 .
We define an oblivious routing via splitting ratios at each

vertex of the graph, where a splitting ratio of 0 implies that
the outgoing link is oriented in the opposite direction in the
per-destination DAG towards t. The splitting ratios φ(s1, x

1
i )

at s1 (s2) is 4wi

3SUM if wi is in P1 (P2), 2wi

3SUM otherwise. The
splitting ratios φ(x1i , x

2
i ) at x1i (x2i ) is 1

2 if wi is in P1 (P2), 0
otherwise. The splitting ratios φ(x1i ,mi) at x1i is 1−φ(x1i , x

2
i )

and the splitting ratios φ(x2i ,mi) at x2i is 1− φ(x2i , x
1
i ).

We now show that we can route D1 with congestion at most
4
3 using the above routing solution. Let C = 4

3 . Consider an
arbitrary integer wi ∈ W . Two cases are possible: either (i)
wi is in P1 or (ii) not .

In case (i), i.e., wi is in P1, we send 2SUM 4wi

3SUM = 2wiC
units of flow to x1i , which let (s1, x

1
i ) be over-utilized by a

factor of C. In turn, x1i sends 2wiC
1
2 = wiC unit of flow

to mi, which let (x1i ,mi) be over-utilized by a factor of C
and it sends wiC units of flow to x1i , which let (x1i , x

2
i ) be

over-utilized by a factor of C. The latter flow is forwarded
through (x2i ,mi) with a link utilization of C. Finally, vertex
mi receives two flows, each of wiC units from x1i and x2i .
Since the capacity of edge (mi, t) is 2wi, the link utilization
is again C.

In case (ii), i.e., wi is not in P1, we have that a flow of
2SUM 2wi

3SUM = wiC units is sent through edges (s1, x
1
i ),
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Fig. 4: Network example used in the proof of Theorem 4.

(x1i ,mi), and (mi, t), which causes a link utilization no larger
than C.

A similar analysis can be performed to show that the link
utilization for DM D2 is never larger than C, which proves
the statement of the lemma.

Lemma 3: Let I be a negative instance of BIPARTITION.
Then I ′ does not admit a solution with oblivious ratio ≤ 4

3

Proof: We prove that if I ′ has an oblivious ratio ≤ 4
3 , then

I is a positive instance for BIPARTITION. Let φ be a routing
that has oblivious performance ratio ≤ 4

3 . Let P1 be a set of
indices such that i ∈ P1 if φ(x2i , x

1
i ) = 0. Let P2 = W \ P1.

Two cases are possible: (i)
∑
i∈P1

wi ≤ SUM
2 or (ii) not.

In case (i), we consider DM D1, i.e., (ds1t, ds2t) =
(2SUM, 0). Observe that the maximum amount of flow F1

that can be sent through edges (x1i ,mi), with i = 1, . . . , k is
at most F1 ≤ 4

3

∑
i∈P1

wi ≤ 4
3SUM since the link utilization

over all the edges is less than 4
3 . As such, the amount of flow

that must be routed through the edges in {(x1i , x2i )|i ∈ P1} is
at least 2SUM − F1 ≥ 2SUM − 4

3SUM = 2
3SUM . This

amount of flow is routed without exceeding the edge capacities
by a factor higher than 4

3 . This implies that 2
3

SUM∑
i∈P1

wi
≤ 4

3 ,

which implies that SUM
2 ≤

∑
i∈P1

wi. Since the sum of the
element in P1 is no greater than SUM

2 , the above inequality
can be true only if

∑
i∈P1

wi = SUM
2 , that is, P1 is an

even bipartition of I . Hence, I is a positive instance of
BIPARTITION and the statement of the lemma holds in this
case.

In case (ii), i.e.,
∑
i∈P1

wi >
SUM

2 , by symmetry, we can
apply the same argument used in case (i) to prove that I is a
positive instance of BIPARTITION, where P2 plays the role of
P1 and we analyze DM D2 instead of D1. This concludes the
proof of the theorem.

By Lemma 2 and 3, the reduction from BIPARTITION
to OBLIVIOUS IP ROUTING follows and the statement of
Theorem 1 easily holds.

B. Far-from-Optimal Performance

Our next negative result shows that in some scenarios even
the optimal destination-based oblivious routing can be far from
the optimal demands-aware routing (specifically, an Ω(|V |)
factor away, where V is the number of vertices).

Theorem 4: There exists a capacitated network graph G =
(V,E) and a set D of possible traffic matrices such that
the performance ratio of the optimal oblivious per-destination
routing is Ω(|V |).

Proof of Theorem 4. Consider an n-vertex path (x1, . . . , xn)
connected by bidirectional edges with infinite (i.e., arbitrarily
high) capacity as in Fig. 4. Now, add a destination vertex t
and connect each source vertex xi, with i = 1, . . . , n to t
with a directed edge of capacity 1. Suppose that the set of

demands
uncertainty
bounds &
topology

DAG
construction

Traffic
splitting

ratio
calculation

OSPF
translation

OSPF
messages

Fig. 5: COYOTE architecture.

possible traffic matrices consists of all possible matrices, i.e.,
any set of inter-vertex demand values is admissible. We show
that the performance of any oblivious per-destination routing
configuration is Ω(

√
n).

Consider the set D of n possible traffic matrices D1, . . . , Dn

such that in Di source node si wants to send a flow of n unit
to t and the demands of all other vertices are 0 with respect
to all target vertices. For each traffic matrix Di, an optimal
demands-aware per-destination routing φ′ can route the xi → t
flow by carefully splitting it in such a way that each vertex
xi receives a fraction 1/n of the flow. Each vertex xi can
then route the received flow directly to t without exceeding
the edge capacities, and so OPTU(Di) ≤ 1. Now, consider
any oblivious per-destination routing φ. At least one vertex
xi must send its traffic only through edge (xi, t), otherwise
a forwarding loop exists—a contradiction. This implies that
routing Di with φ will cause a link utilization of n over
edge (xi, t), i.e., PERF (φ,D) ≥ PERF (φ,Di) = n, which
concludes the proof of the theorem.

V. COYOTE DESIGN

A. Overview

As proved in Section IV, efficiently computing the optimal
selection of DAGs and in-DAG traffic splitting ratios is beyond
reach. We next describe how COYOTE’s design addresses
this challenge. COYOTE’s flow-computation decomposes the
task of computing destination-based oblivious routing config-
urations into two algorithmic sub-problems, and tackles each
independently. First, COYOTE applies a heuristic to compute
destination-oriented DAGs. Then, COYOTE optimizes in-DAG
traffic splitting ratios through a combination of optimization
techniques, including iterative geometric programming. We
show in Section VI that COYOTE’s DAG selection and
flow optimization algorithms empirically exhibit good network
performance.

Figure 5 presents an overview of the COYOTE architecture.
COYOTE gets as input the (capacitated) network topology
and the so-called “uncertainty bounds”, i.e., for every two
nodes (routers) in the network, s and t, a real-valued interval
[dminst , dmaxst ], capturing the operator’s uncertainty about the
traffic demand from s to t or, alternatively, the potential
variability of traffic. COYOTE then uses this information first
to compute a forwarding DAG rooted in each destination
node, and then to optimize traffic splitting ratios within each
DAG. Lastly, the outcome of this computation is converted
into OSPF configuration by injecting “lies” into routers. We
next elaborate on each of these components.

B. Computing DAGs

In COYOTE, DAGs rooted in different destinations are not
coupled in any way, allowing network operators to specify
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any set of DAGs. We show, in Section VI, however, that the
following simple approach generates empirically good routing
outcomes.

Step I: Shortest-path DAG generation. We assign each link
a weight to generate a shortest-path DAG rooted in each
destination (as in traditional OSPF routing). We evaluate in
Section VI two heuristics for setting link weights from the
OSPF-ECMP TE literature:
• Reverse capacities. Link weights are set to be the inverse

of link capacities. We point out that this is compatible
with Cisco’s recommendations for default OSPF link
weights [16].

• Local search. This heuristic leverages the techniques
in [12] for optimizing oblivious ECMP routing config-
urations. Specifically, link weights are initially set to be
the reverse link capacities (as above). Then, the heuristic
iteratively computes a worst-case traffic matrix for ECMP
TE with respect to the current link weights, adds this
matrix to a set of traffic matrices T (initially set to be
empty), and myopically changes a single link’s weight
if this improves the worst-case ECMP link utilization
over the matrices in set T . The reader is referred to
Appendix A for a detailed exposition.

Step II: DAG augmentation. Once the shortest-path DAGs
are computed, each DAG is augmented with additional links
as follows. Each link that does not appear in the shortest-
path DAG for some target vertex t is oriented towards the
incident node that is closer to the destination t, breaking ties
lexicographically (suppose that the nodes are numbered).

Let us revisit our running example in Fig.1a. Observe that
while the shortest-path DAG rooted in t does not contain
link (s2, v) if all links have the same weight, the augmented
forwarding DAGs will also utilize this link (in some direction).
DAG-augmentation allows us to enhance path diversity, and so
increases the available network capacity. Since the final DAGs
contain the original shortest-path DAGs, traditional ECMP
routing is a point in the solution space over which COYOTE
optimizes. COYOTE is thus guaranteed to compute an obliv-
ious solution that is no worse than standard OSPF/ECMP.
We show in Section VI that COYOTE indeed significantly
outperforms TE with ECMP using any of the two heuristics.

C. In-DAG Traffic Splitting

Once per-destination DAGs are computed, as described
above, COYOTE executes an algorithm that receives as input
a set of per-destination DAGs and optimizes traffic splitting
within these DAGs, with the objective of minimizing the worst-
case congestion (link utilization) over a given set of possible
traffic demand matrices.

Whether the problem of computing traffic splitting ratios
within a set of given DAGs can be solved optimally in a
computationally-efficient manner remains an open question
(see Section IX). This seems impossible within the famil-
iar mathematical toolset of TE, namely, integer and linear
programming. We found that a different approach is, how-
ever, feasible: casting the optimization problem described

in Section III as a geometric program (in fact, a mixed
linear-geometric program (MLGP) [17]). Stating COYOTE’s
traffic splitting optimization as a geometric program is not
straightforward and involves careful application of various
techniques (convex programming, monomial approximations,
LP duality). We provide an intuitive exposition of some of
these ideas below using the running example in Fig. 1. We
dive into the many technical details involved in computing
COYOTE’s traffic splitting ratios in Appendix C.

Again, s1 and s2 send traffic to t, let the DAG for t be
as in Fig. 1c, and suppose that the capacity on links (s1, s2),
(s1, v), and (s2, v) is infinite (that is, arbitrarily large) and
on (s2, t) and (v, t) is 1. We are given as input a set of
possible demand matrices D for the two users and our goal is
to find the traffic splitting ratios φ so that the worst-case link
utilization across these two demand matrices is minimized.
We assume, without loss of generality (since the performance
ratio is invariant to rescaling) that traffic demands in D can
always be routed without exceeding the link capacities. A
simplified mathematical program for this problem would take
the following form (see explanations below):

minα

∀(ds1t, ds2t) ∈ D (1)
ds1tφ(s1, s2)φ(s2, t) + ds2tφ(s2, t)

cs2,t
≤ α (2)

ds1t(1− φ(s1, s2)φ(s2, t)) + ds2t (1− φ(s2, t))

c(v,t)
≤ α (3)

The objective is to minimize α, which represents worst-case
link utilization, i.e., the load (flow divided by capacity) on the
most utilized link across all the admissible demand matrices.
Each variable φ(x, y) denotes the fraction of the incoming
flow destined for to t at vertex x that is routed on link (x, y).
Constraints (2) and (3) force α to be at least the value of
the link utilization of links (s2, t) and (s1, s2), respectively.
Since the other links have infinite (arbitrarily high) capacities,
the load on these links is negligible and so the link utiliza-
tion inequalities for these links are omitted. Now, consider
Constraint (2) for link (s2, t). Observe that from user s1 the
fraction of traffic sent through (s2, t) equals the fraction of
s1’s traffic through (s1, s2) (i.e., φ(s1, s2)) times the fraction
sent through (s2, t) by s2 (i.e., φ(s2, t)). The fraction of s2’s
traffic through (s2, t) is simply φ(s2, t). Accordingly the total
flow on (s2, t) equals ds1t ·φ(s1, s2) ·φ(s2, t) +ds2t ·φ(s2, t).
Hence, the link utilization of (s2, t) is this expression divided
by the capacity of (s2, t), and the corresponding constraint
(2) requires that this utilization be at most α for all demand
matrices (ds1 , ds2) ∈ D. Constraint (3) states the same for link
(v, t), where the fraction of traffic sent by s1 (s2) to t through
(v, t) is equal to 1 minus the fraction of flow sent from s1
(s2) to t through (s2, t).

Two difficulties with these constraints immediately arise:
one is that it is universally quantified over an entire set of
demand matrices, possibly of infinite cardinality, and the other
is that it involves a product of unknowns, namely, φ(s1, s2) ·
φ(s2, t), and such products do not fit into the framework of
standard linear and integer programming. For a discrete set of
demand matrices we can handle the first problem by stating (2)
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and (3) for each individual demand matrix. Otherwise (if the
set of DMs is of infinite size) the elegant dualization technique
from [11], which we describe in Appendix C, can be used. To
handle the second issue, however, we need a small trick from
geometric programming [17]. Let ds1t = 1 and ds2t = 1 and
consider constraint (2):

φ(s2, t) + φ(s1, s2) · φ(s2, t) ≤ α .

Now, let φ̃(s1, s2) = log φ(s1, s2) and φ̃(s2, t) =
log φ(s2, t), and take the logarithm of both sides:

log
(
eφ̃(s2,t) + eφ̃(s1,s2)+φ̃(s2,t)

)
≤ logα .

This constraint is now a logarithm of a sum of exponen-
tials of linear functions and so is convex, opening the door
to using standard convex programming. Our implementation
uses a convex program based on the above ideas (and other
ingredients) to compute the traffic splitting ratios. We provide
a detailed exposition in Appendix C.

D. Translation to OSPF-ECMP configuration.

As explained above, using OSPF and ECMP for TE con-
strains the flow of traffic in two significant ways: (1) traffic
only flows on shortest-paths (induced from operator specified
link weights), and (2) traffic is split equally between multiple
next-hops on shortest-paths to a destination. Recent studies
show how OSPF-ECMP’s expressiveness can be significantly
enhanced by effectively deceiving routers. Specifically, Fib-
bing [8], [9] shows how any set of per-destination forwarding
DAGs can be realized by introducing fake nodes and virtual
links into an underlying link-state routing protocol, thus over-
coming the first limitation of ECMP. [18] shows how ECMP’s
equal load balancing can be extended to much more nuanced
traffic splitting by setting up virtual links alongside existing
physical ones, thus relaxing the second of these limitations.

We revisit our running example to show how COYOTE
exploits these techniques. Consider Fig. 1d. Inserting a fake
advertisement at s1 into the OSPF link-state database can
“deceive” s1 into believing that, besides its available shortest
paths via s2 and v , destination t is also available via a third,
“virtual” forwarding path. The forwarding adjacency in the
fake advertisement is mapped to s2, so that out of s1’s three
next-hops to t node s2 will appear twice while v only appears
once. Consequently, the traffic is effectively split between s2
and v in a ratio 2/3 to 1/3. Beyond changing how traffic is split
within a given shortest-path DAG, as illustrated in Fig. 1d,
fake nodes/links can be injected into OSPF so to as change the
forwarding DAGs themselves at the per-IP-destination-prefix
granularity, as shown in [9]. COYOTE leverages the techniques
in [9] and in [18] to carefully craft “lies” so as to generate
the desired per-destination forwarding DAGs and approximate
the optimal traffic splitting ratios with ECMP. We show in
Section VI that highly optimized TE is achievable even with
the introduction of few virtual nodes and links.

VI. EVALUATION

We experimentally evaluate COYOTE in order to quantify
its performance benefits and its robustness to traffic uncertainty

and variation. Importantly, our focus is solely on destination-
based TE schemes (i.e., TE schemes that can be realized
via today’s IP routing). We show below that COYOTE pro-
vides significantly better performance than ECMP even when
completely oblivious to the traffic demand matrices. Also,
COYOTE’s increased path diversity does not come at the cost
of long paths: the paths computed by COYOTE are on average
only a factor of 1.1 longer than ECMP’s. We also discuss
experiments with a prototype implementation of COYOTE.

While the reader might think that COYOTE’s performance
benefits over traditional TE with ECMP are merely a byprod-
uct of its greater flexibility in selecting DAGs and in traffic
splitting, our results show that this intuition is, in fact, false.
Specifically, we show that, similarly to unconstrained (i.e.,
source and destination based) oblivious routing [11], even the
optimal routing with respect to estimated demand matrices
fares much worse than COYOTE if the actual demand matrices
are not very “close” to the estimated demands. Hence, COY-
OTE’s good performance should be attributed not only to its
expressiveness but also, in large part, to its built-in algorithms
for optimizing performance in the presence of uncertainty, as
discussed in Section V.

A. Simulation Framework

We use the set of 16 backbone Internet topologies from
the Internet Topology Zoo (ITZ) archive [19] to assess the
performance of COYOTE and ECMP. When available, we
use the link capacities provided by ITZ. Otherwise, we set the
link capacities to be inversely-proportional to the ITZ-provided
ECMP weights (in accordance with the Cisco-recommended
default OSPF link configuration [16]). When neither ECMP
link weights nor capacities are available we use unit capac-
ities and link weights. We evaluate COYOTE against ECMP
using the two simple DAG-construction heuristics described
in Section V-B : reverse capacities and local search.

To compute COYOTE’s in-DAG traffic splitting ratios (see
Section V), we use AMPL [20] as the problem formulation
language and MOSEK [21], a non-linear convex optimization
solver. The running time with our current single-threaded
proof-of-concept implementation ranges from few minutes (for
small networks) to few days (for large networks).

We would like to point out that the computation of the in-
DAG traffic splitting ratios needs only be performed once or on
a daily/weekly-base, as routing in COYOTE is not dynamically
adjusted, and that routing configurations for failure scenarios
(e.g., every single link/node failure) can be precomputed.

We measure performance in terms of the worst-case link
utilization (referred to as “congestion” in TE literature [1],
[2]), i.e., the performance of (multicommodity) flow of traffic
f is maxl

f(l)
cl

, where f(l) is the flow traversing link l and cl
is link l’s capacity.

B. Network Performance

We compare COYOTE to ECMP for both DAG-construction
heuristics described above and for two types of base demand
matrices: (1) gravity [22], where the amount of flow sent from
router i to router j is proportional to the product of i’s and
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j’s total outgoing capacities, and (2) bimodal [23], where a
small fraction of all pairs of routers exchange large quantities
of traffic, and the other pairs send small flows.

We first present our results with respect to the reverse capac-
ities heuristic, which is based on ITZ [19] link weights, and an
ideal version of COYOTE capable of arbitrarily fine-grained
traffic splitting. We then show that a close approximation of the
optimal splitting ratios can be obtained with the introduction
of a limited number of additional virtual links. Fig. 6 and
Fig. 7 describe our results for two networks (Geant and Digex,
respectively), the gravity model, and augmented shortest path
DAGs based on the ITZ link weights. The x-axis represents the
“uncertainty margin”: let dst be the amount of flow from router
s to router t in the base demand matrices (namely, gravity), a
margin of uncertainty of x means that the actual flow from s
to t can be any value between dst

x and x ·dst. We increase the
uncertainty margin in increments of 0.5 from 1 (no uncertainty
whatsoever) to 3 (fairly high uncertainty). The y-axis specifies
how far the computed solution is from the demands-aware
optimum within the same DAGs.

We plot four lines, corresponding to the performance of
four different protocols: (1) traditional TE with ECMP, (2)
the optimal demands-aware routing for the base gravity model
(with no uncertainty), which can be obtained with linear
programming techniques [24], (3) COYOTE (oblivious) with
traffic splitting optimized with respect to all possible de-
mand matrices (i.e., assuming nothing about the demands),
(4) COYOTE (partial-knowledge) optimized with respect to
the demand matrices within the uncertainty margin. Observe
that both variants of COYOTE provide significantly better
performance than TE with ECMP and, more surprisingly, both
COYOTE and (sometimes) ECMP outperform the optimal
base routing, whose performance quickly degrades even with
little demands uncertainty. Our results thus show that COY-
OTE’s built-in robustness to traffic uncertainty, in the form of
optimization under specified uncertainty margins, indeed leads
to superior performance in the face of inaccurate knowledge

about the demand matrices or, alternatively, variable traffic
conditions. Table I shows the extensive results of COYOTE for
all the analyzed topologies, except BBNPlanet and Gambia,
which are almost a tree topology.

We observe the same trends when the base demand matrices
are sampled from the bimodal model, as shown in Fig. 8.

We now discuss our results for the local search DAG-
construction heuristic (see Section V-B). Fig. 9 presents a
comparison of COYOTE and ECMP using the bimodal model
as the base demand matrices. We use the above heuristic to
compute, for each uncertainty margin in the range 1 − 5,
increasing in 0.5 increments, the (traditional) ECMP config-
uration and COYOTE DAGs with respect to the bimodal-
based demand matrices. We then compare the worst-case link
utilization of the two, again, normalized by the demands-aware
optimum within the same (augmented) DAGs. We note that
ECMP is, on average, almost 80% times further away from
the optimum than COYOTE.

Approximating the optimal traffic splitting. We evaluated
above COYOTE under the assumption that arbitrarily fine-
grained traffic splitting is achievable, yet in practice, the reso-
lution of traffic splitting is derived from the number of virtual
links introduced. Clearly, an excessive number of virtual links
should be avoided for at least two reasons: (a) each virtual
next-hop is installed into the finite-sized Forwarding Infor-
mation Base (FIB), and (b) injecting additional information
into OSPF comes at the cost of additional computational
overhead. Our results, illustrated in Fig. 10 for AS 1755
network’s topology (all other topologies exhibit the same
trend), show that even with just 3 additional virtual links per
router interface, COYOTE achieves a 50% improvement over
traditional TE with ECMP. We observe that with 10 virtual
links the computed routing configuration closely approximates
the ideal solution.

Average path lengths. COYOTE augments the shortest path
DAG with additional links so as to better utilize the network.
Consequently, traffic can potentially traverse longer paths. We
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TABLE I: Comparison of COYOTE against traditional ECMP and Base-TM-opt for the gravity base model.

COYOTE
Network margin ECMP Base obl. par.know.

1
2
2
1

1.0 1.00 1.00 1.00 1.00
1.5 1.00 1.00 1.00 1.00
2.0 1.00 1.00 1.00 1.00
2.5 1.00 1.15 1.00 1.00
3.0 1.00 1.34 1.00 1.00
3.5 1.17 1.65 1.14 1.00
4.0 1.29 2.09 1.30 1.07
4.5 1.36 2.59 1.49 1.20
5.0 1.68 3.15 1.52 1.30

1
7
5
5

1.0 1.31 1.00 1.27 1.00
1.5 2.09 2.15 2.04 1.41
2.0 2.73 3.72 2.19 1.70
2.5 3.04 5.79 2.32 1.91
3.0 3.31 7.71 2.39 2.05
3.5 3.64 9.26 2.47 2.16
4.0 3.90 10.65 2.51 2.24
4.5 4.04 11.85 2.55 2.30
5.0 4.13 12.83 2.57 2.36

3
2
5
7

1.0 5.06 1.00 1.63 1.00
1.5 6.56 2.25 2.30 1.55
2.0 7.53 3.85 2.69 1.95
2.5 8.18 5.86 2.91 2.22
3.0 8.62 7.27 2.98 2.83
3.5 8.87 9.20 3.02 3.60
4.0 8.99 11.15 3.05 3.04
4.5 9.07 12.99 3.23 3.15
5.0 9.14 14.76 3.47 2.82

B
I
C
S

1.0 2.62 1.00 1.73 1.00
1.5 2.82 2.01 1.95 1.21
2.0 2.90 3.21 2.00 1.26
2.5 2.93 4.86 2.02 1.36
3.0 2.95 6.89 2.03 1.51
3.5 3.02 9.28 2.04 1.62
4.0 3.13 11.87 2.04 1.69
4.5 3.21 14.66 2.05 1.76
5.0 3.27 17.77 2.07 1.82

B
t
E
u
r
o
p
e

1.0 1.16 1.00 1.15 1.00
1.5 1.17 2.15 1.16 1.08
2.0 1.33 3.60 1.22 1.11
2.5 1.73 5.24 1.55 1.12
3.0 1.91 6.95 1.61 1.14
3.5 1.95 8.66 1.64 1.20
4.0 2.06 10.31 1.77 1.27
4.5 2.53 11.93 2.14 1.35
5.0 2.95 14.47 2.31 1.34

D
i
g
e
x

1.0 1.10 1.00 1.16 1.00
1.5 1.67 1.41 1.33 1.19
2.0 2.57 2.28 1.45 1.31
2.5 3.07 2.89 1.64 1.41
3.0 3.23 3.14 1.70 1.51
3.5 3.33 3.26 1.77 1.57
4.0 3.43 3.34 1.89 1.64
4.5 3.51 3.42 1.99 1.72
5.0 3.58 3.49 2.06 1.78

G
R
N
e
t

1.0 1.88 1.00 1.32 1.00
1.5 1.97 1.70 1.53 1.32
2.0 2.10 2.26 1.65 1.44
2.5 2.14 2.70 1.84 1.51
3.0 2.20 3.07 2.15 1.59
3.5 2.52 3.34 2.41 1.65
4.0 2.78 3.56 2.65 1.70
4.5 2.96 3.72 2.86 1.73
5.0 3.11 3.84 3.04 1.75

COYOTE
Network margin ECMP Base obl. par.know.

G
e
a
n
t

1.0 1.27 1.00 1.26 1.00
1.5 1.83 1.64 1.61 1.31
2.0 2.42 2.22 1.81 1.49
2.5 2.59 3.27 1.92 1.61
3.0 2.70 4.25 2.00 1.69
3.5 2.77 5.18 2.17 1.76
4.0 2.82 6.04 2.29 1.81
4.5 2.86 6.65 2.36 1.85
5.0 2.88 6.75 2.41 1.88

G
e
r
m
a
n
y

c
o
s
t

1.0 1.42 1.00 1.23 1.00
1.5 1.91 1.85 1.73 1.37
2.0 2.23 2.45 2.03 1.68
2.5 2.44 2.79 2.15 1.84
3.0 2.58 3.03 2.23 1.95
3.5 2.68 3.24 2.29 2.03
4.0 2.75 3.39 2.33 2.09
4.5 2.80 3.50 2.38 2.14
5.0 2.84 3.59 2.41 2.19

I
n
t
e
r
n
e
t
m
c
i 1.0 1.07 1.00 1.30 1.00

1.5 1.50 1.84 1.52 1.23
2.0 2.49 3.22 2.04 1.67
2.5 2.73 4.22 2.26 1.97
3.0 2.95 4.61 2.37 2.12
3.5 3.21 4.90 2.43 2.23
4.0 3.39 5.13 2.49 2.31
4.5 3.54 5.30 2.53 2.38
5.0 3.66 5.49 2.56 2.43

I
t
a
l
y

c
o
s
t

1.0 1.70 1.00 1.31 1.00
1.5 2.27 1.83 1.64 1.42
2.0 2.57 2.41 2.08 1.68
2.5 3.10 3.11 2.38 1.88
3.0 3.39 3.89 2.56 2.01
3.5 3.66 4.45 2.67 2.15
4.0 3.91 4.91 2.75 2.28
4.5 4.13 5.31 2.80 2.39
5.0 4.35 5.54 2.85 2.48

N
S
F

c
o
s
t

1.0 1.71 1.00 1.51 1.00
1.5 2.31 1.83 1.95 1.36
2.0 2.71 2.49 2.20 1.60
2.5 3.01 3.03 2.36 1.76
3.0 3.25 3.32 2.47 1.87
3.5 3.44 3.51 2.55 1.96
4.0 3.62 3.70 2.61 2.06
4.5 3.78 3.87 2.66 2.17
5.0 3.93 4.00 2.70 2.25

a
b
i
l
e
n
e

c
o
s
t

1.0 1.15 1.00 1.06 1.00
1.5 1.54 1.43 1.39 1.28
2.0 1.71 1.63 1.53 1.42
2.5 1.79 1.85 1.59 1.50
3.0 2.02 2.33 1.83 1.57
3.5 2.32 2.66 1.94 1.69
4.0 2.49 2.88 2.00 1.79
4.5 2.59 3.05 2.05 1.87
5.0 2.66 3.22 2.08 1.92

a
t
n
t

c
o
s
t

1.0 2.22 1.00 1.56 1.00
1.5 3.07 1.96 2.18 1.52
2.0 3.76 2.89 2.39 1.88
2.5 4.26 3.76 2.59 2.19
3.0 4.60 4.41 2.75 2.41
3.5 4.83 4.79 2.87 2.58
4.0 5.01 5.07 2.95 2.70
4.5 5.17 5.33 3.03 2.79
5.0 5.28 5.64 3.08 2.87
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show, however, that COYOTE’s increased path redundancy
does not come at the expense of long paths. Specifically, the
average stretch (increase in length) of the paths in COYOTE
is typically bounded within a 10% factor with respect to the
OSPF/ECMP paths. Fig. 11 plots the average stretch across
all pairs for a margin of 2.5. Similar results are obtained for
all different margins between 1 to 5. Observe that the DAGs
computed by COYOTE rely on shortest-path computation with
respect to the link weights, whereas the stretch is measured
in terms of the number of hops. Thus, it is possible for the
stretch to be less than 1, as is the case, e.g., for BBNPlanet.

VII. PROTOTYPE IMPLEMENTATION

We implemented and experimented with a prototype of
the COYOTE architecture, as described in Section V. Our
prototype extends the Fibbing controller code, written in
Python and provided by Vissicchio et al. [9], and uses the
code of Nemeth et al. from [18] for approximating the splitting
ratios. We plan to make our code public in the near future. We
next illustrate the benefits of COYOTE over traditional TE, as
reflected by an evaluation of our prototype via the mininet [25]
network emulator.

Consider the example in Fig 12a: a target node t advertises
two IP prefixes t1 and t2 and two sources, s1 and s2, generate
traffic destined for these IP prefixes. As in traditional TE with
ECMP, the network operator must use the same forwarding
DAG for each destination, this forces either s1 or s2 to route
all of its traffic only on the direct path to the destination. Thus,
three forwarding DAGs are possible: (1) both s1 and s2 route
all traffic on their direct paths to t (TE1), (2) s1 equally splits
its traffic between t and s2, and s2 forwards all traffic on its
direct link to t (TE2), and (3) same as the previous option,
but s1 and s2 swap roles (TE3).

We evaluate these three TE configurations in mininet with
links of bandwidth 1Mbps. We measure the cumulative packet
drop rate towards two IP destinations, t1 and t2, for three 15-
seconds-long traffic scenarios, where traffic is UDP generated
with iperf3 and units are in Mbps: (s1−t1, s2−t2) = (0, 2),
(s1 − t1, s2 − t2) = (1, 1), (s1 − t1, s2 − t2) = (2, 0).

Fig 12b plots the results of this experiment for each of
the TE schemes, described above (excluding TE3, which is
symmetric to TE2). The x-axis is time (in seconds) and the
y-axis is the measured packet loss rate, i.e., the ratio of traffic
received to traffic sent (observe that sent traffic is 30 megabits
in all scenarios). During the first 15 seconds the experiment
emulates the first traffic scenario described above, in the next
15 seconds the second traffic scenario is emulated, and in the
last 15 seconds the third scenario is emulated.

Observe that each of the TE schemes (TE1-3) achievable via
traditional TE with ECMP leads to a significant packet-drop
rate (25%-50%) in at least one of traffic scenarios. COYOTE,
in contrast, leverages its superior expressiveness to generate
different DAGs for each IP prefix destination, as follows:
traffic to for destination t1 is evenly split at node s1 and traffic
to destination t2 is evenly split at s2. This is accomplished by
injecting a lie to s2 so as to attracts half of its traffic to t2 to
the (s2, s1) link. Consequently, as seen in Fig 12b, the rate of
dropped packets is significantly reduced.

s1 s2

t
t1

t2

(a)
 0%

50%

 0  5  10  15  20  25  30  35  40  45

TE1 TE2 COYOTE

(b)

Fig. 12: Mininet topology (a) and packet drop rate (b).

VIII. RELATED WORK

TE with ECMP. TE with ECMP is today’s prevalent ap-
proach to TE (see surveys in [1], [2]). Consequently, this
has been the subject of extensive research and, in particular,
selecting good link weights for ECMP TE has received much
attention [6], [7], [12], [26]–[29]. To handle uncertainty about
traffic demand matrices and variation in traffic, past studies
also examined the optimization of ECMP configuration with
respect to multiple expected demand matrices [6], [29], [30], or
even with no knowledge of the demand matrices [11]. Unfor-
tunately, while careful optimizations of ECMP configuration
can be close-to-optimal in some networks [29], this approach
is fundamentally plagued by the intrinsic limitations of ECMP,
specifically, routing only on shortest paths and equally splitting
traffic at each hop, and can hence easily result in poor network
performance. Worse yet, this scheme suffers from inherent
computational intractability, as shown in [7], [26].

Lying for more expressive OSPF-ECMP routing. The first
technique to approximate unequal splitting through ECMP via
the introduction of virtual links was introduced by Nemeth et
al. in [18] (see also [31]). [18], however, was still limited to
shortest-path routing and, consequently, coarse-grained traffic
flow manipulation. Recently, Fibbing [8], [9] showed how any
set of destination-based forwarding DAGs can be generated
through the injection of fake nodes and links into the under-
lying link-state protocol (e.g., OSPF).

Adaptive TE schemes. One approach to overcoming ECMP’s
limitations is dynamically adapting the routing of traffic in
response to changes in traffic conditions as in, e.g., [26]. Adap-
tive schemes, however, typically require frequently gathering
fairly accurate information about demand matrices, potentially
require new routing or measurement infrastructure, and can
be prone to routing instability [32], slow convergence, packet
reordering, and excess control plane burden [3] (especially in
the presence of failures). COYOTE, in contrast, reflects the
exact opposite approach: optimizing the static configuration
of traffic flow so as to simultaneously achieve good network
performance with respect to all, even adversarially chosen,
demand matrices within specified “uncertainty bounds”.

Demands-oblivious routing. A rich body of literature on
algorithmic theory investigates so-called “(demand-)oblivious
routing” [10]–[12]. Breakthrough algorithmic results by Räcke
established that the static (non-adaptive) routing can be opti-
mized so as to be within an O(log n) factor from the optimum
(demands-aware) routing with respect to any combination of
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demand matrices [10]. Applegate and Cohen [11] showed that
when applied to actual (ISP) networks, such demand-oblivious
routing algorithms yield remarkably close-to-optimal perfor-
mance. Kulfi [13] uses semi-oblivious routing to improve TE
in wide-area networks. Unfortunately, all the above demand-
oblivious algorithms involve forwarding packets based on
both the source and destination, these immediately hit a
serious deployability barrier in traditional IP networks (e.g.,
due to extensive tunneling [27]). COYOTE, in contrast, is
restricted to OSPF-based destination-based routing, and so
tackles inherently different (and new) algorithmic challenges
and techniques, as discussed in Sect. IV and V.

IX. CONCLUSION

We presented COYOTE, a new OSPF-ECMP-based TE
scheme that efficiently utilizes the network even with little/
no knowledge of the traffic demand matrices. We showed
that COYOTE significantly outperforms today’s prevalent TE
schemes while requiring no changes whatsoever to routers. We
view COYOTE as an important additional step in the recent
exploration [8], [9] of how SDN functionality can be accom-
plished without changing today’s networking infrastructure.
We next discuss important directions for future research.

To efficiently utilize the network in an OSPF-ECMP-
compatible manner, COYOTE leveraged new algorithmic in-
sights about destination-based oblivious routing. We believe
that further progress on optimizing such routing configurations
is key to improving upon COYOTE. Two interesting research
questions in this direction: (1) We showed in Section IV that
computing the optimal oblivious IP routing configuration is
NP-hard. Can the optimal configuration be provably well-
approximated? (2) COYOTE first computes a forwarding DAG
rooted in each destination node and then computes traffic split-
ting ratios within these DAGs. The latter computation involves
nontrivial optimizations, e.g., via geometric programming, yet,
it remains unclear whether traffic splitting within a given set
of DAGs is, in fact, efficiently and optimally solvable.
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APPENDIX

We present below a more detailed exposition of COYOTE’s
algorithmic machinery. Recall that COYOTE’s traffic flow op-
timization consists of two steps: (1) computing per-destination
DAGs (Section V-B), and (2) optimizing traffic splitting within
these DAGs (Section V-C). We next dive into the technical de-
tails involved in overcoming these challenges. In Appendix A,
we describe the local search heuristic for computing “good”
DAGs. We then discuss in-DAG traffic splitting. Specifically,
in Appendix B we revisit our running example and show
how the optimal traffic splitting ratios can be computed for
this specific instance of OBLIVIOUS IP ROUTING. Then, in
Appendix C we explain how COYOTE leverages dualization
theory and Geometric Programming (GP) to compute in-DAG
traffic splitting in general.

APPENDIX A
THE LOCAL SEARCH DAG-GENERATION ALGORITHM

COYOTE utilizes an adaptation of the local search DAG-
generation heuristic from [12]. The pseudocode is given in
Algorithm 1.

Algorithm 1 The Local search DAG generation algorithm.

1: INPUT: graph G(V,E) with link capacities c : E 7→ R
2: OUTPUT: a link cost function w : E 7→ N
3: D ← ∅
4: w ← INVERSECAPACITY(c)
5: while (true) do
6: for each t ∈ V : DAGt ← Shortest-Path-First(G,w, t)
7: DM ← WORSTCASEDM(G, {DAGt})
8: D ← D ∪ {DM}
9: if MAXLINKUTIL(G, {DAGt},D) ≤ B then break

10: w ← FORTZTHORUP(G,D, c)
11: end while

The algorithm maintains a set D of “critical” demand
matrices (DMs) and iteratively tries to find DAGs that, when
distributing traffic using ECMP, yield low link utilization
across these DMs. COYOTE’s non-equal splitting ratios can
allow even lower utilization of links. In each iteration, the
following steps are executed: (1) Compute shortest-path DAG
DAGt to each destination t ∈ V for the current link weights
w (line 6), (2) Compute the DM that produces the highest
link utilization over the resulting routing (see [12] for a math-
ematical program that captures this task), (3) Add this DM
to D (lines 7 and 8), and (4) Recompute weights w inducing
DAGs that are simultaneously good with respect to each DM
in D (line 10). Specifically, use the tabu search technique
due to Fortz and Thorup [6], which iteratively tries to reduce
utilization at the most congested node by increasing the path
diversity locally. The heuristic terminates when maximum link
utilization reduces below some pre-configured bound B.

The above heuristic modifies [6] and [12] to better fit
COYOTE’s design, namely, (i) the OSPF-TE cost-optimization
heuristics of Fortz and Thorup scale link utilizations through a
non-linear function Φ to penalize heavily loaded links whereas
our heuristic optimizes for maximum link-utilization (as obliv-
ious routing optimizes for max link-utilization); (ii) when
optimizing DAGs with respect to multiple DMs, Fortz and
Thorup use the average of the scaled link utilizations over the
DMs while we do simple maximum; and (iii) our local search
algorithm is fine-tuned to COYOTE by carefully selecting the
parameters governing the heuristic search process.

APPENDIX B
REVISITING THE RUNNING EXAMPLE

Recall the simple example in Fig. 1. We now show how to
to compute its optimal in-DAG traffic splitting ratios φ. The
input DAG is depicted by dashed arrows in the figure.

As discussed in Section IV-A, we can focus, without loss
of generality, only on those demand matrices that are non-
dominated vertices of the polyhedron representing the set of
DMs that can be routed without exceeding the edge capacities.
In our example, the set of demand matrices that can be routed
without exceeding the edge capacities is {(ds1t, ds2t)|ds1t +
ds2t = 2}, and the only two non-dominated vertices are D1 =
{(ds1t, ds2t) = (2, 0)} and D2 = {(ds1t, ds2t) = (0, 2)}. Let
PERF (e, φ, {D1, D2}) denote the worse-case link utilization
of an edge e when using a PD routing φ to route DMs D1 or
D2. Henceforth, for brevity, {D1, D2} shall remain fixed and
is thus omitted from the arguments involving PERF .

Given any routing φ, observe that PERF ((s1, v), φ) ≤
PERF ((v, t), φ) and PERF ((s2, v), φ) ≤ PERF ((v, t), φ)
since link (v, t) carries the incoming flows from (s1, v) and
(s2, v). We hence restrict our focus to PERF ((s1, s2), φ),
PERF ((v, t), φ), and PERF ((s2, t), φ). As for D1, the most
utilized edge must be either (s1, s2) or (v, t) since (s2, t)
carries no more traffic than (s1, s2). This implies that

PERF ((s1, s2),φ) ≥ 2φ(s1, s2) and (4)
PERF ((v, t), φ) ≥ 2(1− φ(s1, s2)) + 2φ(s1, s2)(1− φ(s2, t))

≥ 2(1− φ(s1, s2)φ(s2, t)) (5)

Regarding DM D2, observe that the most congested edge
is either (s2, t) or (v, t), such that:

PERF ((s2, t), φ) ≥ 2φ(s2, t) (6)
PERF ((v, t), φ) ≥ 2(1− φ(s2, t)) (7)

As for PERF ((v, t), φ), observe that 2(1 −
φ(s1, s2)φ(s2, t)) ≥ 2(1−φ(s2, t)), for any 0 ≤ φ(s2, t) ≤ 1,
which means that inequality (7) is redundant.

Observe that (4) increases w.r.t. φ(s1, s2), (6) increases
w.r.t. φ(s2, t), while (5) decreases w.r.t. both φ(s1, s2) and
φ(s2, t). So, to minimize the worse-case link utilization,
inequalities (4), (6), and (5) must be tight in the optimal
scenario, i.e., PERF ((s1, s2), φ) = PERF ((s2, t), φ) =
PERF ((v, t), φ). Moreover, inequalities (4) and (6) imply
that φ(s1, s2) = φ(s2, t), which allows us to rewrite (5) as
PERF ((v, t), φ) = 1 − φ(s1, s2)2. From (4) and (5), we
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have that 2φ(s1, s2) = 2(1 − φ(s1, s2)2) → 1 − φ(s1, s2) −
φ(s1, s2)2 = 0, which is an equation of the second order
with solutions

√
5−1
2 and

√
5+1
2 . Only the first of these two

solutions (i.e., the inverse of the golden ratio) is feasible
in our formulation. The optimal splitting ratios are therefore
φ(s1, s2) = φ(s2, t) =

√
5−1
2 . Traffic splitting accordingly

guarantees that the worse-case link utilization on D is never
greater than

√
5− 1 ∼ 1, 23.

APPENDIX C
DUALIZATION AND GEOMETRIC PROGRAMMING

We explained in Section V-C how the optimal traffic split-
ting ratios within a DAG (given as input) can be computed
is the specific scenario considered. Can the optimal traffic
splitting ratios always be computed in a computationally-
efficient manner? While this remains an important open ques-
tion (see Section IX), it seems impossible to accomplish within
the familiar mathematical toolset of TE, namely, integer and
linear programming. We found that a different approach for
generating good in-DAG traffic splitting is, however, feasible:
casting the optimization problem described in Section III as a
mixed-linear geometric program [17]).

We observed in Section V-C that two difficulties arise when
computing in-DAG traffic splitting over a set of possible DMs:
(i) the cardinality of the DMs set can possibly be infinite
and (ii) modeling per-destination routing involves a product
of unknowns. To address (i), we build upon the standard
dualization techniques for efficiently optimizing over infinite
sets of DMs. We adapt these techniques to the restriction
that routing be destination-based. We refer the reader to [11]
for additional details about this approach. To address (ii),
we leverage Geometric Programming (GP) for approximating
non-convex constraints involving products of unknowns with
convex constraints. We refer the reader to [17] for a detailed
exposition of GP. We next dive into the details.

We define each DAG rooted at a vertex t ∈ V as a set
of directed edges Et and let E = {Et1 , . . . , Etn} for each
ti ∈ V , with i = 1, . . . , n. As observed in Section V-C,
since the performance ratio is invariant to any proportional
rescaling of the DMs or link capacities, we can reformulate
our optimization problem as follows:

min α

(φ, f) is a PD routing in E
∀ edges e = (u, v) :

∀ DMs D ∈ D with λ > 0 such that:

OPTU(D) = 1 and ∀i, j λdminst ≤ dst ≤ λdmaxst : (8)∑
(s,t) dstfst(u)φt(e)/c(e) ≤ α (9)

Variable λ is used to scale each DM D in D so that
OPTU(D) = 1. In addition, we force each φt to be routed
within the given DAGs that are defined in E .

Recall that when D is the set of all possible DMs, the
performance ratio is referred to as the oblivious performance
ratio. In this case, for each demand dst, we simply replace
in (8) the λdminst ≤ dst ≤ λdmaxst inequality with 0 ≤ dst.

Reducing the number of constraints via duality transfor-
mations. To simplify exposition, we first explain in detail
how to apply the dualization technique only for the scenario
that the demand matrix set is unbounded, i.e., any traffic
matrix is possible. We will later discuss the scenario that the
demand matrix set is constrained. Recall the formulation of
OBLIVIOUS IP ROUTING, as described in Section III. Observe
that the constraints at equation (9) can be tested by solving,
for each edge e = (u, v), the following “slave Linear Problem
(LP)” and checking if the objective is ≤ α.

max
∑

(st) dstfst(u)φt(e)/ce

∀t ∈ V,∀s 6= t ∈ V :∑
a∈(OUT (s)∧Et)

gt(a)−
∑

a∈(IN(s)∧Et)

gt(a)− dst ≤ 0 (10)

∀a ∈ E :
∑
t∈V gt(a) ≤ ca (11)

∀s, t ∈ V : dst ≥ 0,∀t ∈ V,∀a ∈ E : gt(a) ≥ 0

Given a fixed routing (φ, f), the objective function is maxi-
mizing the link utilization of e by exploring the set of demand
matrices that can be routed within the link capacities of the
given DAGs. Variable gt(a) is a PD routing that represents the
amount of absolute flow to t that is routed through edge a.
Eq. (10) captures the standard flow conservation constraints for
each vertex of the network, where dst is a variable represeting
the s → t demand. Eq. (11) guarantees that g can be routed
within the link capacities.

By applying duality theory to the slave LP, we can describe
a set of requirements that must be satisfied by a routing φ in
order to guarantee an oblivious performance ratio ≤ α.

Theorem 5: A routing φ has oblivious ratio r if there exist
positive weights πe(h) for every pair of edges e, h, such that:
R1

∑
h∈E πe(h)ch ≤ r, for every edge e ∈ E.

R2 For every edge (u, v) ∈ E, for every demand s →
t, and for every path (a1, a2, . . . , al) from s to t,
where a1, . . . , al ∈ Et, it holds fst(u)φt(u, v) ≤
ce
∑l
k=1 πe(ak).

Proof: Our proof is based on applying simple duality
theory to the slave LP problem. The two requirements are
equivalent to stating that the slave LP has objective ≤ r.

Let φ be a PD routing and πe(h) be weights satisfying
requirements 1-3. Let D be any DM that can be routed within
the edge capacities and let qst(a) and qst(p) be the amount
of the s → t demand that is routed through an edge a and a
path p = (a1, . . . , al) according to any routing that does not
exceed the edge capacities. Let e be an edge in E and denote
fst(u)φt(u, v) by ls,t(u, v). By first multiplying both sides of
R2 by q̄st(p), we obtain

ls,t(u, v)q̄st(p) ≤ ce
∑l
k=1πe(ak)q̄st(p)

and by then summing over this inequality for all the s → t
paths pi = (ai1, . . . , a

i
li

) such that each edge on the path is in
Et, we obtain∑

pi

ls,t(u, v)q̄st(pi) ≤
∑
pi

ce

li∑
k=1

πe(a
i
k)q̄st(pi)
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ls,t(u, v)
∑
pi

q̄st(pi) ≤ ce
∑
h∈E

πe(h)
∑

p|p traverses h

q̄st(p)

ls,t(u, v)dst ≤ ce
∑
h∈E

πe(h)qst(h).

Now, by summing over all the (s, t) pairs, we get∑
s,t

ls,t(u, v)dst ≤ ce
∑
h∈E

πe(h)
∑
s,t

qst(h) ≤ ce
∑
h∈E

πe(h)ch

where the last inequality holds since q can be routed without
exceeding the edge capacities. Combining the above inequality
with R1, we finally obtain∑

s,tls,t(u, v)dst ≤ ce
∑
h∈Eπe(h)ch ≤ cer.

This concludes the statement of the theorem as it shows
that using φ to route any DM that can be routed without
exceeding the edge capacities would not cause any edge to
be over-utilized by a factor higher than r.

Based on the requirements of Theorem 5, the OBLIVIOUS
IP ROUTING formulation can be rewritten as the following
Non Linear Problem (NLP). Let, for each edge e and pair
of vertices i, j ∈ V , the variable pe(i, j) be the length of
the shortest path from i to j according to the edge weights
πe(h) (for all h ∈ E). The introduction of these variables
allows us to replace the exponential number of constraints
(for all possible paths) in Requirement (2) of Theorem 5 with
a polynomial number of constraints. The final formulation
consists of O(|V |2|E|) variables and O(|V ||E|2) constraints.

min α

(φ, f) is a PD routing
∀ edges e ∈ E:∑

h∈Eπe(h)ch ≤ r (12)
∀ pairs (s, t) : f,t(u)φt(u,v)/ce ≤ pe(s, t) (13)
∀i ∈ V,∀a = (j, k) ∈ Et :

πe(a) + pe(k, i)− pe(j, i) ≥ 0 (14)
∀ h ∈ E : πe(h) ≥ 0;∀i, j ∈ V : pe(i, i) = 0, pe(i, j) ≥ 0

Geometric Programming transformation. NLP problems
are, in general, hard to optimize. We leverage techniques from
Geometric Programming (GP) to tackle this challenge [17]. A
Mixed Linear Geometric Programming (MLGP) is an opti-
mization problem of the form

min f0(x) + aT0 y

fi(x) + aTi y + di ≤ 1, i = 1, . . . ,m

hj(x) = 1, j = 1, . . . ,M

where x and y are variables, fi(x) is a sum of posyno-
mials, i.e., monomials with positive coefficients, hj(x) is a
monomial, and both a and d are vectors of real numbers.
Such problems can be transformed with a simple variable
substitution z = logx into convex optimization problems [17],
thus opening the doors to the usage of efficient solvers such
as the Interior Point Method. Since our problem contains
some constraints that are not posynomials but rather a sum
of monomials with positive and negative coefficients, i.e., a

signomial, the Complementary GP technique [17] is used.
This involves iteratively approximating the non-GP constraints
around a solution point so that the problem becomes MLGP,
solving it efficiently, and repeating this procedure with the new
solution point. We now show how to transform our original
NLP dualized formulation into an iterative MLGP formulation.

Routing variables f and φ are GP variables as they are
multiplied with each other in the definition of PD routing.
The remaining variables are linear variables. Constraints (12)
and (14) are linear constraints, while Constraint (13) is an
MLGP constraint. As for the flow conservation constraints
defined in Section III of a PD routing, we note that fst(v) ≥∑
e=(u,v)∈Et

fst(u)φt(e) is a GP constraint but the splitting
ratio constraint

∑
(v,u)∈Et

φt(v, u) ≥ 1 is not and we approx-
imate it using monomial approaximation as follows.

Let Svt(φ) =
∑
e=(v,u)∈Et

φt(e), where φ is an array of
all the φt variables in the sum. Let φ(i) the i’th variable
in φ. Given a point φ0, we want to approximate Svt with a
monomial k

∏n
i=1(φ(i))a(i). From [17], we have that a(i) =

φ0(i)/
∑

i φ0(i) and k =
∑

i φ0(i)/
∏n

i=1 (φ0(i))
a(i). Hence, each

splitting ratio constraint can be rewritten by GP monomial
constraint of the form 1 ≤ k

∏n
i=1(φ(i))a(i).

To summarize the iterative phase: given a feasible routing
solution φ0, for each destination t, we can compute at(u, v)
and kt using the above monomial approximation, which leads
to the following formulation:

min α

∀s, t, v ∈ V : f̃st(v) ≥ log
∑

(u,v)∈Et
ef̃st(u)+φ̃t(u,v)

∀s, t ∈ V : f̃st(s) ≥ 0

∀v, t ∈ V : log kt +
∑

h=(v,u)∈Et

at(h)φ̃t(h) ≥ 0

∀e ∈ E :∑
h∈Eπe(h)ch ≤ r

∀(s, t) ∈ V : ef̃st(u)+φ̃t(u,v) ≤ cepe(s, t) (15)
∀t ∈ V,∀a = (j, k) ∈ Et : πe(a) + pe(k, t)− pe(j, t) ≥ 0

∀ h ∈ E : πe(h) ≥ 0;∀i, j ∈ V : pe(i, i) = 0 and pe(i, j) ≥ 0

When the set of admissible DMs is bounded, as in the
general problem formulation, a similar dualization technique
and MLGP transformation can be applied to the problem.
One has to carefully consider the uncertainty bounds con-
straints during the dualization phase, which will be treated as
(mixed) linear constraints during the MLGP transformation.
Given a feasible routing solution φ0, by following the same
dualization technique presented in [11] we add constraint∑
s,t(d

max
st s+e (s, t) − dminst s+e (s, t)) ≤ 0 to the above formu-

lation and we replace Constraint (15) with ef̃st(u)+φ̃t(u,v) ≤
cepe(s, t)+s+e (s, t)−s−e (s, t), where s−e (s, t) ≥ 0, s+e (s, t) ≥
0. The resulting formulation can still be solved with any solver
implementing the Interior Point Method.
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