
Database Meets Deep Learning: Challenges and
Opportunities

Wei Wang†, Meihui Zhang‡, Gang Chen§,
H. V. Jagadish#, Beng Chin Ooi†, Kian-Lee Tan†

†National University of Singapore ‡ Beijing Institute of Technology
§Zhejiang University #University of Michigan

†{wangwei, ooibc, tankl}@comp.nus.edu.sg ‡meihui zhang@bit.edu.cn
§cg@zju.edu.cn #jag@umich.edu

ABSTRACT
Deep learning has recently become very popular on ac-
count of its incredible success in many complex data-
driven applications, such as image classification and speech
recognition. The database community has worked on
data-driven applications for many years, and therefore
should be playing a lead role in supporting this new
wave. However, databases and deep learning are differ-
ent in terms of both techniques and applications. In this
paper, we discuss research problems at the intersection
of the two fields. In particular, we discuss possible im-
provements for deep learning systems from a database
perspective, and analyze database applications that may
benefit from deep learning techniques.

1. INTRODUCTION
In recent years, we have witnessed the success of

numerous data-driven machine-learning-based ap-
plications. This has prompted the database com-
munity to investigate the opportunities for integrat-
ing machine learning techniques in the design of
database systems and applications [84]. A branch of
machine learning, called deep learning [57, 38], has
attracted worldwide interest in recent years due to
its excellent performance in multiple areas including
speech recognition, image classification and natural
language processing (NLP). The foundation of deep
learning was established about twenty years ago in
the form of neural networks. Its recent resurgence is
mainly fueled by three factors: immense computing
power, which reduces the time to train and deploy
new models, e.g. Graphic Processing Unit (GPU)
enables the training systems to run much faster
than those in the 1990s; massive (labeled) training
datasets (e.g. ImageNet) enable a more comprehen-
sive knowledge of the domain to be acquired; new
deep learning models (e.g. AlexNet [55]) improve
the ability to capture data regularities.

Database researchers have been working on sys-

tem optimization and large scale data-driven ap-
plications since 1970s, which are closely related to
the first two factors. It is natural to think about
the relationships between databases and deep learn-
ing. First, are there any insights that the database
community can offer to deep learning? It has been
shown that larger training datasets and a deeper
model structure improve the accuracy of deep learn-
ing models. However, the side effect is that the
training becomes more costly. Approaches have been
proposed to accelerate the training speed from both
the system perspective [12, 42, 18, 80, 2] and the
theory perspective [120, 27]. Since the database
community has rich experience with system opti-
mization, it would be opportune to discuss the ap-
plicability of database techniques for optimizing deep
learning systems. For example, distributed com-
puting and memory management are key database
technologies also central to deep learning.

Second, are there any deep learning techniques
that can be adapted for database problems? Deep
learning emerged from the machine learning and
computer vision communities. It has been success-
fully applied to other domains, like NLP [28]. How-
ever, few studies have been conducted using deep
learning techniques for traditional database prob-
lems. This is partially because traditional database
problems — like indexing, transaction and storage
management — involve less uncertainty, whereas
deep learning is good at predicting over uncertain
events. Nevertheless, there are problems in databases
like knowledge fusion [21] and crowdsourcing [79],
which are probabilistic problems. It is possible to
apply deep learning techniques in these areas. We
will discuss specific problems like querying interface,
knowledge fusion, etc. in this paper.

The previous version [108] of this paper has ap-
peared in SIGMOD Record. In this version, we ex-
tend it to include the recent developments in this
field and references to recent work.

ar
X

iv
:1

90
6.

08
98

6v
2

 [
cs

.D
B

]
 1

9
Ja

n
20

20

initialize
parameters

compute
gradients

update
parameters

read mini-
batch data

Figure 1: Stochastic Gradient Descent.

The rest of this paper is organized as follows: Sec-
tion 2 provides background information about deep
learning models and training algorithms; Section 3
discusses the application of database techniques for
optimizing deep learning systems. Section 4 de-
scribes research problems in databases where deep
learning techniques may help to improve perfor-
mance. Some final thoughts are presented in Sec-
tion 5.

2. BACKGROUND
Deep learning refers to a set of machine learn-

ing models which try to learn high-level abstrac-
tions (or representations) of raw data through mul-
tiple feature transformation layers. Large training
datasets and deep complex structures [8] enhance
the ability of deep learning models for learning ef-
fective representations for tasks of interest. There
are three popular categories of deep learning models
according to the types of connections between lay-
ers [57], namely feedforward models (direct connec-
tion), energy models (undirected connection) and
recurrent neural networks (recurrent connection).
Feedforward models, including Convolution Neural
Network (CNN), propagate input features through
each layer to extract high-level features. CNN is
the state-of-the-art model for many computer vi-
sion tasks. Energy models, including Deep Belief
Network (DBN) are typically used to pre-train other
models, e.g., feedforward models. Recurrent Neu-
ral Network (RNN) is widely used for modeling se-
quential data. Machine translation and language
modeling are popular applications of RNN.

Before deploying a deep learning model, the model
parameters involved in the transformation layers
need to be trained. The training turns out to be a
numeric optimization procedure to find parameter
values that minimize the discrepancy (loss function)
between the expected output and the real output.
Stochastic Gradient Descent (SGD) is the most widely
used training algorithm. As shown in Figure 1,
SGD initializes the parameters with random val-
ues, and then iteratively refines them based on the
computed gradients with respect to the loss func-
tion. There are three commonly used algorithms
for gradient computation corresponding to the three
model categories above: Back Propagation (BP),
Contrastive Divergence (CD) and Back Propaga-

Approach B

• TBD

input

inner-
product

sigmoid

loss

DB

W

b

data

data

gradient

gradient

data

data

Figure 2: Data flow of Back-Propagation.

tion Through Time (BPTT). By regarding the lay-
ers of a neural net as nodes of a graph, these algo-
rithms can be evaluated by traversing the graph in
certain sequences. For instance, the BP algorithm
is illustrated in Figure 2, where a simple feedfor-
ward model is trained by traversing along the solid
arrows to compute the data (feature) of each layer,
and along the dashed arrows to compute the gradi-
ent of each layer and each parameter (W and b).

3. DATABASES TO DEEP LEARNING
In this section, we discuss the optimization tech-

niques used in deep learning systems, and research
opportunities from the perspective of databases.

3.1 Stand-alone Training
Currently, the most effective approach for im-

proving the training speed of deep learning mod-
els is using Nvidia GPU with the cuDNN library.
Researchers are also working on other hardware,
e.g. FPGA [56]. Besides exploiting advancements
in hardware technology, operation scheduling and
memory management are two important components
to consider.

3.1.1 Operation Scheduling
Training algorithms of deep learning models typ-

ically involve expensive linear algebra operations as
shown in Figure 3, where the matrix W1 and W2
could be larger than 4096∗4096. Operation schedul-
ing is to first detect the data dependency of oper-
ations and then place the operations without de-
pendencies onto executors, e.g., CUDA streams and
CPU threads. Taking the operations in Figure 3 as
an example, a1 and a2 in Figure 3 could be com-
puted in parallel because they have no dependen-
cies. The first step could be done statically based
on dataflow graph or dynamically [10] by analyzing
the orders of read and write operations. Databases
also have this kind of problems in optimizing trans-

Efficiency optimization

● Improve the speed of DL on a single device (GPU or CPU device)

○ All operations of one (BP) iteration compose a dataflow graph.

○ Existing systems either do static (Theano[12] and TensorFlow[13]) or dynamic (MxNet[14])

dependency analysis to parallelize operations without data dependencies.

○ Possible improvements:

■ When there are limited resources, i.e, executors (CUDA streams), there could be

multiple ways of placing the operations onto the executors.

■ Runtime optimization by 1) collecting the cost (i.e., FLOPS) of each operation and the

hardware statistics 2) estimating the total cost of all plans;

a1=x*W1+b1 a2=x*W2+b2

x=sigmoid(x)

y=concatenate(a1, a2)

[12] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A. Bergeron, N. Bouchard, and Y. Bengio. Theano: new features and speed

improvements. Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop, 2012.

[13] M. A. et al. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015

[14] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang. Mxnet: An extensible and efficient machine learning library

for heterogeneous distributed systems. CoRR, abs/1512.01274, 2015

Figure 3: Sample operations from a deep
learning model.

action execution [119] and query plans. Those so-
lutions should be considered for deep learning sys-
tems. For instance, databases use cost models to
estimate query plans. For deep learning, we may
also create a cost model to find an optimal opera-
tion placing strategy for the second step of opera-
tion scheduling given a fixed computing resources
including executors and memory.

Recent developments: Mirhoseini et al. [74]
propose to optimize the placement of operations
on heterogeneous hardware devices (e.g., CPU and
GPU) using reinforcement learning. Jia et al.[45,
43] go beyond simple operation parallelism to con-
sider parallelism from multiple dimensions together,
including data samples and channels, operations,
attributes and parameters. In addition, operation
substitution has been studied in [44], which sub-
stitutes the original operations with new ones that
retain the semantics but lead to better overall effi-
ciency. Operation fusing is one example. A cost-
based search algorithm is introduced to find op-
timized computation graphs. Similar fusing tech-
niques are applied in open-source libraries including
Tensorflow [2] and PyTorch [82].

3.1.2 Memory Management
Deep learning models are becoming larger and

larger, and already occupy a huge amount of mem-
ory space. For example, the VGG model [88] can-
not be trained on normal GPU cards due to mem-
ory size constraints. Many approaches have been
proposed towards reducing memory consumption.
Shorter data representation, e.g. 16-bit float [15] is
now supported by CUDA. Memory sharing is an
effective approach for memory saving [10]. Tak-
ing Figure 3 as an example, the input and out-
put of the sigmoid function share the same vari-
able and thus the same memory space. Such opera-
tions are called ‘in-place’ operations. Recently, two
approaches were proposed to trade-off computation

time for memory. Swapping memory between GPU
and CPU resolves the problem of small GPU mem-
ory and large model size by swapping variables out
to CPU and then swapping back manually[16]. An-
other approach drops some variables to free memory
and recomputes them when necessary based on the
static dataflow graph[11].

Memory management is a hot topic in the database
community with a significant amount of research
towards in-memory databases [92, 122], including
locality, paging and cache optimization. To elabo-
rate more, the paging strategies could be useful for
deciding when and which variables to swap. In addi-
tion, failure recovery in databases is similar to the
idea of dropping and recomputing approach, and
hence the logging techniques in databases could be
considered. If all operations (and execution time)
are logged, we can then do runtime analysis with-
out the static dataflow graph. Other techniques, in-
cluding garbage collection and memory pool, would
also be useful for deep learning systems, especially
for GPU memory management.

Recent developments: The recomputing tech-
nique has been adopted in PyTorch [83]. Wang et
al. [101] combines recomputing and swapping to
optimize the memory of convolutional neural net-
works. Zhang et al. [124] propose a smart mem-
ory pool and automatic swapping strategy for deep
neural networks to replace manual swapping in [16,
101]. Cai et al. [7] propose to slice the model for
reducing the memory and computational resource
consumption.

3.2 Distributed Training
Distributed training is a natural solution for ac-

celerating the training speed of deep learning mod-
els. The parameter server architecture [18] is typi-
cally used, in which the workers compute parameter
gradients and the servers update the parameter val-
ues after receiving gradients from workers. There
are two basic parallelism schemes for distributed
training, namely, data parallelism and model paral-
lelism. In data parallelism, each worker is assigned a
data partition and a model replica, while for model
parallelism, each worker is assigned a partition of
the model and the whole dataset. Two recent sur-
vey papers [72, 5] give a comprehensive introduc-
tion about parallel and distributed deep learning.
The database community has a long history of work-
ing on distributed environment, ranging from par-
allel databases [59] and peer-to-peer systems [99]
to cloud computing [61]. We will discuss some re-
search problems relevant to databases arising from
distributed training in the following paragraphs.

3.2.1 Communication
Given that deep learning models have a large

set of parameters, the communication overhead be-
tween workers and servers is likely to be the bot-
tleneck of a training system, especially when the
workers are running on GPUs which decrease the
computation time. In addition, for large clusters,
the synchronization between workers also accounts.
Consequently, it is important to investigate efficient
communication protocols for both single-node mul-
tiple GPU training and training over a large clus-
ter. Possible research directions include : a) com-
pressing the parameters and gradients before trans-
ferring [85]; b) organizing servers in an optimized
topology to reduce the communication burden of
each single node, e.g., tree structure [32] and AllRe-
duce structure [113] (all-to-all connection); c) using
more efficient networking hardware like RDMA [12].

Recent developments: Gradient compression
has shown to be effective in reducing the commu-
nication cost [47, 30, 95, 64, 112, 3, 47]. Various
decentralized communication frameworks [46, 110,
94, 86, 1] have been proposed to replace the central-
ized parameter server framework which is prone to
communication bottleneck at the server side. For
example, [29, 41, 73] use AllReduce to train large-
scale networks over thousands of GPUs.

3.2.2 Concurrency and Consistency
Concurrency and consistency are traditional re-

search problems in databases. For distributed train-
ing of deep learning models, they also matter. Cur-
rently, both declarative programming (e.g., Theano
and Tensorflow) and imperative programming (e.g.,
Caffe and SINGA) have been adopted in existing
systems for concurrency implementation. Most deep
learning systems use threads and locks directly. Other
concurrency implementation methods like actor model
(good at failure recovery), co-routine and communi-
cating sequential processes have not been explored.

Sequential consistency (from synchronous train-
ing) and eventual consistency (from asynchronous
training) are typically used for distributed deep learn-
ing. Both approaches have scalability issues [105].
Recently, there are studies for training convex mod-
els (deep learning models are non-linear and non-
convex) using a value bounded consistency model [111].
Researchers are starting to investigate the influence
of consistency models on distributed training [32,
33, 9]. There remains much research to be done on
how to provide flexible consistency models for dis-
tributed training, and how each consistency model
affects the scalability of the system, including com-
munication overhead.

Recent developments: In recent papers and
the benchmark testing [13], synchronous training is
preferable to asynchronous training [121, 125, 35]
because the former one is more stable in terms of
convergence. With warm-up, layer-wise adaptive
rate scaling for the learning rate [29], label smooth-
ing, etc., synchronous SGD can scale to over 2000
GPUs [117, 41] without sacrificing accuracy. Typi-
cally, they increase the batch size gradually from a
few thousands to tens of thousands. FlexPS [37] is a
system that support such training schemes that in-
volve multiple stages. For very large models, pipeline
training [77, 36] can be adopted, which partitions
the model. However, data parallelism is still more
popular than model parallelism since it is easier to
implement and incurs less communication as well as
synchronization overhead.

3.2.3 Fault Tolerance
Databases systems have good durability via log-

ging (e.g., command log) and checkpointing. Cur-
rent deep learning systems recover the training from
crashes mainly based on checkpointing files [2]. How-
ever, frequent checkpointing would incur vast over-
head. In contrast with database systems, which en-
force strict consistency in transactions, the SGD al-
gorithm used by deep learning training systems can
tolerate a certain degree of inconsistency. There-
fore, logging is not a must. How to exploit the SGD
properties and system architectures to implement
fault tolerance efficiently is an interesting problem.
Considering that distributed training would repli-
cate the model status, it is thus possible to recover
from a replica instead of checkpointing files. Ro-
bust frameworks (or concurrency model) like actor
model, could be adopted to implement this kind of
failure recovery.

3.3 Optimization Techniques in Existing Sys-
tems

A summary of existing systems in terms of the
above mentioned optimization aspects is listed in
Table 1. Many researchers have done ad hoc opti-
mization using Caffe, including memory swapping
and communication optimization. However, the of-
ficial version is not well optimized. Similarly, Torch
itself provides limited support for distributed train-
ing. MXNet has optimization for both memory and
operations scheduling. Theano is typically used for
stand-alone training. Tensorflow is potential for
the aforementioned static optimization based on the
dataflow graph.

We are optimizing the Apache incubator SINGA
system [80] starting from version 1.0. For stand-

Table 1: Summary of optimization techniques used in existing systems as of July 18, 2016.
SINGA Caffe[42] MXNet[10] Tensorflow[2] Theano[4] Torch[14]

1. operation scheduling X x X - - x
2. memory management d+a+p i d+s p p -
3. parallelism d + m d d + m d + m - d + m
4. consistency s+a+h s/a s+a+h s+a+h - s
-: unknown 1. x: not available: X: available 2. d: dynamic; a: swap; p:memory pool; i: in-place operation; s: static;

3. d: data parallelism; m: model parallelism; 4. s: synchronous; a: asynchronous; h:hybrid

alone training, cost models are explored for runtime
operation scheduling. Memory optimization includ-
ing dropping, swapping and garbage collection with
memory pool will be implemented. OpenCL is sup-
ported to run SINGA on a wide range of hardware
including GPU, FPGA and ARM. For distributed
training, SINGA (V0.3) has done much work on
flexible parallelism and consistency; hence the fo-
cus would be on optimization of communication and
fault-tolerance, which are missing in almost all sys-
tems.

4. DEEP LEARNING TO DATABASES
Deep learning applications, such as computer

vision and NLP, may appear very different from
database applications. However, the core idea of
deep learning, known as feature (or representation)
learning, is applicable to a wide range of applica-
tions. Intuitively, once we have effective represen-
tations for entities, e.g., images, words, table rows
or columns, we can compute entity similarity, per-
form clustering, train prediction models, and re-
trieve data with different modalities [107, 106] etc.
We shall highlight a few deep learning models that
could be adapted for database applications below.

4.1 Query Interface
Natural language query interfaces have been at-

tempted for decades [60], because of their great de-
sirability, particularly for non-expert database users.
However, it is challenging for database systems to
interpret (or understand) the semantics of natural
language queries. Recently, deep learning models
have achieved state-of-the-art performance for NLP
tasks [28]. Moreover, RNN has been shown to be
able to learn structured output [91, 97]. As one so-
lution, we can apply RNN models for parsing nat-
ural language queries to generate SQL queries, and
refine it using existing database approaches. The
challenge is that a large amount of (labeled) train-
ing samples is required to train the model. One
possible solution is to train a baseline model with a
small dataset, and gradually refining it with users’
feedback. For instance, users could help correct the

generated SQL query, and these feedback essentially
serve as labeled data for subsequent training.

Recent developments: Multiple annotated datasets
that consist of text query and SQL query pairs have
been created using templates [126, 6] and user feed-
back [40]. State-of-the-art solutions over the Wik-
iSQL dataset [126] are listed here1. The solutions [126,
40, 24, 116] generally extend the sequence-to-sequence
model to encode the text query and then generate
the SQL query via the decoder. Domain knowledge
like the SQL grammar is exploited.

4.2 Query Plans
Query plan optimization is a traditional database

problem. Most current database systems use com-
plex heuristic and cost models to generate the query
plan. According to [34], each query plan of a para-
metric SQL query template has an optimality re-
gion. As long as the parameters of the SQL query
are within this region, the optimal query plan does
not change. In other words, query plans are in-
sensitive to small variations of the input parame-
ters. Therefore, we can train a query planner which
learns from a set of pairs of SQL queries and opti-
mal plans to generate (similar) plans for new (sim-
ilar) queries. To elaborate more, we can learn a
RNN model that accepts the SQL query elements
and meta-data (like buffer size and primary key) as
input, and generates a tree structure [97] represent-
ing the query plan. Reinforcement learning (like Al-
phaGo [87]) could also be applied to train the model
on-line using the execution time and memory foot-
print as the reward. Note that approaches purely
based on deep learning models may not be very ef-
fective. First, the query plan is generated based
on probability, which is likely to have grammar er-
rors. Second, the training dataset may not be com-
prehensive to include all query patterns, e.g., some
predicates could be missing in the training datasets.
To solve these problems, a better approach would
be combining database solutions and deep learn-
ing, e.g. using some heuristics to check and correct
grammar errors.

1https://paperswithcode.com/task/text-to-sql

https://paperswithcode.com/task/text-to-sql

Recent developments: Recently, there has been
an increasing trend in applying deep learning tech-
niques for optimizing database systems, including
not only query plan optimization but also data ac-
cess (i.e. indexing) optimization and database con-
figuration tuning [123, 62]. Specifically, researchers
have proposed to optimize the query plan by im-
proving the join order selection [54, 69, 96], query
performance prediction [70], cardinality estimation
for join queries [65, 90, 51, 81, 118], and index rec-
ommendation [19] or search [114]. Neo [68] gener-
ates the query plan directly by deciding the join
order, operator, and index selection together. Deep
reinforcement learning is the key technique support-
ing these optimizations. Some challenges and pos-
sible solutions are discussed in the vision paper [71].
In terms of data access optimization, Kraska et al.[53]
propose a learned index for read-only, in-memory
database systems. It uses neural networks to map
the key to the location of the record. Subsequent
works have extended it for multi-dimensional in-
dex [78], updatable index [20], dynamic workloads [93],
and accessing data on disk [49, 26, 23]. To go one
step further, SageDB [52] puts forth a vision where
every component (such as query plan, data access,
and query execution [127]) of a database system is
optimized via machine learning models against the
data distribution and (query) workload [39].

4.3 Crowdsourcing and Knowledge Bases
Many crowdsourcing [115] and knowledge base [21]

applications involve entity extraction, disambigua-
tion and fusion problems, where the entity could
be a row of a database, a node in a graph, etc.
With the advancements of deep learning models in
NLP [28], it is opportune to consider deep learn-
ing for these problems. For example, we can learn
representations for entities and then do entity rela-
tionship reasoning [89] and similarity calculation.

Recent developments: DeepER [22] exploits
LSTM models to learn tuple embedding for entity
resolution. IDEL [50] implements neural entity-
linking in MonetDB, where the entities are embed-
ded. Deep learning models like CNN and attention
modelling have been applied for concept linking [25,
17]. Mudgal et al.[76] evaluate four different deep
learning models for entity matching problems. This
website2 keeps track of the recent papers [103] on
knowledge representation learning and embedding.

4.4 Spatial and Temporal Data
Spatial and temporal data are common data types

in database systems [31], and are commonly used

2https://github.com/thunlp/KRLPapers

for trend analysis, progression modeling and predic-
tive analytics. Spatial data is typically processed by
mapping moving objects into rectangular blocks. If
we regard each block as a pixel of one image, then
deep learning models, e.g., CNN, could be exploited
to extract the spatial locality between nearby blocks.
For instance, if we have the real-time location data
(e.g., GPS data) of moving objects, we could learn a
CNN model to capture the density relationships of
nearby areas for predicting the traffic congestion for
a future time point. When temporal data is mod-
eled as features over a time matrix, deep learning
models, e.g. RNN, can be designed to model time
dependency and predict the occurrence in a future
time point. A particular example would be disease
progression modeling [75] based on historical med-
ical records, where doctors would want to estimate
the onset of certain severity of a known disease. In
fact, most healthcare data is time-serise data, and
thus deep learning can make great contribution in
healthcare data analysis [58, 66].

Recent developments: Deep learning models
including CNN and RNN have been applied in vari-
ous spatial-temporal problems, including traffic flow
prediction [67, 48], travel time estimation [100, 63,
109], driver behavior analysis [102], geospatial ag-
gregation querying [98], etc. A comprehensive sur-
vey of the recent progress of applying deep learning
for spatial-temporal data is presented in [104].

5. CONCLUSIONS
In this paper, we have discussed databases and

deep learning. Databases have many techniques for
optimizing system performance, while deep learn-
ing is good at learning effective representation for
data-driven applications. We note that these two
“different” areas share some common techniques for
improving the system performance, such as memory
optimization and parallelism. We have discussed
some possible improvements for deep learning sys-
tems using database techniques, and research prob-
lems applying deep learning techniques in database
applications. To make the database systems more
autonomic, with the ability to learn and optimize,
and to support complex analytics and predictions
beyond data aggregation, we foresee a seamless inte-
gration of ML/DL and database technologies. With
the implementation of 5G mobility network, we fore-
see the distribution of databases, training and infer-
ence at the edge devices, which will lead to further
integration and adaptation of technologies. Let us
not miss the opportunity to contribute to the exist-
ing challenges ahead!

https://github.com/thunlp/KRLPapers

6. ACKNOWLEDGEMENT
We would like to thank Divesh Srivastava for his

valuable comments. This work was supported by
the National Research Foundation, Prime Minis-
ter’s Office, Singapore, under its Competitive Re-
search Programme (CRP Award No. NRF-CRP8-
2011-08), and Singapore Ministry of Education Aca-
demic Research Fund Tier 3 under MOEs official
grant number MOE2017-T3-1-007. Meihui Zhang
was supported by China Thousand Talents Program
for Young Professionals (3070011181811).

7. REFERENCES
[1] Nvidia collective communications library (nccl).

https://developer.nvidia.com/nccl.
[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,

Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015.

[3] D. Alistarh, J. Li, R. Tomioka, and M. Vojnovic.
QSGD: randomized quantization for
communication-optimal stochastic gradient descent.
CoRR, abs/1610.02132, 2016.

[4] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J.
Goodfellow, A. Bergeron, N. Bouchard, and
Y. Bengio. Theano: new features and speed
improvements. Deep Learning and Unsupervised
Feature Learning NIPS 2012 Workshop, 2012.

[5] T. Ben-Nun and T. Hoefler. Demystifying parallel and
distributed deep learning: An in-depth concurrency
analysis. ACM Comput. Surv., 52(4), 2019.

[6] R. Cai, B. Xu, Z. Zhang, X. Yang, Z. Li, and
Z. Liang. An encoder-decoder framework translating
natural language to database queries. In IJCAI, 2018.

[7] S. Cai, G. Chen, B. C. Ooi, and J. Gao. Model slicing
for supporting complex analytics with elastic
inference cost and resource constraints. CoRR,
abs/1904.01831, 2019.

[8] S. Cai, Y. Shu, W. Wang, and B. C. Ooi. Isbnet:
Instance-aware selective branching network. CoRR,
abs/1905.04849, 2019.

[9] J. Chen, R. Monga, S. Bengio, and R. Józefowicz.
Revisiting distributed synchronous SGD. CoRR,
abs/1604.00981, 2016.

[10] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang,
T. Xiao, B. Xu, C. Zhang, and Z. Zhang. MXNet: A
flexible and efficient machine learning library for
heterogeneous distributed systems. CoRR,
abs/1512.01274, 2015.

[11] T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training
deep nets with sublinear memory cost. CoRR,
abs/1604.06174, 2016.

[12] A. Coates, B. Huval, T. Wang, D. J. Wu, B. C.
Catanzaro, and A. Y. Ng. Deep learning with COTS
HPC systems. In ICML, pages 1337–1345, 2013.

[13] C. A. Coleman, D. Narayanan, D. Kang, T. J. Zhao,
J. Zhang, L. Nardi, P. Bailis, K. Olukotun, C. Ré,
and M. A. Zaharia. Dawnbench : An end-to-end deep
learning benchmark and competition. In NIPS ML
Systems Workshop, 2017.

[14] R. Collobert, K. Kavukcuoglu, and C. Farabet.
Torch7: A matlab-like environment for machine
learning. In BigLearn, NIPS Workshop, 2011.

[15] M. Courbariaux, Y. Bengio, and J.-P. David. Low
precision arithmetic for deep learning. CoRR,
abs/1412.7024, 2014.

[16] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and
E. P. Xing. Geeps: scalable deep learning on
distributed gpus with a gpu-specialized parameter
server. In EuroSys 2016, pages 4:1–4:16, 2016.

[17] J. Dai, M. Zhang, G. Chen, J. Fan, K. Y. Ngiam, and
B. C. Ooi. Fine-grained concept linking using neural
networks in healthcare. In SIGMOD, pages 51–66.
ACM, 2018.

[18] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin,
Q. V. Le, M. Z. Mao, M. Ranzato, A. W. Senior,
P. A. Tucker, K. Yang, and A. Y. Ng. Large scale
distributed deep networks. In NIPS, pages 1232–1240,
2012.

[19] B. Ding, S. Das, R. Marcus, W. Wu, S. Chaudhuri,
and V. R. Narasayya. Ai meets ai: Leveraging query
executions to improve index recommendations. In
SIGMOD, pages 1241–1258, 2019.

[20] J. Ding, U. F. Minhas, H. Zhang, Y. Li, C. Wang,
B. Chandramouli, J. Gehrke, D. Kossmann, and
D. Lomet. Alex: An updatable adaptive learned
index, 2019.

[21] X. L. Dong, E. Gabrilovich, G. Heitz, W. Horn,
K. Murphy, S. Sun, and W. Zhang. From data fusion
to knowledge fusion. PVLDB, 7(10):881–892, 2014.

[22] M. Ebraheem, S. Thirumuruganathan, S. R. Joty,
M. Ouzzani, and N. Tang. Deeper - deep entity
resolution. CoRR, abs/1710.00597, 2017.

[23] P. Ferragina and G. Vinciguerra. The pgm-index: a
multicriteria, compressed and learned approach to
data indexing, 2019.

[24] C. Finegan-Dollak, J. K. Kummerfeld, L. Zhang,
K. Ramanathan, S. Sadasivam, R. Zhang, and
D. Radev. Improving text-to-SQL evaluation
methodology. In ACL, pages 351–360, Melbourne,
Australia, July 2018.

[25] M. Francis-Landau, G. Durrett, and D. Klein.
Capturing semantic similarity for entity linking with
convolutional neural networks. In NAACL-HLT,
pages 1256–1261, San Diego, California, June 2016.

[26] A. Galakatos, M. Markovitch, C. Binnig, R. Fonseca,
and T. Kraska. Fiting-tree: A data-aware index
structure. In SIGMOD, pages 1189–1206, 2019.

[27] J. Gao, H. V. Jagadish, and B. C. Ooi. Active
sampler: Light-weight accelerator for complex data
analytics at scale. CoRR, abs/1512.03880, 2015.

[28] Y. Goldberg. A primer on neural network models for
natural language processing. CoRR, abs/1510.00726,
2015.

[29] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis,
L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and
K. He. Accurate, large minibatch SGD: training
imagenet in 1 hour. CoRR, abs/1706.02677, 2017.

[30] D. Grubic, L. K. Tam, D. Alistarh, and C. Zhang.
Synchronous multi-gpu deep learning with
low-precision communication: An experimental study.
In EDBT, pages 145–156. OpenProceedings, 2018.

[31] C. Guo, C. S. Jensen, and B. Yang. Towards total
traffic awareness. ACM SIGMOD Record,
43(3):18–23, 2014.

[32] S. Gupta, W. Zhang, and F. Wang. Model accuracy
and runtime tradeoff in distributed deep learning: A
systematic study. In ICDM, pages 171–180. IEEE,
2016.

[33] S. Hadjis, C. Zhang, I. Mitliagkas, and C. Ré.

https://developer.nvidia.com/nccl.

Omnivore: An optimizer for multi-device deep
learning on cpus and gpus. CoRR, abs/1606.04487,
2016.

[34] J. R. Haritsa. The picasso database query optimizer
visualizer. PVLDB, 3(1-2):1517–1520, 2010.

[35] A. Harlap, H. Cui, W. Dai, J. Wei, G. R. Ganger,
P. B. Gibbons, G. A. Gibson, and E. P. Xing.
Addressing the straggler problem for iterative
convergent parallel ml. In SoCC, pages 98–111, 2016.

[36] Y. Huang, Y. Cheng, D. Chen, H. Lee, J. Ngiam,
Q. V. Le, and Z. Chen. Gpipe: Efficient training of
giant neural networks using pipeline parallelism.
CoRR, abs/1811.06965, 2018.

[37] Y. Huang, T. Jin, Y. Wu, Z. Cai, X. Yan, F. Yang,
J. Li, Y. Guo, and J. Cheng. Flexps: Flexible
parallelism control in parameter server architecture.
PVLDB, 11:566–579, 2018.

[38] Y. B. Ian Goodfellow and A. Courville. Deep
learning. Book in preparation for MIT Press, 2016.

[39] S. Idreos and T. Kraska. From auto-tuning one size
fits all to self-designed and learned data-intensive
systems. In SIGMOD, pages 2054–2059, 2019.

[40] S. Iyer, I. Konstas, A. Cheung, J. Krishnamurthy, and
L. Zettlemoyer. Learning a neural semantic parser
from user feedback. CoRR, abs/1704.08760, 2017.

[41] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou,
L. Xie, Z. Guo, Y. Yang, L. Yu, T. Chen, G. Hu,
S. Shi, and X. Chu. Highly scalable deep learning
training system with mixed-precision: Training
imagenet in four minutes. CoRR, abs/1807.11205,
2018.

[42] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,
J. Long, R. Girshick, S. Guadarrama, and T. Darrell.
Caffe: Convolutional architecture for fast feature
embedding. arXiv:1408.5093, 2014.

[43] Z. Jia, S. Lin, C. R. Qi, and A. Aiken. Exploring
hidden dimensions in parallelizing convolutional
neural networks. CoRR, abs/1802.04924, 2018.

[44] Z. Jia, J. O. Thomas, T. Warszawski, M. Gao, M. A.
Zaharia, and A. H. Aiken. Optimizing dnn
computation with relaxed graph substitutions. In
SysML, 2019.

[45] Z. Jia, M. Zaharia, and A. Aiken. Beyond data and
model parallelism for deep neural networks. In
SysML, 2019.

[46] J. Jiang, B. Cui, C. Zhang, and L. Yu.
Heterogeneity-aware distributed parameter servers. In
SIGMOD, pages 463–478. ACM, 2017.

[47] J. Jiang, F. Fu, T. Yang, and B. Cui. Sketchml:
Accelerating distributed machine learning with data
sketches. In SIGMOD, pages 1269–1284, 2018.

[48] R. Jiang, X. Song, Z. Fan, T. Xia, Q. Chen,
S. Miyazawa, and R. Shibasaki.
DeepUrbanMomentum: An online deep-learning
system for short-term urban mobility prediction. In
AAAI, 2018.

[49] A. Kakaraparthy, J. M. Patel, K. Park, and B. Kroth.
Optimizing databases by learning hidden parameters
of solid state drives. PVLDB, 13(4):519–532, 2019.

[50] T. Kilias, A. Lser, F. Gers, Y. Zhang,
R. Koopmanschap, and M. Kersten. Idel: In-database
neural entity linking. In IEEE BigComp, pages 1–8,
2019.

[51] A. Kipf, D. Vorona, J. Müller, T. Kipf, B. Radke,
V. Leis, P. Boncz, T. Neumann, and A. Kemper.
Estimating cardinalities with deep sketches. In
SIGMOD, pages 1937–1940, 2019.

[52] T. Kraska, M. Alizadeh, A. Beutel, E. H. hsin Chi,
A. Kristo, G. Leclerc, S. Madden, H. Mao, and
V. Nathan. Sagedb: A learned database system. In

CIDR, 2019.
[53] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and

N. Polyzotis. The case for learned index structures. In
SIGMOD, pages 489–504, 2018.

[54] S. Krishnan, Z. Yang, K. Goldberg, J. M. Hellerstein,
and I. Stoica. Learning to optimize join queries with
deep reinforcement learning. CoRR, abs/1808.03196,
2018.

[55] A. Krizhevsky, I. Sutskever, and G. E. Hinton.
Imagenet classification with deep convolutional neural
networks. In NIPS, pages 1097–1105, 2012.

[56] G. Lacey, G. W. Taylor, and S. Areibi. Deep learning
on fpgas: Past, present, and future. CoRR,
abs/1602.04283, 2016.

[57] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning.
Nature, 521(7553):436–444, 2015.

[58] C. Lee, Z. Luo, K. Y. Ngiam, M. Zhang, K. Zheng,
G. Chen, B. C. Ooi, and W. L. J. Yip. Big Healthcare
Data Analytics: Challenges and Applications, pages
11–41. Springer International Publishing, Cham,
2017.

[59] M. L. Lee, M. Kitsuregawa, B. C. Ooi, K.-L. Tan, and
A. Mondal. Towards self-tuning data placement in
parallel database systems. In ACM SIGMOD Record,
volume 29, pages 225–236. ACM, 2000.

[60] F. Li and H. Jagadish. Constructing an interactive
natural language interface for relational databases.
PVLDB, 8(1):73–84, 2014.

[61] F. Li, B. C. Ooi, M. T. Özsu, and S. Wu. Distributed
data management using mapreduce. ACM Comput.
Surv., 46(3):31:1–31:42, 2014.

[62] G. Li, X. Zhou, S. Li, and B. Gao. Qtune: A
query-aware database tuning system with deep
reinforcement learning. PVLDB, 12(12):2118–2130,
2019.

[63] Y. Li, K. Fu, Z. Wang, C. Shahabi, J. Ye, and Y. Liu.
Multi-task representation learning for travel time
estimation. In KDD, 2018.

[64] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally.
Deep gradient compression: Reducing the
communication bandwidth for distributed training.
CoRR, abs/1712.01887, 2017.

[65] H. Liu, M. Xu, Z. Yu, V. Corvinelli, and C. Zuzarte.
Cardinality estimation using neural networks. In
CCSE, CASCON ’15, pages 53–59, Riverton, NJ,
USA, 2015. IBM Corp.

[66] Z. Luo, S. Cai, J. Gao, M. Zhang, K. Y. Ngiam,
G. Chen, and W. Lee. Adaptive lightweight
regularization tool for complex analytics. In ICDE,
pages 485–496, 2018.

[67] Y. Ma, X. Zhu, S. Zhang, R. Yang, W. Wang, and
D. Manocha. Trafficpredict: Trajectory prediction for
heterogeneous traffic-agents. CoRR, abs/1811.02146,
2019.

[68] R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh,
T. Kraska, O. Papaemmanouil, and N. Tatbul. Neo:
A learned query optimizer. PVLDB,
12(11):1705–1718, 2019.

[69] R. Marcus and O. Papaemmanouil. Deep
reinforcement learning for join order enumeration. In
Proceedings of the First International Workshop on
Exploiting Artificial Intelligence Techniques for Data
Management, aiDM@SIGMOD 2018, Houston, TX,
USA, June 10, 2018, pages 3:1–3:4, 2018.

[70] R. Marcus and O. Papaemmanouil. Plan-structured
deep neural network models for query performance
prediction. PVLDB, 12(11):1733–1746, 2019.

[71] R. Marcus and O. Papaemmanouil. Towards a
hands-free query optimizer through deep learning.
CIDR, 2019.

[72] R. Mayer and H.-A. Jacobsen. Scalable deep learning
on distributed infrastructures: Challenges, techniques
and tools. ArXiv, abs/1903.11314, 2019.

[73] H. Mikami, H. Suganuma, P. U.-Chupala, Y. Tanaka,
and Y. Kageyama. Imagenet/resnet-50 training in 224
seconds. CoRR, abs/1811.05233, 2018.

[74] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner,
R. Larsen, Y. Zhou, N. Kumar, M. Norouzi,
S. Bengio, and J. Dean. Device placement
optimization with reinforcement learning. In ICML,
pages 2430–2439, 2017.

[75] D. R. Mould. Models for disease progression: New
approaches and uses. Clinical Pharmacology &
Therapeutics, 92(1):125–131, 2012.

[76] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park,
G. Krishnan, R. Deep, E. Arcaute, and
V. Raghavendra. Deep learning for entity matching:
A design space exploration. In SIGMOD, pages
19–34, New York, NY, USA, 2018. ACM.

[77] D. Narayanan, A. Harlap, A. Phanishayee,
V. Seshadri, N. R. Devanur, G. R. Ganger, P. B.
Gibbons, and M. Zaharia. Pipedream: Generalized
pipeline parallelism for dnn training. In SOSP, pages
1–15, 2019.

[78] V. Nathan, J. Ding, M. Alizadeh, and T. Kraska.
Learning multi-dimensional indexes, 2019.

[79] B. C. Ooi, K. Tan, Q. T. Tran, J. W. L. Yip,
G. Chen, Z. J. Ling, T. Nguyen, A. K. H. Tung, and
M. Zhang. Contextual crowd intelligence. SIGKDD
Explorations, 16(1):39–46, 2014.

[80] B. C. Ooi, K.-L. Tan, S. Wang, W. Wang, Q. Cai,
G. Chen, J. Gao, Z. Luo, A. K. H. Tung, Y. Wang,
Z. Xie, M. Zhang, and K. Zheng. SINGA: A
distributed deep learning platform. In ACM
Multimedia, 2015.

[81] J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi.
An empirical analysis of deep learning for cardinality
estimation. CoRR, abs/1905.06425, 2019.

[82] A. Paszke, S. Gross, S. Chintala, and G. Chanan.
Pytorch: Tensors and dynamic neural networks in
python with strong gpu acceleration. PyTorch:
Tensors and dynamic neural networks in Python with
strong GPU acceleration, 6, 2017.

[83] G. Pleiss, D. Chen, G. Huang, T. Li, L. van der
Maaten, and K. Q. Weinberger. Memory-efficient
implementation of densenets. CoRR, abs/1707.06990,
2017.

[84] C. Ré, D. Agrawal, M. Balazinska, M. I. Cafarella,
M. I. Jordan, T. Kraska, and R. Ramakrishnan.
Machine learning and databases: The sound of things
to come or a cacophony of hype? In SIGMOD, pages
283–284, 2015.

[85] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit
stochastic gradient descent and its application to
data-parallel distributed training of speech dnns. In
INTERSPEECH, pages 1058–1062, 2014.

[86] A. Sergeev and M. D. Balso. Horovod: fast and easy
distributed deep learning in tensorflow. CoRR,
abs/1802.05799, 2018.

[87] D. Silver and et al. Mastering the game of go with
deep neural networks and tree search. Nature,
529(7587):484–489, 2016.

[88] K. Simonyan and A. Zisserman. Very deep
convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014.

[89] R. Socher, D. Chen, C. D. Manning, and A. Ng.
Reasoning with neural tensor networks for knowledge
base completion. In NIPS, pages 926–934, 2013.

[90] J. Sun and G. Li. An end-to-end learning-based cost
estimator. PVLDB, 13(3):307–319, 2019.

[91] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to
sequence learning with neural networks. In NIPS,
pages 3104–3112, 2014.

[92] K.-L. Tan, Q. Cai, B. C. Ooi, W.-F. Wong, C. Yao,
and H. Zhang. In-memory databases: Challenges and
opportunities from software and hardware
perspectives. ACM SIGMOD Record, 44(2):35–40,
2015.

[93] C. Tang, Z. Dong, M. Wang, Z. Wang, and H. Chen.
Learned indexes for dynamic workloads. CoRR,
abs/1902.00655, 2019.

[94] H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu.
Communication compression for decentralized
training. In NIPS, pages 7663–7673, 2018.

[95] H. Tang, C. Yu, X. Lian, T. Zhang, and J. Liu.
DoubleSqueeze: Parallel stochastic gradient descent
with double-pass error-compensated compression. In
ICML, pages 6155–6165, 2019.

[96] I. Trummer, S. Moseley, D. Maram, S. Jo, and
J. Antonakakis. Skinnerdb: Regret-bounded query
evaluation via reinforcement learning. Proc. VLDB
Endow., 11(12):2074–2077, Aug. 2018.

[97] O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever,
and G. Hinton. Grammar as a foreign language.
arXiv:1412.7449, 2014.

[98] D. Vorona, A. Kipf, T. Neumann, and A. Kemper.
DeepSPACE: Approximate Geospatial Query
Processing with Deep Learning. arXiv e-prints, Jun
2019.

[99] Q. H. Vu, M. Lupu, and B. C. Ooi. Peer-to-peer
computing. Springer, 2010.

[100] D. Wang, J. Zhang, W. Cao, J. Li, and Y. Zheng.
When will you arrive? estimating travel time based
on deep neural networks. In AAAI, 2018.

[101] L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. L. Song,
Z. Xu, and T. Kraska. Superneurons: Dynamic gpu
memory management for training deep neural
networks. In ACM SIGPLAN Notices, volume 53,
pages 41–53. ACM, 2018.

[102] P. Wang, Y. Fu, J. Zhang, P. Wang, Y. Zheng, and
C. C. Aggarwal. You are how you drive: Peer and
temporal-aware representation learning for driving
behavior analysis. In KDD, 2018.

[103] Q. Wang, Z. Mao, B. Wang, and L. Guo. Knowledge
graph embedding: A survey of approaches and
applications. IEEE Trans. Knowl. Data Eng.,
29(12):2724–2743, Dec 2017.

[104] S. Wang, J. Cao, and P. S. Yu. Deep learning for
spatio-temporal data mining: A survey. CoRR,
abs/1906.04928, 2019.

[105] W. Wang, G. Chen, T. T. A. Dinh, J. Gao, B. C. Ooi,
K.-L. Tan, and S. Wang. SINGA: Putting deep
learning in the hands of multimedia users. In ACM
Multimedia, 2015.

[106] W. Wang, B. C. Ooi, X. Yang, D. Zhang, and
Y. Zhuang. Effective multi-modal retrieval based on
stacked auto-encoders. PVLDB, 7(8):649–660, 2014.

[107] W. Wang, X. Yang, B. C. Ooi, D. Zhang, and
Y. Zhuang. Effective deep learning-based multi-modal
retrieval. The VLDB Journal, pages 1–23, 2015.

[108] W. Wang, M. Zhang, G. Chen, H. V. Jagadish, B. C.
Ooi, and K.-L. Tan. Database meets deep learning:
Challenges and opportunities. SIGMOD Rec.,
45(2):17–22, Sept. 2016.

[109] Z. Wang, K. Fu, and J. Ye. Learning to estimate the
travel time. In KDD, 2018.

[110] P. Watcharapichat, V. L. Morales, R. C. Fernandez,
and P. Pietzuch. Ako: Decentralised deep learning
with partial gradient exchange. In SoCC, pages
84–97, 2016.

[111] J. Wei, W. Dai, A. Qiao, Q. Ho, H. Cui, G. R.
Ganger, P. B. Gibbons, G. A. Gibson, and E. P. Xing.
Managed communication and consistency for fast
data-parallel iterative analytics. In SoCC, pages
381–394, 2015.

[112] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen,
and H. Li. Terngrad: Ternary gradients to reduce
communication in distributed deep learning. CoRR,
abs/1705.07878, 2017.

[113] R. Wu, S. Yan, Y. Shan, Q. Dang, and G. Sun. Deep
image: Scaling up image recognition. CoRR,
abs/1501.02876, 2015.

[114] S. Wu, X. Yu, G. Chen, Y. Gao, X. Feng, and
W. Cao. Progressive neural index search for database
system. ArXiv, abs/1912.07001, 2019.

[115] T. Wu, L. Chen, P. Hui, C. J. Zhang, and W. Li. Hear
the whole story: Towards the diversity of opinion in
crowdsourcing markets. PVLDB, 8(5):485–496, 2015.

[116] X. Xu, C. Liu, and D. Song. Sqlnet: Generating
structured queries from natural language without
reinforcement learning. CoRR, abs/1711.04436, 2017.

[117] M. Yamazaki, A. Kasagi, A. Tabuchi, T. Honda,
M. Miwa, N. Fukumoto, T. Tabaru, A. Ike, and
K. Nakashima. Yet another accelerated sgd:
Resnet-50 training on imagenet in 74.7 seconds.
CoRR, abs/1903.12650, 2019.

[118] Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan,
P. Chen, P. Abbeel, J. M. Hellerstein, S. Krishnan,
and I. Stoica. Deep unsupervised cardinality
estimation. PVLDB, 13(3):279–292, 2019.

[119] C. Yao, D. Agrawal, G. Chen, Q. Lin, B. C. Ooi,
W. F. Wong, and M. Zhang. Exploiting
single-threaded model in multi-core in-memory
systems. IEEE Trans. Knowl. Data Eng., 2016.

[120] M. D. Zeiler. Adadelta: An adaptive learning rate
method. arXiv:1212.5701, 2012.

[121] C. Zhang, H. Tian, W. Wang, and F. Yan. Stay fresh:
Speculative synchronization for fast distributed
machine learning. In ICDCS, pages 99–109, 2018.

[122] H. Zhang, G. Chen, B. C. Ooi, K. Tan, and
M. Zhang. In-memory big data management and
processing: A survey. IEEE Trans. Knowl. Data
Eng., 27(7):1920–1948, 2015.

[123] J. Zhang, Y. Liu, K. Zhou, G. Li, Z. Xiao, B. Cheng,
J. Xing, Y. Wang, T. Cheng, L. Liu, and et al. An
end-to-end automatic cloud database tuning system
using deep reinforcement learning. In SIGMOD,
pages 415–432, 2019.

[124] J. Zhang, S. Yeung, Y. Shu, B. He, and W. Wang.
Efficient memory management for gpu-based deep
learning systems. CoRR, abs/1903.06631, 2019.

[125] W. Zhang, S. Gupta, X. Lian, and J. Liu.
Staleness-aware async-sgd for distributed deep
learning. In IJCAI, pages 2350–2356, 2016.

[126] V. Zhong, C. Xiong, and R. Socher. Seq2sql:
Generating structured queries from natural language
using reinforcement learning. CoRR, abs/1709.00103,
2017.

[127] X. Zhu, T. Chen, J. He, and W. Zhou. NNS: the case
for neural network-based sorting. CoRR,
abs/1907.08817, 2019.

	1 Introduction
	2 background
	3 Databases to Deep Learning
	3.1 Stand-alone Training
	3.1.1 Operation Scheduling
	3.1.2 Memory Management

	3.2 Distributed Training
	3.2.1 Communication
	3.2.2 Concurrency and Consistency
	3.2.3 Fault Tolerance

	3.3 Optimization Techniques in Existing Systems

	4 Deep Learning to Databases
	4.1 Query Interface
	4.2 Query Plans
	4.3 Crowdsourcing and Knowledge Bases
	4.4 Spatial and Temporal Data

	5 Conclusions
	6 Acknowledgement
	7 References

