Beyond Native Apps:
Web Technologies to the Rescue! (Keynote)

Ivano Malavolta

Vrije Universiteit Amsterdam, The Netherlands

i.malavolta@vu.nl

Abstract

As of today, mobile software development teams can follow
a number of different development and distribution strate-
gies, ranging from native apps, to mobile web apps, hybrid
apps, and the recently emerging progressive web apps.

This talk provides a state-of-the-art overview of the de-
velopment strategies and technologies for developing mobile
apps, each of them with its own advantages and drawbacks.
In this context, the use of web technologies is discussed as
a promising investment for moving forward one of the most
intriguing challenges in the world of mobile apps: its frag-
mentation with respect to mobile platforms. A discussion of
research challenges, and thus opportunities, closes the talk.

Categories and Subject Descriptors H.4.3 [Information
Systems Applications]: Communications Applications

General Terms Languages, Management

Keywords Mobile applications, Mobile web, Hybrid devel-
opment frameworks, Progressive web apps

1. Native Mobile Apps

Mobile apps consist of binary executable files that are down-
loaded directly to the user’s device and stored locally [1].
Mobile apps are distributed via dedicated app stores, such as
the Google Play Store for Android apps and the Apple app
store for i0OS apps. Native apps are developed directly atop
the services provided by their underlying mobile platform.
Those services are exposed via a dedicated Application Pro-
gramming Interface (API) with methods related to commu-
nication and messaging, graphics, location, security, etc. [2].
Programming languages and tools for native mobile apps are
platform-specific; for example, Android apps are created in
Java via the Eclipse-based Android SDK, whereas Apple

iOS apps are developed using either Objective-C or Swift
via the XCode tool. Thanks to the platform-specific APIs
and tools, developers can create native mobile apps with rich
user experiences, heavy advanced graphics, and high perfor-
mance. However, the use of platform-specific technologies
leads to the well-known challenge of mobile platform frag-
mentation, as code written for one mobile platform (e.g.,
the Java code of an Android app) cannot be used on another
(e.g., the Objective-C code of an Apple iOS app) [1]. Frag-
mentation makes the development and maintenance of na-
tive apps for multiple platforms one of the major technical
challenges affecting the mobile development community [3].
This results in potentially high development time, high test-
ing and maintenance costs, and low portability.

2. Web-Based Mobile Development
Strategies

Standard web technologies like HTMLS, CSS3, JavaScript
can help in building mobile apps via a common aligned tech-
nological stack, thus mitigating the fragmentation problem.
As of today, three are the main development strategies for
developing apps via web technologies: mobile web apps,
web-based hybrid mobile apps, and progressive web apps.

2.1 Mobile Web Apps

Mobile web apps are developed with web technologies,
hosted on remote servers, served via standard protocols (e.g.,
HTTP), accessed via a unique URL. Basically, they are
mobile-optimized websites accessed via the browser apps
installed on users’ mobile devices (e.g., Chrome, Firefox).
Since the code of mobile web apps conforms to standard
languages, a single app delivers a uniform experience across
platforms [1], offering fast development, simple mainte-
nance, and full application portability. Those advantages
are mainly facilitated by the widespread compatibility with
the WebKit rendering engine, an open-source project led
mainly by Google and Apple providing the most compre-
hensive HTMLS implementation available today [1]. Even
if the browser is getting more and more a fully-fledged soft-
ware platform (e.g., the HTMLS standard provides APIs for
geolocation, accessing the camera, microphone, etc.), as of



today mobile web apps struggle in handling heavy graphics
(e.g., in contrast to the ones provided by 3D Unity game en-
gine) and still there no straightforward means for full access
to low level features (e.g., background services manage-
ment). Finally, since mobile web apps are hosted and served
like usual websites, they cannot be distributed via app stores.

2.2 Web-Based Hybrid Mobile Apps

Web-based hybrid mobile apps take the best aspects from na-
tive and web mobile apps [4, 5]. They are developed via stan-
dard web technologies and they can be distributed for any
supported mobile platform, like Android, iOS, or Windows
Phone [1]. More specifically, a hybrid development frame-
work (e.g., Apache Cordova) allows developers to create a
cross-platform web-based mobile app by providing (i) a na-
tive wrapper for containing the web-based code, and (ii) a
generic JavaScript API that bridges all the service requests
from the web-based code to the corresponding platform API.

Thanks to the native wrapper, a hybrid mobile app can
be packaged and distributed for any supported platform. Ex-
isting knowledge of web developers can be reused also for
developing mobile apps, and the development process is
simplified, mainly because of the need to maintain a sin-
gle code base for all platforms. On the negative side, hy-
brid mobile apps can access the platform APIs only via
the JavaScript bridge provided by the hybrid development
framework, which considers only a subset of all the possi-
ble APIs provided by each platform; moreover, the existence
of the JavaScript bridge imposes an additional performance
overhead when accessing platform APIs. Finally, the user
experience provided by a hybrid app is the same across mul-
tiple platforms; if on one side this may be a positive trait in
terms of product identity, on the other side developers should
take into special consideration how the app integrates with
the platform it is running in (e.g., the app should manage
the physical back button in Android devices, whereas in i0OS
devices this functionality is managed on screen).

2.3 Progressive Web Apps

Progressive web apps (PWAs) are special kinds of mobile
web apps in which progressive enhancement, support for low
or no network connectivity, background processing capabil-
ities, push notifications support, and security are the first-
class characteristics . Similarly to mobile web apps, a PWA
is served from a remote server via HTTPS (so no update dis-
tribution delays like in native or hybrid apps) and can be ini-
tially accessed as a standard web app via a browser (i.e., no
install is required before using the app). Then, the user can
decide to install the PWA in the device, thus promoting it to
a top-level mobile app, with full-screen support (no browser
tabs needed), offline support via a dedicated management of
caching, push notifications, etc. Three conditions must hold
for considering a mobile web app as a PWA, namely: (i) it is
served over HTTPS (this is a requirement for avoiding man-
in-the-middle attacks), (ii) it comes with a web app manifest

declaring app metadata like its name, icons, base URL, and
(iii) it uses service workers , a set of APIs for allowing de-
velopers for programmatically caching and preloading assets
and data, managing push notifications, etc.

As of today, the features provided by PWAs strongly de-
pend on how each browser supports web standards. For ex-
ample, PWAs can manage push notifications, access to cam-
era, geolocation in Chrome, but currently they do not fully
support access to contacts, calendar, system-level alarms,
telephony data (messages, calls, or the user’s phone num-
ber), access to low-level hardware features and sensors.

3. Research Challenges and Opportunities

Mobile apps development is an ever evolving and dynamic
research playground, where many are the research chal-
lenges posed by mobile apps developed using web tech-
nologies. In the following we discuss some of the most in-
triguing and inspiring ones. As also highlighted in [6], the
collection, measurement, and analysis of quality properties
(e.g., performance, reliability, security) will be fundamental
for advancing the state of the art and practice in web-based
mobile app development. This aspect is also related to the
need for designing and assessing a testing method that works
across platforms in a seamless manner. A special focus can
also be given to investigate on recurrent design and code
anti-patterns impacting the performance of (hybrid or pro-
gressive) mobile apps, specially across different platforms.
Finally, since PWAs have been advertised as performance
boosters, network savers, providers of better user experi-
ence, etc., it will be interesting to investigate on the price
that developers and users may have to pay for those features
(e.g., higher energy consumption, higher development and
testing effort, higher complexity?).

References

[1] Native, Web or Hybrid Mobile-app Development.  White
paper, IBM Corporation, April 2012. Document Number:
WSW14182USEN.

[2] B. Fling. Mobile design and development: Practical con-
cepts and techniques for creating mobile sites and Web apps.

O’Reilly Media, Inc., 2009.

[3] M. E. Joorabchi, A. Mesbah, and P. Kruchten. Real Challenges
in Mobile App Development. In Empirical Software Engineer-
ing and Measurement, 2013, pages 15-24, 2013.

[4] 1. Malavolta, S. Ruberto, T. Soru, and V. Terragni. Hybrid mo-
bile apps in the google play store: An exploratory investigation.
In Mobile Software Engineering and Systems (MOBILESoft),
2nd ACM Intern. Conference on, pages 56-59. IEEE, 2015.

[5] I. Malavolta, S. Ruberto, T. Soru, and V. Terragni. End Users’
Perception of Hybrid Mobile Apps in the Google Play Store.
In Mobile Services (MS), 2015 IEEE International Conference
on, pages 25-32. IEEE, 2015.

[6] A. I. Wasserman. Software Engineering Issues for Mobile
Application Development. In FSE/SDP Workshop on Future
of Software Engineering Research, pages 397-400, 2010.



